
CS 4501-6501 Topics in Cryptography 16 Mar 2018

Lecture 8, Public-Key Cryptography and Key Agreement
Lecturer: Mahmoody Scribe: Amar Singh, Jack Prescott, Xuyu Yi

1 Introduction

Last time, we combined CPA security and MACs to achieve CCA security which provides
security against active attacks. All of that was in the private-key setting. This time, we
start by defining public key encryption schemes formally and key-agreement mechanisms.

2 Defining Public Key Encryption

Definition 2.1 (Public Key Encryption). A public key encryption scheme SKE = (Gen,Enc,Dec)
(for all messages) consists of three algorithms:

• Gen is a randomized algorithm, that takes as input the security parameter 1n and
outputs a pair of keys (ek, dk).

– ek is referred to as the ”pubic key” (or encryption key)

– dk is referred to as the ”private key” (or decryption key)

• Enc(ek,m, r), takes a generated ek, and arbitrary message m (and enough randomness
r), and outputs a string c. This is written as c← Encek(m), but note that denotes the
process is potentially randomized.

• Dec(dk, c), takes the decryption key dk and ciphertext x, and outputs a message m′ or
a symbol that denotes failure, ⊥. This is written as m := Decdk(c).

Completeness Requirement: For all m, with probability 1−negl(n) over (pk, sk) output
by Gen(1n) and the randomness of encryption ot holds that Decdk(Encek(m)) = m. In
other words, with overwhelming probability we do get back the message that is encysted. In
fact, most encryption algorithms decrypt correctly all the time, so we might as well define
completeness requirement to hold with probability one.

In the following we will focus on defining the security.

Public-Key Cryptography and Key Agreement-1



2.1 CPA Security

Public key encryption can be defined to have similar security properties like indistinguisha-
bility (for one message or multiple massages) or CPA security or even CCA security. Inter-
estingly, it can have even a simpler definition of CPA security that happens to be equivalent
to indistinguishability for one message, due to the fact that the encryption key is public.
First, let’s see what an indistinguishability security game would be.

Modified definition of the eavesdropping indistinguishability experiment PubKEAV
A,Π (n) :

for Public Key Encryption

• Gen(1n) is run, and keys (ek, dk) are returned.

• Adversary A is given pk and outputs a pair of messages (m0,m1) of equal length.

• A bit b ∈ {0, 1} is chosen at random, and a cipher text c← Encek(mb) is given to A.

• A outputs a bit b′. The output of the experiment is 1 if b′ = b, otherwise it is 0. In
this case, we say that A succeeds.

Definition 2.2 (Indistinguishable encryptions). A public key encryption scheme Π has
indistinguishable encryptions to an eavesdropper if for all probabilistic polynomial-time ad-
versaries A there is a negligible function negl(·) s.t.

Pr[PubKEAV
A,Π (n) = 1] ≤ 1

2
+ negl(n)

But something that we can notice right away, is that even the above seemingly ”weaker”
notion of security, when it comes to public key encryption, cannot be deterministic. Namely:
No deterministic public-key encryption is indistinguishable secure. The reason
is that the adversary also has the public key, like everyone does. So, if the scheme is
deterministic, the adversary can encrypt both of m0,m1 himself, and compare them with
the challenge ciphertext and find out which one is encrypted. In fact, what is going one
is even more deep: the above definition is already equivalent to CPA security, because the
only difference between the two definitions is the existence of the encryption oracle Encpk(·),
which is available to the adversary already: she can encrypt any messages herself!

Definition 2.3 (CPA secure public key encryptions). A public key encryption scheme Π is
CPA secure if and only if it is single-message indistinguishable encryptions. So the definition
is simpler, but it already carries the heavier weight of guaranteeing CPA security.

As it was the case of private key encryption, CPA security already implies multi-message
security as well, so all definitions become the same and equivalent in case of public-key
encryption. However, CCA security is still a stronger notion.

Public-Key Cryptography and Key Agreement-2



2.2 CCA Security

Definition of the CCA indistinguishability experiment PubKcca
A,Π(n) :

• Gen(1n) is run, and keys (ek, dk) are returned.

• Adversary A is given pk and it has access to a decryption oracle Decdk(.) It then
outputs a pair of messages (m0,m1) of equal length.

• A bit b ∈ {0, 1} is chosen at random, and a cipher text c← Encek(mb) is given to A.

• A continues to interact with the Decdk(·) oracle, but cannot request the decryption of
c. When they are ready, A outputs a bit b′.

• A outputs a bit b′. The output of the experiment is 1 if b′ = b, otherwise it is 0. In
this case, we say that A succeeds.

Definition 2.4 (CCA Security). A public key encryption scheme Π has CCA Security if for
all probabilistic polynomial-time adversaries A there is a negligible function negl s.t.

Pr[PubKCCA
A,Π (n) = 1] ≤ 1

2
+ negl(n)

We will see RSA encryption later on, which can be combined with “ideal hash” functions
to achieve CPA or even CCA secure encryption.

3 Key Agreement Protocols and Their Security

Now that we know the definition of public key encryption, we can talk key agreement pro-
tocols as a relaxation of public-key encyrption. Public key encryptio nallows two parties
to build a secure channel over a public channel. Key agreement allows doing so by first
agreeing on a random key that is hidden from an eavesdropper, and then we can combine
it with previously developed privat key encryption schemes to do the same thing. However,
the number of messages exchanged here could potentially be larger.

3.1 What is a Key Agreement Protocol?

Intuitively, the public key encryption is aiming at a picture that Bob (or any party) sends a
single mesasge to everyone, that is the encryption key ek and then gets back an encrypted
message c, which is called the cipher-text. Then he uses the decryption key, which he kept
secret, to obtain the message m inside c.

Key agreement also tries to achieve the same thing by also relies on the private key
setting with more messages exchanged. A weaker goal of key agreement can be agreeing on
a random key between Alice and Bob. If a random key can be agreed over a public channel,
then all the information we had under the private key setting can be used in this case.

Suppose Alice and Bob are exchanging not just two arbitrary messages but messages
with local (private) randomness. They come up, at the end, with their own keys kA, kB,
which have two properties: completeness and security.

Public-Key Cryptography and Key Agreement-3



Completeness: The probability of kA = kB is 1, which means the two keys are equal.

Security Intuition: Suppose we have very good encryption and decryption algorithms
that need a private key. A good key is then possible to be plugged into the private key
encryption algorithm, and nothing would be revealed about the messages when using it.
The informal goal: if we use key k to encrypt and decrypt the messages through any CPA-
secure private-key encryption scheme, the combined scheme shall remain ”secure”. The key
point is that this should happen even if the adversary knows the transcript of the interaction
between Alie and Bob, namely the messages that they exchanged to agree on a key. We
want the actual key to be pseudorandom even if Eve knows the transcript T , namely even
if we show the adversary Eve the true key k after seeing T , he can not distinguish it from a
completely random key Un.

3.2 Security of Key Agreement

Security Game (two worlds). Suppose there are two worlds. In world 1, the adversary
is given the transcript, which is all messages we are sending, and a completely random ”key”
Un of the same length n that is the length of k. In world 2, the adversary is given the
transcript T = (t1, . . . , tk) and the actual key(k = kA = kB). The security requires that
adversary cannot tell these two apart.

Definition 3.1 (Security of key agreement). A key agreement is secure if any polynomial
time adversary cannot distinguish the above two worlds by more than negligible.

Theorem 3.2 (Informally stated). If we use a secure key agreement and a CPA-secure-
secret key encryption, even though the adversary knows about the transcript and cipher-
text, he is not able to tell the encrypted message. The reason is that the key would be at
least pseudorandom (i.e. indistinguishable from truly random) even after knowing the public
transcript, so it can substitute a truely random key for private-key encryption schemes as
well.

4 Key Agreement Mechanism Examples

4.1 Number Theory 101: Modular Computation

Definition 4.1 (Group). A group is a set G with an operation ∗ such that for any two
elements a, b ∈ G, ab ∈ G. Specifically, the set and operation (G, ∗) must satisfy the group
axioms:

1. Closure. ∀ a, b ∈ G, ab ∈ G

2. Associativity. ∀ a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)

3. Identity Element. ∃! e ∈ G s.t. ∀ a ∈ G, e ∗ a = a ∗ e = a.

Public-Key Cryptography and Key Agreement-4



4. Inverse Element. ∀ a ∈ G ∃ b ∈ G such that a ∗ b = b ∗ a = e where e is the identity
element.

For any n, we call the set Zn, the set {0, . . . , n − 1} with addition operation module n.
Namely, (a + b) is their addition mod n, which is in the same set {0, . . . , n − 1}. It is easy
to see that Zn is a group under the binary operation + (mod n). The identity element here
is 0

Interestingly, if n = q is a prime, then if we remove 0 from Zn, call it Z∗n, and consider ∗
to be multiplication mod n, then again Z∗q becomes a group (proving the existence of inverse
for all nonzero elements is nontrivial. Namely, for all a ∈ {1, . . . , q− 1} there is b, such that
ab = ba = 1 mod q).

Definition 4.2 (Generator). An element g ∈ G generates the group (G, ∗) if repeated
applications of g on itself (with the operation ∗) produces all the elements in the group.
More formally, if gk = e, then the elements in G are {g1, ..., gk = e}.

Theorem 4.3. For the group Z∗q, q is prime =⇒ ∃ g ∈ Zq s.t. g is a generator.

For simplicity (and abuse of terminology) we call g simply a multiplicative generator for
Zq (even though it is technically a generator for the group (Z∗q, ∗).

4.2 Diffie-Hellman Key Agreement

This protocol can be summarized in 5 simple steps:

1. Alice and Bob agree on a finite group (G, ∗) of order n such that g ∈ G generates
G. In particular, they can use G = Z∗q and a generator for it, which as we described
above always exists. So, below we will work with this simpler case. Note that the
adversary will know g and G. These are public parameters and part of the description
of the protocol, and might be even universally fixed as part of the standard of the
protocol. Note that the length of representation of q is the security parameter, so we
have n ≈ log q as the security parameter.

2. Alice picks a number x ∈ {1, . . . , q − 1} at random and sends a = gx to Bob.

3. Bob picks a number y ∈ {1, . . . , q − 1} at random and sends b = gy to Alice.

4. Alice gets bx = gxy as her key, and Bob takes ay = gxy as his key. Note that the keys
would be the same.

Both Alice and Bob can now use the group element gxy as the shared secret key. The
group G satisfies the condition for secure communication as long as there does not exist an
efficient algorithm for determining gxy given g, gx, and gy. This is tightly related to the the
hardness of the discrete logarithm problem.

Definition 4.4 (Discrete Log Problem (DLP)). Given q, g and gx = a mod q, find x. Put
differently, compute logx(a) in the group Z∗q.

Public-Key Cryptography and Key Agreement-5



Definition 4.5 ((Computational) Diffie-Hellman Problem (CDH)). Let p be a prime number
and g a generator for Z∗q. The Computational Diffie-Hellman Problem (CDH) is the problem
of computing the value of gxy from the known values of gx and gy. The conjecture is that this
problem is hard and any polytime adversary has negligible chance of doing so for sufficiently
large and carefully chosen q, g.

Theorem 4.6. If the discrete logarithm problem is solvable in polynomial time =⇒ Diffie-
Hellman key exchange is not secure, because CDH becomes easy to solve.

Proof. If Even can solve the DLP in polynomial time, then she can also compute Alice and
Bob’s secret exponents x and y from the intercepted values a = gx and b = gy. It directly
follows that it is easy for Eve to compute their shared key gab.

The converse is less clear. If Eve has an algorithm that efficiently solve CDH, it is not
known whether she can also efficiently solve the discrete log problem.

Efficiency of implementing Diffie Hellman. Note that if we do the exponentiation in
the Diffie-Hellaman protocol naively, it would not be efficient at all. In particular, q is a
huge number, maybe hundreds of bits, and thus it can be as large as 2100, for such q, x is
also a number that could be as large as q, and thus computing gx could be tricky:

1. Worse way: if we keep multiplying g by itself x times before computing the whole
answer mod q, the actual number gx (without taking mod q) can have trillions of
digits, and not even efficient to write it down, let alone do computation on top of it.
In particular, gx could be 2100 digits, and so as large as 22100 itself.

2. Better way: a better, yet not efficient enough, way to do this is to keep multiplying
g by itself x times, by simplifying the answer to be mod q after every multiplication.
Namely, after the i’th iteration, a variable c would contain gi mod q, and then we
compute c · g mod q to obtain gi+1 mod q. This approach at least does not have the
terrible representation length issue that we had before, but still it can take x ≈ 2100

iterations till getting the solution.

3. Best solution: fast exponentiation. The good news is that we can compute the ex-
ponentiation gx using O(log x) multiplications. First, note that we can compute
g, g2, g4, . . . , g2k by only k multiplications. Every time, simply multiply the last el-
ement with itself to get the next one in this list. Finally, if 2k > x, which happens
for k ≤ O(log x), we can then pick a subset of g, g2, g4, . . . , g2k , multiply them and get
back gx. This can be done by using the binary representation of x = in basis 2.

Public-Key Cryptography and Key Agreement-6


	Introduction
	Defining Public Key Encryption
	CPA Security
	CCA Security

	 Key Agreement Protocols and Their Security
	What is a Key Agreement Protocol?
	Security of Key Agreement

	Key Agreement Mechanism Examples
	Number Theory 101: Modular Computation
	Diffie-Hellman Key Agreement


