
CS 4501-6501 Topics in Cryptography 23 Feb 2018

Lecture 6, Authentication
Lecturer: Mahmoody, Scribe: Paul Sanders, Jack Herd, Mainuddin Jonas, Jack Schumann

1 Reviewing aspects of CPA security

Extending CPA secure encryption to long messages. Last time, we covered Pseudo
Random Functions (PRFs) and how we can use them easily to obtain CPA secure encryp-
tion. It is important to note (as we show in problem set 2) that CPA secure encryption
automatically extends to longer messages. For example, if we wanted to encrypt a long
message m = m1,m2, . . .m` we could do so as follows:

Enc(key,m; r) = [Enc(key,m1, r1)|| . . . ||Enc(key,m`, r`)]

Note that in this scheme, r represent a stream of randomness that can be broken into
r = r1, r2, . . . r`; however, as we saw, if the length of the randomness |ri| is short, the
encryption scheme even for small blocks becomes not secure (as defined by CPA security)
simply because an adversary can cycle through all possible randomness combinations (so
any CPA secure encryption needs to use sufficiently long randomness, in particular of length
log(n)ω(1) for n being the security parameter).

Contrasting with weaker security notion of single message security. Single-message
security does not necessarily scale if we use weaker notions of security than CPA security,
meaning that trying to extend a key to work on a long message m = m1,m2, . . . as follows

Enc(k, [m1,m2, . . .]) = (Enc(k,m1),Enc(k,m2), . . .)

will not be single-message (semantic or indistinguishable) -secure even if we assume that the
scheme is secure for blocks of length ` (i.e., mi ∈ {0, 1}`). We saw how to break such extended
schemes if no randomness is used. (Note that randomness is not necessary for single message
security, but here we see a different aspect of what is wrong with weak security notions: an
example that direct extension to long messages fails).

Revealing or not revealing randomness of encryption Encryption’s own random-
ness is usually not revealed despite our revealing of randomness in the encryption scheme of
Lecture 05 where the decryption algorithm was passed randomness as part of the plaintext.
That scheme functioned as follows:

If we have a PRF Fk(x)→ y |y| = `, x ∈ {0, 1}∗, and k is a secret key for the PRF:
To encrypt m of length |m| = ` bits pick r of length n output c = [r,m⊕ Fk(r)].
To decrypt Dec(k, c) where c = [r, y] output m = Fk(r)⊕ y

Authentication-1



What CPA security does or does not guarantee

• It guarantees multi-message security against a passive attacker who only observes
messages that are encrypted.

• It even guarantees security against a semi-active attacker who as access to an oracle
that holds the same key as the encryption access.

• But, it does not guarantee security against truly active attackers.

As a result, CPA security is vulnerable to a variety of attacks, including:

1. The re-sending of saved messages (these are called replay attacks and can possibly be
fixed with a time-stamp, if done properly).

2. Forwarding a modified ciphertext, and pretending to be sent from the honest party
with the hope of getting some “feedback” from the decryption process.

3. Changing the ciphertext in order to have it decrypted to something else: e.g., set the
last bit of the plaintext to 0 or 1 with certainty (this is a big problem for server/password
verification)

An interesting observation is that in (3) the adversary is not making any progress in terms
of understanding the message, but they are able to cause unintended results. Thus, very
informally speaking, (3) is an attack on completeness rather than security. Yet, the question
stands: how do we define a security definition that holds against an active attacker? Also
note that (2) and (3) (and even (3)) are all related as they all involve adversary sending
something on behalf of Alice while it did not really come from Alice.

2 Authentication

How does Bob know Alice, and not Eve, sent the message? We note that authentication
could be meaningful even without asking any notion of privacy; so, for now we can just think
about authenticating some message (whether it is plaintext or ciphertext) and it would be a
worthwhile goal. Also note that, when it comes to only guaranteeing authentication, without
loss of generality we can assume that the message m that we want to authenticated is part
of the communicated message. The extra information attached to m for the purpose of
authentication is usually called Message Authentication Code (MAC). Additionally,
we will later discuss a ”public-key” version of authentication known as ”Digital Signatures”.
If we could combine an authentication protocol and properly combine this with a CPA-
secure protocol, we would have a more secure encryption that handles ”active” attackers.

Authentication-2



3 Message Authentication Code

Let us first informally introduce the concept of MAC before defining it formally. Informally,
MAC can be described as follows:

• Alice and Bob share a key k.

• Alice generates Mack(m)→ tagm and sends: [m, tagm].

• Bob receives [m, tagm] and runs Vrfk(m, tagm). Vrfk outputs 1 if the message ought to
be accepted, and it outputs 0 if the message ought to be rejected.

Completeness condition: The MAC is complete if for all m, k it holds that

Vrfk(m,Mack(m)] = 1

Security condition (informal): The MAC is secure if it is computationally unfeasible for
an adversary to generate a valid [m, tagm] pair, even if the adversary gets to see poly(n) (n
being the security parameter) many valid [m, tagm] pairs before forging a tag for a new m.
Before we can define MAC security more formally, we first formally define the experiment.

Message authentication security game (experiment): The message authentication
experiment MacForgeA,Π(n) dealing with adversary A is formally defined as follows:

1. A key k is generated by running Gen(1n).

2. The adversary A is given input 1n and oracle access to Mack(·). The adversary outputs
(m, t). Let Q denote the set of all queries that A asked to its oracle.

3. A succeeds if and only if (1) Vrfk(m, t) = 1 and (2) m /∈ Q. In that case the output of
the experiment is defined to be 1.

Definition 3.1 (Formal definition of MAC security). A message authentication code Π =
(Gen,Mac,Vrf) is existentially unforgeable under an adaptive chosen-message attack, or just
simply secure, if for all probabilistic polynomial-time adversaries A, there is a negligible
function negl such that:

Pr[MacForgeA,Π(n) = 1] ≤ negl(n).

Constructing MACs using Pseudorandom functions (PRFs): One obvious choice
for generating MAC tags is to use PRFs. Let Fk(·) be a PRF with key, input and output
lengths n, ∗, l. Now we can define a MAC scheme as follows:

Mack(m) = Fk(m)
Vrfk(m, tagm) = 1 if Fk(m) = tagm, 0 otherwise.

Next, we will prove that, if the length of the output of the PRF, ` = n, where n is
the security parameter, then, the MAC scheme above is secure according to the previous
definition of security.

Authentication-3



3.1 Proof of Security

Let us define a scheme (Mac,Vrf) as follows:

Mack(m) = Fk(m)
Vrfk(m, tagm) = 1 if Fk(m) = tagm, 0 otherwise.

Claim 3.2. Given that Fk is a keyed pseudo-random function of key length n and output
length ` = n, the above scheme is secure when n is the security parameter.

Proof Outline: We will prove this using a proof for the contrapositive statement; that is,
we will show that if our scheme is not secure, than the PRF is not secure. We will achieve
this by constructing an attacker on the PRF using the attacker on the MAC scheme.

Proof. Let (Mac,Vrf) be the scheme defined above, with a key k ← {0, 1}n.

First we must prove completeness. This is easy to show. For any key k and message m,
Mack(m) = Fk(m). So, Vrfk(m,Mack(m)) = Vrf(m,Fk(m)). Trivially, Fk(m) = Fk(m), so
Bob will always correctly verify messages sent from Alice.

Then, we must prove the security of this system. Consider two worlds, Real and Ideal.
In both worlds, the adversary A outputs (m, t) and wins if Mack(m) = t.

Real World Ideal World
Mack(m) = Fk(m) Mack(m) = R(m)
PR = Pr[A(Mack(·)) = 1] = Pr[t = Mack(m)] PI = Pr[A(R(·)) = 1] = Pr[t = R(m)]

In the Ideal world, the function R(·) is a truly random function with ` bits of output.
Note that it is still a function, so asking the same query twice will lead to the same output.
In other words, for each new input, it chooses a random output, and each time that input is
given, it gives the same output.

Step 1: Showing that PI is small. As for all messages m, R(m) gives a uniformly
random output of length n, we see that the probability of R(m) being any given tag is 1

2n
.

So, no matter what algorithm A uses, PI = Pr[t = R(m)] = 1
2n

. The crucial point here is
that m should not be equal to any of the previously asked queries, as otherwise the adversary
will lose anyway.

Step 2: Showing that |PR − PI | must be large. Here, we use our earlier assumption
that our scheme was not secure. So, we have that PR is non-negligible, or PR ≥ 1

poly(n)
. Then

note that PI is negligible, so the difference between the two must be non-negligible.

Authentication-4



Step 3: Showing that Fk is not a secure PRF. We will use that |PR−PI | ≥ 1/ poly(n)
to build a poly-time attacker on Fk that we call B. Recall that in the PRF game, B also
has two worlds with two different oracles available – one where the oracle is a PRF and
one where it is a truly random function. First, B will run A internally and try to answer
its oracle queries, and at the end A will output a pair (m, t). B can simply forward all of
A’s queries to its oracle and get the answer and then forward the answer to A. Note that
A is good at outputting a pair m such that O(m) = t is more likely to happen if O is the
random function compared to the PRF case (because |PR−PI | ≥ 1/ poly(n)). So B will try
to rely on this point to win the security game of the PRF¿ Then, B will query the oracle
that it has O itself with input m. If O(m) = t, then B will output that it is in the PRF
world (e.g., by outputting 0). Otherwise, it will output that it is in the random world (e.g.,
by outputting 1). The probability that it outputs that it is in the PRF world, given it is
in the PRF world, is equal to Pr[t = Fk(m)] = PR. The probability that it outputs that
it is in the PRF world, given it is in the random world, is Pr[t = R(m)] = PI . But, we
know that |PR−PI | non-negligible. So, B is indeed breaking the security game of PRF with
non-negligible probability, and so Fk is not a PRF!

So, the contraceptive of what we proved above is that, if Fk is a PRF, then the scheme
described above must be secure as well!

4 Next Week: CCA Security

Next week, we will continue our discussion of MACs by demonstrating how to achieve security
against Chosen Ciphertext Attacks. Our goal is to come up with an encryption scheme that
is both private and preserves integrity. In order to achieve this stricter security standard, we
need construct a method to safely combine CPA security with MAC to handle both passive
and active attacks.

4.1 Password Verification Example

Consider the following example and corresponding figure that highlights our need for prov-
ably safe CCA security. Namely, we describe a setting where CPA security guarantees
nothing meaningful, if the adversary can get come feedback about decryption of certain
tampered ciphertexts.

Set-Up: Suppose we have two parties, Alice and Bob, who both share the same secret key
k. In our scenario we will think of Bob as a server that Alice only interacts with through
her browser, so really Alice’s browser and the Server share k.

Scenario: Alice begins by typing her password into the browser and submitting. The
browser then sends c = Enck(pass) to the server Bob, who uses his shared knowledge of k
to decrypt the password and verifies a successful login attempt by responding ”ok”. Let us

Authentication-5



Server (Bob) key k

A’s Browser AliceEve

c
”ok”

pass

c′

”fail”

shared

shared

Figure 1: Password Verification Ex

assume the encryption is CPA secure, so that the encryption of any password is indistin-
guishable from any other password.

Question: What would happen if an active adversary Eve were to tamper with the cipher-
text c and instead send some c′ where c′ 6= c?

Answer: One of the following events would occur:

• Eve succeeds in gaining access to the server (unlikely)

• Eve fails in her attempt (most likely)

Now, suppose the server responds to Eve with some message like ”login failed”. Then,
under certain circumstances if Eve is allowed to continue to send fake ciphertexts many times
it may be possible for her to recover the password entirely!

The Attack: To see how this attack could potentially occur, first lets just suppose we are
dealing with a CPA encryption scheme that has a ”last-bit vulnerability”. All this means is
that on certain occasions I can tamper with the last bit of the ciphertext c such that I can be
ensured that the last bit of c is now set to zero. Call this last bit zeroed ciphertext c′. Note
that the way we have described this process, we are not violating the fact that the encryption
scheme is CPA secure because we remain oblivious as to whether the last bit of c was zero
or one before we chose to set it to zero. We have also not stipulated that this should always
be possible with every ciphertext, as we require this to happen only sometimes. But the
bottom line is that there are CPA secure encryption algorithms that do have this “feature”
(here of the form of a huge vulnerability). Now, if we send this c′ to the server, one of two
things will occur based on whether or not the bit I reset was originally zero to begin with:

• If bit was 0, then the server will respond ”ok” and login is successful

• if bit was 1, then the server will respond ”fail” but now we have the knowledge that
the bit was 1.

Authentication-6



In either case, we can use the feedback that the server provides to deduce what the bit was
originally. Now if we are allowed to repeat this process many times, there is nothing stopping
us for repeating this process on each bit, allowing us to recover the password entirely.

The Bigger Picture: The reason why this attack happens is because we currently do not
have a way to maintain the integrity of a message, which is ultimately an authentication
problem. Ideally, we want all the modified variants c′ 6= c be be “undecryptable” and return
no meaningful information. This example provides a strong motivation for finding a way to
fuse CPA security with message integrity.

Authentication-7


	Reviewing aspects of CPA security
	Authentication
	Message Authentication Code
	Proof of Security

	Next Week: CCA Security
	Password Verification Example


