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ABSTRACT
In-situ approaches process data very close to the memory
cells, in the row buffer of each subarray. This minimizes
data movement costs and affords parallelism across subar-
rays. However, current in-situ approaches are limited to
only row-wide bitwise (or few-bit) operations applied uni-
formly across the row buffer. They impose a significant
overhead of multiple row activations for emulating 32-bit
addition and multiplications using bitwise operations and
cannot support operations with data dependencies or based
on predicates. Moreover, with current peripheral logic, com-
munication among subarrays is inefficient, and with typical
data layouts, bits in a word are not physically adjacent.

The key insight of this work is that in-situ, single-word
ALUs outperform in-situ, parallel, row-wide, bitwise ALUs
by reducing the number of row activations and enabling new
operations and optimizations. Our proposed lightweight ac-
cess and control mechanism, Fulcrum, sequentially feeds data
into the single-word ALU and enables operations with data
dependencies and operations based on a predicate. For algo-
rithms that require communication among subarrays, we aug-
ment the peripheral logic with broadcasting capabilities and a
previously-proposed method for low-cost inter-subarray data
movement. The sequential processor also enables overlap-
ping of broadcasting and computation, and reuniting bits that
are physically adjacent. In order to realize true subarray-level
parallelism, we introduce a lightweight column-selection
mechanism through shifting one-hot encoded values. This
technique enables independent column selection in each sub-
array. We integrate Fulcrum with Compute Express Link
(CXL), a new interconnect standard.

Fulcrum with one memory stack delivers on average (up to)
23.4 (76)× speedup over a server-class GPU, NVIDIA P100,
with three stacks of HBM2 memory, (ii) 70 (228)× speedup
per memory stack over the GPU, and (iii) 19 (178.9)× speedup
per memory stack over an ideal model of the GPU, which
only accounts for the overhead of data movement.
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1. INTRODUCTION
The energy consumption and execution time of applica-

tions with low computational intensity (low computation per

datum) is mainly due to the high cost of data movement [1,2].
This is illustrated by a prior work that shows the energy
cost of fetching a 32-bit word of data from off-chip DRAM
is 6400× higher than an ADD operation in 45 nm technol-
ogy [3]. We refer to applications with low computational
intensity as memory-intensive applications. In the Big Data
era, many applications, such as data analytics, scientific com-
puting, graph processing, and machine learning, are memory-
intensive.

To minimize the cost of data movement, recent studies have
explored the possibility of processing data near or even inside
the memory (PIM), for example, TOP-PIM [4], DRISA [5],
Ambit [6], SCOPE [7], PRIME [8], ISAAC [9], and TOM [10].

Memory is designed in a multi-level hierarchy, consisting
of vaults (in 3D stacked memories), banks, subarrays, etc.
(more details in Section 2). PIM designs vary based on the
level of the memory hierarchy at which the computation
is performed. In-situ [5, 6] computing is one of the most
aggressive forms of PIM that processes data in the row buffer,
very close to the subarrays in which the data are stored. The
subarray level provides a high throughput for two reasons: (i)
the low latency of each access at the subarray level, and (ii)
high subarray-level parallelism (e.g., Hybrid Memory Cube
(HMC) has 512 banks [11], and assuming 32 subarrays per
bank, the HMC will have 16384 subarrays.).

In-memory processing architectures are not limited to con-
ventional DRAM configurations and interfaces (e.g., DIMM
or HBM). Some prior in-situ approaches [5, 7, 8, 9, 12] target
their design as a peripheral-attached accelerator instead of
as a host memory to avoid the tight area and cost constraints
for commodity DRAM. Indeed, these designs can be thought
of as high-throughput accelerator architectures that happen
to use DRAM as the most effective technology, based on
parallelism, proximity to data, and overall capacity.

DRAM, compared to SRAM/eDRAM, provides a higher
capacity for the accelerator. Compared to NVM, DRAM
provides a lower latency. DRAM is also more tolerant to
frequent writing of partial results. Therefore, in this paper,
we focus on DRAM-based in-situ accelerators. Although
computation in DRAM technology is inefficient [13] com-
pared to a traditional logic process, the low computation
requirement of the memory-intensive applications justifies
the slower computations in DRAM-based in-situ accelerators.

In this project, we identified four problems that limit the
benefit of current in-situ computing approaches.



The first limitation is the lack of flexibility for supporting
a wide range of applications, which in turn, limits the market
for the product. Prior in-situ approaches [5, 6] perform the
same operation in all subarrays and on all bytes (e.g., 256
bytes) of the row buffer (row-wide operations). As a result,
they cannot efficiently support operations with data depen-
dencies along the row buffer or operations with a condition
or predicate. For example, prior works cannot efficiently sup-
port reduction and scans (which are more efficient with serial
operations along the row buffer), database operations such as
Sort, FilterByKey, and FilterByPredicate (which require filter-
ing based on predicate), or sparse operations (which require
multiplications and accumulations only for nonzero values
with matched indexes). Unfortunately, enabling operations
with data dependency or operations based on a predicate,
at a subarray level, using the traditional control and access
mechanism is not practical (the area of a simple in-order core,
such as ARM Cortex-A35 with 8KB of cache, excluding the
SIMD units and scaled to 22 nm, is 25× larger than the area
of a subarray).

The second issue is the capacity of the accelerator, which
can be limited by the hardware overhead of the computing
elements. At the subarray level, we read an entire row at
once and store it in the row buffer. A processing unit with
the capability of performing bitwise operations, addition, and
multiplication (integer and single-precision floating point)
on all bytes of the row buffer is at least 52× larger than
the subarray. Thus, in-situ approaches only employ bitwise
ALUs. It means any other operation should be emulated us-
ing multiple bitwise operations, requiring multiple subarray
accesses and hundreds of cycles. We will show that the cost
of emulating complex operations using bitwise ALU is higher
than the cost of moving data out of the vaults. Some in-situ
approaches use the analog computation capability of memory
cells of ReRAM-based non-volatile memories (NVM) for
multiplication and addition, without requiring any adder or
multiplier [8, 9, 12]. However, this type of in-situ computa-
tion requires analog-to-digital converters (ADC), which also
incur a significant hardware overhead. For example, the area
overhead of ADCs in [12] is 45× higher than the area of the
subarray. More importantly, analog computing introduces a
high error rate and therefore, these accelerators suit applica-
tions that are highly tolerant of error, such as deep learning
applications [8, 9]

The third problem is the physical layout of words in DRAM.
The subarray itself is typically divided into smaller units,
called mats. Due to circuit design constraints (which are
explained in Section 3.4), in current memory designs, every
four bits of a 32-bit word is stored in a separate mat. We
refer to this as mat interleaving. Accordingly, prior in-situ
approaches [5, 6] perform computation only on 1-bit, 2-bit,
and 4-bit values.

The fourth limitation is inefficient peripheral logic. Many
applications require sharing values among subarrays. For
example, in matrix-vector multiplication, we can map each
row of the matrix to a subarray. To perform matrix-vector
multiplication, all subarrays need the values of the vector. A
variety of applications require data movement among subar-
rays. For example, for the Sort application, the data is parti-

tioned among subarrays. Then, all sorted partitions (which
reside in different subarrays) should be merged. The merge
requires inter-subarray data movement. Finally, many appli-
cations require parallel and independent column selection for
each subarray. For example, in FilterByPredicate, in every
subarray, we check a condition on each column and store the
data in the row buffer, only if the condition is met. There-
fore, different subarrays may write into different columns
of the row buffer. Current peripheral logic serializes move-
ment of shared values, inter-subarray movement, and column
selection in different subarrays (more details in Section 3.3).

To resolve the aforementioned problems, we propose Ful-
crum, where we rethink the design of in-situ accelerators to
increase flexibility, practicality, and efficiency.

First, we propose a new lightweight access and control
unit that processes data sequentially and determines the next
operation based on the outcome of the previous operation (if
necessary).

Second, we accommodate a processing unit capable of
32-bit addition, subtraction, and multiplication (in addition
to bitwise operations) in the subarray level and limit the hard-
ware overhead by performing operations on only a word of
the row buffer at a time. Although this processing unit pro-
cesses only a fraction (1/64) of the row buffer per cycle, it can
provide a significant performance improvement overall. Our
evaluation shows that performing complex operations on a
subset of the row buffer outperforms prior in-situ approaches
that perform computation on the whole row buffer but emu-
late complex operations by multiple bitwise operations.

Third, we slightly modified the mat-interleaving circuits to
transfer all bits of a word to the side of a subarray (reuniting
interleaved bits) so that all bits are physically close to each
other. Since we only process one word at each cycle, the
circuits for reuniting one word do not impose significant
hardware overhead.

Fourth, we optimized peripheral logic for computation.
To satisfy the data-sharing requirement, we enable broad-
casting. For applications with inter-subarray data movement
requirement, we employ a prior work [14] (Low-cost Inter-
linked SubArrays (LISA)) that transfers a whole row from
one subarray to another at once, reducing the overhead of
inter-subarray data movement. For applications with indepen-
dent column access requirements, we enable a light-weight
independent column selection mechanism through storing
one-hot-encoded values of the column address in latches.

Our processing unit in each subarray has four parts: (i)
Walkers, that provide sequential access with our lightweight
column-selection mechanism. Walkers store the input operands
of the computation (which are read from the memory array)
or the output of the computation (to be written in the memory
subarray), (ii) a small programmable instruction buffer, where
we store the pre-decoded signals for the computation, (iii) a
simple controller that determines the next operation and di-
rection of the sequential access, and (iv) a single-word ALU.
We show the flexibility of our design by mapping important
kernels from different domains such as linear algebra, ma-
chine learning, deep learning, database management system
(DBMS), as well as sparse matrix-vector multiplication and
sparse matrix-matrix multiplication that appears in scientific
computing, graph processing, and deep learning.



We integrate Fulcrum with CXL [15], a new class of inter-
connect that extends PCIe to significantly reduce the latency
of access to the data in peripheral devices. Therefore, CXL
provides high bandwidth and high power delivery of PCIe
while supporting memory-like access to the data stored in
Fulcrum. The low access latency enables communication
through a single memory model. As a result, CXL can con-
nect multiple in-memory accelerators, such as Fulcrum, and
create a pool of disaggregated in-memory accelerators, pro-
viding scalability. The memory-like access of CXL also
benefits workloads with phase behavior, where some phase is
suitable for in-situ computing while other phases are not. In
these cases, the host or other devices can access the output of
Fulcrum with the latency in the order of latency of accessing
normal memory.

Our paper makes the following contributions:
• Broadening the range of supported applications by in-situ

accelerators
• Optimizing peripheral logic
• Optimizing mapping of important memory-intensive ker-

nels and applications to Fulcrum.
• Releasing the source code of three artifacts: (i) Move-

Prof, a tool that uses profiled performance metrics for
evaluating the cost of data movement, (ii) InSituBench,
an in-situ computing benchmark suite, and (iii) the RTL
code of our proposed method.

• Integrating Fulcrum with CXL to increase the power bud-
get and enable scalability and disaggregation.

We evaluated our method against three approaches: (i) a prior
work on DRAM-based in-situ computing (DRISA [5]), (ii) a
server-class GPU that has three stacks of high-bandwidth
memory (NVIDIA P100 with HBM2), and (iii) an ideal
model of a GPU, where we take into account only the cost
of data movement between GPU and the memory, assuming
zero overhead for on-chip data movement and computation.
Our evaluation shows that, for memory-intensive applica-
tions, our method delivers, on average (up to), 70 (228)×
speedup per memory stack over the GPU. Our area evalu-
ation shows that an 8GB integer Fulcrum (which supports
bitwise operations and integer addition and multiplication)
requires 51.74mm2 (8 layers) and single-precision float Ful-
crum (integer and bitwise functionality, plus floating-point
addition and multiplication) require 55.26mm2. The GPU
die size of the NVIDIA P100 is 601mm2. Accordingly, Ful-
crum provides up to 839× higher throughput per area than
the NVIDIA P100.

2. BACKGROUND
In this section, we introduce the structure of 3D stacked

DRAM memories and their specific components that we have
employed in our proposed method.

3D stacked DRAM is organized in a multi-level hierarchy.
Figure 1 (a) illustrates the hierarchy of 3D stacked memories.
Each 3D stacked memory has one logic layer and multiple
(e.g., 4 or 8) memory layers. Each stack is divided into
multiple vaults [11]] (e.g., 16 or 32). Layers are connected
via TSVs (through-silicon via). The TSV acts as a shared
bus. This shared bus is a bottleneck, as it serializes access to

all subarrays in a vault. It is possible to employ a segmented
TSV [16, 17], where every two layers are connected through
one separate TSV, and data from upper layers are buffered in
each layer before being sent to the lower layers. Although
segmented TSVs increase the access bandwidth, they increase
the latency and the energy consumption of data movement
(due to the extra cost of buffering and arbitration) [16, 17].

In each layer of each vault, there are a few banks (e.g., 2
or 4). Figure 1 (b) shows the structure of a memory bank. A
bank comprises several subarrays. Each subarray has multi-
ple rows. Each row contains multiple columns of data. The
column width varies in different DRAM configurations. The
most common column widths are 32, 64, 128, and 256 bits.
To access one column of the data from a bank, a row address
is sent to all row decoders in all subarrays through the address
bus in the bank. The row decoder selects the corresponding
subarray and the corresponding row. The whole row that con-
tains multiple columns is read out at once and will be stored
in a row-wide buffer in the subarray, which is called the row
buffer. To select one column from the row buffer, the column
address should be sent to the column decoder, at the edge of
the bank. The column decoder decodes the column address
and sends the decoded bits to each subarray through column
selection lines (CSL). The pass transistors/multiplexers in
each subarray receive the decoded column address on CSLs
and select the requested column and send it to the local data
line (LDL), in each subarray. The data on LDL is sent to
the logic-layer via global data lines (GDL). Two components
make 3D stacked memories more suitable for Fulcrum: (i)
the logic layer, and (ii) shared TSVs. Section 4 and 5 explain
how we employ the shared TSVs for broadcasting and discuss
the role of the logic layer in broadcasting data and reducing
the partial results.

Logic layer Memory banks

Memory layers TSV

(a) High-level hierarchy
Column Decoder

Row Buffer
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Subarray n

(b) A bank
Figure 1: 3D DRAM: (a) each 3D stack has a logic-layer and
a few memory layers containing multiple memory banks, (b)

each bank comprises several subarrays

3. PROBLEM STATEMENT
In order to reduce the cost of data movement for tasks that

are data-intensive and have locality within a row or subar-
ray, prior works have proposed in-situ computing, where we
perform computation on the row buffer, and therefore, there
is no need to move data out of the subarray. We identified
four problems that have hindered adoption and realization of
in-situ approaches.

3.1 Lack of flexibility
Recent in-situ approaches employed non-flexible row-wide

operations. As a result, they cannot support operations with



any form of dependency along the row buffer. For exam-
ple, in operations such as Scan, the value of each partial
sum depends on the value of the previous partial sum. They
also cannot support algorithms that check a condition on a
value and perform a different operation based on the outcome
of the condition. For example, radix sort is an algorithm
that sorts data by grouping values by the individual digits,
which share the same significant position. Each iteration of
this sort algorithm packs values into two different buffers.
The target buffer for the value is determined by the digit
that is being processed at that iteration. Another example
is sparse matrix-vector multiplication, where we often store
the non-zero values next to their indices (instead of wasting
the capacity by storing the whole matrix with mostly zero
values). Consequently, we only perform multiplication and
accumulation on non-zero values, whose index matches.

3.2 Lack of support for complex operations
Prior works have evaluated a spectrum of in-situ comput-

ing. Seshadri et al. [6], evaluated row-wide bitwise operations
using computation capability of bitlines without adding any
extra gate, realized by activating two rows at the cost of
destroying the values in both rows, requiring extra copies be-
fore each operation. Li et al. [5], evaluated row-wide bitwise
ALUs, shifters, and latches (the latches eliminate the extra
copies), emulating 4-bit addition and 2-bit multiplication us-
ing bitwise ALUs. They also evaluated adding row-wide
4-bit adders to the row buffer and reported that this increases
the area by 100%. Unfortunately, emulating complex opera-
tions such as addition or multiplication using bitwise ALUs
requires reading and writing multiple rows. Since row activa-
tion is very costly, the energy consumption of row activation
for emulating complex operations by bitwise operations sur-
passes the energy consumption of sending data to the logic
layer, as shown in Figure 2.
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Figure 2: Energy consumption of accessing a row in the
logic layer vs. energy consumption of multiple row

activations, required for emulating complex operations by
bitwise operations

3.3 Inefficient peripheral logic
Currently, there are three shared resources in the design

of the memory: (i) the TSVs, shared among all layers in
a vault (as explained in Section 2 and shown in Figure 1),
(ii) the shared CSLs, and (iii) the GDLs, shared among all
subarrays in a bank. With shared CSL, we can only select
one column from a whole bank at a time and with shared
GDLs we can transfer only one column at a time. As a

result, the current peripheral logic and interconnect limit the
performance of in-situ approaches in three ways: (i) although
they act as a shared bus, they are not capable of broadcasting
values for efficient data sharing, (ii) narrow GDLs are the
only means for movement of an entire row from one subarray
to another, (ii) the peripheral logic for column access (the
column decoder) is shared among all subarrays (Figure 1
(b)). This shared peripheral logic limits the flexibility and
parallelism of any potential in-situ approach that requires
independent and parallel column access to the row buffer of
individual subarrays.

3.4 Interleaving
In current commercial DRAMs, we have two types of in-

terleaving: (i) mat interleaving, and (ii) subarray interleaving.
Mat interleaving is shown in figure 3, where each subarray is
divided into multiple mats [18,19]. The GDLs are distributed
among mats, and each mat has 4 bits of the GDLs. There-
fore, for selecting the same column from all mats, CSLs are
repeated for each mat. Pass transistors (PTs) receive CSLs,
select a column, and place it on LDLs. This design is called
mat interleaving and is efficient for random column access, as
it reduces the LDLs’s latency (LDLs in Figure 3 are shorter
than LDLs in Figure 1 (b)). Without mat interleaving, LDLs
become wide and long, where the latency of the last column
is much longer than the latency of the first column.

The second type of interleaving is subarray interleaving or
open-bitline architecture [14, 20]. Since the size of a sense
amplifier is larger than a cell [20], modern DRAM designs
accommodate only as many as sense amplifiers in a row to
sense half a row of cells. To sense the entire row of cells,
each subarray has bitlines that connect two rows of sense
amplifiers, one above and one below the subarray.

As a side benefit, mat interleaving and subarray interleav-
ing make the memory more robust against multiple-bit upset,
where soft errors change the value of adjacent cells. In fact,
when bits in a column are not physically close to each other,
multiple-bit upset only changes one bit from a column and
then error detection mechanisms (which can detect one error)
can detect the error. Therefore, keeping the current interleav-
ing and not changing the layout is desirable.

However, with interleaving, row-wide computation on
more than 4-bit values is impractical, as the result of an addi-
tion and multiplication in each 4 bits of the output depends
on the values in other mats. With row-wide operations, the
circuits for reuniting the interleaved bits impose a significant
hardware overhead as many wires cross each other.
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Figure 3: Interleaving a word among mats

4. KEY IDEAS
The key insight of this paper is that a narrow ALU with

adder and multiplier, placed at the edge of each pair of sub-
arrays, can outperform row-wide bitwise ALUs, because bit-



wise ALUs suffer from the drawbacks previously described.
We show that these capabilities are important for a variety of
computational kernels. Figure 4 (a) shows the architecture of
our in-situ processing unit, which has two parts: (i) Walkers
and (ii) AddressLess Processing Unit (ALPU). The Walkers
are implemented by three rows of latches that are connected
through a bus similar to LDLs (implementation details in 5).

The ALPU itself comprises four components: (i) a con-
troller, (ii) three temp registers, (iii) an ALU, and (iv) an
instruction buffer.

In this section, we explain the role of these components in
resolving prior in-situ approaches’ limitations and elaborate
on implementation detail in Section 5.

4.1 A simplified control and access mechanism
Since a narrow ALU only processes a word of row buffer,

we need a sequential access mechanism for selecting con-
secutive words. Due to the significant hardware overhead,
employing a core with traditional access and control mecha-
nism, for sequentially selecting a word from a row buffer at
the subarray level, is impractical. We could give up subarray-
level parallelism and employ only one traditional core per
bank to limit the hardware overhead. Unfortunately, other
than losing subarray-level parallelism, this solution imposes
a significant overhead for control and access. Since logic
in DRAM layers is slow, and the cost of data movement is
low, unlike far-memory processors, this overhead comprises
a significant portion of total energy consumption and execu-
tion time. Figure 5 (top) illustrates the control and access
overhead of a traditional core at the bank-level for adding
two vectors and storing the result in a third vector. In this
example, the core generates an address for each element of
the three vectors, imposing access overhead. Since the core
is placed at the edge of each bank, the decoded addresses
should be sent to the subarray through CSLs (Section 2 and
Figure 1). Data read from the subarray also should move
toward the core through GDLs, imposing data movement
overhead. The decoding of all these instructions, branch pre-
diction, and checking for data dependency in the pipeline
of traditional cores impose control overheads. Despite the
significant overhead, such a control and access mechanism
provides full flexibility.

Our proposed method provides a tradeoff between flexibil-
ity and the overhead of control and access. In fact, while we
enable operations with data dependency and operation based
on predicates, we avoid the overhead of sophisticated control
mechanisms and the overhead of accessing data by address.
We observed that for almost any memory technology, an en-
tire row is read/activated at once and stored in a buffer. We
introduced Walkers, where each Walker either captures a row
of input operands (read from the subarray) or stores a row of
target variables (before being written to the subarray). We
read/write to/from these rows sequentially and implement the
sequential accesses using shifting of a one-hot-encoded value
that determines which column of the row should be selected
to be placed on the bus. Our simple controller determines
the direction of shifts in each Walker and also determines the
next operation based on the outcome of the previous oper-
ation, providing flexibility. Accordingly, for example, our
simplified access and control mechanism performs an addi-

tion of two vectors by iteration of an instruction over the row
buffer, similar to the instruction shown in Figure 5 (down)
(Section 5 presents the exact format of Fulcrum’s instructions
and discuses how our hardware modules control loading new
rows of each vector to Walkers).
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Figure 4: Overall architecture: (a) three Walkers per
subarray and one ALPU per every two subarrays, (b) ALPU
comprises a controller, an ALU, an instruction buffer, and

few temp registers

(b) Fulcrum
Shift_Read a[i], shift_Read b[i], Shift_Write c[i] , c[i]=a[i]+b[i]

(a) Traditional control and access mechanisms
1. RA=RA+1 // address generation for vector a[i] + control
2. RB=RB+1 // address generation for vector b[i] + control
3. RC=RC+1 // address generation for vector c[i] + control
4. Read RA, X1 // decoded address movement on CSLs 

//  data movement on GDL + control
5. Read RB, X2 // data movement on GDL + control
6. X3=X2+X1   // the actual computation + control
7. Store X3, RC  //decoded address movement on CSLs 
8. i=i+1 // iteration counting + control
9. If (i< 1000000) Jump 1 // iteration checking+ control

Figure 5: A traditional control and access mechanism vs.
Fulcrum

4.2 Narrow and simple ALU
Our sequential access to Walkers enables processing only

one word (one column) at a time, and consequently we do
not need row-wide ALUs. We observed that addition, com-
parison, multiplication, and bitwise operations are the most
common operations that appear in modern memory-intensive
applications. Therefore, we included a single-word ALU,
which supports these common operations. The input operands
of the ALU can come from one of the four resources: (i) the
value sequentially accessed from one of the Walkers, (ii)
temp registers, (iii) the GDLs, or (iv) one of the outputs of
the ALU (our controller supports two operations in one cycle).
Section 6 explains that although our ALU is narrow, it out-
performs row-wide bitwise operations and supports modern
memory-intensive applications.

4.3 Efficient peripheral logic
We have introduced minor modifications in the peripheral

logic to increase flexibility, parallelism, and efficiency of
data movement for our method. First, we added a broadcast-
ing command, by which every processing unit receives and
captures the data on shared buses. Second, we build upon



Low-cost Inter-linked SubArrays (LISA) [14] to transfer an
entire row at once to any other subarray in the same bank (oth-
erwise we had to transfer the entire row, column by column,
through the narrow GDL bus). Third, for independent column
access in each subarray, instead of using column decoder and
column address buses, which are shared among subarrays, we
employ column selection latches in each subarray, where we
store a one-hot-encoded value that determines the selected
column. In each cycle, based on the outcome of the previ-
ous operation, the controller decides in which direction the
on-hot-encoded value should be shifted.

4.4 Reuniting interleaved bits
Unlike reuniting the whole row, reuniting one word is

possible through a slight modification of the current mat in-
terleaving circuits. Therefore, we can transfer and reunite
interleaved bits of a word at the side of the subarray to per-
form arithmetic operations.

To resolve subarray interleaving, we simply use only one
processing unit per two subarrays. Figure 4 shows that per
every two subarrays, we only have one ALPU.

To resolve the mat interleaving, we propose two solutions.
Our first solution is to change the layout and completely re-
move the mat interleaving (if the target application does not
need efficient random column access or is resilient against
soft errors). As a side benefit of eliminating mat-interleaving,
we will save the area overhead of CLSs and columns selec-
tion logics (repeated for each mat). The second solution is
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Figure 6: Reuniting interleaved bits

to keep the mat interleaving. In the traditional design of
memory, each segment of the LDL corresponding to each
mat is connected to four flip-flops (called helper flip flops
(HFF)). We connect these flip flops to the segment of the
LDL of the adjacent mat and form a pipeline so that we can
transfer all values to the side of the subarray in a pipeline
fashion. In a memory structure with four mats per subarray,
this pipeline requires four cycles to transfer 32 bits (16 bits
from the upper Walker and 16 bits from the lower Walker). If
we use the TSV for sending the clock signal, the clock cycle
should be at least twice as long as the latency of the TSV
(according to CACTI-3DD, the latency of TSV with eight
memory layers and one logic layer is more than 4.4 ns). This
will significantly degrades our throughput. To resolve this
issue, we employed segmented TSV [16, 17] (explained in
Section 2) for the clock signal (according to CACTI-3DD,
the latency of segmented TSV is 0.3 ns).

5. IMPLEMENTATION DETAIL
This section elaborates on hardware and software imple-

mentation.

5.1 Hardware
This section provides more implementation details about

six hardware components: (i) Walkers, (ii) the controller, (iii)
the instruction buffer, (iv) our in-logic layer components, (v)
interconnect, and (vi) the walker renamer.

5.1.1 The Walkers
Walkers provide sequential accesses. We have two options

for implementing the Walkers. The first option is changing
the layout, employing shift registers (or shift latches, im-
plemented by ping-pong shifting [21]), and accessing the
row sequentially by shifting the values. The second solution
is keeping the interleaved layout, employing the structure
of traditional row buffers and local buses (similar to LDLs,
explained in Section 2) along with a column-selection mech-
anism that selects a column to be placed on each Walker’s
LDL. In addition to keeping the interleaved format, the sec-
ond solution has two side advantages: (i) enabling sequential
read and write in both directions (with the first option, we
can only read by shifting to the right and write by shifting to
the left (in Figure 4)), and (ii) consuming less energy (with
first option, per each shift, there will be value transition in all
latches, whereas with the second solution, only the value of
the bus and only one latch changes).

The only difference between the structure of the traditional
row buffer and our Walkers is the column-selection mecha-
nism. As we explained in Section 2 and Section 3, traditional
memories share the peripheral logic for column selections.
Figure 1 (b) shows that the CLSs (on which the decoded
column address is placed), are shared among subarrays. Fig-
ure 3 shows that CLSs are repeated for each mat. To support
operations based on predicates, we need independent column
access for all Walkers and subarrays. Hence, we introduced
column-selection latches where we store the one-hot-encoded
value of a column and shift the value to access the next col-
umn, without requiring one column decoder per Walker, per
subarray, and per mat.

5.1.2 The controller
Our controller employs a few counters: (i) a 6-bit counter

(6 = log2 of the number of words in a row (64)) per Walker
for detecting a fully-accessed Walker (fully read or written).
Each Walker has a 2-bit latch that determines to which Walker
we should switch and rename when the Walker is fully ac-
cessed (elaborated in Section 5.1.6), (ii) a 4-bit counter (4 =
ceil of log2 of the number of wait cycles (9)) for counting
the wait time for a new row to be read from the subarray and
be stored in a Walker, or for a Walker to be written to the
subarray, and (iii) three 11-bit (11 = log 2 of the number of
rows in each pair of subarrays (2048)) row counters which are
initialized to the row address of the beginning of the data and
will be compared against the end of the data in the subarray.

5.1.3 The instruction buffer
Figure 7 illustrates the format of each entry of the instruc-

tion buffer. This format allows two operations at the same



time and has the following fields: (i) NextPc1 and NextPc2
that determine the program counter of the next instruction,
(ii) NextPc_Cond determines the condition under which the
controller switches to instruction determined by NextPc1
(otherwise, it switches to NextPc2). When NextPc1 equals
NextPc2, the NextPc_Cond is used for determining which
comparison flag should be the input bit of the bitwise shift op-
eration, (iii) opCode1 and opCode2 are the operation codes
of each operation, (iv) Src1Op1, Src2Op1, Src1Op2, and
Src2Op2 select a source for each input of the operation, (v)
ShiftCon1, ShiftCon2, and ShiftCon3 specify the condition
under which the corresponding Walker should be shifted,
(vi) ShiftDir1, ShiftDir2, and ShiftDir3 determine the direc-
tion of shifts in each row, (vii) repeat filed is the number of
repeat before shifting when any of the shift conditions are
IF_REPEAT_ENDS_SHIFT", and (vii) OutSrc selects the
value shifted to the destination row among the two operation
outputs and the two outputs of the first two Walkers. Although
for the evaluated benchmarks an instruction buffer with four
entries is enough, we also evaluated our area overhead with
an instruction buffer that has eight entries.
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Figure 7: The format of instructions
5.1.4 In-Logic layer components

For in-logic layer operations, we use an ARM Cortex-A35
which is used in prior works [22] as the processing unit in
logic layer (because it has low power consumption), along
with a 128 KB buffer for buffering shared values.

5.1.5 Interconnect
Fulcrum can be integrated into a system in two ways. The

first option is to integrate Fulcrum with CPU/GPU through
current 3D interfaces. For this option, we have to lower the
power budget to 10 Watt [4, 22] (we evaluate Fulcrum under
different power budgets in Section 6). The second option
is to use CXL [15] interface (similar to GPU and FPGA),
which allows a higher power budget. This option allows a
memory-like access to the data stored in Fulcrum. As a result,
for workloads that have phase behavior, where some phases
are suitable for in-situ while other phases are not, the host,
GPU, FPGA, or any other device can access the output of
Fulcrum (output of in-situ phases).

5.1.6 The Walker renamer
Fulcrum exploits broadcasting for reducing the cost of data

movement. To overlap computation and broadcasting, all
subarrays should work in lockstep so that the broadcasted
value is used for computation and can be discarded in the next
cycle, eliminating the need for storing broadcasted values.
However, in some applications, the processing time for each
Walker in each subarray might vary, hindering the lockstep
computation. We propose to exploit Walker renaming to
solve this problem. As an example, we explain the role of
Walker renaming in SPMV.

To represent sparse matrices (where most of the values
are zero), we can employ a few formats. One of the most
popular formats is the compressed sparse row (CSR) format,
which represents a matrix M by three arrays containing: (i)
nonzero values, (ii) the positions of the start of the rows, and
(iii) column indices. A naive implementation lays out the
three vectors in three different rows and uses all Walkers.
Since the values of the vector are being broadcasted, when
a controller detects a fully accessed Walker in any of the
subarrays, the process, in all subarrays, should wait until a
new row is read into the Walker. To avoid this overhead,
we place each non-zero value and its corresponding column
index subsequently in the same array. This way, we only need
one Walker for computation. Therefore, for example, while
Walker A is being processed, another row can be captured in
Walker B. When Walker A is fully accessed, the computation
can continue by processing Walker B. However, the ALPU’s
instruction buffer is programmed to process Walker A. Here
Walker renaming can help. As explained in Section 5.1.2,
when Walker A is fully accessed, Walker B will be renamed
to Walker A so that computation can continue with the same
ALPU instruction.

5.2 Software
In this section, we discuss programming, data placement,

and high-level programming.

5.2.1 Programming
Fulcrum’s programs comprise two parts: (i) the in-logic

layer portion, and (ii) the ALPUs’ portion.
Our in-logic layer programs interact with vault controllers

for generating commands for setting ALPU’s registers and
instruction buffer, sending broadcast values, and collecting
the partial results. It also reduces the partial results or per-
forms specific functions on intermediate results. Our in-logic
layer core is an ARM Cortex-A35 and can be programmed
by high-level programming languages such as C++.

To program the ALPU, we used the low-level instructions
explained in Section 5.1.3 (Figure 7). Our online reposi-
tory [23] contains ALPU programs for the evaluated appli-
cations. A non-expert programmer can easily use ALPU li-
braries, written by experts (similar to machine-learning users
with no CUDA knowledge that are using NVIDIA libraries).

Therefore, a Fulcrum kernel call first loads the in-logic
layer program. The in-logic layer program generates com-
mands for the vault controller to load the ALPU programs
and other ALPU settings and start the computation.

5.2.2 Data placement
The layout of data highly affects the performance benefit of

Fulcrum. The data should be partitioned and laid out carefully
to enable exploiting subarray-level parallelism, broadcasting,
and the light-weight sequential access mechanism. For exam-
ple, in matrix-vector multiplication, we use a row-oriented
layout for the matrix and map each row of a matrix to one
pair of subarrays. In each cycle, we broadcast one element
of the vector to all ALPUs, and each ALPU multiplies the
broadcasted value by the corresponding element of the row of
the matrix. To choose the best strategy for placing data in the
desirable layout, we categorize data as either: (i) long-term



and (ii) temporary resident data. The first category resides
in Fulcrum for a long time, but the second group is the in-
put of the application or the intermediate results that reside
in Fulcrum temporarily. For example, DNN algorithms are
composed of several layers. The core of computation in each
layer is a matrix-vector multiplication, where a matrix of
weights are multiplied by a vector of activations (for batch
size of one). The output of each layer is a vector, which is the
activation vector for the next layer. The matrix of weights can
reside in Fulcrum for a long time. However, the activation
vectors, which are the output of each layer, only reside in
Fulcrum for a short time. Machine learning models such as
reference points in KNN or database tables are other exam-
ples of long-term resident data. The query points in KNN are
examples of temporary resident data.

For long-term data, we assume an offload paradigm for
both the 3D and CXL deployments. So an API similar to
CUDA’s API (cudaMemcpy()) manages the data transfer.
Mapping the address space to DRAM rows, banks, and subar-
rays is configurable in the memory controller [11]. Therefore,
by copying data in a specific address, the programmer can
place data in the desirable layout. For this group, we can ig-
nore the overhead of laying out the data as this is a one-time
cost.

The temporary resident data itself can be categorized into
two groups. The first group are the data that we broadcast
and do not need to be stored, such as the activation vectors
or the query points in KNN. We store these values in our in-
logic layer buffer. The space in this broadcasting buffer has
also a memory address. If these data are generated outside
Fulcrum (for example, in GPU, in the previous phase of the
applications which are not suitable for in-situ computing), an
API copies these data to the in-logic layer buffer. If these
data are generated inside Fulcrum, our in-logic layer core’s
program collects these data from the memory and stores
it in the in-logic layer buffer. The second group are the
data that cannot be broadcast. If these data are generated
outside Fulcrum, we propose to employ on-the-fly layout
optimization methods [24] that are proposed for GPUs. If
these data are generated inside Fulcrum but need to be laid
out differently for the next phase, our in-logic layer core’s
program collects and changes the layout for the next phase.

5.2.3 High-level programming
We realize that a non-expert programmer will not write

an assembly program for ALPUs. Our future work will de-
velop a high-level programming language and a software
stack. We hypothesize that a programming model similar
to TensorFlow suits Fulcrum. Accordingly, we envision a
software stack composed of two steps. The first step is to
implement the important kernels of most commonly used li-
braries, such as cuBLAS [25], cuSPARS [26], and Thrust [27]
and any other useful primitive such as Reduction, Scan, Sort,
and Filter that are amenable for in-situ computing. The sec-
ond step is to develop a programming model similar to Ten-
sorFlow( [12]). The TensorFlow programs are Data-Flow
Graphs (DFG) where each operator node can have multi-
dimensional vectors, or tensors, as operands. The compiler
transforms the input DFG into a collection of primitives and
kernels which are implemented in step1. A similar approach

is used for TPU and prior in-situ accelerators [7, 12].

6. EVALUATION
In this section, we first describe our evaluation methodol-

ogy. Second, we compare the performance of our method
against three approaches: (i) a server-class GPU, (ii) a prior
work on in-situ computing, and (iii) an ideal model of the
GPU, where we only incorporate the cost of data movement.
Third, we discuss applications’ characteristics that affect the
Fulcrum’s performance and energy benefit. Fourth, we eval-
uate the effect of each problem. Finally, we present area,
energy, and power evaluation results, as well as performance
evaluation under specific power budgets.

6.1 Methodology
We evaluated performance, area, and energy consumption

of Fulcrum. For performance evaluation of Fulcrum, we
divided applications into multiple phases, where each phase
could either be an ALPU processing phase or an in-logic
layer processing phase. We evaluated ALPU processing by
modeling the ALPU’s computation time, including both the
row activation time and processing time. We also modeled
the in-logic layer processing time, including data movement
and partial-result calculations.

We evaluated Fulcrum with both integer and floating-point
configurations: Integer Fulcrum is capable of integer addition
and multiplication, as well as bitwise operations, whereas
float Fulcrum adds single-precision floating-point addition
and multiplication.

The major benefit of Fulcrum is reducing the cost of data
movement. Accordingly, to abstract away from architectural
details of GPUs, we also evaluated against an ideal model of
the GPU, where we only incorporate the cost of data move-
ment to and from the GPU’s global memory. To this end,
we measured the data that are read or written to the GPU’s
DRAM (using NVProf [28]) and divided the measured data
movement by the raw bandwidth of the memory stack to
obtain the performance cost of the data movement.

Our RTL and CACTI-3DD [19] evaluations show that
Fulcrum can work at a frequency of 199 MHZ, in 22nm tech-
nology. We added slack of 21.5% (to incorporate the delay
penalty of logic in DRAM technology [13]) and evaluated
Fulcrum with 164 MHZ.

Table 2 lists the configuration of our evaluated systems,
and Table 1 introduces our in-situ benchmark suite, InSi-
tuBench [29] (a combination of memory-intensive kernels,
suitable for in-situ computing, from different domains). We
selected Sort, Scan, Reduction, GEMM (matrix-matrix mul-
tiplication), and GEMV (matrix-vector multiplication) from
the NVIDIA SDK benchmark [30]. We also included sparse
matrix-vector (SMPV) and sparse matrix-matrix (SPMM),
LSTM (a deep learning application), K-nearest neighbor
(KNN) [31, 32] (a classical machine learning application),
Scale, and AXPY (representatives of simple kernels). We also
added FilterByKey, FilterByPredicate, Bitmap (from DBMS
domain [22, 33, 34, 35]), and Xor (representative of bitwise
kernels, used in bitmap indexing [36] and bitmap-based graph
processing [5, 6, 37, 38]).

For area evaluation, we designed the ALPU in RTL and
synthesized the modules using an industry-standard 1xFin-



Table 1: The evaluated applications
Application Implementation Operation DRISA ? input options

AXPY cuBLAS [25] add and multiply Yes –Num=1000000000
Bitmap Thrust [27] compare and bitwise shift No –Num=1000000000

FilterByKey Thrust [27] compare No –Num=100000000
FilterByPredicate Thrust [27] compare No –Num=1000000000

GEMM cuBLAS [25] add and multiply Yes –numRowA=25600 numColA=19200 –numRowB=19200 –numColB=12800
GEMV cuBLAS [25] add and multiply Yes –numRow=25600 –numCol=19200 –IsVector=1
KNN Fast KNN [31, 32] add and multiply NO –global_mem –ref_nb=100000 –query_nb=1

LSTM cuDNN [39] add and multiply Yes –seqLength=100 –numLayers=4 –hiddenSize=4096 –miniBatch=1
Reduction NVIDIA SDK [30] add Yes –Num=16777216

SPMM cuSPARSE [26] compare, add and multiply No –NumRowA=8192 –NumColA=100000 –NumColB=8192 –percentage=0.2
SPMV cuSPARSE [26] compare, add and multiply No –NumRow=8192 –NumCol=100000 –percentage=0.2
Scale Thrust [27] multiply Yes –Num=1000000000
Scan NVIDIA SDK [30] add No –Num=1073741824
Sort NVIDIA SDK [30] compare No –Num=10000000
Xor Thrust [27] bitwise Yes –Num=1000000000

FET technology with foundry models (in modern technolo-
gies the node number does not refer to any feature in the
process, and foundries use slightly different conventions. We
use 1x to denote the 14/16nm FinFET nodes offered by the
foundry.). Then we scaled the area estimation (both pes-
simistic and optimistic) to 22 nm technology. We modeled
the area of Walkers in CACTI-3DD [19].

To evaluate the energy consumption, we extracted the en-
ergy consumption of ALPU by RTL simulation, and used the
energy consumption modeling of CACTI3DD [19] for Walk-
ers. To evaluate the breakdown of energy consumption for the
GPU, we developed MoveProf [40] that integrates NVIDIA’s
NVProf [28] with GPUWattch [41]. GPUWattch [41] uses
RTL models for processing elements and CACTI [19] for
memory elements. Therefore our evaluation of Fulcrum is
comparable to GPUWattch [41].

Table 2: Configuration details for evaluated architectures
Component Parameters

GPU
Tesla P100 [42], 12 GB memory
3 HBM2 memory stacks at 549 GB/s
(183 GB/s per stack)

Fulcrum
technology:22 nm, 32 vaults
32 subarray, open-bitline structure
4 mats per subarray, 256 bytes per row
64 banks per layer, 8 memory layers,
row cycle:50 ns, frequency:164 MHz
In-logic layer:
128 KB SRAM-based FIFO
ARM Cortex-A35

Ideal machine HBM2, bandwidth:183 GB/s

6.2 Performance improvement over GPU
Figure 8 illustrates the throughput of Fulcrum over a server-

class GPU, NVIDIA P100. This figure shows that Fulcrum
outperforms the GPU, on average by 23.4×, and up to 76×
(achieved for Bitmap). For applications such as Sort, with
lower memory-intensity, the speedup is around one order of
magnitude (8.8×). Applications such as GEMM, which can
employ blocking to significantly increase locality, gain lower
speedup (1.5×). NVIDIA P100 has three memory stacks and
Fulcrum has one memory stack. Therefore, Fulcrum delivers,
on average (up to), 70 (228)× speedup per memory stack
over the GPU.

6.3 Comparison against an ideal model and
bitwise row-wide ALUs

The most beneficial aspect of in-situ computing is reduc-
ing the cost of data movement. Therefore we evaluated our
method against an ideal model of GPU, where we only in-
corporated the cost of data movement between DRAM and
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Figure 8: Throughput comparison against NVIDIA P100

GPU. We also evaluated our method against DRISA [5] for
applications that do not have branches, where the complex
operations can be emulated using bitwise operations. Fig-
ure 9 illustrates the throughput per memory stack of the ideal
model, DRISA [5], GPU, and Fulcrum. This figure shows
that Fulcrum outperforms the ideal model, on average, by
19× and up to 178.9×. However, it can not outperform the
ideal model for GEMM, which has a higher locality. This
figure also shows that Fulcrum can outperform DRISA [5]
(the last column of Table 1 indicates applications that DRISA
can support), often by more than two orders of magnitude.
However, Fulcrum is 3.5× slower than DRISA for Xor–a
bitwise task ideally suited for DRISA.
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Figure 9: Throughput per stack comparison against the ideal
model, DRISA [5], and GPU

Table 3: Metrics used in Figure 10
Metric Definition

dram_read_bytes Total bytes read from DRAM to L2 cache
dram_write_bytes Total bytes written from L2 cache to DRAM.

inst_integer Number of integer instructions executed by nonpredicated threads
inst_fp_32 Number of single-precision floating-point instructions

executed by non-predicated threads (arithmetic, compare, etc.)
stall_memory_dependency Percentage of stalls occurring because a

memory operation cannot be performed due to
the required resources not being available or fully utilized, or

because too many requests of a given type are outstanding
sm_efficiency The percentage of time at least one warp is active

on a multiprocessor averaged over all multiprocessors on the GPU
sm_inefficiency 1-sm_efficiency

memory_read_per_computation dram_read_bytes/( inst_integer+ inst_fp_32 )
memory_write_per_computation dram_write_bytes/( inst_integer+ inst_fp_32 )

6.4 The effect of application characteristics
Figure 10 shows detailed performance metrics, collected

by the NVIDIA profiler [28]. Tables 3 presents the definition
of the metrics used in this Figure. In this Figure, the y-axis
shows the normalized value of the metric, so that the y-axis
value for the application with the highest metric value is one.
This Figure demonstrates that applications such as Bitmap
that have very high memory_read_per_computation benefit
more from Fulcrum. Since reading data from DRAM is in
the critical path, memory_read_per_ computation is more im-
portant than memory_write_per_computation. KNN, which
gains a high speedup, has a high value of sm_inefficiency.



It also shows that SPMV on GPU has the highest
stall_memory_dependency, which is the result of indirect
memory accesses such as x[col[j]] [43]. To implement SPMV
on Fulcrum, we partition rows of the matrix among subarrays
and store column indexes and non-zero values consecutively.
We broadcast the index of the vector elements, followed by
the corresponding value. In each subarray, the ALPU checks
the column index of the non-zero value with the broadcasted
index and perform multiplication and addition for matched
indexes. While our implementation does not require indirect
memory accesses, for highly sparse vectors, we waste many
cycles for broadcasting values that will not be matched in
any subarray. However, the simplified control and access
mechanism and in-situ computing (which reduces the energy
consumption of data movement) still provide energy benefits.
Figure 11 illustrates that the higher the density, the lower nor-
malized energy-delay product (EDP) (the lower, the better).
Therefore we can conclude that Fulcrum benefits applications
with the density of 3-100%. Prior works have shown that
many problems in statistics and sparse neural networks have
such density [44].
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Figure 11: The effect of density on the EDP benefit

6.5 The impact of each problem
Section 3 lists four problems for prior in-situ approaches.

In this Section, we discuss the impact of each problem.
1. Lack of flexibility: The fourth column of Table 1 demon-
strates that DRISA [5], a prior in-situ approach, can not effi-
ciently support applications such as Sort, Scan, FilterByKey,
and FilterByPredicate. The hardware overhead of solutions
such as a simple in-order core is 25× larger than the size of
each subarray.
2. No support for complex operations: Figure 2 illus-
trates that the energy consumption of several row activations,
required for emulating complex operations using bitwise op-
erations, is higher than the energy consumption of accessing
the same data in the logic layer, nullifying the advantages of
in-situ computing over in-logic layer computing.
3. Interleaving: Without reuniting interleaved bits, compu-
tation on more than 4-bit values is impractical, as bits are not

physically adjacent (Section 4).
4. Inefficient interconnections: Figure 12 illustrates the
overhead of copying shared values. In this figure, the y-axis
shows the percentage of Fulcrum’s execution time that would
be spent on copying shared values in all subarrays vs. the
percentage of Fulcrum’s time that is spent on broadcasting.
Since broadcasting is often overlapped with computation, it
imposes negligible performance overhead.

Figure 13 shows the performance overhead of inter-subarray
data movement through GDLs. This figure shows that LISA
data movement can alleviate the inter-subarray data move-
ment overhead and improve the performance of applications
with inter-subarray data movement requirement such as Scan,
Sort, and KNN.
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Figure 12: The performance overhead of copying shared
values vs. the performance overhead of broadcasting. Since

broadcasting and computation are often overlapped,
broadcasting imposes zero/negligible overhead.

A
XP

Y

B
itm

ap

Fi
lte

rB
y-

K
ey

Fi
lte

rB
y-

Pr
ed

ic
at

e

G
EM

M

G
EM

V

K
N

N

LS
TM

R
ed

uc
tio

n

SP
M

M

SP
M

V

Sc
al

e

Sc
an

So
rt

Xo
r

Operation

10
3

10
2

10
1

Ex
ec

ut
io

n 
tim

e 
ov

er
he

ad
 

 (n
or

m
al

iz
ed

 to
 to

ta
l 

Fu
lc

ru
m

's
 e

xe
ct

io
n 

tim
e(

lo
g)

)

Inter-subarray by GDL Inter-subarray by LISA

Figure 13: The performance overhead of inter-subarray data
movement through GDL vs. LISA [14] for applications with

inter-subarray data movement requirement.

Table 4: Area evaluation of Fulcrum
Area mm2

Per two subarrays Per layerComponent
Optimized Pessimistic Optimized Pessimistic

Original DRAM – – – 34.95
Walkers – 0.011 – 11.26

Integer+Bitwise ALPU (4 entries) 0.0054 0.0076 5.53 7.87
Integer+Bitwise ALPU (8 entries) 0.0059 0.0083 6.09 8.51

Integer+Bitwise+Float ALPU(4 entries) 0.0088 0.0166 9.05 17.09
Integer+Bitwise+Float ALPU(8 entries) 0.0093 0.0173 9.52 17.73

6.6 Area evaluation
A high capacity accelerator is desirable as it can support

applications with large footprints. Therefore we targeted an
8GB accelerator with eight layers (1GB per layer). Fulcrum
has two major types of components added to the commod-
ity DRAM: (i) Walkers and (ii) ALPUs. Table 4 lists the
optimistic and pessimistic area evaluation of these compo-
nents with different configurations. Our evaluation shows
that an 8GB integer Fulcrum, with 4 entries of the instruction
buffer, is achievable by eight layers, where the area of each
layer optimistically (pessimistically) is 51.74mm2 (54mm2).



A 4-entry, 8GB float Fulcrum is achievable by eight layers,
where the area of each layer optimistically (pessimistically)
is 55.26mm2 (63.3mm2).

6.7 Energy consumption
Figure 14 compares the energy consumption of two con-

figurations of Fulcrum: (i) integer Fulcrum, and (ii) float
Fulcrum to GPU. This Figure illustrates the energy consump-
tion spent (both dynamic and static) on three parts: (i) data
movement (on on-chip and off-chip memory elements and
interconnections), (ii) control (instruction fetch units and in-
struction schedulers), and (iii) computation (ALUs and FPUs).
Fulcrum reduces the total energy consumption, compared to
GPU, on average by 96%. Our evaluation shows that float
Fulcrum reduces the energy consumption of movement, con-
trol, and computation by 97%, 73%, and 24%, respectively.
Unlike the energy reduction in control and data movement
(which are expected), the energy reduction in computation is
unexpected as Fulcrum uses larger technology size than GPU
for computation. Our evaluation shows that the dominant
factor in energy reduction, for memory-intensive applications
(where the computation units are often waiting for the data),
is the reduced execution time, which reduces the static power
consumption. For computation-intensive applications such as
GEMM, Fulcrum increases the computation energy by 509%,
as expected.

1.0

Figure 14: Breakdown of energy consumption

6.8 Power evaluation
Figure 15 compares the power consumption of GPU, float

Fulcrum, and integer Fulcrum. This figure illustrates that,
on average, float Fulcrum (integer Fulcrum) decreases the
power consumption by 72.3% (73.8%). Our detailed evalua-
tion shows that 33.2% percent of the power consumption of
float Fulcrum is spent on row activation, 34.71% is spent on
moving data to the side of the subarray, 13.1% is spent on
computation, and 14.6% is spent on control. The rest is spent
other forms of data movement such as broadcasting, LISA
movement, and collecting the partial results.

6.9 Performance under power budget
The power budget of any accelerator directly affects the

choice of interface and cooling system. Prior works [4, 22]
suggest that a power budget of 10 Watts is practical through
current 3D-stacked memory interfaces. With a higher power
budget, deployment as a PCIe/CXL peripheral is required
to deliver the required power for the accelerator and more
complex and, consequently more expensive cooling system
is required. To change the power consumption of Fulcrum,

A
XP

Y

B
itm

ap
Fi

lte
rB

y-
K

ey
Fi

lte
rB

y-
Pr

ed
ic

at
e

G
EM

M

G
EM

V

K
N

N

LS
TM

R
ed

uc
tio

n

SP
M

M

SP
M

V

Sc
al

e

Sc
an

So
rt

Xo
r

A
vg

Operation

0

50

100

150

Po
w

er
 (w

)

GPU Fulcrum(float) Fulcrum(int)

Figure 15: Power consumption of integer Fulcrum and float
Fulcrum vs. GPU

we can simply change the frequency (however, we do not in-
crease the frequency beyond 164 MHz, which we treat as our
maximum frequency). Figure 16 illustrates the throughput
of Fulcrum (normalized to GPU) under three power budgets:
10, 40, and 60 Watts. This Figure shows that even with the
power budget of 10 watts, Fulcrum (one stack) outperforms
a high-performance GPU (with three stacks of memory) by
6× on average, and up to 25×. However, under this power
budget, Fulcrum slows down GEMM and SPMM.
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Figure 16: Performance under different power budgets

7. RELATED WORK
Traditional solutions for reducing the cost of data move-

ment have limited benefits. Prefetching techniques can not
alleviate the energy cost of data movements. Forwarding on-
chip blocks techniques [45] are only applicable when cores
share values. New techniques such as quantized memory
hierarchies [46] mostly benefit applications that can tolerate
errors. Therefore, in this section, we discuss only prior works
with processing units near memory elements. We categorize
these works into three groups. The first group only sup-
ports bitwise operations. The second group uses the analog
computing capability of memory cells of some of the NVM
technologies such as multi-bit memristors. Finally, the third
group places flexible cores in the DRAM layer. This Section
discusses how Fulcrum differs from such approaches.
In-situ computing with bitwise operations
SRAM-based [47] and DRAM-based [5, 6, 21, 48] in-situ
accelerators often support only bitwise operations. An NVM-
based in-situ accelerator, Pinatubo [38], also proposes to
change the sense amplifiers to enable bitwise operation for
NVMs. A limited number of applications can benefit from bit-
wise operation. Recent works [5, 49] implemented binarized
and 2-bit quantized deep neural networks using in-situ accel-
erators. In most memory technologies, employing row-wide
complex ALUs imposes a significant hardware overhead. Li



et al., [5] evaluated the overhead of adding a 4-bit adder per
every four bits of the row buffer and concluded that it im-
poses more than 100% area overhead. Our proposed method
has two advantages over these works. First, we enable 32-bit
complex operations such as multiplication and addition with-
out imposing a substantial hardware overhead. Second, our
proposed method increases the flexibility of accelerators to
support a wider range of applications.
Complex operations using analog computation capability
of memory cells
Several prior works [8, 9, 50] employed the analog compu-
tation capability of ReRAM technology to perform matrix-
vector multiplication. Our proposed method differs from
such methods in three aspects. First, these technologies are
memory-technology dependent and often use multi-bit mem-
ristor devices, which are unreliable. These techniques are
neither applicable to SRAM/DRAM, nor commercialized
NVM memories [51] such as 3DXpoint [52]. Second, they
require ADC/DAC blocks that impose significant hardware
overhead (98% of the total area) and power overhead (89%
of the total power consumption) [51]). Third, performing
multiplication and addition operations by approximately mea-
suring the current, introduces potential imprecision. A recent
work, FloatPIM [51] designs a CNN accelerator for train-
ing by enabling floating-point matrix-vector multiplication in
memory blocks, without requiring ADC/DAC. To this end,
this approach copies the vector (which is the shared value),
not only in each subarray but per each row of the matrix, to
enable parallel multiplication and addition, imposing capacity
and energy overhead. Furthermore, it implements addition
and multiplication using multiple bitwise operations and de-
pends on the computation capability of memristors. More
importantly, they change the entire memory architecture and
interconnection, and as a result, the memory cannot be effi-
ciently be accessed as a normal memory.
Flexible cores in DRAM layers
In the first round of research on processing in memory, in the
1990s, a variety of works [53, 54, 55, 56, 57, 58]) proposed to
add flexible cores per each bank or per entire DRAM chip.
Some of these proposals [59] add one processor per entire
DRAM, plus multiple bank-level buffers. In these propos-
als, each column of these buffers moves toward the single
processor. This imposes a high cost of data movement, is
not scalable for modern DRAMs with many banks and sub-
arrays, and limits parallelism. Our buffers enable sequential
word-level access with subarray-level parallelism. Recently
UPMEM [60] has described a product with a complex core
per each bank of 64 MB. Fulcrum instead adds a simple
processing unit per 1 MB and consequently provides higher
parallelism and imposes less overhead for data movement
(Our evaluations show that the energy consumption of access-
ing data at the edge of a bank through GDLs is at least 3× as
much as that of a floating-point addition.). More importantly,
as Section 4.1 explains, traditional cores impose a signifi-
cant overhead of control and access for sequential operations.
This overhead might be acceptable for far-memory cores for
two reasons. First, for these cores, the ratio of this overhead
compared to the overhead of data movement is negligible.
Second, these cores use the small technology size and have
a high frequency, whereas cores in DRAM layers have to

use large technology size and have a low frequency. Conse-
quently, the overhead of the extra cycles for such control and
access mechanism becomes significant for in-memory cores.
Fulcrum accelerates sequential operations and reduces the
overhead of access and control.

8. CONCLUSION AND FUTURE WORKS
For memory-intensive tasks, data movement dominates

computation. Keeping computations close to the subarray’s
row buffer avoids these data-movement overheads, while
simultaneously enabling high throughput, thanks to subarray-
level parallelism. Fulcrum overcomes key limitations of prior
in-situ architectures, by placing a scalar, full-word processing
unit at the edge of each pair of subarrays. We show that
sequentially processing a row (instead of bit-parallel pro-
cessing of the entire row buffer) with full-word computation
ability allows a much wider range of tasks to leverage in-
situ processing, such as a full range of arithmetic operations,
key sparse and dense linear algebra tasks, operations with
data dependencies, operations based on a predicate, scans
and reductions, and so forth. This significantly broadens the
market for an accelerator for memory-intensive processing.
Leveraging DRAM technology as the basis for in-situ pro-
cessing also enables high total data capacity and high total
parallelism, thanks to the large number of subarrays. Our
proposed method provides, one average (up to), 70 (228)×
speedup per memory stack over a server-class GPU.

So far we discussed the challenges regarding implement-
ing our method for DRAM. However we believe the same
simplified control and access mechanisem can be employed
for SRAM-based and NVM-based accelerators.

Fulcrum with SRAM-based memory technologies can ben-
efit from the high frequency and more efficient logic of
SRAM technologies. Recent works have utilized SRAM
for in-situ pattern matching and have shown at least two or-
ders of magnitude higher throughput per unit area than a prior
in-DRAM solution [61, 62, 63]. More importantly, due to the
flexibility of SRAM-based designs, we can include memory
elements with efficient random access, which can support
a broader range of applications. However, due to the lower
capacity of SRAM, the number of subarrays are lower than
DRAM, limiting parallelism. Furthermore, the current struc-
ture of SRAM-based memories is less suitable for Fulcrum
as the row buffers are shorter. Therefore, a future work can
optimize SRAM structures for employing Fulcrum.

NVMs have a higher capacity and higher number of sub-
arrays and, hence, it can provide higher parallelism. Current
NVM-based in-situ approaches use the computation capa-
bility of memory cells. This type of in-situ computing has
three problems: (i) the ADC and DAC impose a significant
hardware overhead, (ii) it is not flexible, and (iii) it introduces
error, and the error depends on the number of rows in each
subarray, limiting the size of each subarray and limiting the
capacity. A future work can evaluate Fulcrum for NVM and
investigate the challenges such as low endurance.
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