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Abstract—Malware authors have used the open nature of the
web to distribute malicious software more quickly than security
software manufacturers can respond using static signature-
based detection mechanisms. Current behavioral techniques
suffer from high false positive rates because of the difficulty
of distinguishing between benign and malicious behaviors
based only on system calls. We propose incorporating user
actions to improve the precision of malware specifications
and introduce a system to create effective application security
policies based on the relationships between user interaction,
GUI events, and run-time operations of both benign and
malicious applications. Initial results show that GUI events
provide promising additional information for distinguishing
malicious and benign behavior.
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I. INTRODUCTION

Malware authors use the Internet to distribute new exploits
and malicious applications more quickly and in higher
volume than static signature-based detection techniques can
feasibly handle [1]. Furthermore, the widespread use of
metamorphic malware renders static signature-based scan-
ners largely ineffective. The application of specification min-
ing to develop accurate definitions for malicious and benign
behavior is promising but has yet to be proven effective at
creating generalized descriptions [2]. Our research applies
specification mining techniques to create security policies
based on the characteristics that distinguish malicious and
benign applications. In addition to the traditional measures
of program activity, we integrate user interaction and graph-
ical user interface (GUI) events into the specifications. Our
goal is to create a set of security policies that accurately
define benign behavior as a series of temporally related and
dependent system calls.

Strong policies should be developed to detect discrep-
ancies between underlying actions of a program and GUI
events. Most malware forgoes the use of a GUI in order
to avoid alerting the user to its presence [3]. Malware
often modifies system folders and registry entries, but be-
nign applications generally only perform such actions in
conjunction with a graphical installer combined with user
input. Also, a trusted application can be hijacked to perform
undesired operations, but the relationship between the GUI
and the underlying actions signals suspicious behavior. For
example, PDFs exploiting CVE-2009-0927 [4] against

Adobe Reader perform a JavaScript buffer-overflow to gain
access to the target system. Adobe Reader can be exploited
to conduct malicious activities never associated with viewing
PDFs, such as registering new system services, downloading
and executing arbitrary files, and deleting unassociated reg-
istry entries. Even though these actions would be associated
with GUI events, they can be distinguished from the normal
application behavior.

II. APPROACH

We built a system to derive application security policies
based on the information and insight gained from GUI
events and program execution traces. The security policy is
represented as a finite-state machine that generalizes benign
behavior across programs. Graph vertices represent logged
API calls (including relevant GUI events), and edges are
created between temporally linked and logically dependent
events. Figure 1 depicts an overview of our approach.

A. Trace Collection

To evaluate and learn effective policies we used a repre-
sentative dataset of 3000 malicious samples provided by the
Anubis [5] project, including a variety of viruses, spyware,
adware, worms, and exploits (e.g., malformed PDF and
HTML files). We used VirusTotal [6], a web service that
runs submitted files through dozens of professional security
applications, to identify and organize the samples.

To collect execution traces, we built a custom framework
that runs samples in a virtual machine (VM), logging all
events of interest to the host. There is no guarantee we
will see all malicious behavior in a single execution but we
chose a timeout of 30 minutes based on observations during
testing. The tracing software was implemented, in part, using
Microsoft Detours [7], a library for intercepting Win32 API
calls. Detours allows our tool to log user-level function calls
(file, network, GUI, and user interaction) on each process
running in the VM. Tracking the direct interaction of sam-
ples with the operating system circumvents complications
brought by code obfuscation techniques [8] [9].

We scripted automated testing of interactive programs
using the Java-based open source T-Plan Robot [10] software
and simulated typical use cases of popular and representative
applications to gather benign data. Common tasks, such
as program launches, file opens, and window manipulation



Figure 1: The processes and systems used to create the security policies.

are performed in a randomized order to limit experimental
influence of the scripting. Some situations are inherently
more difficult to evaluate as benign or malicious. Application
installers are graphical and perform activities similar in
many respects to malware. To compensate we included
several program installations in our experiments.

B. Policy Creation

Based on the work of Christodorescu, Jha, and Krue-
gal [2], we used the collected traces to build dependence
graphs for the malicious and benign applications. Each node
in the graph is a system call recorded in the the execution
trace, and edges are constructed between nodes that are data
dependent (i.e., the output of a system call depends on a
previous call) or occur within a specified time period, ∆.
We add time-based edges in order to include GUI-initiated
actions that do not directly share data with related system
calls. For our preliminary experiments we used ∆ = 2ms.

After creating the dependency graphs we generalize them
in order to create security policies that are not limited to
the specific applications tested. We replace file paths and
registry entries with generic variables (except for certain
predefined key files such as system files, where the specific
file is essential to the behavior). When a behavior flow is
checked against the generated security policies, the abstract
variables are bound to concrete ones.

The minimal contrast subgraph is a subgraph that appears
in one set of graphs but not in another. We adapted the
algorithm developed by Ting and Bailey [11] to find the
minimal contrast subgraphs in our data. To minimize false
negatives with an acceptable number of false positives, we
find the contrast subgraphs for information flows present
in the benign applications but not in the malware. The
implemented algorithm is inefficient. We mitigate this limi-
tation by only finding the contrast subgraphs for connected
elements of the dependence graphs.

A sequence of events that correspond to an information
flow in the security policy can be identified as benign.
Sequences not found in the graph are to be treated with
suspicion. For example, we hope to identify flows encapsu-

lating the user interaction and GUI events related to creating
a system file-chooser dialog followed by the creation of a
file handle. Such a sequence is evident of user intentions.

III. CONCLUSION

We believe relations between the GUI and underlying
actions provide insight into program behavior that can be
valuable in the creation and enforcement of security policies.
We have developed a system for automatically learning such
policies from collected traces and are beginning to evaluate
its effectiveness at detecting malware. By the symposium,
we hope to be able to report on results from preliminary
experiments.
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