
CS 4501-6501 Topics in Cryptography 30 Mar 2018

Lecture 10, Zero Knowledge Proofs, Secure Computation
Lecturer: Mahmoody Scribe: Bella Vice-Van Heyde, Derrick Blakely, Bobby Andris

1 Introduction

Last time, we discussed RSA encryption and started talking about digital signatures. This
lecture, we finished up our discussion on digital signatures and discussed zero knowledge
proofs.

2 Reviewing Features of Digital Signatures

Relating Message Authentication Codes and Digital Signatures Digital signature
schemes and message authentication codes are both used to ensure the secure authentication
of transmitted messages. While message authentication codes do so in a private-key setting,
digital signature schemes are the public-key parallel, ensuring secure authentication in a
public key setting. Their syntax and security guarantees are analogous, but digital signatures
allow us to do more. Digital signatures eliminate the need to share distinct secret keys
between the sender and each potential receiver, allowing the sender to publish only one
verification key that can be used for all subsequent signatures and they all can be publicly
verified by all recipients of the messages and their attached signatures.

As in the case of private-key vs. public-key encryption, message authentication codes are
shorter and more efficient than digital signatures. Thus, if the sender primarily communicates
with only one recipient it is better to share a secret key and use message authentication codes
for subsequent authentications.

2.1 Defining Digital Signatures

A digital signature scheme consists of three algorithms (Gen, Sign,Verify) such that:

1. The key-generation algorithm Gen (1n) is randomized, and also takes the security pa-
rameter n, and it outputs a pair of keys (sk, vk). These are called the signing key and
the verification key, respectively.

2. The signing algorithm Sign takes as input a signing key and a message m. It outputs
a signature σ, namely, σ = Signsk(m)

3. The verification algorithm Verify takes as input a verification key vk, a message m,
and a signature σ. If Verifyvk(m,σ) = 1 we call σ a valid signature on a message m
(with respect to some public key vk understood from the context).

Zero Knowledge Proofs, Secure Computation-1

Example 2.1. Suppose Alice wants to send a message that can be received by more than
one recipient while only sharing one key. She runs Gen (1n) to obtain the pair of keys
(sk, vk). She publicizes the verification key vk as belonging to her and keeps the signing key
sk private. When Alice wants to authenticate a message she uses her signing key sk, signing
message m with σ = Signsk(m). If anyone that has access to this verification key, including
Bob, goes over message and signature they can verify whether or not Alice actually sent this
message.

Security of Signature Schemes (Informal) Even if Adversary gets to see many signa-
tures correctly signed by Alice, Adversary should not be able to sign any new message m that
seems like a valid signature on behalf of Alice. If the Adversary is able to accomplish this
we call this a forgery. In order to define the security of a signature scheme more formally,
a security experiment must first be formalized (similarly to security formalization of MAC).

Signature Scheme Security Game (experiment) Let Π = (Gen, Sign,Verify) be a
signature scheme. Consider the following experiment SignForgeA,Π(n) for Adversary A:

1. Gen (1n) is run and sk, vk keys are generated

2. Adversary A is given vk and access to an oracle Signsk(·). The adversary then outputs
(m,σ). Let Q denote the set of all queries that A asked its oracle

3. A succeeds if and only if (1) Verifyvk(m,σ) = 1 and (2) m /∈ Q. In that case the
output of the experiment is defined to be 1.

Definition 2.2 (Formal Definition of Signature Security). : A signature scheme Π =
(Gen, Sign,Verify) is existentially unforgeable under an adaptive chosen-message attack, or
just secure, if for all probabilistic polynomial-time adversaries A there is a negligible function
negl such that:

Pr[SignForgeA,Π(n) = 1] ≤ negl(n).

2.2 Using Trapdoor Permutations for Digital Signatures

When using trapdoor permutations to do the signing job in a signature scheme, there are
naive implementations that cause the scheme to not be secure.

1st Idea based on TDPs: Use the public permutation π for the public job of verification
using the verification key vk and keep the private trapdoor permutation π−1 for the private
task of signing using the signing key sk. It intuitively makes sense to use π−1 for the signing
key because the sender is the only one who should know this information.

Zero Knowledge Proofs, Secure Computation-2

Naive implementation of TDPs for signing :

1. The keys are generated using the generation algorithm for TDPs that generates a pair
of permutation (π) and its inverse (π−1 – or the trapdoor). Let the verification key:
”public key” vk be π(·) (description of the permutation) and the signing key: ”private
key” sk be π−1(·) (description for the trapdoor).

2. To sign a message m, publish signature π−1(m) = t where t is the tag/signature.

3. To verify the message and tag (m, t), accept if and only if: π(t) = m.

The security issue with TDPs for signing: According to definition 2.2 this encryption
scheme is not secure. It allows the adversary to generate a forgery using the public key
alone, without obtaining any signatures from the legitimate signer. Namely, the adversary
can choose any value for t in the range of the permutation and then generate a corresponding
message m by using the public verification key, letting m = π(t). This passes the verification
test since t is a valid signature on m, and is also a forgery since no signatures at all were
issued by the owner of the public key. The argument may be made that this is not a
”realistic” attack since the message will most likely not contain any meaningful content, due
to the fact that the adversary has no control over the message for which it forges a valid
signature. Despite the claim this may not happen in the real world, it is still bad practice to
use a scheme that directly goes against a formal security definition. An in fact, in specific
contexts, this might be indeed a very realistic attack.

3 Hash and Sign Using Ideal Hash Function

The problem created by naively using TDPs for digital signatures is that an adversary can
find a message given a tag. They can do this by simply computing π(t). We can fix this
problem by adding a step to the encryption. First, we hash the message, and then we apply
the trapdoor permutation to the hashed message. With this encryption scheme, an adversary
can still compute π(t), but this will return the value of the hashed message. Assuming an
ideal hash function, an adversary would not be able to learn the message from this value.

Formal Description of Hash and Sign Scheme Suppose we have an ideal hash function
h : {0, 1}∗ → {0, 1}n for security parameter n. We also have trapdoor permutation π, π−1

on domain {0, 1}n. Our signing key is π−1, and our verification key is π. To sign m, we
first compute s = h(m) and then we output tag t = π−1(s). We then verify by checking
Verify(m, t) : h(m) = π(t)→ output 1, h(m) 6= π(t)→ output 0.

Theorem If (π, π−1) is a secure TDP, and if h is a random function and if A is an adversary
who runs in poly(n), then Pr[winning in ”hash and sign”] ≤ negl(n).

Proof idea: Assume an adversary A exists that has Pr[winning in ”hash and sign”] >
negl(n). Turn A into adversary B that breaks the TDP (π, π−1).

Zero Knowledge Proofs, Secure Computation-3

4 Zero Knowledge Proofs

Zero knowledge proofs are seemingly magical at first, but they exist! They allow one party
(prover) to prove to another party (verifier) that some statements are true, without revealing
the actual proof. So, the only thing that is revealed is the truth of the statement, without
revealing anything more! How can it be done? Well, we will use an extended notion of
proof, known as interactive proofs that allows for such surprising phenomenon. Also, as
it was shown by Goldreich-Micali-Wigderson, it is enough to do this for one NP-complete
problem, because having ”efficiently verifiable proofs” means having an NP language, and
NP languages are all ”reducible” to NP complete languages. We start by seeing one Zero
Knowledge proof for an NP complete language.

Zero knowledge proofs are also very useful in cryptography. They allow one party to
prove to others that they are following the protocol honestly without revealing any other
information to them. We will talk about this next time. In fact, the intuition behind the
very definition of zero knowledge, is the building block of how we define security in many
different scenarios, in particular in ”secure multi party computation” which is the topic of
next time.

4.1 Zero Knowledge Proof for 3-Colorability

3-Colorability This is the problem of determining if it is possible to color a graph using
three colors such that no two adjacent nodes are the same color. Describing the problem
formally: M is the adjacency matrix for G, so if nodes i and j are adjacent, then M(i, j) = 1.
And c is a mapping of the set of nodes {1, 2, ..., n} to the set of colors (encoded as {1, 2, 3}).
If G is 3-colorable, we are claiming:

∃c : {1, 2, ..., n} → {1, 2, 3} such that ∀i, j we have M(i, j) = 1→ c(i) 6= c(j)

In terms of complexity theory, if the above claim holds then we say G belongs to the language
L, the set of all 3-colorable graphs.

Stating the Problem Suppose Alice (the prover) has a graph G and wants to convince
Bob (the verifier) that it is 3-colorable without revealing the coloring. How can she prove
this to Bob zero knowledge? As in the cave example (see the class video for this), the proof
has to be an “interactive proof” where Alice and Bob adhere to some protocol consisting of
multiple steps. And this protocol needs to meet two conditions:

1. Soundness, which intuitively means that if Alice is lying, she is very likely to be caught.

2. Zero Knowledge, which means Bob learns nothing about the coloring from his interac-
tions with Alice.

Note that it is crucial for Alice and Bob to interact by sending messages back and forth. As
we saw in the case of key agreement and public key cryptography, allowing parties to follow a
multi-message protocol allows us to create more complicated systems (zero knowledge proofs
are not possible with just one message).

Zero Knowledge Proofs, Secure Computation-4

Digital Lockable Envelopes To persuade Bob she knows a 3-coloring of G, Alice needs
to somehow share information about the how she colored each node with Bob, which she
can send Bob via a set of “digital lockable envelopes,” which have two properties. One
is that they are essentially encrypted: Bob should not be able to know the contents of
the message without asking Alice to unlock it (otherwise she would reveal her information
and it would not be zero knowledge). Second, Alice must commit to what she is sending
Bob and cannot change the contents of the envelope once she has sealed it. These “digital
lockable envelopes” exist as a theoretical construct for discussing zero knowledge proofs. In
practice, their function can be achieved via hash functions, by computing the hash of the
message concatenated with some randomness (which serves as the ”password” for opening
the locked envelope). In fact, digital lockable envelopes have their own name and identity
in cryptography, they are called commitment schemes. We first describe the protocol using
the assumption that commitment schemes exist, then we will describe how to do them using
hash functions.

First Attempt at a Protocol

1. First Alice puts all the colors of the nodes inside separate lockable envelopes L1, . . . , Ln

and sends them to Bob.

2. Bob queries randomly queries an edge e from the set E = {e1, e2, ..., em} and asks Alice
to open the envelopes containing the colors of the two endpoint i, j nodes.

3. Alice sends the ”password” for opening the content of the lockable envelopes Li, Lj to
convince Bob that they indeed have different colors.

4. Bob makes sure that the colors ci, cj are both in {1, 2, 3} and that they are different.

If Alice does not have a valid coloring of the G, the probability that the endpoints of e are
the same color is at least 1/m. Therefore,

Pr[Not catching Alice] ≤ 1− 1
m

To decrease the error and ensure catching a dishonest prover we can repeat the process n ·m
times, and the error of not catching a dishonest prover goes to at most ((1 − 1/m)m)n ≤
(1/e)n < 2−n (where e is the natural logarithm’s basis logarithm).

However, this is not zero knowledge. Bob clearly learns a tiny bit of information about
the coloring from this query and, for example, if he queries n times, he can recover the entire
coloring.

Randomization Trick To ensure the proof is zero knowledge, Alice can permute her
coloring of G each time she commits a color to an envelope. In other words, she shuffles all
of the colors around (e.g., turns red into green, green into blue, and blue into red) before
placing a node in an envelope. If Bob then tries to query every edge in the G, he will always
realize the endpoints do not match, but because each query was on a different permutation

Zero Knowledge Proofs, Secure Computation-5

of Alice’s coloring of G, if he tries to put everything together, the colors will not match.
In fact, he could obtain the exact same information by running a program on his computer
that simply generates pairs of numbers (x, y) such that x, y ∈ {1, 2, 3} and x 6= y. From
his perspective, the information Alice is sending him looks exactly like the output of this
program: both are simply a distribution of random pairs of numbers.

Proving Zero Knowledge by means of a simulator In fact, we can prove that Bob
learned nothing from the interaction by Alice other than the fact that the graph is perhaps
3 colorable. The reason is that if Bob assumes the graph is 3 colorable, he can run a
polynomial time algorithm on his side that generates the same information that Bob sees
in the interaction with Alice. In particular, a simulator can work as follows. Sim would
first pick the random edge e = (i, j) (this is essentially, how the simulator can ”cheat” by
generating the information in different order than they appear in transaction with Alice, so
the simulator’s answer is not ”convincing” but is carries the same joint distribution). Then
Sim would put two different random colors ci 6= cj in lockable envelopes Ei, Ej, and then
it puts n − 2 random numbers for other colors in Lk for k 6= i, j. Then, it also puts the
password of Ei, Ej as part of the transcript. So, all the generated locks, the color of ci, cj
and the ”password” to locks Li, Lj are what the simulator outputs. It is easy to see that this
is exactly the same distribution of information that the verifier observes in its interaction
with the prover. So, everything that verifier learns from talking to the prover can be learned
from the simulator as well!

Defining Zero Knowledge We did something unusual above! We proved zero-knowledge
without defining it first! This is technically not correct. We cannot have a ”proof” without
a definition, ever! The more formal approach is that we use the notion of simulators to
actually define ZK, and then the existence of the above specific simulator proves that the 3
coloring protocol that we saw is indeed zero knowledge.

Zero Knowledge Proofs, Secure Computation-6

	Introduction
	Reviewing Features of Digital Signatures
	Defining Digital Signatures
	Using Trapdoor Permutations for Digital Signatures

	Hash and Sign Using Ideal Hash Function
	Zero Knowledge Proofs
	Zero Knowledge Proof for 3-Colorability

