A genetic algorithm for Database Query Optimization

Kristin Bennett, Michael C. Ferris Yannis E. Ioannidis

1991
The problem

• Query optimization is getting slower and slower…
 – More relations are being joined
 – Current techniques are inadequate to support some of the emerging database applications
Query optimization

- QUERY q
- Set of all strategies appropriate to answer the query
- Strategy s where c(s) = min
- Optimized query q
- Database

Optimizer
Strategy/Execution spaces

• What are they?

• Search space
Processing trees of interest

Left-deep tree
(Ł space)

Bushy tree
(A space)
The System-R algorithm

• Strategy for creating the optimal solution
 …

• Only left-deep trees are considered

• Too slow when many relations need to be joined
Genetic Algorithms

- A search technique used to find exact or approximate solutions to optimization and search problems

- Steps:
 - Initialization
 - Selection
 - Reproduction
 - Termination
Local neighbourhood algorithm

repeat
 for each chromosome \(i \) do
 evaluate \(f(i) \)
 broadcast \(f(i) \) in the neighbourhood of \(i \) /*3 hops away*/
 receive \(f(j) \) for all chromosomes \(j \) in the neighbourhood
 select chromosome \(k \) to mate from the neighbourhood of \(i \) based on fitness
 reproduce using chromosomes \(i \) and \(k \)
 replace chromosome \(i \) with one of the offspring /*if they are better than it*/
 until population variance is small
Left-deep strategies \mathcal{L}

- Frequently a strategy exists in \mathcal{L} which is very close to the optimal
 - The search space is much smaller
 - However it cannot beat System-R

- Each chromosome represents a left-deep strategy

- Mutation
 - Randomly change the join method
 - Swap two adjacent genes
Bushy strategies

- Often the best strategies are here but it’s too costly to look for them

\[k^{J_O} \]

- \(k \) – join number; \(J \) – join method; \(O \) – orientation

- No Cartesian products
 The representation is based on labeling joins and not relations

- Mutation
 - Change the join method or orientation
 - Swapping of neighbouring genes

\[1^{J_A} \ 5^{J_R} \ 2^{J_R} \ 3^{J_A} \ 4^{J_A} \]
Crossover

Modified Two Swap

\[X = m_A^n C^m B^m D^m F^n E\]
\[Y = m_B^n C^m D^m F^m E^n A\]
\[X_{\text{new}} = m_D^n C^m B^n A^n F^n E\]

CHUNK

\[X = 1_A^n 5_R^n 2_A^m 3_A^m 4_A^n\]
\[Y = 3_R^m 5_A^n 1_R^m 4_A^m 2_A^m\]
\[X_{\text{new}} = 5_A^n 1_R^m 2_R^m 3_R^m 4_A^m\]
Results
Output quality

- GA in L with CHUNK
- GA in L with M2S
- System-R in L
- GA in A with M2S
- GA in A with CHUNK

Graphs showing the relationship between the number of relations and the scaled cost for different algorithms and configurations.
Time

![Graph showing time vs number of relations for different algorithms (GA in L with CHUNK, GA in L with M2S, System-R in L, GA in A with M2S, GA in A with CHUNK).]
Questions?