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1 Introduction

Last time, we informally defined encryption schemes. This time, we start by defining en-
cryption schemes more formally. For now, we focus on a simplified version in which the
encryption and decryption algorithms do not use any extra randomness, and we also aim for
a weaker notion of security that only deals with encryption of only one message. We will
extend the following definition to the more general cases later on.

Definition 1.1 ((Deterministic) Encryption). A (deterministic private-key) encryption scheme
SKE = (Gen,Enc,Dec) for key space K = {0, 1}n, message space (i.e., plain-text space)M,
and cipher-text space C consists of three algorithms.

• Gen is a randomized algorithm, and outputs a “uniformly” chosen random k ∈ K.

• Enc(k,m), takes k ∈ K,m ∈M, and outputs c ∈ C.

• Dec(k, c), takes k ∈ K, c ∈ C, and outputs some m ∈ C.

Completeness condition. We say that SKE is complete (i.e., it is correct) if for all
k ∈ K,m ∈M, it holds that

Dec(k,Enc(k,m)) = m.

The more general version of encryption that we will work with later on will allow the
encryption and decryption algorithms to be randomized algorithms, so that even encryption
a single message m might end up with many possible cipher-texts, but for now, we will only
work with deterministic encryption and decryption.

Secrecy. In the following, we will aim at defining perfect secrecy for encryption. The
intuition is that the cipher-text, in eyes of Eve who does not know k, should look completely
irrelevant to m. To formally define this, we need to go over some basics of probability theory.

2 Basics of Probability Theory

Probability theory allows us to formally talk about uncertainty and chances by which an
adversary succeeds. Here we review the basic tools from probability theory, but you can use
many great sources on this subject that are freely available online.
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Definition 2.1 (Finite Probability Space, Events, Random Variables). A (finite) probability
space (Ω, p) consists of a finite set Ω and a mapping p : Ω 7→ [0, 1], such that

∑
x∈Ω p[x] = 1.

Intuitively, p[x] is the chance of sampling x from this space. We use various notations
Pr[x] = px = p[x] = p(x), to denote the same thing. An event E ⊆ Ω, is a subset of Ω, and
we define the probability of that event to be Pr[E] =

∑
x∈E Pr[x]. For a probability space

(Ω, p), we can define a random variable X, and by x ← X we define the random process
of selecting x according to the distribution of X, which is defined by (Ω, p). Namely, if we
select x← X, then the probability of getting X = x is exactly Pr[x]. To clarify further, we
sometimes write PrX [x] = Pr[x = X] to denote the same thing. Sometimes, we prefer to
start the definition from a random variable, in which case we can say that X is a random
variable, with support set Supp(X) = {x | Pr[X = x] > 0}. By X ≡ Y we mean that X, Y
are random variables with the same distributions.

We can also talk about the probability of one event E!, when we are given the guarantee
that another event E2 has already happened. The following definition formalizes this notion.

Definition 2.2 (Conditional Probability and Independent Events). For probability space
(Ω, p) and events E1, E2, where Pr[E2] > 0, the conditional probability Pr[E1 | E2] is
defined as Pr[E1 | E2] = Pr[E1 ∩E2]/Pr[E2]. Intuitively, if we restrict ourselves to E2, then
Pr[E1 | E2] defines the probability of E1 in that context. We sometimes use E1∧E2 (reading
E1 and E2) instead of E1 ∩ E2 to denote the same thing.

Sometimes, knowing whether or not E2 has happened does not say anything about E1.
This is formalized as follows:

Definition 2.3 (Independent Events). For nonzero E1, E2 events E1 is independent of E2 if
Pr[E1 | E2] = Pr[E1]

Do it yourself: Check the correctness of the following proposition.

Proposition 2.4. E1 is independent of E2 if and only if P[E1 ∧ E2] = Pr[E1] · Pr[E2].
Therefore, by symmetry, E1 is independent of E2 if and only if E2 is independent of E1.

Sometimes we deal with multiple objects, all from a jointly defined probability space. (For
example, when we encrypt a randomly selected message, and this leads to a distribution over
cipher-texts.)

Definition 2.5 (Marginal probabilities). Suppose Ω = Ω1×Ω2 be the Cartesian product of
two sets Ω1,Ω2, and suppose p is a distribution over Ω. Then, intuitively, sampling according
to p from Ω, means sampling a pair (x1, x2) ∈ Ω1 × Ω2 where x1 is distributed according
to some distribution p1 over Ω1 and x2 is distributed according to some distribution p2 over
Ω2. We call p1 the marginal probability distribution of x1 and p2 the marginal probability
distribution of x2. It is easy to compute p1 and p2 using p as follows:

p1[x1] =
∑
x2∈Ω2

p[(x1, x2)] , p2[x2] =
∑
x1∈Ω1

p[(x1, x2)].
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Sometimes, we use a reversed way to define random variables. Namely, we say that X1, X2

are two random variables, and they also have a joint distribution X = (X1, X2).

Now that we have defined the notion of random variables and independence of events,
we can talk about independent random variables.

Definition 2.6 (Independent random variables). Suppose X1, X2 are two random variables
jointly distributed as X = (X1, X2). We say that X1 and X2 are independent, if for all
x1 ∈ Supp(X1), x2 ∈ Supp(X2), the two events E1 = {X | X1 = x1}, E2 = {X | x2 = x2} are
independent events. Namely, for all such x1, x2, it holds that

Pr[X1 = x1 ∧X2 = x2] = Pr[X1 = x1] · Pr[X2 = x2].

Definition 2.7 (Conditional random variables). For jointly defined random variables (X1, X2) =
X, and for x2 ∈ Supp(X2), by the conditional random variable X ′1 ≡ (X1 | x2) we mean the
distribution that samples x1 with probability PrX [E1 | E2] where E1 = {X | X1 = x1}, E2 =
{X | X2 = x2}. We simply write Pr[X1 = x1 | x2] to denote the same probability Pr[E1 | E2].

Do it yourself: Check the correctness of the following proposition. It implies that two
random variables are independent, if and only if, knowing the value of of one of them, does
not change the (conditional) distribution of the other one.

Proposition 2.8 (What independence means). X1 and X2 are independent if and only if,
for all x2 ∈ Supp(X2), the conditional distribution of (X1 | x2) is the same as the (marginal)
original distribution X1.

3 Perfect Secrecy: 1st Try

Now that we have the tools of basic probability theory at hand, we can talk about the first
definition of perfect secrecy, which is based on semantic security.

Definition 3.1 (Perfect Semantic Secrecy). Suppose SKE = (Gen,Enc,Dec) is an encryp-
tion algorithm for key space K = {0, 1}n, message space (i.e., plain-text space) M, and
cipher-text space C. We say that it has perfect semantic secrecy, if for every distribution M
over the plain-text space, the distribution C that is imposed over the cipher-text space, is
independent of M .

Note that, we always sample the key k ← K at random. So, that determines the marginal
distribution of the key which we can denote by K, in which case (K,M,C) would be three
random variables jointly distributed, and K,M would be independently sampled, however
C is a deterministic function of both of (K,M). So, the above definition requires that M,C
be independent.

2: Perfect Secrecy and its Limitations-3



3.1 One-Time-Pad

A perfectly semantically secure encryption can be obtained as follows if the key and message
space are the same K = {0, 1}n =M (i.e., of the same length).

Definition 3.2 (One time pad encryption). OTP encryption is defined as follows:

• OTPEnc(k, x) = k ⊕ x where ⊕ is the bit wise exclusive OR.

• OTPDec(k, c) is defined similarly.

Do it yourself: Check that the above encryption algorithm is complete. Namely, encrypt-
ing and decryption a message leads to the same thing.

Do it yourself: Prove that one-time pad is perfectly semantically secure. Hint: by Propo-
sition 2.8, it is enough to show that for every plain-text x, the cipher-text distribution Cx ≡ C
remains the same.

Unfortunately, Shannon proved that a perfectly secret scheme according to semantic
security suffers from a huge downside, which is evident in the OTP encryption: the key
should be as long as the message itself.

Theorem 3.3 (Perfect semantic security implies long keys [Sha49]). Suppose SKE = (Gen,Enc,Dec)
is an encryption algorithm for key space K = {0, 1}n, message space (i.e., plain-text space)
M, and cipher-text space C. if SKE is perfectly semantically secure, then |M| ≤ K. Namely,
M cannot contain all of n + 1 bit long messages.

Proof. Suppose M is the uniform distribution over M. By perfect semantic secrecy, M
should be independent random variable from cipher-text distribution C, so for every possible
cipher-text c ∈ C, we should have (M | c) ≡ C. Namely, the conditional distribution of M
conditioned on knowing the c = C should remain the same. Since M was the uniform
distribution, so every m ∈M should have the same 1/|M| > 0 probability even conditioned
on C = c. However, note that when we know C = c, the total possible number of messages
that we can decrypt to, is bounded by |K|, because for each k, we have a unique Dec(k, c).
(Note that here we used the completeness of the scheme.) Therefore, the number k of
messages that have non-zero probability of being the actual message, conditioned on C = c
is at most |K|. On the other hand k = |M|. Therefore, |M| ≤ |K|.

4 Perfect Secrecy: 2nd Try

Knowing the devastating limitation of perfect secrecy according to semantic security, here
we aim at a different alternative definition based on a security game. The idea is that, we
allow the Eve even to choose two particular messages, and then try to guess which one is
encrypted.
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Indistinguishability security game. In this game, we proceed as follows between and
adversary and a challenger.

1. The adversary chooses m0,m1 ∈ M both from the same fixed message space. (When
we deal with arbitrary length message later on, these two should be of the same length).
Then Eve sends these to to the Challenger.

2. Challenger picks a random key k ← K and a bit b ∈ {0, 1} at random, and sends over
c = Enc(k,mb) to Eve.

3. Adversary outputs a bit b′ and wins if b = b′. We say that the adversary wins if b = b′.

Definition 4.1 (Perfect indistinguishability). Suppose SKE = (Gen,Enc,Dec) is an en-
cryption algorithm for key space K = {0, 1}n, message space (i.e., plain-text space)M, and
cipher-text space C. We say that SKE has perfect indistinguishability if for all adversaries,
the probability of winning in the indistinguishability security game is at most 1/2.

Unfortunately, even though the new definition looks different, it is equivalent to previous
definition of perfect semantic secrecy. (Check it yourself.) So, how about we relax it a little
bit so that we get around the impossibility result (of encrypting long messages with short
keys)?

ε-indistinguishability. We say that SKE = (Gen,Enc,Dec) is ε-ind secure, if we modify
the definition and only require that the adversary wins with probability at most (1 + ε)/2
(rather than 1/2). Note that if we choose ε = 2−100, this is essentially a negligible probability
that will never affect anything in real life.

Unfortunately, a modification of Shannon’s lower bound (of Theorem 3.3) still applies
and says that even if we choose something like ε = 1/10, then still we need the key to be at
least half of the message’s length. (It is a good exercise to think about it, and try to prove
this yourself). However, as we will see, this modification of perfect-ind definition will still
come to help us later on when we will introduce also another relaxation as well.

Computational limitation on adversary. The second relaxation that we apply to get
around the key-length barrier is to put computational limitations on the adversary. So far we
assumed that the adversary can do arbitrary computation. However, this does not happen
in real life. Namely, we are OK if an adversary that runs in time 2100 has 2−100 chance of
doing something harmful. We will explore this direction from next time, and basically for
the rest of the semester.
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