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Success of Machine Learning

• Machine learning (ML) has changed our lives
• Health

• Language processing

• Finance/Economy

• Vision and image classification

• Computer Security

• Etc. etc.,..

Not primarily designed 
for adversarial contexts!
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Secure (Adversarially Robust) Machine Learning

• Is achieving low risk still possible in presence of malicious adversaries?

• Subverting spam filter by poisoning training data [Nelson et. al. 2008]

• Evading PDF malware detectors [Xu et. al. 2016]

• Making image classifiers misclassify by adding small perturbations [Szegedy et. al. 2014]

Dog Camel !
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Arms Race of Attacks vs. Defenses

• A repeated cycle of new attacks followed by new defenses:

Nelson et. al. 2008,
Rubinstein et. al. 2009

Kloft et. al.  2010
Biggio et. al. 2012
Xiao et. al. 2012
Kloft et. al. 2012

Biggio et. al. 2014
Newell et. al .2014

Xiao et. al. 2015
Mei et. al. 2015

Burkard et. al. 2017
Koh et. al. 2017

Laishram et. al. 2018
Munoz-Gonz et. al. 2018

…. …. … 

Wittel et al. 2004, Dalvi et al. 2004
Lowd et al. 2005, Globerson et al. 2006
Globerson et al. 2008, Dekel et al. 2010
Biggio et al. 2013, Szegedy et al. 2013

Srndic et al. 2014, Goodfellow et al. 2014
Kurakin et al. 2016, Sharma et al. 2017
Kurakin et al. 2016, Carlini et al. 2017

Papernot et al. 2017, Carlini et al. 2017
Tramer et al. 2018, Madry et al. 2018

Raghunathan et al. 2018, Sinha et al. 2018
Na et al. 2018, Gou et al. 2018

Dhillon et al. 2018, Xie et al. 2018
Song et al. 2018,Madry et al. 2018

Samangouei et al. 2018, Athalye et al. 2018
…. …. …

7



8



Are there inherent reasons enabling
adversarial examples and poisoning attacks? 

Candidate reason: Concentration of Measure!
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Are there inherent reasons enabling
Polynomial-time attacks? 

Candidate reason: Computational
Concentration of Measure!

Related to certain polynomial-time 
attacks on coin-tossing protocols.
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Talk Outline

1a.  Defining evasion attacks formally

1b.  Evasion attacks from measure concentration of instances

2a.  Defining poisoning attacks formally

2b.  Poisoning attacks from measure concentration of products

3a. Poly-time attacks from computational concentration of products
3b. Connections to attacks on coin-tossing protocols
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Evasion Attacks Finding Adversarial Examples 

• Metric 𝑀

• ෤𝑥 close to 𝑥 w.r.t. 𝑀

• i.e. ෤𝑥 ∈ 𝐵𝑎𝑙𝑙𝑏 𝑥 for small 𝑏

• Error-region Adversarial Risk:

𝐴𝑑𝑣𝑅𝑖𝑠𝑘𝑏 ℎ = Pr
𝑥←𝐷

[∃ ෤𝑥 ∈ 𝐵𝑎𝑙𝑙𝑏 𝑥 ; ℎ ෤𝑥 ≠ 𝑐( ෤𝑥)]

𝐴𝑑𝑣𝑅𝑖𝑠𝑘0 ℎ = 𝑅𝑖𝑠𝑘(ℎ)

෤𝑥

Learning 

Algorithmh

෨ℓ

𝑥 ෤𝑥

𝑑 = (𝑥, 𝑐(𝑥))
𝑥 ← 𝐷

𝑅𝑖𝑠𝑘 ℎ = Pr
𝑥←𝐷

[෨ℓ ≠ 𝑐(෤𝑥)]
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Comparing Definitions of Adversarial Examples

𝑥

෤𝑥

ℎ(෤𝑥)

𝑐( ෤𝑥)

𝑐(𝑥)

Corrupted Inputs

Error Region

Corrupted inputs
• [Feige Mansour Shapire 15]
• [Madry et al., 17]
• [Feige Mansour Shapire 18]
• [Attias Kontorovich Mansour 19]

Error region
• [Diochnos M Mahmoody 18]
• [Gilmer et al., 18]
• [Bubeck Price Razenshtein 18]
• [Degwekar Vaikuntanatan, 19]



Adversarial Examples from Expansion of Error Region

• Define error region 𝐸
• Error region 𝐸 = {𝑥; ℎ 𝑥 ≠ 𝑐(𝑥)}

• Risk ℎ = Pr[𝐸]

• Risk𝑏 ℎ = Pr[𝑏-expansion 𝑜𝑓 𝐸]
𝑏

𝑏

Class A

Class B
𝐸

𝑏 expansion
of set 𝐸

Adversarial examples almost 
always exist if the expansion 
of 𝐸 covers almost all inputs
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Concentration of Measure

• Metric probability space 𝑀,𝐷 over set 𝑋
• Example: 𝑛-dimensional Gaussian with ℓ2

• 𝑏-expansion of set 𝑆 ⊆ 𝑋

𝑆𝑏 = 𝑥 ∈ 𝐷;min
𝑠∈𝑆

𝑀 𝑥, 𝑠 ≤ 𝑏

• For any set 𝑆 with constant probability
• 𝑆𝑏 converges to 1 very fast as 𝑏 grows

• i.e. Pr 𝑆𝑏 ≈ 1 for small 𝑏 ≪ Diam𝑀(𝑋)

𝑋

𝑆

𝑆𝑏

𝑏
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Examples of Concentrated Distributions

• Normal Lévy families are concentrated distributions [Lévy 1951]
• with dimension and diameter 𝑛

• Such that for any 𝑆 such that Pr 𝑆 = 0.01

• and for b ≈ 𝑛 we have Pr 𝑆𝑏 = 0.99

• Examples [Amir & Milman 1980], [Ledoux 2001]:
• 𝑛-dimensional isotropic Gaussian with Euclidean distance

• 𝑛-dimensional Spheres with geodesics distance

• Any product distribution with Hamming distance (e.g. uniform over Hypercube)

• And many more…
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Main Theorem 1:  
Adversarial examples for Lévy families

If (𝐷,𝑀) is Lévy family with both dimension and “typical norm” 𝑛: 

… then Adversary can add “small” perturbations 𝑏 ≈ 𝑛,…

…and increase risk of any classifier with non-negligible (original)
risk Risk(ℎ) ≈ 1/100 to adversarial risk AdvRisk𝑏(ℎ) ≈ 1, ෤𝑥

Learning 

Algorithmh

෨ℓ

𝑥 ෤𝑥

𝑑 = (𝑥, 𝑐(𝑥))
𝑥 ← 𝐷
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Previous Work on Provable Evasion Attacks

• Similar attacks using isoperimetric inequalities
• [Gilmer et al 2017]: Use isoperimetric inequality on n-dimensional spheres

• [Fawzi et al 2018]: Use isoperimetric inequality on gaussian

• [Diochnos, Mahloujifar, M 2018]: Use isoperimetric inequality on Hypercube 

• Our (Normal Levy) theorem generalizes previous works as special 
cases and covers many more distributions.
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3a. Poly-time attacks from computational concentration of products
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Poisoning Attacks: Definition

• Hypothesis space 𝐻

• ෩𝐻 ⊆ 𝐻 : containing “bad” hypotheses
(e.g., those that give me the loan)

Adversary wants to change training set 𝑆 = (𝑑1, … , 𝑑𝑛)
into a “close” (Hamming distance) ሚ𝑆 such that ෨ℎ ∈ ෩𝐻

Adversary can depend on 𝐷 and 𝑐
(but not on ℎ as it is not produced yet)

Learning 

Algorithm

෨ℎ

𝑥𝑖 ← 𝐷

𝑑𝑖 = 𝑥𝑖 , 𝑐 𝑥𝑖

𝑑2 𝑑𝑖𝑑1 … … 𝑑𝑛
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Why is concentration also relevant to poisoning?

෩𝐻Learner𝑏𝑎𝑑 𝑠𝑒𝑡𝑠
𝑏

training sets that are 𝑏-close to a bad trainint set

Space of all training sets Space of all hypotheses

Distribution from which a training set 𝑆 is sampled is 𝑋𝑚 for 𝑋 = (𝐷, 𝑐 𝑐 )
22



Recall: Examples of Concentrated Distributions

• Normal Lévy families are concentrated distributions [Lévy 1951]
• with dimension and diameter 𝑛

• Such that for any 𝑆 such that Pr 𝑆 = 0.01

• and for b ≈ 𝑛 we have
Pr[𝑆𝑏] ≈ 1

• Examples [Amir & Milman 1980], [Ledoux 2001]:
• 𝑛-dimensional isotropic Gaussian with Euclidean distance

• 𝑛-dimensional Spheres with geodesics distance

• Any product distribution with Hamming distance
• And many more…
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Main Theorem 2: 
Poisoning attacks from concentration of products

• For any deterministic learner 𝐿 and any ෩𝐻 where
Pr ෩𝐻 = 1/100

Adv can change ≈ 𝑚 fraction of training data

and make probability of getting ෨ℎ ∈ ෩𝐻 ≈ 1

while the poisoned data are still correctly labeled! Learning 

Algorithm

෨ℎ

𝑥𝑖 ← 𝐷

𝑑𝑖 = 𝑥𝑖 , 𝑐 𝑥𝑖

𝑑2 𝑑𝑖𝑑1 … … 𝑑𝑛
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Other works on “clean label” poisoning attacks:

• [Mahloujifar, M TCC-2017] Defined p-tampering poisoning attacks, 
which are Valiant’s malicious noise but only using correct/clean labels.

• [Mahloujifar, Diochnos, M ALT-2018] positive and negative results for 
PAC-learning under p-tampering attacks

• [Shafahi et al, NeurIPS-2018] practical attacks using clean labels

• [Turner et al, ICLR-2018] backdoor attacks using clean labels
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Concentration of Products -- a Closer Look
Proposition 2.1.1 in [Talagrand 1994]

• Let HD(⋅,⋅) be Hamming distance and HD 𝑥, 𝑆 = min
𝑠∈𝑆

HD(𝑥, 𝑠)

Let 𝐷 be any distribution and 𝐷𝑛 its 𝑛-fold product
Let 𝑆 be any target set of probability 𝜇 = Pr 𝐷𝑛 ∈ 𝑆

• Then the probability of being 𝑏-far from 𝑆 is bounded: 

Pr
𝑥←𝐷𝑛

HD 𝑥, 𝑆 ≥ 𝑏 ≤
𝑒−𝑏

2/𝑛

𝜇

• Example: if 𝜇 = 1/𝑝𝑜𝑙𝑦(𝑛) then 99% of samples from 𝐷𝑛

are in ≈ 𝑛 Hamming Distance from some point in 𝑺 27



Algorithmically finding such points in 𝑆? 
• Recall formal setting: 

Let 𝐷 be any distribution and 𝐷𝑛 its 𝑛-fold product
Let 𝑆 be any target set of probability 𝜇 = Pr 𝐷𝑛 ∈ 𝑆 ≥ 1/𝑝𝑜𝑙𝑦(𝑛)

• Suppose algorithm 𝐴 runs in 𝑝𝑜𝑙𝑦(𝑛) while having 
oracle access to membership in 𝑆 and to sampler for 𝐷

• Question: given input 𝑥 ← 𝐷𝑛 can 𝐴 find (with high probability over 𝑥) 
a “close” point 𝑠 ∈ 𝑆 such that

HD 𝑥, 𝑠 = ෨𝑂( 𝑛)

𝑆
𝑏

Space of all 𝐷𝑛 samples

Can we compute the arrow   mapping efficiently?
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Man Theorem 3:
Computational Concentration of Products
• Yes we can! compute the arrow   mapping efficiently

in product distributions under Hamming distance

• More formally: 
If Pr 𝐷𝑛 ∈ 𝑆 ≥ 1/𝑝𝑜𝑙𝑦(𝑛)→ there is a 𝑝𝑜𝑙𝑦 𝑛 time 𝐴 who finds, with 
high probability over the  input 𝑥 ← 𝐷𝑛 , a “close” point 𝑠 ∈ 𝑆 where

HD 𝑥, 𝑠 = ෨𝑂( 𝑛)

𝑆
𝑏

Space of all 𝐷𝑛 samples
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A Stronger Result: 
Attacking Single-Message Coin Tossing Protocols

• Let 𝑃1, … 𝑃𝑛 run a coin tossing protocol in which 𝑃𝑖 sends 𝑖th message 𝑚𝑖

• Suppose Pr 𝑓(𝑚1, …𝑚𝑛) = 𝐡𝐞𝐚𝐝𝐬 ≥ 1/poly(𝑛)

• If Adv can corrupt up to 𝑏 of the parties and it can decide to corrupt or not
by looking at their locally prepare message 𝑚𝑖

• Then Adv can make Pr 𝑓(𝑚1, …𝑚𝑛) = 𝐡𝐞𝐚𝐝𝐬 ≈ 1

• Model is the strong adaptive corruption of [Goldwasser,Kalai,Park 2015] 
who proved a similar exponential time attack for 1-round protocols.

31



Conclusion

• Formalizing security notions in adversarial ML is important. 
Different definitions (though equivalent in some cases) behave differently

• Concentration of measure phenomenon can potentially lead to both 
evasion and poisoning attacks.

• Product distributions are even computationally concentrated under 
Hamming distance due to certain polynomial-time coin-tossing attacks
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