
CS 4501-6501 Topics in Cryptography 9 Feb 2018

Lecture 4, Stretching PRGs, Hashing, Chosen Plaintext Security
Lecturer: M. Mahmoody, Scribe: Jingshu Liang, Faysal Hossain Shezan, Mariah Kenny

1 Introduction

Last time we covered computational secrecy, pseudo-random generators and how to use them
for encrypting messages longer than the keys in an (single message) indistinguishably-secure
way. Let’s recall how we encrypted the messages that are twice as long as the key using a
pseudo-random generator.

Construction 1.1. Suppose, we want to get an encryption scheme using a PRG g from
n bit messages to 2n bit messages. Given a key k of length n we can encrypt messages of
length 2n as follows.

• g : {0, 1}n ← {0, 1}2n

• Enc(k,m) = g(k)⊕m

• Dec(k, c) = g(k)⊕ c

where ⊕ is the bitwise XOR.

Intuition . The intuition is that the ciphertext is indistinguishable from a truly random
string of length 2n in eyes of computationally bounded adversaries. And as it is indistin-
guishable, it practically works like a one-time pad. Indeed, since k is chosen randomly, so
g(k) will also generate a pseudo random number therefore we can substitute it to a one-time
pad encryption where we had a truly random key. Intuition here is once we substitute a
pseudo random key in a construction we can assume it to be actually a random number and
this is prove able. If one can distinguish two messages of the same length then we can turn
one indistinguishable function to the other. (This argument needs to be formalized to be
called a proof of security!)

However, note that since the output of the pseudo random generator cannot be truly
random, and if the adversary had unbounded time, then they can distinguish the ciphertexts
from truly random strings quite effectively.

This is how we constructed the first non-trivial encryption. And now we want to improve
this construction in two ways. We want stronger security notions and also want to encrypt
more than one message even with the arbitrary length of messages.

Stretching PRGs, Hashing, Chosen Plaintext Security-1



Question. Suppose, we want to encrypt one message but it’s length is larger than 2n.
Here key is still n bit. Let’s say the message is of length 3n. What do we need based on the
above encryption algorithm? Answer: If we have a PRG which gives us output of 3n bits of
length, that would be enough for doing such encryption.

In this lecture we will first go through how to improve pseudo random generator in case
of encrypting longer messages more securely, then we will see how to use cryptographic hash
function to construct pseudo random generators, and then we will discuss a better notion
security that addresses the multi-message aspect.

2 How to make PRGs stretch the output more?

Suppose, we have g : {0, 1}n that maps n bits input to {0, 1}n+1, for all n ∈ N, and that g(Un)
is pseudo random (Namely, for all t(n) = poly(n)-time adversaries A, there is a negligible
function ε(n) such that g(Un) and Un+1 are at most ε(n) distinguishable by A).

Here, we will do it for just 1 bit of more stretch. But it can be done for n bit stretch as
well.

Construction of the new PRG. We will prove that, G : {0, 1}n that maps n bits input
to {0, 1}n+2 for all n as described below is also a PRG.

1. G takes x of n bits as input, and x ∈ {0, 1}n.

2. Then it stretch it to z which is n+ 1 bits and y ∈ {0, 1}n+1

3. Do the same trick over z and output G(x) = g(y) = g(g(x)) which is of length n + 1.
(Note that, if we can exchange pseudo random string with random string, and if it is
truly random, then it would happen that if we apply pseudo random generator one
more time.)

2.1 Proof of Security for the PRG G

Now the question is whether z = G(Un) = g(g(Un)) is computationally indistinguishable
from Un+2? It is indeed the case. Beyond intuition that this construction works due to
pseudo-randomness of z (and that it would behave like a random string), we want to prove
this by going through a formal argument that one can verify.

Goal is to start by assuming that g(Un) is a pseudo random generator, and we want to
prove that G(Un) is also a pseudo random string. We can formally write it as follows: for
g(Un) to be secure ∀ polynomial time adversary, A there is some negligible function ε(n) we
can distinguish between g(Un) ≡ Un+1 by at most ε(n) where ε(n) is negligible. Namely, We
know that,

|Pr[A(g(Un)) = 1]− Pr[A(Un+1) = 1]| ≤ ε(n).

Stretching PRGs, Hashing, Chosen Plaintext Security-2



Now, want to prove that ∀ polynomial time adversary B, it holds that G(Un) ≡δ(n) Un+2 for
some negligible δ(.), by which we mean that

|Pr[B(G(Un)) = 1]− Pr[B(Un+2) = 1]| ≤ δ(n).

The next step in the proof is a common proof technique that we will use over and over,
and it is called the hybrid argument. We want to show that B cannot distinguish between
the real and the ideal worlds by more than δ(n) advantage for some negligible δ(n). For that
we introduce an intermediate hybrid world in which the adversary B is given g(Un+1). Note
that there is a reason for going for this hybrid: in the intuition above, we said the key ideas
is that g(Un) looks like Un+1, and this is what we are substituting g(Un) with.

Real World Hybrid World Ideal World

g(g(Un)) = G(Un)
y−→ B and B −→ b g(g(Un+1)

y−→ B and B −→ b Un+1
y−→ B and B −→ b

pR = Pr[B(y) = 1] pH = Pr[B(y) = 1] pI = Pr[B(y) = 1]

We want to prove that |pR − pI | ≤ δ(n) for some negligible δ(n). We will prove the
following claims.

Claim 2.1. |pH − pI | ≤ ε(n+ 1).

Proof. This is simply by the definition of g, because in one game we are giving B a uniform
Un+2 and in the another experiment we are giving it g(Un+1).

Claim 2.2. |pR − pH | ≤ ε(n).

Proof. This is the trickier one, but we can use proof by contradiction as follows. If |pR−pH | >
ε(n) then we could get a polynomial time adversary, A such that it distinguishes of g1(Un)
from Un+1 by ε(n) as well. How do we do it? Note that A will be given some z ∈ {0, 1}n+1,
and A wants to build upon the existence of B to do its job! So, A(z) will first apply g(z) −→ y,
and then it gives y to B then outputs B(y) −→ (basically whatever B says!). Note that A is
now efficiently simulating an experiment for B such that: if A’s input is random, B ends up
running in the hybrid experiment, and if A’s input is pseudorandom, B ends up running in
the real experiment. So if B could have made a distinction (which is what we assumed for
sake of contraction), A could use it do to its own job!

Big picture of the argument. More generally, the above idea extends to stitching any
random and pseudorandom strings between experiments, as long as the rest of the compu-
tation in that experiment is polynomial time (that is how A could simulate the rest!).

Do it yourself. Prove that if ε(n) is negligible in n, so is ε(n + 1), and thus so is ε(n +
1) + ε(n) = δ(n).

Stretching PRGs, Hashing, Chosen Plaintext Security-3



3 Cryptographic Hash Functions

Cryptographic Hash Functions are methods that scientists dedicated to using hard puzzles for
designing good PRGs. Although they are different from PRGs, they are generally designed
to be even stronger, and thus they could be used as PRGs.

Definition 3.1 (Hash Function). A hash function h is any function that can be used to
mapping data of arbitrary size, denoted by x ∈ {0, 1}∗, to data of fixed size (called the
digest) denoted by {0, 1}d, where d is a large constant here.

Note that the input could be of any size, either larger or smaller than the output size,
the output is called the digest of the message.

Note that the definition above was only about ”completeness” of hashing, and did say
nothing about security yet! This is the part that we will be a bit informal for now, but
ideally the output should be as randomly looking as possible. In particular, even though it
is not a random mapping, intuitively, it should be as close to it as it can, and in particular it
should produce a random looking string, (hence being a candidate for being used as a PRG),
but we need many more properties from a good hash function.

Closer look at hash functions There are two way to talk about hash functions.

1. Arbitrary input length: h : {0, 1}∗ −→ {0, 1}d for a constant d.

2. Fixed input length: h : {0, 1}c −→ {0, 1}d for constants d, c.

These two methods are tightly related. The second form serves as a core function to
the first form for generating the digest for messages of random length. One of the simplest,
yet beautiful construction of extending the second form and generalize it to the first form is
called Merkle-Damgrd construction.

Actual constructions. There are many designs for Hash Functions. The famous ones
in history are SHA1, SHA2, SHA3. SHA stands for Secure Hashing Algorithm. SHA1
generates digests of 160 bits. SHA2 generates can generates 224, 256, 384 or 512 bits. SHA3
can generate digest of arbitrary size. The Key property of Cryptographic Hash Functions is
that it should be unpredictable as it could be, in particular, it should be pseudorandom.

Good hash function should be as random looking as possible. But they should have other
good properties as well: for example, it should be difficult to find two different inputs that
map to the same digest. (Note that this is hard if the hash function was truly random,
then we would need many queries to find a collision - but how many?) It is as if, we get
a fresh output every time you feed it with an input (even though there is no randomness
involved here, just a deterministic mapping). Since the size of the digest of the message is
fixed for most of SHA algorithms, and in general, the input size is larger than the digest
length, therefore by pigeon-hole principle we know that there will be collisions, which means

Stretching PRGs, Hashing, Chosen Plaintext Security-4



that there are more than one input that maps to the same digest. However, since the space
of the input is rather huge, finding such a collision pair takes huge amount of time, therefore
it won‘t form a practical attack.

There are researchers using both theoretical attacks, as well as various analysis to show
the collision in SHA1 algorithm, which makes it no longer a secure Hash Algorithm. There‘s
no formal proof of a function to be PRG, as it need to resolve some of the open problems in
complexity of computation first. Namely, PRGs imply that P 6= NP where P is the class
of polynomial time solvable problems and NP is the class of non-deterministic polynomial
time solvable problems, and resolving this problem is a long standing deep open problem in
math and computer science.

More Robust Constructions Understanding the minimal mathematical property that
leads to pseudo-randomness is important when building the PRG to encrypt messages.

Definition 3.2 (One Way Function). It is a function that maps an input x to output y under
such property that it takes polynomial time to map from the input to the output,in other
words, f(x) = y can be done in polynomial time. However, for any poly-time adversary A, it
should hold that Py←f(Un)[A(y) = x′ where f(x′) = y] ≤ ε(|x|) for some negligible function
ε(n). Note that here we allow the adversary to find any pre-image of y, not just demanding
it to be x itself.

Onewayness is a weaker definition of PRG in a sense that if g is a PRG, then the same
function g shall be one-way function as well (this is a bit tricky to prove, but try to prove
it to see where the challenges are!). The fundamental result of Hastad, Impagliazzo, Levin,
Luby [?] proved the reverse direction also holds: namely, the existence of One Way Function
implies the existence of a PRGs. Note that One-wayness seems to be ubiquitous in the
universe, such as the chemical reactions is easier in one way but not the other way around.
But proving this mathematically for a concrete function g is one of the hardest problem in
mathematics! It is technically an open problem, but, in practice, any of the hash functions
like SHA256 or SHA3 are more than secure against known attacks.

4 Revisiting One-message Indistinguishability-based Se-

curity

There exists a drawback in the indistinguishability-based security that it is tailored to one
message, therefore when encrypting the same message, the cipher texts become the same.
To formalize it the following way:

∀ m,m′ ∈M = {0, 1}n, k ∈ {0, 1}n/10, so that m = m’ −→ Enc(k,m) = Enc(k,m′)

It indicates that if you encrypt the same message again, the encrypted message C will
be the same.

Stretching PRGs, Hashing, Chosen Plaintext Security-5



This is called deterministic encryption. Deterministic encryption is not ”secure” when
we encrypt more than one messages, because it always ends up with the same ciphertext if
we encrypt the same thing using the same key again.

Therefore we need to extend the encryption process to be random in a sense that we get
refresh output even if we encrypt the same message.

4.1 Necessity for Randomized Encryption

An Encryption Scheme is composed of three randomized algorithms: a Key Generation
algorithm (Gen), Encryption algorithm (Enc), and Decryption algorithm (Dec).

In previous definitions of an Encryption function, the function Enc(k,m) took in a secret
key k and a plaintext message m. The process Enc(k,m) produces a ciphertext message c.

Definition 4.1 (Randomized Encryption Function). In a randomized encryption function,
the function Enc(k,m; r)= c takes in an additional parameter of randomness r, where r ∈
{0, 1}k and produces a ciphertext message c. Since encryption is polynomial time, we won’t
need more than a polynomial number of input bits, so k ≤ poly(n).

Under the previous definition of an encryption function, the production of a ciphertext
message is usually denoted as: Enc(k,m) = c. Under the definition of a randomized en-
cryption function, the production of a ciphertext message is denoted as: c ← Enc(k,m) to
emphasize on the randomness of the process. In this case the ”←” implicitly denotes the
randomness of the process.

Recall the completeness condition for a normal encryption function that states: SKE is
complete (i.e., it is correct) if for all k ∈ K,m ∈M, it holds that

Dec(k,Enc(k,m)) = m.

To formalize this condition for a randomized encryption function, we have the following:

Definition 4.2 (Randomized Encryption Completeness condition). We say that our encryp-
tion scheme is complete (i.e., it is correct) if for all k ∈ K, r ∈ R, it holds that

Dec(k,Enc(k,m; r)) = m.

We can even allow a negligible probability error to happen in the completeness condition,
but since we can achieve completeness with probability 1, we will usually go with the simpler,
better definition, though negligible error is always OK (as it practically does not happen!).

With these new definitions of an Encryption scheme, we will get a new ciphertext message
output each time, even if we encrypt the same message. This prevents attackers from being
able to differentiate between two encrypted messages being the same versus the two encrypted
messages being unique.

Stretching PRGs, Hashing, Chosen Plaintext Security-6



5 Security against Chosen-Plaintext Attacks (CPA Se-

curity)

Until now we have considered a relatively weak adversary who only passively eavesdrops
on the communication between two honest parties. (Of course, our actual definition of
the security game allows the adversary to choose the plaintexts that are to be encrypted.
Nevertheless, beyond this capability the adversary is completely passive.) In this section,
we formally introduce a more powerful type of adversarial attack, called a chosen-plaintext
attack (CPA). As it turns out, interestingly, schemes that are secure under these attacks are
also automatically secure against multi-message passive attacks.

The basic idea is that the adversary A is allowed to ask for encryptions of multiple
messages. This is formalized by allowing A to interact freely with an encryption oracle
which is viewed as a ”black box” that encrypts messages of A’s choice using the secret key
k (which is still unknown to A). When A queries the oracle by providing it with a plaintext
m, the oracle returns a ciphertext c← Enc(k,mb) as the reply using the same key k as that
of the challenger and using fresh randomness. Namely, if Enc is randomized, the oracle uses
fresh random keys each time it answers a query.

The definition of security requires that A should not be able to distinguish the encryption
of two arbitrary messages of the same length, even when A is given access to an encryption
oracle.

Construction 5.1 (The CPA indistinguishability experiment PrivKCPA
A,Π(n)). :

1. A key k is generated by running Gen(1n).

2. The adversary A is given input 1n and oracle access to Enck(.), and outputs a pair of
messages m0,m1 of the same length.

3. A random bit b ← {0, 1} is chosen, and then a ciphertext c ← Enck(mb) is computed
and given to A. We call c the challenge ciphertext.

4. The adversary A continues to have oracle access to Enck(.), and outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise. (In case
PrivKCPA

A,Π(n) = 1, we say that A) succeeded.

Definition 5.2 (Indistinguishable Encryption under CPA attack). A private-key encryption
scheme Π = (Gen,Enc,Dec) has indistinguishable encryptions under a chosen-plaintext
attack (or is CPA-secure) if for all probabilistic polynomial-time adversaries A there exists
a negligible function negl such that

Pr[PrivKCPA
A,Π(n) = 1] ≤ 1/2 + negl(n),

where the probability is taken over the random coins used by A, as well as the random coins
used in the experiment.

Stretching PRGs, Hashing, Chosen Plaintext Security-7



Any scheme that has indistinguishable encryptions under a chosen-plaintext attack also
has indistinguishable encryptions in the presence of an eavesdropper due to the fact that
the private-key eavesdropping attack is a special case of private-key CPA attack where the
adversary doesn’t use its oracle at all.

Guessing vs. indistinguishability. As before, we know that the above definition is
equivalent to another on in which we have two experiments/worlds and in the first one the
adversary is always given the encryption of m0 and in the 2nd one it is always given the
encryption of m0 with the goal of outputting a bit that distinguishes the two worlds.

Do it yourself. Prove that CPA security implies the two security notions below. In both
of them we will have different security game, and the adversary wants to distinguish between
two scenarios.

• Suppose in the security game, the adversary does not have access to the encryption
oracle, and suppose the adversary picks two messages m0,m1 of the same length, and
then the challenger will do either of the following:

1. In one world, it would encrypt m0 twice using fresh randomness and send (c, c′),
where c ← Enc(k,m0), c′ ← Enc(k,m0). (Note that with high probability these
two ciphertexts could be different!)

2. In the other world, it would encrypt m0 and m1 independently and send (c, c′),
where c← Enc(k,m0), c′ ← Enc(k,m1).

• In the other security game, the adversary will give two pairs of messages (m0,m
′
0) and

(m1,m
′
1) all of the same lengths, and then it either receives encryptions of the first

pair (in one world) or encryptions of the second pair (in the other world).

Stretching PRGs, Hashing, Chosen Plaintext Security-8


	Introduction
	How to make PRGs stretch the output more?
	Proof of Security for the PRG G

	Cryptographic Hash Functions
	Revisiting One-message Indistinguishability-based Security
	Necessity for Randomized Encryption

	Security against Chosen-Plaintext Attacks (CPA Security)

