
Gearbox: A Case for Supporting Accumulation Dispatching and
Hybrid Partitioning in PIM-based Accelerators

Marzieh Lenjani
Marzieh.Lenjani@virginia.edu

University of Virginia
Charlottesville, Virginia, USA

Alif Ahmed
Alifahmed@virginia.edu
University of Virginia

Charlottesville, Virginia, USA

Mircea Stan
Mircea@virginia.edu
University of Virginia

Charlottesville, Virginia, USA

Kevin Skadron
skadron@virginia.edu
University of Virginia

Charlottesville, Virginia, USA

ABSTRACT
Processing-in-memory (PIM) minimizes data movement overheads
by placing processing units near each memory segment. Recent
PIMs employ processing units with a SIMD architecture. However,
kernels with random accesses, such as sparse-matrix-dense-vector
(SpMV) and sparse-matrix-sparse-vector (SpMSpV), cannot effec-
tively exploit the parallelism of SIMD units because SIMD’s ALUs
remain idle until all the operands are collected from local memory
segments (memory segment attached to the processing unit) or
remote memory segments (other segments of the memory).

For SpMV and SpMSpV, properly partitioning the matrix and
the vector among the memory segments is also very important.
Partitioning determines (i) how much processing load will be as-
signed to each processing unit and (ii) how much communication
is required among the processing units.

In this paper, first, we propose a highly parallel architecture
that can exploit the available parallelism even in the presence of
random accesses. Second, we observed that, in SpMV and SpMSpV,
most of the remote accesses become remote accumulations with
the right choice of algorithm and partitioning. The remote accu-
mulations could be offloaded to be performed by processing units
next to the destination memory segments, eliminating idle time
due to remote accesses. Accordingly, we introduce a dispatching
mechanism for remote accumulation offloading. Third, we propose
Hybrid partitioning and associated hardware support. Our parti-
tioning technique enables (i) replacing remote read accesses with
broadcasting (for only a small portion of data that will be read by all
processing units), (ii) reducing the number of remote accumulations,
and (iii) balancing the load.

Our proposed method, Gearbox, with just one memory stack,
delivers on average (up to) 15.73× (52×) speedup over a server-class
GPU, NVIDIA P100, with three stacks of HBM2 memory.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527402

CCS CONCEPTS
•Computer systems organization→ Special purpose systems.

KEYWORDS
PIM, SpMV, SpMSpV, sparse, processing in memory, graph
ACM Reference Format:
Marzieh Lenjani, Alif Ahmed, Mircea Stan, and Kevin Skadron. 2022. Gear-
box: A Case for Supporting Accumulation Dispatching and Hybrid Partition-
ing in PIM-based Accelerators. In The 49th Annual International Symposium
on Computer Architecture (ISCA ’22), June 18–22, 2022, New York, NY, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3470496.3527402

1 INTRODUCTION
In current computing systems, the latency and energy consump-
tion of fetching data from off-chip memory can be 2-3 orders of
magnitude higher than an arithmetic operation [23]. Processing-in-
memory (PIM) architectures alleviate this data movement overhead
by placing processing units near memory segments (banks or sub-
arrays) [21, 30, 32, 35].

SpMV and SpMSpV are essential computational kernels that are
widely used andmemory-intensive (requiring few computations per
loaded datum from memory). The generalized forms of SpMV and
SpMSpV, where the multiplication and addition can be replaced by
other operations, appear in many important application domains
such as machine learning (e.g., Support Vector Machine and Sparse
K-Nearest Neighbor) and graph processing (e.g., Page Rank) [9, 41,
42].

Due to SpMV and SpMSpV kernels’ memory-bound nature and
widespread applications in various domains, they are natural can-
didates for PIM acceleration. Adding support for these kernels to
PIM-based accelerators can boost such applications’ performance,
expand the market for PIM, and increase vendors’ motivation in
PIM investment.

However, existing PIM architectures often are only optimized for
regular kernels by providing high parallelism using SIMD units [24,
30] or bit-level parallelism [21, 35]. In this paper, we introduce a PIM
architecture that provides high parallelism for SpMV and SpMSpV.
Later, we demonstrate that our proposed architecture outperforms
SIMD approaches for regular kernels as well.

There are two major approaches for SpMV and SpMSpV: i) row-
oriented or matrix-driven approach (Figure 1(a)), and ii) column-
oriented or vector-driven approach (Figure 1(b)). The row-oriented

https://doi.org/10.1145/3470496.3527402
https://doi.org/10.1145/3470496.3527402

ISCA ’22, June 18–22, 2022, New York, NY, USA Lenjani, et al.

0 1 2 3 4 5
0

1

2

3

4

5

Matrix

0

1

2

3

4

5

0

1

2

3

4

5

Input Output

´ =

0 1 2 3 4 5
0

1

2

3

4

5

(a) Row-oriented (b) Column-oriented

0

1

2

3

4

5

Input (transposed)

´

=

Zero entries

Matrix’s accessed entries Matrix’s non-zero entries that are not accessed

Input/Output vector’s non-zeros

Processed rows Processed columns

Matrix
Output

Figure 1: The row-oriented approach processes all rows,
whereas the column-oriented approach processes only the
columns corresponding to the non-zero entries of the input
vector. In (b), the input vector is transposed to illustrate the
relation between non-zero entries of the input vector and
the processed (activated) columns of the matrix.

approach requires processing every non-zero element of the input
matrix for both SpMV and SpMSpV. On the other hand, for SpM-
SpV, the column-oriented approach processes only the columns
corresponding to the non-zero entries of the input vector. We refer
to these columns and their non-zero entries as activated columns
and activated entries. As a result, the column-oriented approach is
more efficient for SpMSpV [8].

While the column-oriented approach is common in GPU, CPU,
FPGA, and ASIC solutions for SpMSpV [11, 26, 27, 38, 41, 42, 49, 53,
54, 59], none of the prior bank-level or subarray-level PIM-based
SpMV accelerators [9, 52] have implemented column-oriented pro-
cessing. To maximize the benefits of column-oriented processing,
we need to address two issues: i) random accesses to remote mem-
ory segments and ii) power-law column length distribution.

Random accesses to remote memory segments:
Processing SpMV and SpMSpV in PIM requires the compressed

matrix, the input vector, and the output vector to be partitioned
among memory segments. With both row-oriented and column-
oriented approaches, the processing units near each segment re-
quire access to data that is stored in another memory segment. For
example, in Figure 2 (a), one of the multiplication and addition
required for generating 𝑂𝑢𝑡𝑝𝑢𝑡 [3] is 𝑂𝑢𝑡𝑝𝑢𝑡 [3] += 𝑀𝑎𝑡𝑟𝑖𝑥 [3, 0] ∗
𝐼𝑛𝑝𝑢𝑡 [0]. However, Figure 2 (a) shows that 𝐼𝑛𝑝𝑢𝑡 [0] and𝑀𝑎𝑡𝑟𝑖𝑥 [3, 0]
reside in Subarray 1 (S1), but 𝑂𝑢𝑡𝑝𝑢𝑡 [3] resides in Subarray 2 (S2).
Therefore, the processing unit in S1 does the multiplication part
(𝐼𝑛𝑝𝑢𝑡 [0] ∗𝑀𝑎𝑡𝑟𝑖𝑥 [3, 0]) locally but has to access Subarray 2 (S2)
to write the result of multiplication in 𝑂𝑢𝑡𝑝𝑢𝑡 [3].

The remote write accesses are remote accumulations that do
not require any mechanism for enforcing the order of operations.
Therefore, the result of multiplications can be sent to be accumu-
lated in the destination memory segment. For example, S1 can send
the multiplication result to S2 to be added to 𝑂𝑢𝑡𝑝𝑢𝑡 [3] in S2 and
continue processing another multiplication and do not need to wait
until the accessed operand arrives from a remote memory segment.

S1 Subarray 1 Subarray 2S2

0 1 2 3 4 5

0

1

2

3

4

5

Matrix

(a) Remote accumulations and
load imbalance

0

1

2

3

4

5

Output

=

S1

S2

S1

LL Logic Layer

S1

S2

´

Input (transposed)

S1

S2

LL

Input (transposed)

0 1 2 3 4 5

0

1

2

3

4

5

Matrix

0

1

2

3

4

5

Output

=

S1

S2

S2

S1

S1

S2

´

(b) Hybrid partitioning reduces
remote accumulations and
alleviates load imbalance

LL

S2

Remote accumulation, sent from S1 to S2 or from S2 to S1

Figure 2: Remote accumulations and load imbalance. (a)With
column-oriented partitioning, long columns cause load im-
balance and many remote accumulations. (b) With Hybrid
Partitioning, long column entries cause no remote accumu-
lation and no load imbalance.

Accordingly, we propose Accumulation dispatching. In this mech-
anism, one dedicated subarray in every bank acts as a dispatcher
for remote accumulations. Without the dispatcher, each remote
accumulation would interrupt the normal processing of the pro-
cessing unit in the remote subarray. The dispatcher collects all the
remote accumulations and sends them to their destination once
the destination subarray’s processing ends. This solution sacrifices
only 6% of capacity. In Section 7.3, we evaluate an alternative albeit
impractical approach.

Power-law column length distribution:
Real-world sparse matrices’ column lengths follow the power-law

distribution [19]. That means most of the rows/columns contain
very few non-zero entries (referred to as short rows/columns), while
the remaining row/columns have orders of magnitude higher num-
bers of non-zero entries (referred to as long rows/columns). The nat-
ural way of partitioning a matrix for the column-oriented approach
is to assign a few full columns to each memory segment, where the
input entries that activate these columns reside. However, with a
power-law column length distribution, this partitioning causes load
imbalance, because the processing unit of the subarray that has a
long column has to perform many more multiplications than other
processing units, whenever this long column gets activated. We
also observed that, with naive column-oriented partitioning, most
of the remote accumulations are due to long columns.

To address these issues, we propose Hybrid partitioning scheme
that treats short and long columns differently. We partition the
short columns in a normal column-oriented way and store a full
short column in one memory segment. However, we distribute
the long columns’ non-zero entries among all memory segments,
so that each non-zero entry and its corresponding entry in the
output vector reside in the same memory segment. We also propose

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators ISCA ’22, June 18–22, 2022, New York, NY, USA

hardware support for our proposed partitioning technique. To lower
the overhead of our hardware support, we reorder the matrix so
that the long columns/rows are the first columns/rows of the matrix
and their index is lower than a threshold. As a result, distinguishing
the indexes corresponding to these long columns and long rows
can be implemented using a comparator and a latch that holds the
threshold.

Figure 2 (b) shows that with Hybrid partitioning, the long column
no longer causes any remote accumulation, since𝑀𝑎𝑡𝑟𝑖𝑥 [3 : 5, 0]
and 𝑂𝑢𝑡𝑝𝑢𝑡 [3 : 5] reside in the same subarray. This partition-
ing also alleviates load imbalance, because all processing units
co-operate on processing an activated long column.

With Hybrid partitioning, for multiplications, all subarrays need
to access the input vector entries that activate long columns. We
place these entries in the logic layer (one of the layers in 3D stack
memories, introduced in Section 2) and broadcast them to all sub-
arrays. For example, in Figure 2 (b), we place 𝐼𝑛𝑝𝑢𝑡 [0] in the logic
layer.

Based on these two key ideas, we propose Gearbox, which adds
efficient hardware supports for column-oriented processing to PIM-
based accelerators. We use Fulcrum [32] as the baseline PIM archi-
tecture for Gearbox. Fulcrum places one lightweight single-word
processing unit at every two subarrays to achieve high parallelism.
The subarray-level single-word processing allows parallel and in-
dependent access per single-word ALU. Therefore, unlike SIMD
approaches, the ALUs do not have to wait for all the operands
to be collected. However, Fulcrum [32] only supports sequential
accesses. It does not support local random accesses (i.e., random
access within the same subarray) and remote accesses required by
the SpMV and SpMSpV kernels. We modify Fulcrum to add support
for a new important range of applications by enabling local random
accesses, as well as adding support for our proposed Accumulation
dispatching and Hybrid partitioning. Our support for local random
accesses, Accumulation dispatching, and Hybrid partitioning is pro-
grammable, enabling future works to map more irregular kernels
to our proposed architecture.

Our proposed method, Gearbox, with just one memory stack,
delivers on average (up to) 15.73× (52×) speedup over a server-class
GPU, NVIDIA P100, with three stacks of HBM2 memory. Note that
the P100 is not the state-of-the-art GPU and newer GPUs have
even more memory stacks. Compared to GPUs with more memory
stacks, Gearbox remains highly competitive in terms of speedup
per stack because Gearbox delivers on average 45× speedup per
stack compared to NVIDIA P100.

Gearbox also outperforms an ideal model of SpaceA [52], a PIM-
based SpMV accelerator that only supports row-oriented processing
(assuming no area overhead, perfect load balancing, and no penalty
for remote reads for SpaceA) by 58× (447×) per area.

Our paper makes the following contributions:
• Proposing a highly parallel architecture that can exploit the
parallelism for regular kernels, as well as SpMV and SpMSpV.

• Proposing the first in-memory-layer approach (near banks/sub-
arrays) that implements column-oriented processing, which is
more efficient than row-oriented processing.

• Proposing Hybrid partitioning to reduce remote accumulations
and alleviate load balancing.

• Proposing hardware support for remote accumulations and
Hybrid partitioning.

2 BACKGROUND
2.1 Memory hierarchy
Figure 3(a) illustrates a 3D stackedmemory, where a stack comprises
a few memory layers and may include a logic layer. Each memory
layer has several banks. Every two or four banks in a layer form
a group, and a through-silicon via (TSV) connects the groups in
different layers to form a vault.

A bank comprises several subarrays that are connected through
a shared global data line (GDL) (Figure 3(b)). To access one column
of the data from a bank, a subarray reads an entire row and stores
the row in a row-wide buffer, known as the row buffer. Then a
column decoder at the edge of each bank selects a column from
the row. The selected column traverses the GDL to reach the edge
of the bank. Memories vary in row width and column width. We
choose memory configurations with short rows (e.g., 2048 bits),
such as HMC [20, 32], because memory configurations with short
rows are more efficient for parallel row activations and random
accesses, where only a few words of a row are useful.

Column Decoder

Row Buffer

Subarray 1

GDLCSL

R
ow

D
ec

od
er

Row Buffer

Subarray n

R
ow

D
ec

od
er

(a) A 3D stack memory (b) A bank

Figure 3: Memory organization: (a) structure of layers and
banks, and (b) structure of subarrays.

Pair=[{1,v1},{4,v0},{0,v3},{3,v2},{0,v6},
{3,v5},{4,v4},{1,v7},{2,v9},{5,v8}]
Offsets= [0,4,8,8,14,16,20]CS

C_
Pa

ir

0 1 2 3 4 5

0 v3 v6
1 v1 v7
2 v9
3 v2 v5
4 v0 v4
5 v8

Zero entries Non-zeros
Values=[v1,v0,v3,v2,v6,v5,v4,v7,v9,v8]
Indexes=[1,4,0,3,0,3,4,1,2,5]
Offsets= [0,2,4,4,7,8,10]

CS
C

Figure 4: A sparse matrix in CSC and CSC_Pair format.

2.2 Sparse operations
We denote generalized matrix-vector multiplication as𝑂𝑢𝑡𝑝𝑢𝑡 [:] =
𝑀𝑎𝑡𝑟𝑖𝑥 [:, :] × 𝐼𝑛𝑝𝑢𝑡 [:], where 𝐼𝑛𝑝𝑢𝑡 [:] and 𝑂𝑢𝑡𝑝𝑢𝑡 [:] are vectors,
and 𝑀𝑎𝑡𝑟𝑖𝑥 [:, :] is a matrix. By “generalized”, we mean multipli-
cations and accumulations can be replaced by any other opera-
tion with similar properties (e.g., commutativity). In most applica-
tions, we need an extra step on the output vector 𝑓 𝑖𝑛𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡 [:
] = 𝑂𝑢𝑡𝑝𝑢𝑡 [:] + 𝛼𝑦 [:], where 𝛼 is a scalar value and 𝑦 [:] is a vector.
The addition and multiplication in this step can also be replaced by
any other operation. We refer to this step as Applying.

Many applications can be formulated as SpMV and SpMSpV [9,
41, 42]. For example, Single-Source Shortest Paths (SSSP), a graph
processing application, can be formulated as SpMSpV, in which mul-
tiplication is replaced by addition, and the accumulation operation
is replaced by minimization.

ISCA ’22, June 18–22, 2022, New York, NY, USA Lenjani, et al.

1 2 4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4

Column length

10
−3

10
−2

10
−1

10
0

10
1

Pe
rc

en
ta

ge
 o

f
 c

ol
um

ns

(a) Holly

1 2 4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4
32

76
8

Column length

10
−3

10
−2

10
−1

10
0

10
1

Pe
rc

en
ta

ge
 o

f
 c

ol
um

ns

(b) Orkut

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Column length

10
−3

10
−2

10
−1

10
0

10
1

Pe
rc

en
ta

ge
 o

f
 c

ol
um

ns

(c) Patent

1 2 4 8 16
Column length

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Pe
rc

en
ta

ge
 o

f
 c

ol
um

ns

(d) Road

1 2 4 8 16 32 6412
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

58
0

Column length

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Pe
rc

en
ta

ge
 o

f
 c

ol
um

ns

(e) Twitter

Figure 5: Column length distribution in real-world matrices (both x and y-axis are in log scale).

2.3 Sparse matrix representations
There are two main data representations for sparse matrices: (i)
compressed sparse rows (CSR) and (ii) compressed sparse columns
(CSC). CSC/CSR stores thematrix in three arrays containing: (i) non-
zero values (𝑉𝑎𝑙𝑢𝑒𝑠), (ii) row/column indices of non-zero values
(𝐼𝑛𝑑𝑒𝑥𝑒𝑠), and (iii) offsets (𝑂𝑓 𝑓 𝑠𝑒𝑡𝑠) that refer to the positions of
the start of the columns/rows in both 𝑉𝑎𝑙𝑢𝑒𝑠 and 𝐼𝑛𝑑𝑒𝑥𝑒𝑠 arrays.

CSC representation is more efficient for column-oriented pro-
cessing, as it has the position of the start of each column. We can
pair the 𝑉𝑎𝑙𝑢𝑒𝑠 and 𝐼𝑛𝑑𝑒𝑥𝑒𝑠 arrays into one array (CSC_Pair), as
shown in Figure 4.

3 MOTIVATION AND KEY IDEAS
3.1 Support for column-oriented processing

using accumulation dispatching
Figure 6 shows that the column-oriented algorithm only processes
the columns that correspond to non-zero entries of the input vec-
tor. Therefore, column-oriented processing operates on the sparse
format of the input vector (lines 4-5). We refer to this format of
the input vector as the frontier (line 5, currFrontier in Figure 6).
Column-oriented processing also requires random access to the
output vector (lines 20-21). When we partition the matrix and the
input/output vectors among memory segments, the accumulation
in line 21 can be remote or local. For example, in Figure 6, con-
sider a subarray containing 𝑀𝑎𝑡𝑟𝑖𝑥 [:, 𝑗 : 𝑘], 𝐼𝑛𝑝𝑢𝑡 [𝑗 : 𝑘], and
𝑂𝑢𝑡𝑝𝑢𝑡 [𝑗 : 𝑘]. In line 21, if 𝑗 ≤ 𝑟𝑜𝑤_𝑖𝑛𝑑𝑒𝑥 ≤ 𝑘 , the accumulation
is a local accumulation. Otherwise, it is a remote accumulation.

Input: 1
 CSC_offsets[0:n] 2
 CSC_Pair[0: numNonZeros(Matrix)*2-1], 3
 //pair sparse format of the input vector 4
 currFrontier[0: numNonZeros(Input)*2-1] 5
Output: 6
 OutputDense[0:n-1]=0 7
 numOutputNonZeros=0 8
 //pair sparse format of the output vector 9
 nxtFrontier[0: 2*n-1] 10
//processing only columns corresopnding to non-zeros of the input 11
for (i=0; i< numNonZeros(Input)*2; i+=2): 12
 f_column= currFrontier[i] 13
 f_value= currFrontier[i+1] 14
 col_offset= CSC_offsets[f_column] 15
 col_length= CSC_offsets[f_column+1]-CSC_offsets[f_column] 16
 for (j=0; j< col_length; j+=2): 17
 row_index= CSC_Pair[col_offset +j]; 18

 row_value= CSC_Pair[col_offset+j+1] 19
 //random write to the output vector 20
 OutputDense[row_index]+= row_value * f_value 21
//generating the sparse format of the output vector 22
for (i=0; i<n, i++): 23
 If(OutputDense[i]!=0): 24

 t= numOutputNonZeros*2 25
 nxtFrontier[t]= i 26
 nxtFrontier[t+1]= OutputDense[i] 27
 numOutputNonZeros++ 28

Figure 6: The column-oriented algorithm.

Key idea 1: Accordingly, we add hardware support for distin-
guishing remote accumulations from local accumulations by placing
a comparator and two latches that hold the range of index of lo-
cal accumulations. We also propose a mechanism for dispatching
remote accumulations, Accumulation dispatching. In this mecha-
nism, one specialized subarray in every bank acts as a dispatcher
for the remote accumulations. We elaborate on the details of this
mechanism in Section 4.

Zero entries Matrix’s activated entries Matrix’s non-activated entries

Input/Output ’s non-zerosS1 Subarray 1 Subarray 2S2

0 1 2 3 4 5

0

1

2

3

4

5

Matrix

0

1

2

3

4

5

Output

=

S1 S2

S2

S1

(b) Hybrid partitioning with replication
optimization

LL Logic Layer

S2S1LL
´

Input (transposed)

LL

0 0

S2S1
S1

S2

Remote accumulation, sent from S1/S2 to LL

0 1 2 3 4 5

0

1

2

3

4

5

Matrix

0

1

2

3

4

5

Output

=

S1 S2

S2

S1

S2S1LL
´

Input (transposed)

LL
S1

S2

(a) Hybrid partitioning without
replication optimization

Figure 7: An extra optimization that replicates the output
vector entries corresponding to long rows/columns in each
subarray.
3.2 Reducing remote accumulations and

balancing the load by supporting Hybrid
partitioning

Figure 5 shows the column length distribution of our evaluated
datasets, where the x-axis (log scale) shows the column length and
the y-axis is the percentage of columns within that range. This
figure demonstrates that there are only a few long columns, but
they are orders of magnitude longer than the other columns. Same
goes for the long rows. We refer to the top 𝑋% (e.g., 0.01%) of
columns/rows as long columns/rows. This threshold is configurable
in our architecture.

Figure 2 (a) in Section 1 demonstrates that, with column-oriented
partitioning, where each subarray has a few full columns, the long
columns can cause many remote accumulations and significant load
imbalance among processing units.

Key idea 2: Given these observations, to both balance the load
and reduce the number of remote accumulations, we propose Hy-
brid partitioning. Figure 2 (b), in Section 1, illustrates that Hybrid
partitioning treats short and long columns differently. We partition

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators ISCA ’22, June 18–22, 2022, New York, NY, USA

Pair

Subarray 1

(b) A Bank

C
om

pu
te

SP
U

D
ec

od
er

 Pair

Subarray .. C
om

pu
te

SP
U

D
ec

od
er

Walker 1
Walker 2
Walker 3

 Pair

Subarray n D
is

pa
tc

he
r

SP
U

D
ec

od
er

Walker 1
Walker 2
Walker 3

Walker 1
Walker 2
Walker 3

8-

en
tr

y
In

st
ru

ct
io

n
bu

ffe
r

C
on

tr
ol

un
it

(c) An SPU

Start3
End3/LongStart3

(a) Layers

LastLocal3
FirstLocal3

LastLong3

...1

...1

...1

...1

...1

Logic layer

...2

...2

...2

...2

...2

R
eg

1
R

eg
2

R
eg

3

W
al

ke
r1

R

eg
W

al
ke

r2

R
eg

W
al

ke
r3

R

eg

UpPort

TSVPort

LinePort

R
ingPort

DownPort

Switch

A
LU

Figure 8: Overall architecture. In (a), the circles are subarrays, the rectangles are banks, and the pentagons are switches.

the short columns in a column-oriented way but divide the long
columns among all subarrays. Consequently, each part of a long
column resides in the same subarray in which its corresponding
part of the output vector resides, eliminating remote accumulations.
Furthermore, all subarrays cooperate for processing long columns,
alleviating the load imbalance.

In iterative algorithms, the output vector becomes the input
vector of the next iteration. Therefore, in the next iteration, all
subarrays for multiplication require accessing the output vector
entries that activate a long column. We place the output vector
entries corresponding to long columns in the logic layer. In the
subsequent iterations, we broadcast these entries to all subarrays.
Since there are only a few activated long columns in each iteration,
the broadcasting imposes negligible overhead. The overhead is
evaluated in Section 7.4.

Real-wordmatrices may also contain a few long rows. Figure 7 (a)
shows that these long rows can trigger many remote accumulations.
To reduce this remote accumulation overhead, we also place the
output entries corresponding to the long rows in the logic layer.
The logic layer provides more efficient random accesses, since it
has SRAMs.

To implement Hybrid partitioning, our subarray-level processing
units should be able to distinguish among input/output entries
corresponding to the long columns. We reorder the matrix so that
the long columns/rows of the matrix and their index are lower
than a threshold. As a result, we can implement this distinction
by using a comparator and a latch that keeps the index of the
last long column/row. Section 6 explains that this one-time cost is
acceptable [17, 19, 52, 57, 60].

To furtherminimize the overhead of accumulation of long column-
s/rows, we added an optional optimization, where we replicate the
output vectors corresponding to the long columns/rows in all sub-
arrays. Then we accumulate the long rows, first locally in each
subarray and then in the logic layer (Figure 7 (b)). If we choose
0.01% of rows/column as long rows/columns, the capacity overhead
of this technique stays below 1.7%.

4 PROPOSED ARCHITECTURE
We use Fulcrum[32] as the baseline PIM-based architecture. Moti-
vated by characteristics of memory-intensive applications, where

there are few simple operations per loaded datum from memory,
Fulcrum places one simplified sequential processing unit per pair
of subarrays. Each subarray-level processing unit (SPU) has a few
registers, an 8-entry instruction buffer, a controller, and an ALU. In
Fulcrum, every pair of subarray has three row-wide buffers, called
Walkers. The Walkers load an entire row from the subarray at once,
but the processing units sequentially access and process one word
at a time. The sequential access is enabled by using a one-hot-
encoded value, where the set bit in this value selects the accessed
word. Therefore, to sequentially process the row, the processing
unit only needs to shift the one-hot encoded value.

We chose Fulcrum because it is more flexible and more efficient
than bank-level SIMD approaches for three reasons [34]. First, the
three Walkers enable three concurrent sequential accesses. Second,
Fulcrum can exploit the parallelism for operations with data depen-
dency because Fulcrum processes row-wide buffers sequentially.
Third, Fulcrum can efficiently exploit the parallelism for operations
with branches because each subarray has an 8-entry instruction
buffer that allows each ALU to perform a different operation inde-
pendently.

However, Fulcrum can only support sequential accesses and is
inefficient for irregular kernels that require random accesses, com-
munications among subarrays, or load balancing. In this paper, we
(i) modify the sequential access mechanism of Fulcrum to enable lo-
cal random accesses, (ii) add in-memory-layer interconnection and
a dispatching mechanism to enable remote accumulations, and (iii)
add ISA and hardware support for our proposedHybrid partitioning,
which minimizes communications among subarrays and provide
hardware support for load balancing. Our modifications add only
10.93% area overhead to Fulcrum but enable exploiting the high
parallelism of Fulcrum for a new range of important applications.

Figure 8 illustrates our proposed architecture, which is based
on 3D-stacked memories. Similar to prior works [15, 32], every
vault has a simple in-order core with a 32KB SRAM scratchpad
underneath it, in the logic layer. A ring interconnection topology
(Figure 8 (a)) connects the banks in each memory layer. Subar-
rays within a bank are connected through a line interconnection
topology (Figure 8 (b)).

ISCA ’22, June 18–22, 2022, New York, NY, USA Lenjani, et al.

 Subarray n SP
U

D
ec

od
er

Walker 1

Walker 2

Walker 3

A[100]A[101]A[102]A[103]

......... ...

B[100]B[101]B[102]B[103]

 Read from Walker1 to Walker1Reg
 Shift Walker1's one-hot-encoded value
 Read from Walker2 to Walker2Reg
 Shift Walker2's one-hot-encoded value

W
al

ke
r1

R

eg
W

al
ke

r2

R
eg

W
al

ke
r3

R

eg

Reg1=Walker2Reg
ColumnAddress= Walker1Reg & 63
If(Walker1Reg>LastLong &&
(Walker1Reg<FirstLocal || Walker1Reg>LastLocal)):
 (index,value)=(Reg1,Walker1Reg)
 DownPort= (index,value) //send reduction to Dispatcher
 go to instructon[0]
else:
 If(Walker1Reg<=LastLong):
 RowAddress=Start3+(Walker1Reg-FirstLocal)>>6)
 else:
 RowAddress=LongStart3+(Walker1Reg-LastLocal)>>6)
 load Suabrray[RowAddress] in Walker3
 Walker3Reg=Walker3[ColumnAddress]

Walker 3 ...

W
al

ke
r3

R

eg

C[Walker1Reg]

R
eg

1

A
LU

 RegisterTransfer(async) src=Walker2Reg dst=Reg1
 IndirectAccess
 src=Walker1Reg dst=Walker3Reg

 opCode=ADD src1=Reg1 src2=Walker3Reg
 RegisterTransfer (async)
 src=ALUOut1 dst=Walker3Reg

 Write Walker3Reg to Walker3
 Read from Walker1 to Walker1Reg
 Shift Walker1's one-hot-encoded value
 Read from Walker2 to Walker2Reg
 Shift Walker2's one-hot-encoded value
 go to instruction [1]

In
st

[0
]

In
st

[1
]

In
st

[2
]

In
st

[3
]

1

2

3

4

5

7

6
A[100]A[102]

B[100]B[102]

Walker 1

Walker 2

Figure 9: A walk-through example for 𝐶 [𝐴[𝑖]] += 𝐵 [𝑖] with four instructions.

As shown in Figure 8 (b), we have two types of SPUs. Subarrays
closest to the ring interconnect contain Dispatcher SPUs. Other
subarrays contain Compute SPUs.

The logic layer components launch a kernel (or one step of a
kernel) by broadcasting at most 8 instructions to all Compute and
Dispatcher SPUs and loading new values from each subarray to the
associated latches.

In this section, we elaborate on the role of each part of our archi-
tecture, using a simple kernel, 𝐶 [𝐴[:]] += 𝐵 [:]. At a high level, a
Compute SPU reads the 𝑖𝑡ℎ entry of array𝐴[:], compares this entry
against three latches, and processes the accumulation differently
based on the result of this comparison. These three latches are
𝐹𝑖𝑟𝑠𝑡𝐿𝑜𝑐𝑎𝑙3, 𝐿𝑎𝑠𝑡𝐿𝑜𝑐𝑎𝑙3, and 𝐿𝑎𝑠𝑡𝐿𝑜𝑛𝑔3. If 𝐹𝑖𝑟𝑠𝑡𝐿𝑜𝑐𝑎𝑙3 ≤ 𝐴[𝑖] ≤
𝐿𝑎𝑠𝑡𝐿𝑜𝑐𝑎𝑙3, the accumulation is a local accumulation. If 0 ≤ 𝐴[𝑖] ≤
𝐿𝑎𝑠𝑡𝐿𝑜𝑛𝑔3, the accumulation is again a local accumulation but on
the replicated part, 𝐶 [0 : 𝐿𝑎𝑠𝑡𝐿𝑜𝑛𝑔3]. Otherwise, the accumulation
is a remote accumulation. In this case, the Compute SPU sends the
index-value pair (𝐴[𝑖] and 𝐵 [𝑖]) to the Dispatcher.

We use this simple example to introduce our modifications to
Walkers, provide a walk-through example, and explain the role of
Dispatchers. In the end, we elaborate on the details of the instruction
format.

4.1 Walkers and indirect accesses
PIM targets memory-intensive applications that process large ar-
rays. In our architecture, each Walker read from or write to one of
these large arrays. The Start1/2/3, shown in Figure 8 (c), determine
the row address. The End1/2/3 latches determine the end address
of the arrays associated with Walker1/2/3, respectively.

For example, Walker1 loads one row from 𝐴[:]. Then, the con-
troller accesses the row one word at a time by shifting the one-hot-
encoded value of Walker1. Once the set bit in the one-hot-encoded
value reaches the last position, the controller loads a new row from
array 𝐴[:].

In our previous example, however, the array 𝐶 [:] was being
accessed randomly using 𝐴[:]’s entries. When an array is the index
of another array, the access is called an indirect access. To enable
indirect accesses, we add two fields to the instruction format that
determine which register contains the index of the indirect access
andwhichWalker should be used for loading the row containing the

accessed word. Our controller derives the row address and column
address using the index. To select the accessed word from the row,
we shift the one-hot-encoded value and increment a counter until
the counter equals the column address. To hide the overhead of
shifting, we overlap loading a new row into the Walker and shifting
the one-hot-encoded value and use the sub-clock, introduced in [32].
This simple modification enables parallel and independent random
access per ALU in the accelerator, enabling applications with high
access divergence.

4.2 A walk-through example
Figure 9 illustrates a walk-through example of how our architecture
processes the first step of 𝐶 [𝐴[𝑖]]+ = 𝐵 [𝑖], using four instructions.
The Compute SPUs iterate over these instructions for each entry
of 𝐴[:] and 𝐵 [:].

Figure 9 1 shows the pseudo format of instruction[0], and Fig-
ure 9 2 illustrates the operation performed by instruction[0]. With
this instruction, the Compute SPUs load one word from Walker1
into𝑊𝑎𝑙𝑘𝑒𝑟1𝑅𝑒𝑔 and one word from Walker2 into𝑊𝑎𝑙𝑘𝑒𝑟2𝑅𝑒𝑔.
With instruction[1], as shown in Figures 9 3 and 4 , the SPU
moves𝑊𝑎𝑙𝑘𝑒𝑟2𝑅𝑒𝑔 to 𝑟𝑒𝑔1 and compares the𝑊𝑎𝑙𝑘𝑒𝑟1𝑅𝑒𝑔 against
the three latches (𝐹𝑖𝑟𝑠𝑡𝐿𝑜𝑐𝑎𝑙3, 𝐿𝑎𝑠𝑡𝐿𝑜𝑐𝑎𝑙3, and 𝐿𝑎𝑠𝑡𝐿𝑜𝑛𝑔3). If
𝐹𝑖𝑟𝑠𝑡𝐿𝑜𝑐𝑎𝑙3 ≤ 𝑊𝑎𝑙𝑘𝑒𝑟1𝑅𝑒𝑔 ≤ 𝐿𝑎𝑠𝑡𝐿𝑜𝑐𝑎𝑙3, the Compute SPU de-
rives the row address and column address of 𝐶 [𝑊𝑎𝑙𝑘𝑒𝑟2𝑅𝑒𝑔], us-
ing Start3 latch. If 0 ≤𝑊𝑎𝑙𝑘𝑒𝑟1𝑅𝑒𝑔 ≤ 𝐿𝑎𝑠𝑡𝐿𝑜𝑛𝑔3, the row address
is derived using the 𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑟𝑡3 latch that stores the start of the
replicated part of 𝐶 [:] (i.e., 𝐶 [0 : 𝐿𝑎𝑠𝑡𝐿𝑜𝑛𝑔3]). Using the indirect
mechanism that we explained in the previous subsection, SPU loads
𝐶 [𝑊𝑎𝑙𝑘𝑒𝑟1𝑅𝑒𝑔] into𝑊𝑎𝑙𝑘𝑒𝑟3𝑅𝑒𝑔. If the accumulation is a remote
accumulation, the controller places the index and the value stored in
Reg1 andWalker1Reg on the line interconnection’s port (DownPort
in Figure 8 (c)) and returns to instruction[0].

Otherwise, Instruction[2], as shown in Figures 9 5 and 6 , per-
forms the accumulation (𝑊𝑎𝑙𝑘𝑒𝑟3𝑅𝑒𝑔 += 𝑅𝑒𝑔1).

Instruction[3], as shown in Figure 9 7 , writes the𝑊𝑎𝑙𝑘𝑒𝑟3𝑅𝑒𝑔
register to the Walker3, loads one word from Walker1 into
𝑊𝑎𝑙𝑘𝑒𝑟1𝑅𝑒𝑔, loads one word from Walker2 into𝑊𝑎𝑙𝑘𝑒𝑟2𝑅𝑒𝑔, and
returns to Instruction[1]. The controller iterates over these instruc-
tions until all A[i] entries are processed.

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators ISCA ’22, June 18–22, 2022, New York, NY, USA

4.3 Dispatcher and the bank-level switch
The Dispatcher SPUs are located in the subarrays closest to the ring
interconnect (Figure 8 (c)). They are primarily responsible for rout-
ing remote accumulation packets. To assist in packet forwarding,
the Dispatcher SPUs contain a switch that keeps the range of the
indexes assigned to its bank and its layer in corresponding latches.

In our previous example, the Compute SPUs send any non-local
index-value pairs to the Dispatcher in the bank. When the Dis-
patcher receives an index-value pair, if the index belongs to its
bank, the Dispatcher loads the index-value pair in one of its walk-
ers. If the index-value pair belongs to the same memory layer, the
Dispatcher places it on the ring interconnection’s port. Otherwise,
the Dispatcher forwards the index-value pair to a different memory
layer via TSVs. As a result, multiplications and local accumulations
are overlapped with sending remote accumulations.

After the multiplication and local accumulation, to complete
the remote accumulations, we need two additional steps. In the
first step, the Dispatchers start sending the index-value pairs to
Compute SPUs in the same bank. In the second step, each Com-
pute SPU processes the received index-value pairs to perform the
final accumulation (using instructions that are very similar to the
instructions in the first step).

4.4 Maintaining the sparse format of the output
vector

In our example, we generated the dense format of the 𝐶 [:]. In it-
erative algorithms, 𝐶 [:] may be sparse and the input of another
step. A naive way of generating this sparse format is to process𝐶 [:]
sequentially and generate a list of indexes of non-zero values. Al-
though this step is sequential and highly efficient, when the output
vector is very sparse, this step can incur overhead for some appli-
cations. We eliminate this step by introducing a few fields in the
instruction format. Our controller detects the accumulations that
are changing a zero value and acts based on what is programmed
by the instruction. To make our support more general, instead of
checking only for zeros, we can check for any value. We refer to
these values as clean values. Different applications may benefit from
different clean-values (e.g., all-one value for integers or one of the
NaN value representations for floats). We add a latch that keeps this
clean-value indicator. Section 5 explains how we use this feature
for generating a sparse format of the output vector for SpMSpV.

4.5 Instruction format
Table 1 demonstrates the instruction format of our proposed ar-
chitecture and lists the bitwidth and description of each field. Our
instruction format allows two operations per instruction and con-
current read and write from/to Walkers. The IndirectAccSrc and
indirectAccDst fields enable programmable support for indirect
access. The LongEntryTreat field adds support for our Hybrid parti-
tioning. CheckCleanVal, CleanValIndxSrc, and CleanPairDst fields
enable generating a sparse format of the output vectors.

5 SPMSPVWALK-THROUGH
We can map SpMSpV to our architecture using the following steps.
Step1 (FrontierDistribution): In Section 2, we explained that the
sparse format of the input vector is called the frontier. In the first

Table 1: Instruction format of Gearbox

Instruction Width Description
NextPC1 3 bits

Program counter of the instructions.
NextPC2 3 bits
NextPC_Cond 4 bits Condition that selects between NexpPC1 or NextPC2 as the next

instruction.
DecLoop 1 bits decrement loop counter
OpCode1 4 bits

Opcode of the instructions.
OpCode2 4 bits
Src1Op1 3 bits

Sources of operation indicated by OpCode1
Src2Op1 3 bits
Src1Op2 3 bits

Sources of the operation indicated by OpCode2
Src2Op2 3 bits
ShiftCond1 3 bits

Condition under which the Walker’s one-hot-encoded value is shifted.ShiftCond2 3 bits
ShiftCond3 3 bits
ReadWrite1 1 bit

Read from or write to corresponding Walker.ReadWrite2 1 bit
ReadWrite3 1 bit
RegSrc 3 bits

Selects the source and the destination of a register transfer.
RegDst 4 bits
IndirectAccSrc 2 bits Register from which the index is read.
IndirectAccDst 2 bits Walker that loads the row for the indirect access.
LongEntryTreat 1 bit Determines how to treat long-activating indexes (reduce locally or

send downwards).
CheckCleanVal 1 bit Determines if ALU should check for a clean value
CleanIndexSrc 2 bits Determines the register containing the index of a clean value.
CleanPairDst 2 bits Determines whether the clean index should be loaded into a Walker

or sent to the Dispatcher.

iteration, we partition and distribute the frontier among subarrays.
In most algorithms, the first frontier is very small (e.g., one entry
for BFS). In iterative applications, the frontier is generated in pre-
vious iterations and already resides in subarrays in which their
corresponding columns reside, except for the output entries that
correspond to long row/columns, which reside in the logic layer. At
the start of each iteration, we broadcast the entries residing in the
logic layer to all subarrays and append them to the frontier array
in each subarray.

Input: 1
 CSC_offsets[0:n] 2
 //pair sparse format of the input vector 3
 frontier[0: numNonZeros(Input)*2-1] 4
Output: 5
 pack[0: packLength-1] 6
 packLength 7
j=0; 8
// pack frontier value with correponding column information 9
for (i=0; i< numNonZeros(Input)*2; i=i+2): 10
 index= frontier[i] 11
 pack[j]= CSC_offsets[index] 12
 pack[j+1]= CSC_offsets[index+1]-CSC_offsets[index] 13
 pack[j+2]= frontier[i+1] 14
 j=j+3 15
packLength=j+1 16
 17

Figure 10: OffsetPacking.
Step2 (OffsetPacking): This step packs the column offset, col-
umn length, and the values from the frontier array that should be
multiplied in the column into a new array. Figure 10 shows the
pseudo-code of this step.
Step3 (LocalAccumulations): This step multiplies each value of
the frontier with its corresponding column. Figure 11 demonstrates
the pseudo-code of this step. In this step, if a clean value is being
updated, the clean value indicator and its row index will be sent to
the Dispatcher.

ISCA ’22, June 18–22, 2022, New York, NY, USA Lenjani, et al.

Input: 1
pack[0 : numNonZeros(Input)*3-1] 2
CSC_Pair[0: numNonZeros(Matrix)*2-1] 3

Output: 4
OutputDense[0:n-1] 5

OutputDense[:]=0 6
for (i=0; i< numNonZeros(Input)*3; i=i+3): 7
 offset=pack[i] 8
 length= pack[i+1] 9
 f_Value= pack[i+2] 10
 for (j=0; j< length;j=j+2): 11
 row_index= CSC_Pair[offset+j] 12
 row_value= CSC_Pair[offset+j+1] 13
 //the fisrt step for generating nxtFrontier 14
 if(OutputDense[row_index]==0) 15
 send (0,row_index) to the dispatcher 16
 OutputDense[row_index] +=f_Value* row_value 17

Figure 11: LocalAccumulations.

Step4 (Dispatching): In this step, the Dispatcher sends all the
stored entries (index-value pairs) to their destination subarrays.
Here, the Dispatcher’s Walker acts as a buffer.
Step5 (RemoteAccumulations): In this step, the SPU sequen-
tially processes index-value pairs received in the previous step and
performs the accumulations. Also, in this step, if the value in the
index-value pair is a clean-value indicator, the index of clean-value
is appended to the corresponding array.
step6 (Applying):This step processes the array containing the non-
zero indexes to generate the frontier for the next iteration, initializes
the output vector to clean indicators, and sends long-activating
entries to the logic layer to be reduced and applied there. It also
performs the apply operation (𝑓 𝑖𝑛𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡 [:] = 𝑂𝑢𝑡𝑝𝑢𝑡 [:] +𝛼𝑦 [:],
which is explained in Section 2.

6 SOFTWARE STACK
PIM-based accelerators [21, 30, 32, 35] are most efficient for appli-
cations that can offload a large dataset to the accelerator once and
process any incoming input using the data stored in the accelerator.
For example, database tables, as well as matrices for deep learning,
graph, and classic machine learning applications, can be offloaded
to the accelerator once and used for processing many inputs.

In all these domains, the one-time cost of pre-processing and
data placement has typically been considered acceptable. For exam-
ple, in graph processing, several studies [17, 19, 52, 57, 60] propose
pre-processing techniques that improve the execution time. In ma-
chine learning applications, the pre-processing time is even more
negligible compared to the training cost.
Pre-processing: In Gearbox, we need to partition long columns
and replicate the column offset for each partition. To balance the
load, we randomize the order of columns assigned to a bank and
then reorder the matrix so that the long columns and long rows are
the first columns and rows of the matrix.
Data placement: For placing data, we use the offload paradigm.
Therefore, an API similar to CUDA’s API (cudaMemcpy()) manages
the data transfer. We allocate contiguous memory space for each
array in each subarray independently and then store the row ad-
dress of each array as metadata. Then, in each step, we load these
metadata in the Start and End latches (as shown in Figure 8 (c) and
(d)).

Programming model: Similar to Samsung’s PIM [29, 30], we are
relying on a library-based programming model, where a compiler
would link the kernels in computation graphs of a high-level frame-
work (such as TensorFlow). We will release our assembly library
for the evaluated kernels.
Scaling the proposed method for larger datasets:We evaluated
our approach using datasets that are as large as datasets evaluated
by prior works [7, 52, 57]. Gearbox provides high parallelism in one
stack. Therefore, unlike prior works[7, 52, 57], Gearbox does not
need multiple stacks for these dataset sizes. However, to extend the
architecture for larger datasets, we can use multiple stacks (4-16)
per device. To extend the capacity even more, we can connect mul-
tiple devices by NVLink3 and NVswitch [5] or similar inter-device
interconnection, which allows all-to-all device communications. To
extend the algorithm for multiple devices and multiple stacks, we
can partition the matrix into several blocks, where each block is
assigned to one stack. This technique is used by prior accelerators
with limited capacity [9, 22]. In this case, we require an additional
step that reduces the results of all blocks. NVLink supports col-
lective operations [3] (e.g., broadcast and allReduce operations)
that efficiently support the required inter-device communications
for our proposed method. We leave evaluations for multi-device
Gearbox as a future work.
Supporting kernels with more than three arrays or more
than eight instructions: SpMSpV is an example of a kernel that
requires more than three arrays. Since we have only three Walkers,
we break the first step of this algorithm into two steps, where each
step has three arrays. Given that in-memory-layer PIM-based accel-
erators with high parallelism target memory-intensive application,
with few instructions per loaded data, a few-entry instructions
buffer is enough. If a future work identifies a widely-used memory
intensive application that require more instruction buffer entries,
the instruction buffer can be extended at the cost of higher area
overhead. A software solution for mapping a kernel with more than
8 instructions is to break the algorithm into few steps, similar to
what we do for SpMSpV.
Handling corner cases: If the amount of remote accumulations
is high, the Dispatcher SPU in the LocalAccumulations step or a
Compute SPU in the Dispatching stepmay not find enough space for
storing the received index-value pairs. To address this issue, we add
a software-hardware-basedmechanism. Section 4 explains that each
Walker has an 𝐸𝑛𝑑 latch that indicates the end of its corresponding
array. When a Walker reaches the row address that is one less than
the row address of the 𝐸𝑛𝑑 latch, the SPU raises a signal that lets
the logic layer know that the reserved space is about to be full.
Then the logic layer controller stalls the senders (depending on the
step, could be the Compute SPUs or the Dispatchers) and initiates
the next step, making the array empty again.

7 EVALUATION
7.1 Methodology
Following prior works [7, 9, 22, 52, 57, 58], we evaluate Gearbox
using three graph algorithms and two sparse machine learning
kernels: Breadth-First Search (BFS), Page Rank (PR), Single-Source
Shortest Path (SSSP), Sparse K-Nearest neighbors (SPKNN), and

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 2: Configuration details for evaluated architectures

Component Parameters

GPU
Tesla P100 [1], 12 GB memory
3 HBM2 memory stacks at 549 GB/s
(183 GB/s per stack)

Ideal in-logic-layer GPU 512 GB/s per stack [7]

Gearbox

technology:22 nm, 32 vaults
32 subarray, open-bitline structure,
256 bytes per row, 64 banks per layer
8 memory layers, row cycle:50 ns, frequency:164
MHz
in-logic-layer components per vault:
4-32 kB SRAM, an ARM Cortex-A35 [15]
interconnection: 1.2 GHZ, 64 lane, latency: 0.8 ns
for each interconnection segment [20, 52]

Table 3: Evaluated datasets

Matrix Full name Rows Non-Zeros Density Size (Bytes)
Holly hollywood_2009 1139905 112751422 0.0086% 911,130,616
Orkut soc_orkut 2997166 212698418 0.0023% 1,725,564,672
Patent cit_Patents 3774768 33037896 0.00023% 294,501,312
Road road_usa 23947347 57708624 0.00001% 653,247,768
Twitter soc_twitter-2010 21297772 530051618 0.0001% 4,410,795,120

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

10
0

10
1

Sp
ee

du
p

(lo
g)

Gunrock
Ideal 1-stack SpaceA

Gearbox

Figure 12: Speedup of our final solution (GearboxV3) against
a GPU framework (Gunrock) and a prior work (SpaceA), av-
eraged over datasets. The values less than 100 represent slow-
down.

Support Vector Machine (SVM). We vary datasets to capture dif-
ferent characteristics of applications for different inputs. Table 3
introduces the datasets, which are real-world matrices from the
SuiteSparse matrix collection [14], and Table 2 lists the configura-
tions of the evaluated systems.

There is no established simulator for bank-level and subarray-
level computing with simplified processing elements, as these ap-
proaches are only recently getting popular. Therefore, we developed
an in-house event-accurate simulator for Gearbox and prior works.
Furthermore, we integrated our simulator with Gunrock [50] to
validate the algorithms. We further evaluate our simulator with
assertion testing and analytical evaluations. We developed the RTL
model of our SPUs in 14 nm technology and incorporated an over-
all penalty of 3.08× for processing in 22 nm DRAM. The penalty
incorporates the effect of larger technology node and other ineffi-
ciencies [28]. Consequently, we evaluated Gearboxwith a frequency

of 164MHZ. The frequency of interconnection and one-hot-encoder
shifter is 1.2 GHZ.

We evaluated latency, energy consumption, and area of memory
elements and interconnect elements using CACTI-3DD [10]. For the
breakdown of energy consumption of GPUs, we used Moveprof [4],
which is a tool based on integrating NVIDIA’s NVProf [6] and
GPUWattch [31].

7.2 Speedup
Figure 12 compares our proposed method (GearboxV3) against a
server-class GPU and a prior work, SpaceA [52]. Gearbox, with
just one memory stack, delivers on average (up to) 15.73× (52×)
speedup over a server-class GPU, NVIDIA P100, with three stacks
of HBM2 memory. Gearbox also outperforms an ideal model of
SpaceA [52], a PIM-based SpMV accelerator that only supports
row-oriented processing. However, SpaceA [52] reports only 4.86%
area overhead. Therefore, a fairer comparison is speedup per area.
Generously assuming no area overhead, perfect load balancing,
and no penalty for remote reads for SpaceA, Gearbox outperforms
SpaceA, on average (up to), by 58× (447×) per area. The speedup
over SpaceA stems from the fact that Gearbox provides higher
parallelism and efficient support for column-oriented processing.

Although we chose Fulcrum as the baseline architecture, the
two key ideas can enable column-oriented processing for all PIM
approaches. For example, we can add our hardware support for
our Hybrid partitioning by adding our latches and comparators to
spaceA. Similarly, we can add accumulation dispatching to SpaceA
and use the bank-level CAM in SpaceA for accumulating remote
results. Our ideas can speed up SpaceA by 3.4 times. Although it
is possible to add our ideas to SIMD bank-level architectures (e.g.,
Newton [24], and Samsung PIM [30]), these architectures require
additional modifications, such as in-memory-layer interconnection.

The speedup of Gearbox against GPU stems from three sources:
(i) higher internal bandwidth compared to GPU, (ii) lower overhead
for random accesses where only a few words out of a cache line
is useful, and (iii) inefficiency of SIMD units in GPU for irregular
applications.

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

10
−2

10
−1

10
0

10
1

Sp
ee

du
p

(lo
g)

Gunrock
GearboxV0
GearboxV1

HypoGearboxV2
GearboxV2
Gearbox

Figure 13: The effect of each optimization. Table 4 lists the
description of each Gearbox version.

7.3 The effect of each optimization
Figure 13 illustrates the effect of the proposed optimizations in
Gearbox. Table 4 lists the description of each version. GearboxV0 is
in fact Fulcrum+local indirect access. Although Fulcrum [32] paper

ISCA ’22, June 18–22, 2022, New York, NY, USA Lenjani, et al.

Table 4: Each Gearbox version shown in Figure 13.

Description

GearboxV0
row-oriented processing+local random access for accessing a row+

broadcasting the frontier+
using sequential index matching for processing each row

GearboxV1 column-oriented processing+column-oriented partitioning+
our proposed Accumulation dispatching

HypoGearboxV2

column-oriented processing+our Accumulation dispatching+
an impractical partitioning

(partitioning the matrix with Hybrid partitioning
but placing the entire input and output array in the logic layer)

GearboxV2
column-oriented processing+Accumulation dispatching+

Hybrid partitioning
without replication long activating entries in each subarray

GearboxV3 column-oriented processing+reduction dispatching+
Hybrid partitioning+replicating long activating entries

reports speedup for SPMV, the density of thematrix evaluated in Ful-
crum is 20%, whereas the density of the evaluated matrix in Gearbox
is less than 0.001% (Table 3). Figure 13 shows that, for this density
range, GearboxV0 andGearboxV1 are three orders ofmagnitude and
two orders of magnitude slower than Gunrock, respectively. One
hypothetical version of Gearbox, HypoGearboxV2, which places
the entire input and output array in the logic layer, provides, on
average, 4.28× speedup compared to GPU. HypoGearboxV2 is not
practical, as SRAMs in the logic layer memory elements do not have
enough capacity for the entire input and output vector. GearboxV2,
on average, provides 12.48× speedup over GPU by placing only
long activating entries of the output/input vectors in the logic layer.
The SRAM capacity for this solution is (2∗𝑛× (4+4) ∗𝑃/100, where
n is the number of rows and P is the percentage of input/out entries
placed in the logic layer. For the evaluated datasets and 𝑃 of 0.01% ,
we need 34 KB SRAM in total in the logic layer. GearboxV3 is the
final version, whose performance is discussed in Section 7.2.

7.4 Execution time and energy breakdown
Figure 14 (a) shows the breakdown of execution time spent on each
of the six steps of the algorithm for GearboxV2 and GearboxV3.
Here, most of the execution time is spent on LocalAccumulations
and RemoteAccumulations. Step1 in this figure includes the over-
head of broadcasting of non-zero entries placed in the logic layer,
which is on average 1.1% of the total execution time.

Figure 14 (b) presents the breakdown of the energy consumption
of Gearbox, demonstrating that Gearbox reduces the energy con-
sumption, compared to GPU, on average (up to) by 97 (99)%. This
figure shows that in most applications, row activations are the ma-
jor source of energy consumption. The exception is SPKNN, where
the input vector and the output vector have many non-zero values
corresponding to the long columns/rows, increasing the energy
consumption of the operations in the logic layer.

7.5 Comparison against non-in-memory-layer
approaches

Figure 15 compares the speedup of Gearbox against three ideal
models. The ideal models only account for the overhead of data
movement and provide an upper bound for non-in-memory-layer
approaches. Figure 15 shows that Gearbox provides 7.94× (31×),
on average (up to), speedup per memory stack, compared to the
ideal model of a GPU. We also evaluated Gearbox against a purely
in-logic-layer approach under aggressive assumptions such as (i)

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

0.00

0.02

0.04

0.06

0.08

0.10

Ex
ec

tio
n

tim
e

 (n
or

m
al

iz
ed

 to
 G

PU
)

Step1(V2)
Step2(V2)
Step3(V2)
Step4(V2)
Step5(V2)
Step6(V2)

Step1(V3)
Step2(V3)
Step3(V3)
Step4(V3)
Step5(V3)
Step6(V3)

(a) Execution time breakdown

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

0.00

0.02

0.04

0.06

En
er

gy
 b

re
ak

do
w

n
(n

or
m

al
iz

ed
 to

to

ta
l G

PU
 e

ne
rg

y
co

ns
um

tio
n)

Row activation
Computation
Communication
Logic layer
Control
TSV

(b) Energy breakdown

Figure 14: Breakdown of execution time and energy

512 GB/s raw bandwidth, (ii) having enough parallelism to utilize
the raw bandwidth, and (iii) having 56 64 kB L1 and 4 MB L2 cache
to capture any locality.

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

0

10

Sp
ee

du
p

pe
r s

ta
ck

 (N
or

m
al

iz
ed

 to
 id

ea
l G

PU
)
Ideal GPU
Ideal in-logic-layer GPU
Gearbox

Figure 15: Comparison against ideal models.
Gearbox offers, on average (up to), 2.83× (11×) speedup per mem-

ory stack, compared to this ideal model of an in-logic-layer GPU.
The main bottleneck of in-logic-layer approaches is the limited
bandwidth in the logic layer, which is 29× lower than the band-
width of in-memory layers. Table 5 compares Gearbox against a few
non-in-memory layer approaches based on the reported speedup in
their paper on the two common algorithms evaluated by all these
accelerators (Page Rank and SSSP). The comparison overestimates
the speedup of these accelerators, as we convert their reported CPU
speedups to GPU speedups based on the GPU speedups reported
in Graphicionado[22], which has no HBM2 memory and has half
the memory bandwidth.

Tesseract [7] and GraphP [57] in Table 5 are using HMC-like con-
figuration. Our speedup against these approaches shows that our
speedup comes from our in-memory-layer design and not from us-
ing HMC-like configuration. Our speedup against these approaches
also proves that Gearbox can outperform GPUs with Fine-Grained
DRAM [40], with narrow, dedicated TSVs to each bank, similar to
HMC.

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 5: Speedup against non-in-memory-layer approaches.

Graphicionado[22] Tesseract[7] GraphP[57]
Per stack/chip 10.01 27.08 21.99

Per area – 13.47 10.9

7.6 The effect of load balancing
Figure 16 (a) shows that for most datasets and algorithms, labeling
0.01% of rows/columns as long can significantly improve perfor-
mance. This figure also shows that increasing the percentage only
slightly improves the performance.

We also evaluated the effect of distributing consecutive columns
(Figure 16) (b). In real-world matrices, consecutive columns (e.g.,
neighboring nodes in a graph) are most likely to get activated to-
gether. Our evaluations show that distributing consecutive columns
among subarrays in a bank (SameBank) provides, on average (up to),
22.3× (76.9×) speedup compared to storing consecutive columns in
the same subarray (SameSubarray).

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

0

100

200

300

Sp
ee

du
p

(lo
g)

 (n
or

m
al

iz
ed

 to
 0

.0
0%

)

0.00%
0.01%

0.05%
0.10%

(a) Percentage of long
rows/columns

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

10
0

10
1

Sp
ee

du
p

(lo
g)

 (n

or
m

al
iz

ed
 to

 S
am

eS
ub

ar
ra

y)

SameSubarray
SameBank
SameVault
Distributed

(b) Consecutive columns

Figure 16: (a) The effect of load balancing techniques.

7.7 Power and temperature constraints
Figure 17 (a) shows that Gearbox reduces power consumption by
75%, compared to the GPU. It consumes, on average, 32.72 watts.
Our power density is 465 mW/mm2, which reduces the power den-
sity of SpaceA by 12% and is safely under the power density budget
of a PIM-based accelerator with a commodity-server active heat
sink [16, 56] and under the power budget of the PCIe/CXL periph-
eral interface. We evaluated the performance of Gearbox under
two power budgets: (i) 10W and (ii) 40W. Figure 17 (b) presents the
speedup of Gearbox under these two power budgets. To lower the
power consumption, we lower the frequency. This figure shows
that even under a restricted power budget of 10 watts, Gearbox
(with one memory stack) outperforms a high-performance GPU
(with three memory stacks), on average (up to) by 6.8× (38.65×).

Table 6: Area evaluation of Gearbox

Area𝑚𝑚2

Per two subarrays Per layerComponent
Optimistic Pessimistic Optimistic Pessimistic

Original DRAM – – – 34.95
Walkers – 0.011 – 11.26

Bank-level logic and interconnection – – – 4.56
Integer SPUs 0.0067 0.010 6.86 10.42
Float SPUs 0.0098 0.019 10.03 19.45

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

0

100

Po
w

er
 C

on
su

m
pt

io
n Gunrock

Gearbox

(a) Power consumption

BFS PR

SPKNN
SSSP

SVM
Avg

Algorithms

10
1

Sp
ee

du
p

(lo
g)

10 40

(b) Performance under
power budget

Figure 17: Power and temperature constraints.

7.8 Area evaluation
Table 6 lists the optimistic and pessimistic areas of our hardware
components. Our optimistic area numbers are the ones reported
by our synthesizer, scaled to 22nm. Our pessimistic area evalua-
tion is the maximum of scaling the optimistic area for 4 layers
(using the scale factor derived from [55]) and the pessimistic area
reported by our synthesizer. For Walkers, we evaluate the area
using CACTI-3DD [10], which is equivalent to pessimistic area
evaluations. Gearbox optimistically (pessimistically) imposes 2.42%
(10.93)% area overhead compared to a prior work, Fulcrum [32].
In comparison with regular HMC memory, Gearbox optimistically
(pessimistically) imposes 73% (100)% area overhead.

7.9 Evaluation for regular kernels

A
XP

Y
B

itm
ap

Fi
lte

rB
yK

ey
fil

te
rB

yP
rd

G
EM

M
G

EM
V

K
N

N
LS

TM
R

ed
uc

tio
n

H
D

_S
PM

M
H

D
_S

PM
V

Sc
al

e
Sc

an
So

rt
Xo

r
A

vg

Operation

10
−2

10
−1

10
0

10
1

10
2

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
 to

 G
PU

)
 p

er
 m

em
or

y
st

ac
k

 (l
og

)

GPU
Ideal model
Row-wide bitwise SIMD

Bank-level SIMD
Gearbox

Figure 18: Speedup for regular kernels, reproduced from [34].
GearBox is based on Fulcrum. Therefore, GearBox/Fulcrum can

also support and speed up regular workloads. Figure 18 evaluates
performance for a range of regular applications from the InSi-
tuBench [2] suit. For these evaluations, both Gearbox/Fulcrum and
our bank-level SIMD have the same number of ALUs and have the
same frequency.

Gearbox provides, on average, 4.4× higher throughput than
the bank-level SIMD approach. Gearbox can also outperform
DRISA [35], a row-wide bitwise-based SIMD approach, which im-
plements arithmetic operations using bit-wise operations on hor-
izontally laid-out data, by more than two orders of magnitude.
SIMDRAM [21], another row-wide bitwise-based SIMD approach

ISCA ’22, June 18–22, 2022, New York, NY, USA Lenjani, et al.

that implements arithmetic orations on vertically laid out data, can-
not support floating-point operations of the evaluated applications.
The vertical layout is also highly inefficient for random accesses, as
we would have to activate 32 rows to access a single 32-bit word,
one bit per row (the rest of bits in all rows will not be used).

8 RELATEDWORK
SIMD and row-wide bitwise approaches: Bank-level SIMD ap-
proaches [24, 30] or subarray-level bit-parallel and bit-serial ap-
proaches [21, 35, 43–48, 51] perform the same operation on mul-
tiple aligned words. These approaches cannot efficiently support
SpMV and SpMSpV. Section 7.9 compares Gearbox against these
approaches for regular kernels.
Logic-layer-based approaches: This category of prior works [7,
13, 37, 57] employs a few processing units with traditional or de-
coupled access/execute architectures[25] in the logic layer. These
approaches still move data along subarrays, banks, and layers, im-
posing data movement overheads. Section 7.5 discusses these ap-
proaches.
NVM-based techniques: These approaches employ NVM compu-
tation capabilities (e.g., CAM capability, analog MAC, and digital
computation capabilities) [9, 18, 58]. Due to several issues with
NVM-based approaches, including the hardware and energy over-
head of analog-to-digital/digital-to-analog converters (which can
limit the capacity to 64 MB [9]), low endurance, and high error rate,
in this paper, we have focused on DRAM-based accelerators.
Non-PIM approaches: Several ASIC and FPGA designs [12, 22,
39, 41, 42] target SpMSpV and graph processing. The advantage of
these approaches is that their performance, similar to other non-
PIM approaches, does not highly depend on the data placement in
memory. Therefore, they do not require careful offline data place-
ment. For example, they can handle load imbalance at runtime
by distributing tasks among processing elements. However, these
approaches have to transfer data from memory to the accelerator,
imposing data movement overhead. We evaluate Gearbox against
Graphicionado [22], an ASIC-based approach, in Table 5. Traditional
non-PIM techniques of reducing the cost of data movement, such
as prefetching, forwarding, and decoupled access/execute architec-
tures [25, 33] cannot reduce the energy and memory bandwidth
and only hide latency. We evaluate Gearbox against an ideal model
of these approaches in Section 7.5.

9 CONCLUSIONS AND FUTUREWORKS
Gearbox extends the range of applications that highly parallel PIM-
based accelerators can support, by proposing hardware support for
Accumulation dispatching, Hybrid partitioning, and subarray-level
random accesses.

We can envision three types of future works: (i) extending Gear-
box for other irregular kernels, (ii) applying Gearbox in an SRAM/E-
DRAM setting, (iii) augmenting Gearbox with a reliability mech-
anisms for memory technologies with higher error rate. (In this
work, we employ Gearbox for graph processing, which is toler-
ant to error and uses DRAM, where the probability of error per
byte in one month, in memory layers, is as low as 1.86375e-8 (85%
of DRAM errors caused by the memory controller and memory
channel [36])).

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their construc-
tive feedback and suggestions. This work was supported in part
by CRISP, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program, sponsored by MARCO and DARPA.
We would like to also thank Vaibhave Verma and Akhil Shekar for
their valuable comments.

REFERENCES
[1] 2016. Data Sheet: Tesla P100. Retrieved April 22, 2022 from https://images.

nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
[2] 2020. A benchmark suit for In-situ computing. Retrieved April 22, 2022 from

https://github.com/MarziehLenjani/InSituBench
[3] 2020. Collective Operations. Retrieved April 22, 2022 from https://docs.nvidia.

com/deeplearning/nccl/user-guide/docs/usage/collectives.html
[4] 2020. MoveProf: Integrating NVProf and GPUWattch for Extracting the Energy

Cost of Data Movement. Retrieved April 22, 2022 from https://github.com/
MarziehLenjani/MoveProf

[5] 2022. NVLink and NVSwitch, The Building Blocks of Advanced Multi-GPU
Communication. Retrieved April 22, 2022 from https://www.nvidia.com/en-
us/data-center/nvlink/

[6] 2022. Profiler User’s Guide. Retrieved April 22, 2022 from https://docs.nvidia.
com/cuda/profiler-users-guide/index.html

[7] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A Scalable Processing-in-memory Accelerator for Parallel Graph Processing.
In ISCA.

[8] Ariful Azad and Aydin Buluç. 2017. A Work-efficient Parallel Sparse Matrix-
sparse Vector Multiplication Algorithm. In IPDPS.

[9] Nagadastagiri Challapalle, Sahithi Rampalli, Linghao Song, Nandhini Chan-
dramoorthy, Karthik Swaminathan, John Sampson, Yiran Chen, and Vijaykrish-
nan Narayanan. 2020. GaaS-X: Graph Analytics Accelerator Supporting Sparse
Data Representation using Crossbar Architectures. In ISCA.

[10] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B Brockman,
and Norman P Jouppi. 2012. CACTI-3DD: Architecture-level Modeling for 3D
Die-stacked DRAM Main Memory. In DATE .

[11] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Dem-
ing Chen. 2021. ThunderGP: HLS-based Graph Pprocessing Framework on FPGAs.
In FPGA.

[12] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and Huazhong
Yang. 2017. Foregraph: Exploring Large-scale Graph Processing on Multi-FPGA
Architecture. In FPGA.

[13] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan
Liu, Yu Wang, Yuan Xie, and Huazhong Yang. 2018. GraphH: A Processing-in-
memory Architecture for Large-scale Graph Processing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38, 4 (2018), 640–653.

[14] Timothy A Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1–25.

[15] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiugov, Javier
Picorel, Babak Falsafi, Boris Grot, and Dionisios Pnevmatikatos. 2017. The Mon-
drian Data Engine. In ISCA.

[16] Yasuko Eckert, Nuwan Jayasena, and Gabriel H Loh. 2014. Thermal Feasibility of
Die-stacked Processing in Memory. In WoNDP.

[17] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-parallel Computation on Natural Graphs.
In OSDI.

[18] Patricia Gonzalez-Guerrero, Tommy Tracy II, Xinfei Guo, Rahul Sreekumar,
Marzieh Lenjani, Kevin Skadron, and Mircea R Stan. 2020. Towards on-node
Machine Learning for Ultra-low-power Sensors Using Asynchronous Σ Δ Streams.
ACM Journal on Emerging Technologies in Computing Systems (JETC) 16, 4 (2020),
1–20.

[19] Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin-Yu Chen, Xiao-Fei
Liao, and Hai Jin. 2019. A Survey on Graph Processing Accelerators: Challenges
and opportunities. Journal of Computer Science and Technology 34, 2 (2019),
339–371.

[20] Ramyad Hadidi, Bahar Asgari, Burhan Ahmad Mudassar, Saibal Mukhopadhyay,
Sudhakar Yalamanchili, and Hyesoon Kim. 2017. Demystifying the characteristics
of 3dstacked memories: A Case Study for Hybrid Memory Cube. In IISWC.

[21] Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, João Dinis Ferreira,
Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan
Gómez-Luna, and Onur Mutlu. 2021. SIMDRAM: a Framework for Bit-serial
SIMD Processing using DRAM. In ASPLOS.

https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://github.com/MarziehLenjani/InSituBench
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://github.com/MarziehLenjani/MoveProf
https://github.com/MarziehLenjani/MoveProf
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

Gearbox: A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-based Accelerators ISCA ’22, June 18–22, 2022, New York, NY, USA

[22] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. 2016. Graphicionado: A High-performance and Energy-efficient
Accelerator for Graph Analytics. In MICRO.

[23] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In ISCA.

[24] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim, Il Park,
Mithuna Thottethodi, and TN Vijaykumar. 2020. Newton: A DRAM-maker’s
Accelerator-in-memory (AIM) Architecture for Machine Learning. In MICRO.

[25] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. 2016. Accelerating Pointer Chasing
in 3D-stacked Memory: Challenges, Mechanisms, Evaluation. In ICCD.

[26] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. 2021. GraphLily: Acceler-
ating Graph Linear Algebra on HBM-Equipped FPGAs. In ICCAD.

[27] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz Franchetti,
John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning
Meyerhenke, et al. 2016. Mathematical Foundations of the GraphBLAS. In HPEC.

[28] Ytong-Bin Kim and Tom W Chen. 1999. Assessing Merged DRAM/logic Technol-
ogy. Integration 27, 2 (1999), 179–194.

[29] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu,
Jong-Pil Son, O Seongil, Hak-Soo Yu, Haesuk Lee, Soo Young Kim, et al. 2021. 25.4
A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2 TFLOPS
Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learn-
ing Applications. In ISSCC.

[30] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, et al. 2021.
Hardware Architecture and Software Stack for PIM Based on Commercial DRAM
Technology. In ISCA.

[31] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: Enabling energy
optimizations in GPGPUs. In ISCA.

[32] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan Xie,
Ameen Akel, Sean Eilert, Mircea R. Stan, and Kevin Skadron. 2020. Fulcrum: a
Simplified Control and Access Mechanism toward Flexible and Practical in-situ
Accelerators. In HPCA.

[33] Marzieh Lenjani and Mahmoud Reza Hashemi. 2014. Tree-based scheme for
reducing shared cache miss rate leveraging regional, statistical and temporal
similarities. IET Computers & Digital Techniques 8, 1 (2014), 30–48.

[34] Marzieh Lenjani and Kevin Skadron. 2021. Supporting Moderate Data Depen-
dency, Position Dependency, and Divergence in PIM-based Accelerators. IEEE
Micro (2021).

[35] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob Brennan,
and Yuan Xie. 2017. DRISA: A DRAM-based Reconfigurable in-situ Accelerator.
In MICRO.

[36] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. 2015. Revisiting
Memory Errors in Large-scale Production Data centers: Analysis and Modeling
of New Trends from the Field. In DSN.

[37] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. 2017. GraphPIM: Enabling instruction-level PIM offloading in
graph computing frameworks. In HPCA.

[38] Eriko Nurvitadhi, Asit Mishra, Yu Wang, Ganesh Venkatesh, and Debbie Marr.
2016. Hardware Accelerator for Analytics of Sparse Data. In DATE.

[39] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,
Steven Burns, and Ozcan Ozturk. 2016. Energy Efficient Architecture for Graph
Analytics Accelerators. ACM SIGARCH Computer Architecture News 44, 3 (2016),
166–177.

[40] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya
Agrawal, Stephen W Keckler, and William J Dally. 2017. Fine-grained DRAM:
Energy-efficient DRAM for Extreme Bandwidth Systems. In MICRO.

[41] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying
Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and
Ronald Dreslinski. 2018. Outerspace: An Outer Product based Sparse Matrix
Multiplication Accelerator. In HPCA.

[42] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C Hoe, Larry Pileggi, and Franz
Franchetti. 2019. Efficient SPMV Operation for Large and Highly Sparse Matrices
using Scalable Multi-way Merge Parallelization. In MICRO.

[43] Elaheh Sadredini, Reza Rahimi, Mohsen Imani, and Kevin Skadron. 2021. Sunder:
Enabling Low-Overhead and Scalable Near-Data Pattern Matching Acceleration.
In MICRO.

[44] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron.
2020. FlexAmata: A Universal and Efficient Adaption of Applications to Spatial
Automata Processing Accelerators. In ASPLOS.

[45] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron.
2020. Impala: Algorithm/architecture co-design for in-memory multi-stride
pattern matching. In HPCA.

[46] Elaheh Sadredini, Reza Rahimi, and Kevin Skadron. 2020. Enabling In-SRAM
Pattern Processing With Low-Overhead Reporting Architecture. IEEE Computer
Architecture Letters 19, 2 (2020), 167–170.

[47] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron.
2019. eAP: A Scalable and Efficient In-Memory Accelerator for Automata Pro-
cessing. In MICRO.

[48] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and
Todd C Mowry. 2017. Ambit: In-memory Accelerator for Bulk Bitwise Operations
using Commodity DRAM Technology. In MICRO.

[49] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. 2016. Gunrock: A High-performance Graph Processing Library
on the GPU. In PPoPP.

[50] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan
Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T Riffel, et al.
2017. Gunrock: GPU Graph Analytics. ACM Transactions on Parallel Computing
(TOPC) 4, 1 (2017), 1–49.

[51] Lingxi Wu, Rasool Sharifi, Marzieh Lenjani, Kevin Skadron, and Ashish Venkat.
2021. Sieve: Scalable in-situ dram-based accelerator designs for massively parallel
k-mer matching. In ISCA.

[52] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu,
and Yuan Xie. 2021. SpaceA: Sparse Matrix Vector Multiplication on Processing-
in-Memory Accelerator. In HPCA.

[53] Carl Yang, Aydın Buluç, and John D Owens. 2022. GraphBLAST: A high-
performance linear algebra-based graph framework on the GPU. ACM Transac-
tions on Mathematical Software (TOMS) 48, 1 (2022), 1–51.

[54] Carl Yang, Yangzihao Wang, and John D Owens. 2015. Fast Sparse Matrix and
Sparse Vector Multiplication Algorithm on the GPU. In IPDPSW.

[55] Amir Yazdanbakhsh, Choungki Song, Jacob Sacks, Pejman Lotfi-Kamran, Hadi
Esmaeilzadeh, and Nam Sung Kim. 2018. In-DRAM Near-data Approximate
Acceleration for GPUs. In PACT.

[56] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse,
Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: Throughput-oriented pro-
grammable processing in memory. In HPDC.

[57] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing Communi-
cation for PIM-based Graph Processing with Efficient Data Partition. In HPCA.
IEEE, 544–557.

[58] Minxuan Zhou, Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing.
2019. GRAM: Graph Processing in a ReRAM-based Computational Memory.. In
ASP-DAC.

[59] Shijie Zhou, Rajgopal Kannan, Viktor K Prasanna, Guna Seetharaman, and Qing
Wu. 2019. Hitgraph: High-throughput graph processing framework on FPGA.
IEEE Transactions on Parallel and Distributed Systems 30, 10 (2019), 2249–2264.

[60] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. Gridgraph: Large-scale
Graph Pprocessing on a Single Machine using 2-level Hierarchical Partitioning.
In ATC.

	Abstract
	1 Introduction
	2 Background
	2.1 Memory hierarchy
	2.2 Sparse operations
	2.3 Sparse matrix representations

	3 Motivation and key ideas
	3.1 Support for column-oriented processing using accumulation dispatching
	3.2 Reducing remote accumulations and balancing the load by supporting Hybrid partitioning

	4 Proposed Architecture
	4.1 Walkers and indirect accesses
	4.2 A walk-through example
	4.3 Dispatcher and the bank-level switch
	4.4 Maintaining the sparse format of the output vector
	4.5 Instruction format

	5 SpMSpV walk-through
	6 Software stack
	7 Evaluation
	7.1 Methodology
	7.2 Speedup
	7.3 The effect of each optimization
	7.4 Execution time and energy breakdown
	7.5 Comparison against non-in-memory-layer approaches
	7.6 The effect of load balancing
	7.7 Power and temperature constraints
	7.8 Area evaluation
	7.9 Evaluation for regular kernels

	8 Related Work
	9 Conclusions and Future Works
	References

