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What is Machine Learning?

@ Learning from historical data to make decisions about unseen data.

@ Traditional Programming
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Success of Machine Learning

* Machine learning (ML) has changed our lives
* Health
* Language processing
Finance/Economy
Vision and image classification
Computer Security
Etc. etc.,..
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Classification

Training Testing
xj < D x <« D
di = (xj, c(x7)) d = (x, c(x))
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Classification under Attack
Poisoning Attack

xj < D
di = (xi, c(x;))
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Secure (Adversarially Robust) Machine Learning

* Is achieving low risk still possible in presence of malicious adversaries?
* Subverting spam filter by poisoning training data [Nelson et. al. 2008]
* Evading PDF malware detectors [Xu et. al. 2016]

* Making image classifiers misclassify by adding small perturbations [Szegedy et. al. 2014]

Camel !




Arms Race of Attacks vs. Defenses

* A repeated cycle of new attacks followed by new defenses:

Nelson et. al. 2008, Wittel et al. 2004, Dalvi et al. 2004
Rubinstein et. al. 2009 Lowd et al. 2005, Globerson et al. 2006
Kloft et. al. 2010 Globerson et al. 2008, Dekel et al. 2010
Biggio et. al. 2012 Biggio et al. 2013, Szegedy et al. 2013
Xiao et. al. 2012 Srndic et al. 2014, Goodfellow et al. 2014
Kloft et. al. 2012 Kurakin et al. 2016, Sharma et al. 2017
Biggio et. al. 2014 Kurakin et al. 2016, Carlini et al. 2017

Newell et. al .2014 Papernot et al. 2017, Carlini et al. 2017
Xiao et. al. 2015 Tramer et al. 2018, Madry et al. 2018
Mei et. al. 2015 Raghunathan et al. 2018, Sinha et al. 2018

Burkard et. al. 2017 Na et al. 2018, Gou et al. 2018
Koh et. al. 2017 Dhillon et al. 2018, Xie et al. 2018

Laishram et. al. 2018 Song et al. 2018,Madry et al. 2018
Munoz-Gonz et. al. 2018 Samangouei et al. 2018, Athalye et al. 2018




Important Questions in Adversarial Machine Learning

@ Formalizing (complexity-theoretic) notions of security.

@ What are the inherent powers and limitations of adversaries against
ML systems?

@ Barriers for provable robustness of ML systems against adversarial
attacks, whether poisoning or evasion.

» information-theoretic, with all-knowing adversaries
» computationally bounded adversaries

@ Can ML systems achieve Probably Approximately Correct (PAC)
generalization bounds under adversarial attacks?



Are there inherent reasons enabling
adversarial examples and poisoning attacks?

Candidate reason: Concentration of Measure!




Are there inherent reasons enabling
Polynomial-time attacks?

Candidate reason: Computational
Concentration of Measure!

Related to certain polynomial-time
attacks on coin-tossing protocols.
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Talk Outline

1a. Defining evasion attacks formally
1b. Evasion attacks from measure concentration of instances

2a. Defining poisoning attacks formally
2b. Poisoning attacks from measure concentration of products

3a. Poly-time attacks from computational concentration of products
3b. Connections to attacks on coin-tossing protocols



Talk Outline

1a. Defining evasion attacks formally
1b. Evasion attacks from measure concentration of instances



Evasion Attacks Finding Adversarial Examples

x <« D * Metric M
d = (x,c(x)) * X close to x w.r.t. M
x @R * ji.e. X € Ball,(x) for small b
x@ * Error-region Adversarial Risk:
ﬂ AdvRisk,(h) = Pl;)[Eljc” € Ball,(x); h(X) + c(X)]
X
? AdvRisky(h) = Risk(h)

Risk(h) = Pr [€ # c(X)]
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Comparing Definitions of Adversarial Examples

c(x)

Corrupted inputs x
Feige Mansour Shapire 15] Corrupted Inputs
* [Madry et al., 17]
$ -
* [Diochnos M Mahmoody 18]
* [Gilmer et al., 18]

* [Feige Mansour Shapire 18]

» [Attias Kontorovich Mansour 19]

e [Bubeck Price Razenshtein 18] Error Region
* [Degwekar Vaikuntanatan, 19]

Error region

=N -

c(X)
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* Risk;, (h) = Pr[b-expansion of E]

Adversarial Examples from Expans
* Define error reg
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Concentration of Measure

* Metric probability space (M, D) over set X

* Example: n-dimensional Gaussian with £,

* b-expansion of set S € X

Sy = {x € D;min M(x,s) < b}

SES

* For any set S with constant probability

* S}, converges to 1 very fast as b grows
e i.e. Pr[S,]| = 1 for small b < Diamy, (X)
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Examples of Concentrated Distributions

* Normal Lévy families are concentrated distributions [Lévy 1951]
e with dimension and diameter n
* Such that for any S such that Pr[S] = 0.01
* and for b =~ y/n we have Pr[S,] = 0.99

* Examples [Amir & Milman 1980], [Ledoux 2001]:

* n-dimensional isotropic Gaussian with Euclidean distance

* n-dimensional Spheres with geodesics distance

* Any product distribution with Hamming distance (e.g. uniform over Hypercube)
* And many more...



Main Theorem 1:
Adversarial examples for Léevy families

If (D, M) is Lévy family with both dimension and “typical norm” n:
x <D
... then Adversary can add “small” perturbations b = \/n,... d = (x,c(x))

X > X

...and increase risk of any classifier with non-negligible (original)
risk Risk(h) =~ 1/100 to adversarial risk AdvRisk, (h) = 1,

g
h
!
4



Previous Work on Provable Evasion Attacks

e Similar attacks using isoperimetric inequalities
* [Gilmer et al 2017]: Use isoperimetric inequality on n-dimensional spheres
* [Fawzi et al 2018]: Use isoperimetric inequality on gaussian
e [Diochnos, Mahloujifar, M 2018]: Use isoperimetric inequality on Hypercube

e Our (Normal Levy) theorem generalizes previous works as special
cases and covers many more distributions.



Talk Outline

2a. Defining poisoning attacks formally
2b. Poisoning attacks from measure concentration of products



Poisoning Attacks: Definition

x; < D

d; = (xl, c(xl))

Learning

Algorithm

* Hypothesis space H

« H C H : containing “bad” hypotheses
(e.g., those that give me the loan)

Adversary wants to change training set S = (dy, ...

into a “close” (Hamming distance) S such that h € H

Adversary can depend on D and ¢
(but not on h as it is not produced yet)
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Why is concentration also relevant to poisoning?

training sets that are b-close to a bad trainint set

Space of all training sets Space of all hypotheses

s 7 i
)

Distribution from which a training set S is sampled is X" for X = (D, c(c)) ”



Recall: Examples of Concentrated Distributions

* Any product distribution with Hamming distance
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Main Theorem 2:
Poisoning attacks from concentration of products

e For any deterministic learner L and any H where
Pr[H| = 1/100 x; < D

d; = (x;,¢(x;))

Adv can change ~ /m fraction of training data .
14, @ ...

and make probability of gettingh € H ~ 1

while the poisoned data are still correctly labeled! Learning
Algorithm

24
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Other works on “clean label” poisoning attacks:

e [Mahloujifar, M TCC-2017] Defined p-tampering poisoning attacks,
which are Valiant’s malicious noise but only using correct/clean labels.

* [Mahloujifar, Diochnos, M ALT-2018] positive and negative results for
PAC-learning under p-tampering attacks

 [Shafahi et al, NeurlPS-2018] practical attacks using clean labels

e [Turner et al, ICLR-2018] backdoor attacks using clean labels



Talk Outline

3a. Poly-time attacks from computational concentration of products



Concentration of Products -- a Closer Look
Proposition 2.1.1 in [Talagrand 1994]

* Let HD(:,) be Hamming distance and HD(x,S) = min HD(x, s)

SES
et D be any distribution and D™ its n-fold product

et S be any target set of probability u = Pr[D" € S]

* Then the probability of being b-far from S is bouznded:
—-b“/n
e

Pr [HD(x,S) = b] <
x—D™h

* Example: if u = 1/poly(n) then 99% of samples from D"
are in ~ /n Hamming Distance from some pointin S 27




Algorithmically finding such points in §7

e Recall formal setting:
Let D be any distribution and D™ its n-fold product
Let S be any target set of probability u = Pr|D™ € S| = 1/poly(n)

* Suppose algorithm A runs in poly(n) while having
oracle access to membership in S and to sampler for D

. Questlon given input x < D™ can A find (with high probability over x)
“close” point s € S such that
HD(X S) . 0(\/_) Space of all D™ samples

Can we compute the arrow /mapping efficiently? /// ///////

/////////
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Man Theorem 3:
Computational Concentration of Products

* Yes we can! compute the arrow /mapping efficiently  [EEEEEEEIFEEELEES

' duct distributi der H ing dist
in product distributions under Hamming distance ///////////

Y

* More formally:
If Pr[D™ € S| = 1/poly(n) - thereisa poly(n) time A who finds, with

high probability over the input x « D™, a “close” point s € S where

HD(x,s) = 0(v/n)
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Talk Outline

3b. Connections to attacks on coin-tossing protocols



A Stronger Result:
Attacking Single-Message Coin Tossing Protocols

e Let Py, ... P, run a coin tossing protocol in which P; sends i message m;
* Suppose Pr|f(m4,..m,) = heads]| = 1/poly(n)

e If Adv can corrupt up to b of the parties and it can decide to corrupt or not
by looking at their locally prepare message m;

* Then Adv can make Pr|f(m,...m,) = heads| = 1

* Model is the strong adaptive corruption of [Goldwasser,Kalai,Park 2015]
who proved a similar exponential time attack for 1-round protocols.



Conclusion

* Formalizing security notions in adversarial ML is important.
Different definitions (though equivalent in some cases) behave differently

* Concentration of measure phenomenon can potentially lead to both
evasion and poisoning attacks.

* Product distributions are even computationally concentrated under
Hamming distance due to certain polynomial-time coin-tossing attacks



