Warm up

Given any 5 points on the unit square, show there’s always a pair distance $\leq \frac{\sqrt{2}}{2}$ apart
If points p_1, p_2 in same quadrant, then $\delta(p_1, p_2) \leq \frac{\sqrt{2}}{2}$.

Given 5 points, two must share the same quadrant.

Pigeonhole Principle!
Recurrence Solving Techniques

Tree

Guess/Check

“Cookbook”
Observation

• **Divide**: $D(n)$ time,
• **Conquer**: recurse on small problems, size s
• **Combine**: $C(n)$ time
• **Recurrence**:
 \[
 T(n) = D(n) + \sum T(s) + C(n)
 \]
• Many D&C recurrences are of form:
 \[
 T(n) = aT\left(\frac{n}{b}\right) + f(n)
 \]
Binary search

• Input: a sorted list and a query value
• Output: Is the query value and element of the list?
• Take the middle value in the list. If query == middle, return True. If query < middle then recursively do binary search on the first half of the list, else recursively do a binary search on the right half of the list
• \(T(n) = 1 \cdot T\left(\frac{n}{2}\right) + 1 \)
General

\[T(n) = aT \left(\frac{n}{b} \right) + f(n) \]

\[T(n) = \sum_{i=0}^{\log_b n} a^i f \left(\frac{n}{b^i} \right) \]
3 Cases

$$T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \cdots + a^L f\left(\frac{n}{b^L}\right)$$

Case 1:
Most work happens at the leaves

Case 2:
Work happens consistently throughout

Case 3:
Most work happens at top of tree
Master Theorem

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

- **Case 1:** if \(f(n) = \Theta(n^{\log_b a - \varepsilon}) \) for some constant \(\varepsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \)

- **Case 2:** if \(f(n) = \Theta(n^{\log_b a}) \), then \(T(n) = \Theta(n^{\log_b a} \log n) \)

- **Case 3:** if \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \) for some constant \(\varepsilon > 0 \), and if \(af\left(\frac{n}{b}\right) \leq cf(n) \) for some constant \(c < 1 \) and all sufficiently large \(n \), then \(T(n) = \Theta(f(n)) \)
Master Theorem Example

\(T(n) = aT \left(\frac{n}{b} \right) + f(n) \)

- **Case 1**: if \(f(n) = O(n^{\log_b a - \varepsilon}) \) for some constant \(\varepsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \)
- **Case 2**: if \(f(n) = \Theta(n^{\log_b a}) \), then \(T(n) = \Theta(n^{\log_b a \log n}) \)
- **Case 3**: if \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \) for some constant \(\varepsilon > 0 \), and if \(af \left(\frac{n}{b} \right) \leq cf(n) \) for some constant \(c < 1 \) and all sufficiently large \(n \), then \(T(n) = \Theta(f(n)) \)

\[T(n) = 2T \left(\frac{n}{2} \right) + 15n^3 \]

Case 3

\(\Theta(n^3) \)
\begin{itemize}
 \item \(af \left(\frac{n}{b} \right) \leq c \cdot f(n) \)
 \item \(2 \cdot 15 \left(\frac{n}{2} \right)^3 \leq c \cdot 15n^3 \)
 \item \(\frac{15}{4} n^3 \leq c \cdot 15n^3 \)
 \item True for \(c = \frac{1}{4} \)
\end{itemize}
Tree method

\[T(n) = 2T\left(\frac{n}{2}\right) + 15n^3 \]
Need to find: Closest Pair of Tomatoes
Closest Pair of Points

Given:
A list of points

Return:
Pair of points with smallest distance apart
Given:
A list of points

Return:
Pair of points with smallest distance apart

Algorithm: $O(n^2)$
Test every pair of points, return the closest.

We can do better! $\Theta(n \log n)$
Closest Pair of Points: D&C

Divide: How?
At median x coordinate

Conquer:

Combine:
Closest Pair of Points: D&C

Divide:
At median x coordinate

Conquer:
Recursively find closest pairs from Left and Right

Combine:
Closest Pair of Points: D&C

Divide:
At median x coordinate

Conquer:
Recursively find closest pairs from Left and Right

Combine:
Return min of Left and Right pairs Problem?
Closest Pair of Points: D&C

Combine:
2 Cases:

1. Closest Pair is completely in Left or Right

2. Closest Pair Spans our “Cut”

Need to test points across the cut
2. Closest Pair Spanned our “Cut”

Need to test points across the cut

Compare all points within $\delta = \min\{\delta_L, \delta_R\}$ of the cut.

How many are there?
Spanning the Cut

Combine:

2. Closest Pair Spanned our “Cut”

Need to test points across the cut

Compare all points within
\[\delta = \min\{\delta_L, \delta_R\} \]

of the cut.

How many are there?

\[T(n) = 2T\left(\frac{n}{2}\right) + \left(\frac{n}{2}\right)^2 = \Theta(n^2) \]
Spanning the Cut

Combine:

2. Closest Pair Spanned our “Cut”

Need to test points across the cut

We don’t need to test all pairs!

Only need to test points within δ of one another
Reducing Search Space

Combine:

2. Closest Pair Spanned our “Cut”

Need to test points across the cut

Divide the “runway” into square cubbies of size $\frac{\delta}{2}$

Each cubby will have at most 1 point!
Reducing Search Space

Combine:

2. Closest Pair Spanned our “Cut”

Need to test points across the cut

Divide the “runway” into square cubbies of size $\frac{\delta}{2}$

How many cubbies could contain a point $< \delta$ away?

Each point compared to ≤ 15 other points
Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair of points in each list

Combine:
- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points
Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

But sorting is an $O(n \log n)$ algorithm – combine step is still too expensive! We need $O(n)$

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points
Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair of points in each list

Base case?

Combine:
- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Solution: Maintain additional information in the recursion
- Minimum distance among pairs of points in the list
- List of points sorted according to y-coordinate

Sorting runway points by y-coordinate now becomes a merge
Listing Points in the Runway

Output on Left:
- Closest Pair: (1, 5), \(\delta_{1,5} \)
- Sorted Points: [3, 7, 5, 1]

Output on Right:
- Closest Pair: (4, 6), \(\delta_{4,6} \)
- Sorted Points: [8, 6, 4, 2]

Merged Points: [8, 3, 7, 6, 4, 5, 1, 2]

Runway Points: [8, 7, 6, 5, 2]

Both of these lists can be computed by a single pass over the lists
Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair of points in each list

Base case?

Combine:
- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among *left, right*, and *runway* points

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair of points in each list

Combine:
- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among *left, right*, and *runway* points
Closest Pair of Points: Divide and Conquer

What is the running time? \(\Theta(n \log n) \)

Initialization: Sort points by \(x \)-coordinate

Divide: Partition points into two lists of points based on \(x \)-coordinate (split at the median \(x \))

Conquer: Recursively compute the closest pair of points in each list

Combine:
- Merge sorted list of points by \(y \)-coordinate and construct list of points in the runway (sorted by \(y \)-coordinate)
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Case 2 of Master’s Theorem

\[T(n) = \Theta(n \log n) \]
Matrix Multiplication

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{bmatrix}
\times
\begin{bmatrix}
2 & 4 & 6 \\
8 & 10 & 12 \\
14 & 16 & 18 \\
\end{bmatrix}
=
\begin{bmatrix}
2 + 16 + 42 & 4 + 20 + 48 & 6 + 24 + 54 \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
60 & 72 & 84 \\
132 & 162 & 192 \\
204 & 252 & 300 \\
\end{bmatrix}
\]

Run time? \(O(n^3) \)
Matrix Multiplication D&C

Multiply $n \times n$ matrices (A and B)

Divide:

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ a_5 & a_6 & a_7 & a_8 \\ a_9 & a_{10} & a_{11} & a_{12} \\ a_{13} & a_{14} & a_{15} & a_{16} \end{bmatrix}$$

$$B = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \\ b_5 & b_6 & b_7 & b_8 \\ b_9 & b_{10} & b_{11} & b_{12} \\ b_{13} & b_{14} & b_{15} & b_{16} \end{bmatrix}$$
Matrix Multiplication D&C

Multiply $n \times n$ matrices (A and B)

\[
A = \begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}
\quad B = \begin{bmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{bmatrix}
\]

Combine:

\[
AB = \begin{bmatrix}
A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\
A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2}
\end{bmatrix}
\]

Run time?

\[
T(n) = 8T\left(\frac{n}{2}\right) + 4\left(\frac{n}{2}\right)^2
\]

Cost of additions
Matrix Multiplication D&C

\[T(n) = 8T \left(\frac{n}{2} \right) + 4 \left(\frac{n}{2} \right)^2 \]

\[T(n) = 8T \left(\frac{n}{2} \right) + \Theta(n^2) \]

\[a = 8, \quad b = 2, \quad f(n) = n^2 \]

\[n^{\log_b a} = n^{\log_2 8} = n^3 \]

Case 1!

\[T(n) = \Theta(n^3) \]

We can do better...
Matrix Multiplication D&C

Multiply $n \times n$ matrices (A and B)

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \quad B = \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix}$$

$$AB = \begin{bmatrix} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

Idea: Use a Karatsuba-like technique on this
Strassen’s Algorithm

Multiply $n \times n$ matrices (A and B)

\[A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \quad B = \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} \]

Calculate:

\[
\begin{align*}
Q_1 &= (A_{1,1} + A_{2,2})(B_{1,1} + B_{2,2}) \\
Q_2 &= (A_{2,1} + A_{2,2})B_{1,1} \\
Q_3 &= A_{1,1}(B_{1,2} - B_{2,2}) \\
Q_4 &= A_{2,2}(B_{2,1} - B_{1,1}) \\
Q_5 &= (A_{1,1} + A_{1,2})B_{2,2} \\
Q_6 &= (A_{2,1} - A_{1,1})(B_{1,1} + B_{1,2}) \\
Q_7 &= (A_{1,2} - A_{2,2})(B_{2,1} + B_{2,2})
\end{align*}
\]

Find AB:

\[
\begin{bmatrix}
Q_1 + Q_4 - Q_5 + Q_7 \\
Q_2 + Q_4 \\
Q_3 + Q_5 \\
Q_1 - Q_2 + Q_3 + Q_6
\end{bmatrix}
\begin{bmatrix}
A_{1,1}B_{1,1} + A_{1,2}B_{2,1} \\
A_{2,1}B_{1,1} + A_{2,2}B_{2,1} \\
A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\
A_{2,1}B_{1,2} + A_{2,2}B_{2,2}
\end{bmatrix}
\]

Number Mults.: 7 \quad Number Adds.: 18

\[
T(n) = 7T\left(\frac{n}{2}\right) + \frac{9}{2}n^2
\]
Strassen’s Algorithm

\[T(n) = 7T \left(\frac{n}{2} \right) + \frac{9}{2} n^2 \]

\[a = 7, b = 2, f(n) = \frac{9}{2} n^2 \]

\[n^{\log_b a} = n^{\log_2 7} \approx n^{2.807} \]

\[T(n) = \Theta(n^{\log_2 7}) \approx \Theta(n^{2.807}) \]
Strassen’s Algorithm
Is this the fastest?

Best possible is unknown

May not even exist!