
System Performance “Balance”,
System Cost “Balance”,
Application “Balance”
& the SPEC CPU2000/CPU2006 Benchmarks

John D. McCalpin, Ph.D.
Principal Scientist, AMD

Presented by Joerg Borowski, AMD

Today’s Talk

• “System Balance”, “Application Balance”, and “Optimization” are
commonly used terms, but are typically not clearly defined

– Definitions

– Examples

– Performance Models

• “Price/Performance” is a popular metric for system optimization
– Define cost (price) model

– Combine with previous performance models

– Discuss non-intuitive results

• Application to the SPEC CPU2000 FP and SPEC CPU2006 FP
benchmarks

– Theoretical price/performance optimization

– “Real World” price/performance optimization

What are “System Balance” and “Application
Balance”?
• Webster’s Online Dictionary has 9 definitions of “balance” as a noun.
 The two interesting ones are:

– 5 a : stability produced by even distribution of weight on each side of the
vertical axis b : equipoise between contrasting, opposing, or interacting
elements [quantitative, but limited to one dimension]

– 6 a : an aesthetically pleasing integration of elements [not quantitative]

 So when we talk about computer “balance” or application “balance”,
do we know what we are talking about? [Usually not]

 Creating your own definitions of “balance” can be educational

– How many variables? Which ones? How are they weighted?
 Performance: CPU, cache, DRAM capacity, DRAM bandwidth, I/O?

 Physical Attributes: Size, Power, Expandability, Serviceability?

 Cost: Purchase, Support, Power/Cooling?

• Today’s talk focuses on a typical definition for “System Balance” and
“Application Balance”

– Balance = (Bytes/second of memory BW) / (CPU Cycles of computation)

What is “Optimization”

• Another very tricky word…

• Webster’s online:
– : an act, process, or methodology of making something (as a design,

system, or decision) as fully perfect, functional, or effective as possible;
specifically : the mathematical procedures (as finding the maximum of a
function) involved in this

• “Optimization” does not mean making something “better” in the
abstract – it means maximizing or minimizing a specific objective
function

• What is your objective function?
– Optimize [single-thread, multi-thread, throughput] x [performance,

performance/cost, performance/watt]

– Satisfy constraints: [max hardware cost, max physical size, minimum
memory, minimum I/O, expandability, max allowable time-to-solution,
software compatibility]

– I count at least 20 primary purchasing metrics in common use for servers

“Optimization” (continued)

• Computing is a human activity that can be modeled as a rational
economic decision

• The fundamental metrics are therefore
– Value – what benefits do I obtain from doing this computing?

– Cost – what do I have to give up to do this computing?

• These may be only loosely related to technology metrics like
“performance” or “price”

– E.g., “Value” is typically bounded as time-to-solution goes to zero – i.e.,
as “performance” goes to infinity

– E.g., “Value” is typically bounded as “price” goes to zero – how many
computers can I use, even if they are “free”?

• I can’t define your “Value” or “Cost” metrics
– So my examples will be based on “Performance” and “Price”

– This does not negate the critical importance of the differences between
“Value” and “Performance” & “Cost” and “Price” !

A Simple Performance Model

Consider the task of projecting
SPECfp_rate2000 using as few
parameters and/or
measurements as possible

“McCalpin’s Magical Metric” obtains
~16% RMS error using 1
measurement plus 2
architectural parameters 0

1000

2000

3000

4000

5000

6000

7000

8000

0.00 5.00 10.00 15.00 20.00 25.00 30.00

SPECfp_rate2000/cpu

Pe
ak

 M
FL

O
PS

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

0.00 5.00 10.00 15.00 20.00 25.00 30.00

SPECfp_rate2000/cpu

G
B

/s
 p

er
 C

PU

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

SPECfp_rate2000/cpu

Es
tim

at
ed

 R
at

e/
cp

u

LINPACK
is no good

STREAM
is also poor

Optimum
Harmonic

Combination

Presentations available at http://www.cs.virginia.edu/~mccalpin/

Slightly Less Simple Performance Models

• “McCalpin’s Magical Metric” can be made slightly more accurate by
developing separate models for each of the 14 benchmarks and then
taking the geometric mean of the results

– It is very hard to get to 10% accuracy without adding many more degrees
of freedom to the mode or adding significantly more parameters to
describe microarchitectures and/or software

• Dramatically more accurate models can be made for systems based
on a single processor family and fixed compiler choice

• Here I consider models for SPEC CFP2000 and CFP2006 (speed and
rate) for systems using AMD Opteron processors

– All systems have the same CPU microarchitecture and same cache sizes

– All systems are running “similar” versions of Linux and effectively identical
compilers (PathScale EKOPath 2.5 compiler suite)

– Each of the 14 SPECfp2000 and 17 SPECfp2006 codes has its own model

• Two parameter models are not flexible enough to get <10% errors
– Adding a “Memory Latency” component reduces errors to <<5%

Slightly Less Simple Model, continued

• The model is additive (ignores
overlap) and is of the form:

• The three “Rate” parameters are
specified a priori based on the
system configuration:

latency

latency

BW

BW

CPU

CPU

R
W

R
W

R
WT ++=

60 nsIdle pointer-chasing memory
latency of systemRlatency

2.6 GB/s per “user”Sustained GB/s per SPEC
“user”RBW

2.8 GHzCPU GHzRCPU

Value on Reference
System (1)DescriptionMetric

(1) Reference Hardware Configuration: Two socket server with two 2.8 GHz
dual-core AMD 2000 series processors & four 667 MHz DDR2 DIMMs per socket

Slightly Less Simple Model, continued again

• The three “Work” components are based on a least-squares fit of
the published execution time to the model projection for each
benchmark

– Separate models for each benchmark (14 CFP2000 + 17 CFP2006)

 Published Data
– CPU2000: 9 “speed”, 20 “rate”, 6 independent system configurations

– CPU2006: 7 “speed”, 22 “rate”, 13 independent system configurations

 The models are strongly consistent with the measured results:

10 (71%)8 (47%)0% - 2%

4 (29%)7 (41%)2% - 4%

0 (0%)2 (12%)4% - 6%

CFP2000
14 benchmarks

CFP2006
17 benchmarks

RMS error of
projected execution
time vs published
results

CFP2006 Execution Time on Reference System

Modelled Execution Time Breakdown for Reference System

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Bwave
s

Gam
ess Milc

Zeu
sm

p

Gromacs

Cac
tusA

DM

Les
lie

3d
Nam

d
Dea

lII

Sop
lex

Pov
ray

Calc
ulix

Gem
sF

DTD
Ton

to
Lbm Wrf

Sph
inx3

%
 o

f T
ot

al
 E

xe
cu

tio
n

Ti
m

e

T_BW
T_Lat
T_CPU

Latency and Bandwidth “Balance” vs CPU work

Bandwidth vs Latency "Balance"

Bwaves

Gamess

Milc

Zeusmp

Gromacs

CactusADM
Les lie3d

Namd

DealII

Soplex

PovrayCalculix

GemsFDTD

Tonto

Lbm

Wrf

Sphinx3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Bandwidth Work / CPU Work

La
te

nc
y

W
or

k*
10

0
/ C

PU
 W

or
k

Bandwidth-limited

TBW Tlat

La
te

n
cy

-l
im

it
ed

CFP2000 Execution Time on Reference System

Time Breakdown for CFP2000

0%

20%

40%

60%

80%

100%

wup
wise

sw
im

mgri
d

ap
plu

mes
a

ga
lge

l
art

eq
ua

ke

fac
ere

c
am

mp
luc

as
fm

a3
d

six
tra

ck ap
si

%_BW
%_lat
%_CPU

Performance Model Summary

• Simple performance models with a few additive components can be
fit very accurately to each of the SPEC CFP2000_rate and SPEC
CFP2006_rate benchmarks

• The SPEC CFP2000 and CFP2006 benchmarks both show a very
broad range of “Application Balance”, ranging from CPU-limited to
(almost) Memory Bandwidth-limited, with a substantial subset
showing non-trivial Memory Latency stall times.

• The broad range of these results and the accuracy of the models
suggest that the models will be quite useful in further modeling of
Price/Performance

Cost Model

• In principal, additive cost models can be constructed for computer systems

• Difficulties & Limitations
– Costs can vary dramatically due to features that do not impact performance (e.g.,

reliability, scalability, low power, etc)

– Many theoretically possible configurations are not available because no one has
chosen to build them

 Key Feature: Cost models have a large “baseline” component associated with
the “stuff” necessary to support the CPU and memory (motherboards, disk,
power supplies, etc)

 For the initial analytical modeling, I will assume:

 C = cost, R = rate

 $CPU = cost per unit CPU performance

 $BW = cost per unit sustainable memory BW

BWBWCPUCPUbase RRCC $$ ++=

Cost/Performance

• Cost/Performance ≈ Cost * Time

• or

 Note that Cost * Time has 9 terms!

– Two terms correspond to “active” useful work: Tcpu*Ccpu and Tbw*Cbw

– The remaining 7 terms are overheads:
 Depreciation of active components while other active components are busy

Tcpu*Cbw, Tbw*Ccpu

 Depreciation of inactive components while the active components are busy
Tcpu*Cbase, Tbw*Cbase

 Depreciation of everything while waiting on memory latency stalls
Tlatency*Cbase, Tlatency*Ccpu, Tlatency*Cbw

BWBWCPUCPUbase RRCC $$ ++=
latency

latency

BW

BW

CPU

CPU

R
W

R
W

R
WT ++=

BWCPUbase CCCC ++= latencyBWCPU TTTT ++=

x

x

Optimization of Cost/Performance

• Define some nondimensional parameters:

�β = Rbw/Rcpu machine balance

�γ = Wbw/Wcpu application balance

�δ = $bw/$cpu technology cost balance

• In the absence of the constant terms (Cbase & Tlatency), Cost*Time is a simple
quadratic function with a simple analytic optimum

• In the presence of the constant terms the equation is effectively quadratic and
the one physically realizable optimum provides specific values of Rcpu and Rbw

• Interestingly, the optimum machine balance ratio β is the same in both cases

δ
γβ =optimum

latency

base

CPU

CPU
CPU T

CWR ×=
$ latency

base

BW

BW
BW T

CWR ×=
$

A Simple Analytical Example (no constant terms)

Cost*Time Details: gamma=4, delta=1

0

2

4

6

8

10

12

14

16

18

0.35 0.50 0.71 1.0 1.4 2.0 2.8 4.0 5.7 8.0 11.3

Beta

C
os

t *
 T

im
e

$_bw*T_cpu
$_cpu*T_bw
$_bw*T_bw
$_cpu*T_cpu

β=γβ=1/δ

Optimum β provides 27% better
Cost/Performance than equal
partitioning of time (β=γ) or

equal partitioning of cost (β=1/δ)

More detailed examples

• Given that we do have computers, we do not need to limit ourselves
to analytical solutions.

• I obtained pricing for a wide variety of 1U, 2-socket Opteron servers
from www.serversdirect.com during June 2007

– Opteron “RevE” single-core CPUs @ 5 frequencies, with DDR/400 memory

– Opteron “RevE” dual-core CPUs @ 6 frequencies, with DDR/400 memory

– Opteron “RevF” dual-core CPUs @ 6 frequencies, with DDR2/667 memory

• The pricing for the servers was split into “base”, “CPU”, and
“Memory” components

– Yes, I am deliberately confusing “Memory Cost” and “Bandwidth Cost”, but
I don’t have time to explain why this is less wrong than it might appear

– Each system was configured with the cheapest option providing 2 GB/core

• Cost*Time was computed for each of the 31 benchmarks on each of
the systems, and the configuration with the lowest Cost*Time was
identified

http://www.serversdirect.com/

Optimum Price/Performance for Opteron “RevE”

1192.22Opteron RevE,
DDR/400

322.02Opteron RevE,
DDR/400

221.82Opteron RevE,
DDR/400

1-2.41Opteron RevE,
DDR/400

-12.21Opteron RevE,
DDR/400

Optimum for
this many of
the 17
CFP2006
benchmarks

Optimum for
this many of
the 14
CFP2000
benchmarks

CPU GHzCores/ChipCPU/Memory

Optimum Price/Performance for Opteron “RevF”

1082.22Opteron RevF,
DDR2/667

432.02Opteron RevF,
DDR2/667

331.82Opteron RevF,
DDR2/667

Optimum for
this many of
the 17
CFP2006
benchmarks

Optimum for
this many of
the 14
CFP2000
benchmarks

CPU GHzCores/ChipCPU/Memory

• Note that the Performance model can provide very accurate performance
projections for both single-core and dual-core parts, but…
• AMD is not currently offering single-core RevF Opteron processors, so pricing
is only available for the dual-core processors here

Detailed Cost*Time Breakdown for GemsFDTD

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

1.E+06

2.2
 si

ng
le

2.4
 si

ng
le

2.6
 si

ng
le

2.8
 si

ng
le

3.0
 si

ng
le

1.8
 du

al

2.0
 du

al

2.2
 du

al

2.4
 du

al

2.6
 du

al

2.8
 du

al

C
os

t *
 T

im
e

Cmem*Tlat
Ccpu*Tlat
Cbase*Tlat
Cbase*Tbw
Cbase*Tcpu
Ccpu*Tbw
Cmem*Tcpu
Cmem*Tbw
Ccpu*Tcpu

Failure and Success with Analytical Modeling

 Linear trends were fit to the CPU and memory cost data to create an
analytically tractable cost model

 Optimum Rcpu and Rbw were computed for each of the 17 CFP2000
benchmarks

– For 8 benchmarks the computed optimal Rcpu and Rbw were within
physically realizable limits for systems based on the Opteron processor

– For 3 benchmarks the computed optimal Rbw was much higher than is
currently configurable
 These benchmarks might benefit from single-core processors

– For 6 benchmarks the computed optimal Rcpu was much higher than is
currently configurable
 These benchmarks should benefit from quad-core processors

 Bad News: poor numerical correlation between analytical and
observed optimum system balance

• Good News: perfect correlation of rank ordering of analytical and
observed optimum system balance

1.190.00Povray
1.190.00Gromacs
1.190.00Gamess
1.190.04Namd
1.190.12Calculix
1.190.55Tonto
1.190.56Zeusmp
1.190.62DealII
1.190.68CactusADM
1.190.95Wrf
1.301.03Sphinx3
1.301.34Soplex
1.301.49Bwaves
1.301.58Leslie3d
1.451.73Milc
1.451.95GemsFDTD
1.454.03Lbm

Observed Optimum
Beta

Analytic Optimum
BetaBenchmark

Summary/Conclusions

• Balance is complicated and often counterintuitive

• It pays to develop a clear understanding of your own estimates of
the “value” of a computation as a function of the time-to-solution and
other factors

• These examples show that the “optimum” balance of a hardware
system does not need to match the “application balance” in order to
give the most cost-effective performance

– Equal partitioning of execution time and equal partitioning of system cost
are both sub-optimal solutions

– The largest component of the Cost*Time equation is often the depreciation
of the Base Cost during the execution of the application

– This argues against using only CPU Cost and Memory Bandwidth Cost
when optimizing system configurations

System Performance “Balance”,
System Cost “Balance”,
Application “Balance”
& the SPEC CPU2000/CPU2006 Benchmarks

John D. McCalpin, Ph.D.
Principal Scientist, AMD

Presented by Joerg Borowski, AMD

The author would like to thank the audience in advance for not lynching the
presenter, who agreed to make this presentation without knowledge of the
author’s long and “interesting” relationship with the SPEC CPU committee.

 2

 2

Today’s Talk

• “System Balance”, “Application Balance”, and “Optimization” are
commonly used terms, but are typically not clearly defined

– Definitions

– Examples

– Performance Models

• “Price/Performance” is a popular metric for system optimization
– Define cost (price) model

– Combine with previous performance models

– Discuss non-intuitive results

• Application to the SPEC CPU2000 FP and SPEC CPU2006 FP
benchmarks

– Theoretical price/performance optimization

– “Real World” price/performance optimization

I am realizing that this topic has a lot more background than I initially
anticipated.

 3

 3

What are “System Balance” and “Application
Balance”?
• Webster’s Online Dictionary has 9 definitions of “balance” as a noun.
 The two interesting ones are:

– 5 a : stability produced by even distribution of weight on each side of the
vertical axis b : equipoise between contrasting, opposing, or interacting
elements [quantitative, but limited to one dimension]

– 6 a : an aesthetically pleasing integration of elements [not quantitative]

 So when we talk about computer “balance” or application “balance”,
do we know what we are talking about? [Usually not]

 Creating your own definitions of “balance” can be educational

– How many variables? Which ones? How are they weighted?
 Performance: CPU, cache, DRAM capacity, DRAM bandwidth, I/O?

 Physical Attributes: Size, Power, Expandability, Serviceability?

 Cost: Purchase, Support, Power/Cooling?

• Today’s talk focuses on a typical definition for “System Balance” and
“Application Balance”

– Balance = (Bytes/second of memory BW) / (CPU Cycles of computation)

This is drawn from the introduction of the paper I recently published in the
CTWatch Quarterly web journal:
http://www.ctwatch.org/quarterly/archives/february-2007/
The article is “The Role of Multicore Processors in the Evolution of General-
Purpose Computing” by John McCalpin, Chuck Moore, Phil Hester, (all
Advanced Micro Devices, Inc.)
A PDF version of the issue is downloadable:
http://www.ctwatch.org/quarterly/pdf/download.php?file=ctwatchquarterly-
10.pdf
Although most people understand that they are using the word “balance” in an
imprecise manner, unless you sit down and try to work out real quantitative
definitions I don’t think that you are likely to have a very good idea of just
how imprecise this word is!
Just looking at the few attributes on this page suggests a frighteningly large
space of possible reasonable definitions (as well as an even larger space of
unreasonable definitions).
Even the “quantitative” definition on the bottom is very fuzzy. Are we talking
about “peak memory bandwidth”, “maximum sustainable memory bandwidth”,
“bandwidth actually sustained while running some specific code” or something
else? Ditto for “FLOP/s of compute capability”: Peak? Max sustainable for an
arbitrary combination of operations? Max sustainable for the specific
combination of operations in my application? Actual delivered FLOP/s on my
application?

 4

 4

What is “Optimization”

• Another very tricky word…

• Webster’s online:
– : an act, process, or methodology of making something (as a design,

system, or decision) as fully perfect, functional, or effective as possible;
specifically : the mathematical procedures (as finding the maximum of a
function) involved in this

• “Optimization” does not mean making something “better” in the
abstract – it means maximizing or minimizing a specific objective
function

• What is your objective function?
– Optimize [single-thread, multi-thread, throughput] x [performance,

performance/cost, performance/watt]

– Satisfy constraints: [max hardware cost, max physical size, minimum
memory, minimum I/O, expandability, max allowable time-to-solution,
software compatibility]

– I count at least 20 primary purchasing metrics in common use for servers

Also from CTWatch paper. Again we have a disturbingly large space of
potential definitions.

 5

 5

“Optimization” (continued)

• Computing is a human activity that can be modeled as a rational
economic decision

• The fundamental metrics are therefore
– Value – what benefits do I obtain from doing this computing?

– Cost – what do I have to give up to do this computing?

• These may be only loosely related to technology metrics like
“performance” or “price”

– E.g., “Value” is typically bounded as time-to-solution goes to zero – i.e.,
as “performance” goes to infinity

– E.g., “Value” is typically bounded as “price” goes to zero – how many
computers can I use, even if they are “free”?

• I can’t define your “Value” or “Cost” metrics
– So my examples will be based on “Performance” and “Price”

– This does not negate the critical importance of the differences between
“Value” and “Performance” & “Cost” and “Price” !

These notes are based on a 1997 presentation that I gave at a NASA
workshop on “Performance Engineered Systems for the Information Power
Grid”. The main point is that performance improvement by parallelization is
only valuable when the improved “value” of quicker time to solution is “bigger”
than the increased “cost” due to the use of parallel systems (that have larger
“price” and less effective use of resources due to imperfect parallel
performance scaling).
Note that this argument ignores one of the most important motivations for
parallel computing – the ability to run simulations that are too large to fit into
the memory of smaller systems. In this case the time-to-solution is effectively
infinite (or the performance is zero) for smaller systems. In this case the
baseline for analysis of “Value” and “Cost” for consideration of using larger
systems should be the smallest parallel system that can actually run the
application of interest.

 6

 6

A Simple Performance Model

Consider the task of projecting
SPECfp_rate2000 using as few
parameters and/or
measurements as possible

“McCalpin’s Magical Metric” obtains
~16% RMS error using 1
measurement plus 2
architectural parameters 0

1000

2000

3000

4000

5000

6000

7000

8000

0.00 5.00 10.00 15.00 20.00 25.00 30.00

SPECfp_rate2000/cpu

Pe
ak

 M
FL

O
PS

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

0.00 5.00 10.00 15.00 20.00 25.00 30.00

SPECfp_rate2000/cpu

G
B

/s
 p

er
 C

PU

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

SPECfp_rate2000/cpu

Es
tim

at
ed

 R
at

e/
cp

u

LINPACK
is no good

STREAM
is also poor

Optimum
Harmonic

Combination

Presentations available at http://www.cs.virginia.edu/~mccalpin/

The optimum harmonic combination that I like to refer to as “McCalpin’s
Magical Metric” was presented at SuperComputing2003 and
SuperComputing2004.
Slides are available online at http://www.cs.virginia.edu/~mccalpin/
The model attempts to project SPECfp_rate2000/cpu using a simple model:

Define a “pseudo-time”: T = 1/(SPECfp_rate2000/cpu)
Assume two additive performance components

T = Wcpu/Rcpu + Wbw/Rbw
Rcpu is assumed to be equal to the peak GFLOPS
Rbw is assumed to be equal to the sustainable memory bandwidth per SPEC
“user”
Wbw is a 3-coefficient model based on cache size, with coefficients fit to the
data by a least squares error minimization process. (See the original
presentations for details.)

 7

 7

Slightly Less Simple Performance Models

• “McCalpin’s Magical Metric” can be made slightly more accurate by
developing separate models for each of the 14 benchmarks and then
taking the geometric mean of the results

– It is very hard to get to 10% accuracy without adding many more degrees
of freedom to the mode or adding significantly more parameters to
describe microarchitectures and/or software

• Dramatically more accurate models can be made for systems based
on a single processor family and fixed compiler choice

• Here I consider models for SPEC CFP2000 and CFP2006 (speed and
rate) for systems using AMD Opteron processors

– All systems have the same CPU microarchitecture and same cache sizes

– All systems are running “similar” versions of Linux and effectively identical
compilers (PathScale EKOPath 2.5 compiler suite)

– Each of the 14 SPECfp2000 and 17 SPECfp2006 codes has its own model

• Two parameter models are not flexible enough to get <10% errors
– Adding a “Memory Latency” component reduces errors to <<5%

Many years of work on SGI MIPS, SGI Itanium, IBM POWER, and AMD
Opteron systems is skipped over here in the interests of brevity. Each system
has slightly different sharing characteristics (shared memory interfaces,
shared front-side busses, shared caches, shared cores (e.g., simultaneous
multithreading)), requiring the development of unique models for each major
variation.
While many models can provide accurate interpolation, models based on
weighted harmonic means have correct asymptotic properties and actually
become more accurate as the system configurations become more
“unbalanced”. Confidence in a model’s ability to extrapolate is critical for
support of design and business decisions.
The models are also very useful for “sanity checking” of benchmark
measurements. While at IBM, I developed the models to the point where they
were significantly more accurate than a single run of the actual benchmarks.
Deviations of >2% on any of the individual benchmarks almost always
indicated a configuration error with the benchmark rather than a projection
error of the model.

 8

 8

Slightly Less Simple Model, continued

• The model is additive (ignores
overlap) and is of the form:

• The three “Rate” parameters are
specified a priori based on the
system configuration:

latency

latency

BW

BW

CPU

CPU

R
W

R
W

R
WT ++=

60 nsIdle pointer-chasing memory
latency of systemRlatency

2.6 GB/s per “user”Sustained GB/s per SPEC
“user”RBW

2.8 GHzCPU GHzRCPU

Value on Reference
System (1)DescriptionMetric

(1) Reference Hardware Configuration: Two socket server with two 2.8 GHz
dual-core AMD 2000 series processors & four 667 MHz DDR2 DIMMs per socket

The Rate components are prescribed based on each hardware configuration.
The (total) Time is based on published measurements for each benchmark on
each configuration (see next slide).
The unknown variables are the three Work components for each of the 31
benchmarks (14 CFP2000 plus 17 CFP2006).
Note that since all Opteron caches are the same size and no caches are
shared, the Work components can be assumed to be independent of the
hardware configuration (single vs dual core, etc).
The methodology becomes much more tricky when the Work components are
different for each hardware configuration due to cache sharing, simultaneous
multithreading, etc.
The “Work” components might not mean exactly what they appear to mean.
W_cpu means the amount of work done at a rate that is proportional to the
CPU frequency. This includes the CPU core, the L1 and L2 caches, and
portions of the Opteron memory controller. Similarly W_bw means the
amount of work done at a rate that is proportional to the sustained memory
bandwidth per benchmark process (based on the performance of the
STREAM benchmark and the 171.swim benchmark from SPEC CFP2000).
W_lat means the amount of work that is proportional to the idle memory
latency of the system (60 ns on 1 or 2 sockets systems and 90 ns on 4 socket
systems).

 9

 9

Slightly Less Simple Model, continued again

• The three “Work” components are based on a least-squares fit of
the published execution time to the model projection for each
benchmark

– Separate models for each benchmark (14 CFP2000 + 17 CFP2006)

 Published Data
– CPU2000: 9 “speed”, 20 “rate”, 6 independent system configurations

– CPU2006: 7 “speed”, 22 “rate”, 13 independent system configurations

 The models are strongly consistent with the measured results:

10 (71%)8 (47%)0% - 2%

4 (29%)7 (41%)2% - 4%

0 (0%)2 (12%)4% - 6%

CFP2000
14 benchmarks

CFP2006
17 benchmarks

RMS error of
projected execution
time vs published
results

“Independent System Configurations” means unique combinations of frequency, bandwidth per
SPEC “user”, number of sockets (2 and 4 sockets have different idle memory latency: 60 & 90
ns), etc.
The graphs at the end of the presentation show strong correlation between the model
projections and the measured times, with only a few cases that show suggestions of
systematic error (e.g., bwaves and lbm).
For CPU2000, I only had 6 independent configurations for the 3 degrees of freedom, so these
results are probably somewhat sensitive to experimental “noise” in the performance
measurements.
For CPU2006, the 13 independent system configurations provide strong constraints for the 3
degrees of freedom, but even in this case a few of the configurations were represented by only
one or two submissions. A number of clearly sub-optimal results were removed before I fit the
models to the data, but some unexplained variability remains.
When I do this work for “real”, I prefer to perform all the measurements myself to control for
system configuration and other sources of variability in the performance measurements, but
these results are clearly good enough to show the broad range of “application balance” across
the SPEC FP2000/FP2006 benchmarks.
The effectiveness of the model at fitting the measurements is a strong indicator that the basic
model assumptions are correct: (1) CPU work, Memory BW work, and Memory Latency work
are largely additive, rather than overlapped; (2) Memory time can be effectively modeled as the
sum of prefetchable component (limited by the max sustainable BW of the chip) and a non-
prefetchable component (limited by the idle memory latency of the system).
It is possible that a different set of primary Work and Rate components would be even more
effective, but I have worked extensively with 2-term models and I do not believe that they are
capable of this level of accuracy. These projection errors are so small relative to the “natural”
variability of the measurements that it would be difficult to demonstrate that a different 3-term
model (or a more complex model) is “better” than this one.

 10

 10

CFP2006 Execution Time on Reference System

Modelled Execution Time Breakdown for Reference System

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Bwave
s

Gam
ess Milc

Zeu
sm

p

Gromacs

Cac
tusA

DM

Les
lie

3d
Nam

d
Dea

lII

Sop
lex

Pov
ray

Calc
ulix

Gem
sF

DTD
Ton

to
Lbm Wrf

Sph
inx3

%
 o

f T
ot

al
 E

xe
cu

tio
n

Ti
m

e

T_BW
T_Lat
T_CPU

Again, the Reference System is a 2 socket Opteron RevF box with two dual-
core 2.8 GHz Opteron processors and a full load of DDR2/667 DIMMs,
running 4 copies of each benchmark in the SPEC_rate configuration.
(CAS latency does not appear to impact performance on any of these
benchmarks, but I believe that most of the measurements were done with
CAS 5 DIMMs.)
Although the Latency times are small in many of these codes, recall that this
is a machine with 60 ns local latency – most machines have significantly
higher idle memory latency and should show correspondingly higher memory
latency stall times.
The largest errors in the performance projections were for the benchmarks
with the highest memory times. From looking at the data it appears that this
represents both systematic and random components. The run-to-run and
submission-to-submission variability is definitely largest for the high-bandwidth
benchmarks. Also the assumption that “bandwidth” is a single entity is a
crude one. Sustained bandwidth varies significantly based on prefetchability
of the address streams, the ratio of reads to writes, etc. The strong (though
not perfect) correlation between the model projections and the observations
suggests that within the high-bandwidth subset of these codes, treating
“bandwidth” as a single parameter is not a bad approximation. It may be a
terrible approximation for the low-bandwidth codes, but since memory
bandwidth time contributes such a small portion to their execution time, any
such systematic errors would be irrelevant to the accuracy of the projections.

 11

 11

Latency and Bandwidth “Balance” vs CPU work

Bandwidth vs Latency "Balance"

Bwaves

Gamess

Milc

Zeusmp

Gromacs

CactusADM
Les lie3d

Namd

DealII

Soplex

PovrayCalculix

Gem sFDTD

Tonto

Lbm

Wrf

Sphinx3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Bandwidth Work / CPU Work

La
te

nc
y

W
or

k*
10

0
/ C

PU
 W

or
k

Bandwidth-limited

TBW Tlat

La
te

n
cy

-l
im

it
ed

For the reference system, one latency of 60 ns corresponds to a transfer of
about 156 Bytes at the nominal “streaming” bandwidth of 2.6 GB/s per “user”.

For the Reference System, benchmarks to the right of the red line spend more
time waiting on bandwidth-limited memory accesses than on latency-limited
memory accesses.
•About 5 of 17 codes have non-trivial memory latency stall times that are
similar to the memory bandwidth stall times. 5 of the 17 have memory
bandwidth stall times that significantly exceed latency stall times. The
remaining seven codes are almost completely CPU-time dominated.
•Only 5 of 17 codes appear to require more than “1 Byte/Cycle” of Memory
Bandwidth and only 1 code requires >2 Bytes/Cycle

Of course these breakdowns only apply to systems with “system balance”
similar to the reference system, caches similar to the 1 MB/”user” of the
reference system, and compilers with high-level optimizations similar to those
of the PathScale EKOPath 2.5 compiler suite.

 12

 12

CFP2000 Execution Time on Reference System

Time Breakdown for CFP2000

0%

20%

40%

60%

80%

100%

wup
wise

sw
im

mgri
d

ap
plu

mes
a

ga
lge

l
art

eq
ua

ke

fac
ere

c
am

mp
luc

as
fm

a3
d

six
tra

ck ap
si

%_BW
%_lat
%_CPU

Same as before but for the SPECfp2000 benchmarks. Same reference
system: 4 user SPECfp_rate2000 on 2-socket, dual-core, 2.8 GHz Opteron
2x00 with DDR2/667 memory.
The ratios for the 171.swim benchmark are not entirely reliable, as I “tweaked”
the bandwidth “Rate” values for the various configurations to better project the
SWIM benchmark results. This amounts to assuming that SWIM is almost
100% memory time – not a bad assumption, but not a perfect one either.
The published SPECfp_rate2000 results don’t provide an adequate variety of
CPU frequencies to obtain a clear differentiation between CPU time and
Memory BW time here.

Both sets of benchmarks display the full range of CPU-limited to Bandwidth-
limited codes, along with some codes that have significant latency stall
components. Overall the CPU2006 suite has a few more CPU-intensive
codes than the CPU2000 suite, moving it closer to the distribution of
“important” “real” applications that I reported in my WWC2000 keynote
presentation:
http://www.cs.virginia.edu/~mccalpin/wwc-keynote.html

 13

 13

Performance Model Summary

• Simple performance models with a few additive components can be
fit very accurately to each of the SPEC CFP2000_rate and SPEC
CFP2006_rate benchmarks

• The SPEC CFP2000 and CFP2006 benchmarks both show a very
broad range of “Application Balance”, ranging from CPU-limited to
(almost) Memory Bandwidth-limited, with a substantial subset
showing non-trivial Memory Latency stall times.

• The broad range of these results and the accuracy of the models
suggest that the models will be quite useful in further modeling of
Price/Performance

OK, everybody take a deep breath….

Now on to the Price side of the equation.

 14

 14

Cost Model

• In principal, additive cost models can be constructed for computer systems

• Difficulties & Limitations
– Costs can vary dramatically due to features that do not impact performance (e.g.,

reliability, scalability, low power, etc)

– Many theoretically possible configurations are not available because no one has
chosen to build them

 Key Feature: Cost models have a large “baseline” component associated with
the “stuff” necessary to support the CPU and memory (motherboards, disk,
power supplies, etc)

 For the initial analytical modeling, I will assume:

 C = cost, R = rate

 $CPU = cost per unit CPU performance

 $BW = cost per unit sustainable memory BW

BWBWCPUCPUbase RRCC $$ ++=

I am using “Cost” and “Price” interchangeably here. The differences are
important, but belong in a different talk.

The assumption that CPU and BW “Cost” and “Performance” are linearly
related is of limited applicability. System configuration limitations, minimum
CPU frequencies, and minimum memory bandwidths (associated with the 2
GB/”user” DRAM capacity requirement for CFP2006) act to reduce the
customer’s ability to customize system configurations to specific targets. The
combination of these limitations is confusing, but ultimately not really a
problem – the linear model here is enough to show *why* the optimum system
balance is not what you might expect – detailed system optimization should be
based on real-world configurations with real-world pricing, as presented later
in this talk.

On the Opteron systems that I am using for this modeling, there is no way to
pay more money to reduce the memory latency (by any significant amount),
so latency is ignored in the cost model and is effectively a constant in the
performance model (i.e., only R_bw and R_cpu are free variables in the
system configuration).

 15

 15

Cost/Performance

• Cost/Performance ≈ Cost * Time

• or

 Note that Cost * Time has 9 terms!

– Two terms correspond to “active” useful work: Tcpu*Ccpu and Tbw*Cbw

– The remaining 7 terms are overheads:
 Depreciation of active components while other active components are busy

Tcpu*Cbw, Tbw*Ccpu

 Depreciation of inactive components while the active components are busy
Tcpu*Cbase, Tbw*Cbase

 Depreciation of everything while waiting on memory latency stalls
Tlatency*Cbase, Tlatency*Ccpu, Tlatency*Cbw

BWBWCPUCPUbase RRCC $$ ++=
latency

latency

BW

BW

CPU

CPU

R
W

R
W

R
WT ++=

BWCPUbase CCCC ++= latencyBWCPU TTTT ++=

x

x

The first two terms of the Cost*Time product correspond to the cost of
depreciation of the “active” components of the system while they are busy
doing work.
It is the existence of these seven overhead terms that make
Cost/Performance optimization counterintuitive.

Notice that I have added “Depreciation” as another synonym for “Cost” and
“Price”. This term helps remind us that systems with finite “life spans” are
depreciating every second whether they are being used or not. Faster CPUs
and more Bandwidth reduce run-time and so decrease the (large) depreciation
of the Base cost during the execution of the job. On the other hand, too much
of either CPU or Bandwidth results in excessive depreciation of these
expensive components while the other underprovisioned component takes a
long time to finish its part of the work.

 16

 16

Optimization of Cost/Performance

• Define some nondimensional parameters:

�β = Rbw/Rcpu machine balance

�γ = Wbw/Wcpu application balance

�δ = $bw/$cpu technology cost balance

• In the absence of the constant terms (Cbase & Tlatency), Cost*Time is a simple
quadratic function with a simple analytic optimum

• In the presence of the constant terms the equation is effectively quadratic and
the one physically realizable optimum provides specific values of Rcpu and Rbw

• Interestingly, the optimum machine balance ratio β is the same in both cases

δ
γβ =optimum

latency

base

CPU

CPU
CPU T

CWR ×=
$ latency

base

BW

BW
BW T

CWR ×=
$

The algebra is left as an exercise for the reader.
To minimize Cost*Time you must differentiate with respect to both Rbw and
Rcpu, set both to zero and combine into a single equation in terms of either of
these variables. In the presence of the constant terms this equation is
actually a fifth-order polynomial, but one of the roots is [Rbw=0, Rcpu=0]
which clearly corresponds to a *maximum* of Cost*Time (due to infinite Time),
and can be factored out leaving a fourth-order polynomial.
Fortunately this fourth-order polynomial has nice symmetries, with the four
solutions given by the four +/-, -/+ combinations of the values above. Only the
+, + root makes physical sense (although negative computation rates could
lead to some interesting theoretical physics).

 17

 17

A Simple Analytical Example (no constant terms)

Cost*Time Details: gamma=4, delta=1

0

2

4

6

8

10

12

14

16

18

0.35 0.50 0.71 1.0 1.4 2.0 2.8 4.0 5.7 8.0 11.3

Beta

C
os

t *
 T

im
e

$_bw*T_cpu
$_cpu*T_bw
$_bw*T_bw
$_cpu*T_cpu

β=γβ=1/δ

Optimum β provides 27% better
Cost/Performance than equal
partitioning of time (β=γ) or

equal partitioning of cost (β=1/δ)

This example considers the case of a high-bandwidth application (4
Bytes/Cycle) and assumes that Compute and Bandwidth have similar costs
per unit performance (delta=1).
Without the constant terms there are only 4 terms in the Cost*Time product.
Recall: gamma = “Application Balance” (Wbw/Wcpu), beta = “System
Balance” (Rbw/Rcpu), delta = “Technology Cost Balance” ($bw/$cpu).
In this case the analytical solution is beta = sqrt(gamma/delta) = sqrt(4/1) = 2
The “traditional” optimization approach of setting beta=gamma is suboptimal
because the job is spending ½ its time on Compute and ½ on Bandwidth, but
only ¼ of the system cost was for Compute. Therefore you can improve the
Cost*Time by purchasing more Compute to decrease that 50% of the
execution time.
An alternate “optimization” might be setting beta = 1/delta. This makes the
Cost of Compute and the Cost of Bandwidth equal. This is suboptimal
because you have spent 50% of your money on Compute, but only 25% of
your execution time is spent on Compute – you should buy less.
These two traditional optimizations are equally sub-optimal, corresponding to
symmetric offsets from the optimum on the parabolic curve of Cost*Time.
Think about how much CPU frequency or Memory Bandwidth you would have
to add to a system (at fixed price) to get a 27% Performance improvement.
These are not trivial differences!

 18

 18

More detailed examples

• Given that we do have computers, we do not need to limit ourselves
to analytical solutions.

• I obtained pricing for a wide variety of 1U, 2-socket Opteron servers
from www.serversdirect.com during June 2007

– Opteron “RevE” single-core CPUs @ 5 frequencies, with DDR/400 memory

– Opteron “RevE” dual-core CPUs @ 6 frequencies, with DDR/400 memory

– Opteron “RevF” dual-core CPUs @ 6 frequencies, with DDR2/667 memory

• The pricing for the servers was split into “base”, “CPU”, and
“Memory” components

– Yes, I am deliberately confusing “Memory Cost” and “Bandwidth Cost”, but
I don’t have time to explain why this is less wrong than it might appear

– Each system was configured with the cheapest option providing 2 GB/core

• Cost*Time was computed for each of the 31 benchmarks on each of
the systems, and the configuration with the lowest Cost*Time was
identified

All the words are included on the slide….

 19

 19

Optimum Price/Performance for Opteron “RevE”

1192.22Opteron RevE,
DDR/400

322.02Opteron RevE,
DDR/400

221.82Opteron RevE,
DDR/400

1-2.41Opteron RevE,
DDR/400

-12.21Opteron RevE,
DDR/400

Optimum for
this many of
the 17
CFP2006
benchmarks

Optimum for
this many of
the 14
CFP2000
benchmarks

CPU GHzCores/ChipCPU/Memory

I am presented the results for RevE and RevF separately because the newer
RevF provides better Price/Performance on all the benchmarks, but only the
RevE provides the single-core option for Price comparison.
Of the 11 RevE configurations, only these five produced a minimum
Cost*Time for any of the 31 benchmarks when using the web site’s price and
my detailed 3-term performance model.
The single-core chips provided optimum Price/Performance for 171.swim from
SPECfp2000 and 470.lbm from SPECfp2006.

 20

 20

Optimum Price/Performance for Opteron “RevF”

1082.22Opteron RevF,
DDR2/667

432.02Opteron RevF,
DDR2/667

331.82Opteron RevF,
DDR2/667

Optimum for
this many of
the 17
CFP2006
benchmarks

Optimum for
this many of
the 14
CFP2000
benchmarks

CPU GHzCores/ChipCPU/Memory

• Note that the Performance model can provide very accurate performance
projections for both single-core and dual-core parts, but…
• AMD is not currently offering single-core RevF Opteron processors, so pricing
is only available for the dual-core processors here

Of the 6 RevE configurations, only these 3 produced a minimum Cost*Time
for any of the 31 benchmarks when using the web site’s price and my detailed
3-term performance model.

 21

 21

Detailed Cost*Time Breakdown for GemsFDTD

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

1.E+06

2.2
 si

ng
le

2.4
 si

ng
le

2.6
 si

ng
le

2.8
 si

ng
le

3.0
 si

ng
le

1.8
 du

al

2.0
 du

al

2.2
 du

al

2.4
 du

al

2.6
 du

al

2.8
 du

al

C
os

t *
 T

im
e

Cmem*Tlat
Ccpu*Tlat
Cbase*Tlat
Cbase*Tbw
Cbase*Tcpu
Ccpu*Tbw
Cmem*Tcpu
Cmem*Tbw
Ccpu*Tcpu

Actual Cost * Modeled Time for RevE processors.
GemsFDTD is the code with the second-highest bandwidth requirement
(almost 2 bytes/Cycle), so it spends a large fraction of its time doing memory
work. The largest components of the depreciation are therefore those
associated with Tbw.
It clearly does not pay to put in expensive CPUs (e.g., the last 2 columns on
the right), as this results in large Ccpu*Tbw, i.e., CPU depreciation during
memory bandwidth time.
This code might represent an opportunity for faster/more expensive DRAMs, if
they were supported by the system. This code is sufficiently bandwidth-limited
that single-core and dual-core systems have very similar Cost*Time, with the
dual-core systems taking 1.55 to 1.59 times as long to complete 4 jobs as the
single-core systems take to complete 2 jobs.

 22

 22

Failure and Success with Analytical Modeling

 Linear trends were fit to the CPU and memory cost data to create an
analytically tractable cost model

 Optimum Rcpu and Rbw were computed for each of the 17 CFP2000
benchmarks

– For 8 benchmarks the computed optimal Rcpu and Rbw were within
physically realizable limits for systems based on the Opteron processor

– For 3 benchmarks the computed optimal Rbw was much higher than is
currently configurable
 These benchmarks might benefit from single-core processors

– For 6 benchmarks the computed optimal Rcpu was much higher than is
currently configurable
 These benchmarks should benefit from quad-core processors

 Bad News: poor numerical correlation between analytical and
observed optimum system balance

• Good News: perfect correlation of rank ordering of analytical and
observed optimum system balance

As noted previously, the assumption of a linear dependence between cost and
performance is not particularly useful. Processor prices rise much faster than
linearly with frequency and memory bandwidth is maximized in all
configurations with enough DRAM to hold the benchmarks – there is no way
to spend less money and get less bandwidth for this particular set of system
configurations (though the correlation must exist when considering a broader
design space).

Higher-order cost models are not analytically tractable because optimization of
linear cost * linear time already generates a quadratic equation. One would
have to be either very clever or very lucky to find a nonlinear cost model that
resulted in the generation of a factorable or otherwise reducible optimization
problem.

 23

 23

1.190.00Povray
1.190.00Gromacs
1.190.00Gamess
1.190.04Namd
1.190.12Calculix
1.190.55Tonto
1.190.56Zeusmp
1.190.62DealII
1.190.68CactusADM
1.190.95Wrf
1.301.03Sphinx3
1.301.34Soplex
1.301.49Bwaves
1.301.58Leslie3d
1.451.73Milc
1.451.95GemsFDTD
1.454.03Lbm

Observed Optimum
Beta

Analytic Optimum
BetaBenchmark

Comparison of the Analytical optimum system balance based on a linear
approximation to the cost model and the observed optimum system balance
based on the actual price * modeled performance.
The perfect correlation of rank-ordering is encouraging, as is the good
correlation between the numerical values at which the observed optimum beta
switches from one value to another.
The linear approximation to the cost model is far too coarse to justify more
detailed comparisons – presumably values could be chosen to make this
comparison look even better, but the first try looks good enough to support the
concept of cost/performance optimization using the product of a cost model
and a performance model.

 24

 24

Summary/Conclusions

• Balance is complicated and often counterintuitive

• It pays to develop a clear understanding of your own estimates of
the “value” of a computation as a function of the time-to-solution and
other factors

• These examples show that the “optimum” balance of a hardware
system does not need to match the “application balance” in order to
give the most cost-effective performance

– Equal partitioning of execution time and equal partitioning of system cost
are both sub-optimal solutions

– The largest component of the Cost*Time equation is often the depreciation
of the Base Cost during the execution of the application

– This argues against using only CPU Cost and Memory Bandwidth Cost
when optimizing system configurations

Wake up now, the presentation is finished….

