Research Statement

Mohammad Mahmoody (August 2018)

My research is focused on foundations of cryptography, which is the science of designing provably secure protocols based computationally intractable problems. My specialization is in studying the power and limitations of computational assumptions in cryptography. A main theme in my research is to identify barriers against basing cryptographic protocols on well-studied computational assumptions. I have also studied trade-offs that emerge between efficiency of cryptographic protocols and assumptions behind their designs. My research has helped develop the field of separations (i.e., barriers) in cryptography with a focus on more modern primitives such as program obfuscation and functional encryption. The second theme in my research investigates the power and limitations of physical assumptions in cryptography that could potentially help us avoid computational assumptions. In this line of work, I have studied the possibility of basing cryptographic tasks on stateless tamper-proof hardware and related mathematical tools that arise in this area such as zero-knowledge (interactive) probabilistically checkable proofs (PCPs). Finally, a more recent direction in my work investigates the power and limitations of tampering attacks in cryptography and learning theory. This line of work studies vulnerabilities that could be exploited by adversaries who tamper with the randomness or the inputs of the algorithms involved. In the field of adversarial machine learning, this tampering could happen over the training data of the learner (a poisoning attack) or the test example (an evasion attack). My research investigates provable bounds in both of these settings.

Research group and support. My research group currently consists of three PhD students and two postdoctoral researchers. One PhD student and two Masters students have previously graduated from my group. I support my group’s research through NSF CAREER award (on cryptographic separations), a subcontract from UC Berkeley (on extending non-black-box separations), two University of Virginia’s SEAS Innovation Award (on adversarial learning and adversarial algorithmic fairness) and external fellowships.

Publishing venues and alphabetical order of authors. My works in cryptography appear in top conferences dedicated for foundations and theory of cryptography such as Crypto and TCC. As it is the tradition in Theoretical Computer Science, in almost all of my papers authors are listed in the alphabetical order.

Computational Assumptions in Cryptography

Modern cryptography has given rise to protocols whose security is based on well-defined and well-studied mathematical puzzles (e.g., factoring large integers) that are believed to be computationally hard to solve. Unfortunately, however, we are yet far from proving such hardness results in mathematics. Yet, proving the security of almost all cryptographic protocols requires resolving the notorious $P \neq NP$ question. As a result, many current cryptographic security proofs heavily rely on computational hardness assumptions. A core theme in my research aims at identifying the power of computational intractability assumptions in cryptography. Over the years, my research has taken major steps toward understanding the limitations of computational assumptions in cryptography through a theory of cryptographic separations. At a more technical level, many of my works help us getting insight into relations between Impagliazzo’s worlds [45].
Private-key encryption vs. NP-hardness [44, 65]. Since $P \neq NP$ is a necessary requirement for the security of almost all cryptographic tasks, a holy grail in cryptography, partly motivated by worst-case to average-case reductions [1, 68, 69] for lattice problems, is to base security of protocols solely on the assumption that $P \neq NP$ [25]. With Haitner and Xiao [44, 65], I came up with mathematical explanations as to why so far, despite tremendous effort by researchers, designing encrypting schemes (or strong hash functions) with NP-hard security has remained elusive. In particular, we show that in order to achieve NP-hard one-way functions, we need to first resolve long-standing open questions in computational complexity about the existence of program-checkers for Boolean satisfiability, or alternatively, we have to construct interactive proofs with “low complexity” provers in forms that are not known to exist yet.

Public-key vs. private-key cryptography. Private-key encryption can be based on secure hash functions, while building public-key encryption schemes are designed based on structured hard problems from mathematics [5, 10]. Such structured problems, however, also have the potential for enabling attacks that exploit this very structure. Therefore, one of the most fundamental questions in cryptography is whether we can base public-key encryption on private-key primitives such as secure hash functions. In 1989, Impagliazzo and Rudich [46] showed that a large class of techniques, called black-box, are incapable of achieving this goal. However, black-box techniques are only part of cryptographic toolkit, so extending [46] to non-black-box settings remained a major problem in foundations of cryptography.

- Power of non-black-box garbling techniques for public-key encryption [36]. With Garg, our joint postdoc Hajiabadi and my graduate student Mohammed [36], I showed that even a popular and powerful non-black-box technique in cryptography based on garbled circuits [81] is not capable of basing public-key encryption on private key encryption. We proved our result in a model that was developed in [2, 16] by allowing oracle calls inside given garbled circuits. This model includes a large class of natural non-black-box tricks built into it beyond the fully-black-box framework of Reingold et al. [76]. In another work [38] (explained below), we further expand this non-black-box model.

- Tight security reductions between public-key and private-key cryptography [7, 8]. Together with Barak [7, 8], I studied whether relaxed forms of public-key encryption (with only a weak polynomial security) or fully secure public-key authentication schemes could be based solely on secret-key encryption. We proved optimal bounds for the exact achievable security of those fundamental tasks based on ideal hash functions. Our results showed that seminal works of Merkle [67] and Lamport [53] were indeed optimal. Our work [8] resolved a long standing open question of [46].

Complexity of recently-developed powerful encryption primitives [39, 43, 61]. During the twenty first century, cryptography has gone through a revolution of exploring the feasibility of highly structured tasks at the cost of relying on newly introduced and less studied assumptions. One such success story led to development of strong encryption primitives such predicate encryption [51] and functional encryption [15, 72]. Understanding the computational assumptions necessary for achieving these powerful primitives is of great importance. With Garg and my PhD student Mohammed [39] we identified which forms of functional encryption could be obtained from code obfuscation (further discussed below). Together with Goyal, Kumar and Lokam [43] and my PhD student Mohammed [61], we studied the power of identity-based encryption (IBE) [13, 79]. In an IBE scheme, knowing a single master public key is sufficient to encrypt to each identity, and it is known that IBE is more complex than basic semantically secure public-key encryption [12, 14]. In [61], we proved limitations on the power of IBE by showing that hash functions or homomorphic encryption [17, 40, 80] cannot be based on IBE in a black-box way.
Complexity of assumptions for program obfuscation [38, 59, 60]. Program obfuscation was first formally studied in the theory community by Barak et al. [6] where they showed that very strong forms of obfuscation are impossible, but it took till the work of Garg et al. [35] where a powerful form of obfuscation, called indistinguishability obfuscation (IO), was proposed based on the existence of multi-linear maps [34]. In a series of works [38, 59, 60], all co-authored with my graduate students Ameer Mohammed (whose thesis was on this very subject) and student Nematihaji as well as Garg, Pass, and shelat, I proved strong lower-bounds on standard assumptions that can be used to construct IO. Roughly speaking, building upon lower bounds for VBB obfuscating [19] and developing ideas for IO itself, we showed that IO is too complex to be built solely from any encryption primitive that is of “all-or-nothing” access structure.

Modeling non-black-box constructions and reductions [21, 38, 64]. With Garg and my PhD student Mohammed [38], we proved strong non-black-box impossibility results for IO from powerful assumptions such as predicate encryption. A major contribution of this work was to introduce a new model for framing a broad class of non-black-box techniques as “monolithic” subroutine calls. This model is non-black-box under the original framework developed by Reingold et al [76] and the subsequent extensions of [2, 16], yet it includes natural techniques widely used in cryptography. This new model enables a more meaningful study of separations with respect to known non-black-box techniques. With Pass [64] we had previously shown that, although non-black-box constructions can usually be made black-box [20, 74], there are cases where only a non-black-box construction could base on the other one. When it comes to security reductions, with Chung, Lin and Pass [21], I initiated a formal study of mildly non-black-box proofs of security in which non-uniform advice about the adversary is the source of non-black-box nature of the security reduction.

Complexity of time-lock puzzles and proofs of work [62, 63]. Time-lock puzzles, first constructed by [77], allow encrypting messages that are only decryptable after a specified time has passed. The tightly related notion of proof of work [18, 31, 32] and its variations have recently got more attention [11, 75] after finding applications in crypto-currencies [71]. In two works with Moran and Vadhan [62, 63], I study whether time-lock puzzles and (sequential) proofs of work could be based on the mere assumption that one-way functions exist, or more strongly using any random oracle. In [62], we showed that time-lock puzzles cannot be constructed in the random oracle model, and in [63], we showed that proofs of work with multiple correct solutions can indeed be constructed using random oracles and depth robust graphs [33].

Separations and assumption trade-offs for secure computation. In a body of works discussed below, I studied the complexity of the assumptions that are necessary for secure computation protocols. In such a protocol, mutually distrustful entities engage to compute a joint function on their local private inputs.

- **Complexity of two-party computation [57, 58].** In two works with Maji and Prabhakaran [57, 58] we characterized the black-box power of private-key as well as public-key cryptography in secure computation. We showed that random oracles (or even strong forms of public-key encryption) cannot help weaken assumptions behind secure computation systems while using a black-box construction.

- **Complexity of fair coin tossing [23, 24].** Secure coin tossing is a basic task in secure computation. It was shown by Cleve [22] that in any two party coin-tossing protocol one party can bias the output by $\Omega(1/r)$ where r is the round complexity of the protocol. Despite constructions of [4, 70] it remained open whether optimally fair coin tossing (with bias $O(1/r)$) could be based on the minimal assumption of one-way functions. In two works with Dachman-Soled, Lindell and Malkin [23, 24], we identified a key barrier against this goal by proving lower bounds on the round complexity.
• **Complexity of round-preserving OT extension** [37]. Oblivious transfer (OT) is the building block of secure computation [49, 52], but since it is a costly operation, researchers have suggested efficient ways to extend a few base OT operations into many constructed OT operations [47] while only using cheap symmetric-key cryptographic operations that can be obtained from a random oracle. The solution of [47], however, adds one more round of communication between the parties. With Garg, Masny, and Meckler [37], I studied the possibility of very efficient oblivious transfer (OT) extension protocols and proved in that a cost in round complexity of OT extension is indeed inherent so long as do not want to pay the inefficiency costs of non-black-box constructions [9].

Tampering Attacks in Cryptography and Learning Theory

In the fields of algorithm design and cryptography, we typically assume that honest parties have access to uniform and independent randomness, and indeed many tasks (e.g., secure multi-party encryption) are otherwise impossible [26]. In particular, “standard” security proofs no longer hold if adversaries can tamper with the randomness of honest parties. Such attacks also emerge in the area of adversarial machine learning where we also deal with tampering attacks of various forms to the training process or the final classification.

Tampering with randomness in Cryptography [3, 56]. It is known that imperfect sources of randomness, in general, cannot be used for cryptography [27, 28, 29]. With Austrin, Chung, Pass and Karn [3], we studied the possibility of achieving security in cryptography if the randomness of the parties might be under attack by efficient viruses who can read everything but can only change the randomness of the system in a limited way. In [3], we demonstrated some basic cryptographic tasks that are impossible to achieve in this setting. Motivated by the fact that randomness is usually generated in blocks rather than bits, with my PhD student Mahloujifar [56], I extended our previous results of [3] by providing attacks even if the randomness is generated in multiple chunks, while each of the blocks is independently tamperable. Our works [3, 56] also gave algorithmic proofs for impossibility of extracting randomness from (blockwise) SV sources [78].

Power of tamper-proof hardware in cryptography [41, 48, 66]. Assuming strong forms of tamper proof assumptions about hardware lead to positive results [42, 50] that are otherwise impossible without computational assumptions. A candidate approach for achieving unconditional security without relying on computational assumptions is to use alternative physical models of interaction [26]. In a sequence of works with Goyal, Ishai, Sahai and Xiao [41, 48, 66], I showed how to build cryptography, and in particular secure computation, on physical assumptions through resettable tamper-proof hardware (that are even allowed to be reset by the adversary) rather than using unproven computational hardness assumptions.

Provable bounds against tampering adversaries in machine learning [55, 56]. In two works with my PhD student Saeed Mahloujifar [55, 56], I studied tools and techniques for tampering attacks that are powerful enough to be applied to domains outside cryptography such as adversarial machine learning. In particular, we showed [56] how to increase the error in a learning algorithm in polynomial time by tampering only with p fraction of the training data. As opposed to many heuristic attacks in this area, our work led to provable bounds of success by efficient attackers. In a follow-up work [54], we show how similar ideas can also be applied to prove inherent bounds for evasion attacks where the goal of the adversary is to find adversarial examples that are close to honestly generated ones, but are misclassified by the trained model.
Future Plans

At a high level, my plans for future research is to further develop the theory of assumptions in cryptography and build connections between this field and the younger field of adversarial machine learning. Below, I briefly explain some of my goals in these two research directions.

Exploring the power of non-black-box techniques. My future goal is to continue studying the limitations of computational assumptions and techniques in foundations of cryptography. Towards this goal, I plan to expand my research group and collaborate with new colleagues in other schools. On the other hand, when it comes to positive results, I also plan to study the power of non-black-box techniques such as garbling schemes in cryptography. Pursuing this goal is ever more motivated by recent results in cryptography [30] showing the inherent power of non-black-box constructions for natural cryptographic tasks [73].

Understanding the power of adversarial agents, beyond attacking learners. My second plan for the future is to expand my research in provable bounds in adversarial machine learning. Leveraging on our initial results [54, 55, 56] in adversarial learning, I plan to study, from a provable perspective, how strategic agents (i.e., adversaries, as we call them in cryptography) can affect decision making processes in which utility function models measures other than the optimality of the choices. In particular, I plan to study the power and limitation of attackers who target the fairness of sequential decision making algorithms. Due to the ever increasing role of automatic decision making systems, understanding the answer to this question is more important than ever.

References

[66] Mohammad Mahmoody and David Xiao. Languages with efficient zero-knowledge PCPs are in SZK. Theory of Cryptography Conference (TCC), 2013.

