
Alan Turing, at age 35, about the time
he wrote “Intelligent Machinery”

Copyright 1998 Scientific American, Inc.

Alan Turing’s Forgotten Ideas in Computer Science Scientific American April 1999 99

Alan Mathison Turing conceived of the modern
computer in 1935. Today all digital comput-
ers are, in essence, “Turing machines.” The

British mathematician also pioneered the field of
artificial intelligence, or AI, proposing the famous
and widely debated Turing test as a way of determin-
ing whether a suitably programmed computer can
think. During World War II, Turing was instrumental
in breaking the German Enigma code in part of a
top-secret British operation that historians say short-
ened the war in Europe by two years. When he died
at the age of 41, Turing was doing the earliest work
on what would now be called artificial life, simulat-
ing the chemistry of biological growth.

Throughout his remarkable career, Turing had no
great interest in publicizing his ideas. Consequently,
important aspects of his work have been neglected or
forgotten over the years. In particular, few people—
even those knowledgeable about computer science—
are familiar with Turing’s fascinating anticipation of
connectionism, or neuronlike computing. Also ne-
glected are his groundbreaking theoretical concepts
in the exciting area of “hypercomputation.” Accord-
ing to some experts, hypercomputers might one day
solve problems heretofore deemed intractable.

The Turing Connection

Digital computers are superb number crunchers.
Ask them to predict a rocket’s trajectory or calcu-

late the financial figures for a large multinational cor-
poration, and they can churn out the answers in sec-
onds. But seemingly simple actions that people routine-
ly perform, such as recognizing a face or reading
handwriting, have been devilishy tricky to program.
Perhaps the networks of neurons that make up the
brain have a natural facility for such tasks that standard
computers lack. Scientists have thus been investigating
computers modeled more closely on the human brain.

Connectionism is the emerging science of computing
with networks of artificial neurons. Currently research-
ers usually simulate the neurons and their interconnec-
tions within an ordinary digital computer (just as engi-
neers create virtual models of aircraft wings and
skyscrapers). A training algorithm that runs on the
computer adjusts the connections between the neurons,
honing the network into a special-purpose machine
dedicated to some particular function, such as forecast-
ing international currency markets.

Modern connectionists look back to Frank Rosen-
blatt, who published the first of many papers on the
topic in 1957, as the founder of their approach. Few re-
alize that Turing had already investigated connectionist
networks as early as 1948, in a little-known paper enti-
tled “Intelligent Machinery.”

Written while Turing was working for the National
Physical Laboratory in London, the manuscript did not
meet with his employer’s approval. Sir Charles Darwin,
the rather headmasterly director of the laboratory and
grandson of the great English naturalist, dismissed it as
a “schoolboy essay.” In reality, this farsighted paper
was the first manifesto of the field of artificial intelli-

Well known for the machine,
test and thesis that bear his name,
the British genius also anticipated

neural-network computers
and “hypercomputation”

by B. Jack Copeland and Diane Proudfoot

Alan Turing's
FFoorrggootttteenn

IIddeeaass
in

Computer Science

W
. H

EF
FE

R
A

N
D

 S
O

N
S

LT
D

.,
C

A
M

B
RI

D
G

E,
 E

N
G

LA
N

D

Copyright 1999 Scientific American, Inc.

gence. In the work—which remained un-
published until 1968, 14 years after Tur-
ing’s death—the British mathematician
not only set out the fundamentals of con-
nectionism but also brilliantly introduced
many of the concepts that were later to
become central to AI, in some cases after
reinvention by others.

In the paper, Turing invented a kind of
neural network that he called a “B-type

unorganized machine,” which consists of
artificial neurons and devices that modify
the connections between them. B-type
machines may contain any number of
neurons connected in any pattern but are
always subject to the restriction that each
neuron-to-neuron connection must pass
through a modifier device.

All connection modifiers have two
training fibers. Applying a pulse to one
of them sets the modifier to “pass
mode,” in which an input—either 0 or
1—passes through unchanged and be-
comes the output. A pulse on the other
fiber places the modifier in “interrupt
mode,” in which the output is always
1, no matter what the input is. In this
state the modifier destroys all informa-
tion attempting to pass along the con-
nection to which it is attached.

Once set, a modifier will maintain its
function (either “pass” or “interrupt”)
unless it receives a pulse on the other
training fiber. The presence of these inge-
nious connection modifiers enables the
training of a B-type unorganized ma-
chine by means of what Turing called
“appropriate interference, mimicking
education.” Actually, Turing theorized
that “the cortex of an infant is an unor-
ganized machine, which can be orga-
nized by suitable interfering training.”

Each of Turing’s model neurons has
two input fibers, and the output of a
neuron is a simple logical function of its
two inputs. Every neuron in the net-
work executes the same logical opera-
tion of “not and” (or NAND): the out-
put is 1 if either of the inputs is 0. If
both inputs are 1, then the output is 0.

Turing selected NAND because every
other logical (or Boolean) operation can

be accomplished by groups of NAND
neurons. Furthermore, he showed that
even the connection modifiers themselves
can be built out of NAND neurons.
Thus, Turing specified a network made
up of nothing more than NAND neu-
rons and their connecting fibers—about
the simplest possible model of the cortex.

In 1958 Rosenblatt defined the theo-
retical basis of connectionism in one suc-

cinct statement: “Stored
information takes the
form of new connections,
or transmission channels
in the nervous system (or
the creation of conditions
which are functionally
equivalent to new connec-
tions).” Because the de-
struction of existing con-
nections can be func-

tionally equivalent to the creation of new
ones, researchers can build a network
for accomplishing a specific task by tak-
ing one with an excess of connections
and selectively destroying some of them.
Both actions—destruction and creation—
are employed in the training of Turing’s
B-types.

At the outset, B-types contain random
interneural connections whose modifiers
have been set by chance to either pass or
interrupt. During training, unwanted
connections are destroyed by switching
their attached modifiers to interrupt
mode. Conversely, changing a modifier
from interrupt to pass in effect creates a
connection. This selective culling and en-
livening of connections hones the initially
random network into one organized for
a given job.

Turing wished to investigate other
kinds of unorganized machines, and he
longed to simulate a neural network and
its training regimen using an ordinary
digital computer. He would, he said, “al-
low the whole system to run for an ap-
preciable period, and then break in as a
kind of ‘inspector of schools’ and see
what progress had been made.” But his
own work on neural networks was car-
ried out shortly before the first general-
purpose electronic computers became
available. (It was not until 1954, the year
of Turing’s death, that Belmont G. Farley
and Wesley A. Clark succeeded at the
Massachusetts Institute of Technology in
running the first computer simulation of
a small neural network.)

Paper and pencil were enough, though,
for Turing to show that a sufficiently
large B-type neural network can be
configured (via its connection modifiers)

in such a way that it becomes a general-
purpose computer. This discovery illumi-
nates one of the most fundamental prob-
lems concerning human cognition.

From a top-down perspective, cogni-
tion includes complex sequential process-
es, often involving language or other
forms of symbolic representation, as in
mathematical calculation. Yet from a
bottom-up view, cognition is nothing but
the simple firings of neurons. Cognitive
scientists face the problem of how to rec-
oncile these very different perspectives.

Turing’s discovery offers a possible so-
lution: the cortex, by virtue of being a
neural network acting as a general-pur-
pose computer, is able to carry out the se-
quential, symbol-rich processing dis-
cerned in the view from the top. In 1948
this hypothesis was well ahead of its
time, and today it remains among the
best guesses concerning one of cognitive
science’s hardest problems.

Computing the Uncomputable

In 1935 Turing thought up the ab-
stract device that has since become

known as the “universal Turing ma-
chine.” It consists of a limitless memory

100 Scientific American April 1999

Few realize that Turing
had already investigated

connectionist networks
as early as 1948.

In a paper that went unpublished
until 14 years after his death (top),

Alan Turing described a network of
artificial neurons connected in a ran-
dom manner. In this “B-type unorga-
nized machine” (bottom left), each
connection passes through a modifi-
er that is set either to allow data to
pass unchanged (green fiber) or to de-
stroy the transmitted information (red
fiber). Switching the modifiers from
one mode to the other enables the
network to be trained. Note that each
neuron has two inputs (bottom left, in-
set) and executes the simple logical
operation of “not and,” or NAND: if
both inputs are 1, then the output is
0; otherwise the output is 1.

In Turing’s network the neurons in-
terconnect freely. In contrast, modern
networks (bottom center) restrict the
flow of information from layer to layer
of neurons. Connectionists aim to
simulate the neural networks of the
brain (bottom right).

Turing’s Anticipation
of Connectionism

Alan Turing’s Forgotten Ideas in Computer Science

Copyright 1999 Scientific American, Inc.

that stores both program and data and
a scanner that moves back and forth
through the memory, symbol by sym-
bol, reading the information and writ-
ing additional symbols. Each of the ma-
chine’s basic actions is very simple—
such as “identify the symbol on which
the scanner is positioned,” “write ‘1’”
and “move one position to the left.”
Complexity is achieved by chaining to-
gether large numbers of these basic ac-
tions. Despite its simplicity, a universal
Turing machine can execute any task
that can be done by the most powerful
of today’s computers. In fact, all mod-
ern digital computers are in essence
universal Turing machines [see “Turing
Machines,” by John E. Hopcroft; Sci-

entific American, May 1984].
Turing’s aim in 1935 was to devise a

machine—one as simple as possible—
capable of any calculation that a human
mathematician working in accordance
with some algorithmic method could
perform, given unlimited time, energy,
paper and pencils, and perfect concen-
tration. Calling a machine “universal”
merely signifies that it is capable of all
such calculations. As Turing himself
wrote, “Electronic computers are in-

tended to carry out any definite rule-of-
thumb process which could have been
done by a human operator working in a
disciplined but unintelligent manner.”

Such powerful computing devices
notwithstanding, an intriguing question
arises: Can machines be devised that are
capable of accomplishing even more?
The answer is that these “hyperma-
chines” can be described on paper, but
no one as yet knows whether it will be
possible to build one. The field of hyper-
computation is currently attracting a
growing number of scientists. Some
speculate that the human brain itself—
the most complex information proces-
sor known—is actually a naturally oc-
curring example of a hypercomputer.

Before the recent surge of interest in
hypercomputation, any information-
processing job that was known to be
too difficult for universal Turing ma-
chines was written off as “uncom-
putable.” In this sense, a hypermachine
computes the uncomputable.

Examples of such tasks can be found
in even the most straightforward areas
of mathematics. For instance, given
arithmetical statements picked at ran-
dom, a universal Turing machine may

not always be able to tell which are the-
orems (such as “7 + 5 = 12”) and which
are nontheorems (such as “every num-
ber is the sum of two even numbers”).
Another type of uncomputable problem
comes from geometry. A set of tiles—
variously sized squares with different
colored edges—“tiles the plane” if the
Euclidean plane can be covered by
copies of the tiles with no gaps or over-
laps and with adjacent edges always the
same color. Logicians William Hanf and
Dale Myers of the University of Hawaii
have discovered a tile set that tiles the
plane only in patterns too complicated
for a universal Turing machine to calcu-
late. In the field of computer science, a
universal Turing machine cannot always
predict whether a given program will
terminate or continue running forever.
This is sometimes expressed by saying
that no general-purpose programming
language (Pascal, BASIC, Prolog, C and
so on) can have a foolproof crash de-
bugger: a tool that detects all bugs that
could lead to crashes, including errors
that result in infinite processing loops.

Turing himself was the first to investi-
gate the idea of machines that can per-
form mathematical tasks too difficult

Alan Turing’s Forgotten Ideas in Computer Science Scientific American April 1999 101

TO
M

 M
O

O
RE

 (i
llu

st
ra

tio
ns

);
KI

N
G

’S
 C

O
LL

EG
E

M
O

D
ER

N
 A

R
C

H
IV

ES
, C

A
M

B
RI

D
G

E
U

N
IV

ER
SI

TY
 L

IB
R

A
RY

 (t
op

);
PE

TE
R

A
RN

O
LD

, I
N

C
. (

bo
tt

om
 ri

gh
t)

Copyright 1999 Scientific American, Inc.

for universal Turing machines. In his
1938 doctoral thesis at Princeton Uni-
versity, he described “a new kind of ma-
chine,” the “O-machine.”

An O-machine is the result of aug-
menting a universal Turing machine
with a black box, or “oracle,” that is a
mechanism for carrying out uncom-
putable tasks. In other respects, O-ma-
chines are similar to ordinary com-
puters. A digitally encoded program is

fed in, and the machine produces digital
output from the input using a step-by-
step procedure of repeated applications
of the machine’s basic operations, one
of which is to pass data to the oracle
and register its response.

Turing gave no indication of how an
oracle might work. (Neither did he ex-
plain in his earlier research how the ba-
sic actions of a universal Turing ma-

chine—for example, “identify the sym-
bol in the scanner”—might take place.)
But notional mechanisms that fulfill the
specifications of an O-machine’s black
box are not difficult to imagine [see box
above]. In principle, even a suitable B-
type network can compute the uncom-
putable, provided the activity of the neu-
rons is desynchronized. (When a central
clock keeps the neurons in step with one
another, the functioning of the network

can be exactly simulat-
ed by a universal Turing
machine.)

In the exotic mathe-
matical theory of hyper-
computation, tasks such
as that of distinguishing
theorems from nonthe-
orems in arithmetic are
no longer uncomput-
able. Even a debugger

that can tell whether any program writ-
ten in C, for example, will enter an
infinite loop is theoretically possible.

If hypercomputers can be built—and
that is a big if—the potential for crack-
ing logical and mathematical problems
hitherto deemed intractable will be
enormous. Indeed, computer science
may be approaching one of its most sig-
nificant advances since researchers

wired together the first electronic em-
bodiment of a universal Turing machine
decades ago. On the other hand, work
on hypercomputers may simply fizzle
out for want of some way of realizing
an oracle.

The search for suitable physical,
chemical or biological phenomena is
getting under way. Perhaps the answer
will be complex molecules or other
structures that link together in patterns
as complicated as those discovered by
Hanf and Myers. Or, as suggested by
Jon Doyle of M.I.T., there may be natu-
rally occurring equilibrating systems
with discrete spectra that can be seen as
carrying out, in principle, an uncom-
putable task, producing appropriate
output (1 or 0, for example) after being
bombarded with input.

Outside the confines of mathematical
logic, Turing’s O-machines have largely
been forgotten, and instead a myth has
taken hold. According to this apoc-
ryphal account, Turing demonstrated in
the mid-1930s that hypermachines are
impossible. He and Alonzo Church, the
logician who was Turing’s doctoral ad-
viser at Princeton, are mistakenly credit-
ed with having enunciated a principle to
the effect that a universal Turing ma-
chine can exactly simulate the behavior

Alan Turing’s Forgotten Ideas in Computer Science102 Scientific American April 1999

Alan Turing proved that his universal machine—and by ex-
tension, even today’s most powerful computers—could

never solve certain problems. For instance, a universal Turing
machine cannot always determine whether a given software
program will terminate or continue running forever. In some
cases, the best the universal machine can do is execute the
program and wait—maybe eternally—for it to finish. But in his
doctoral thesis (below), Turing did imagine that a machine
equipped with a special “oracle” could perform this and other
“uncomputable” tasks. Here is one example of how, in princi-
ple, an oracle might work.

Consider a hypothetical machine for solving the formidable “terminating program” problem (above). A computer pro-
gram can be represented as a finite string of 1s and 0s. This
sequence of digits can also be thought of as the binary rep-
resentation of an integer, just as 1011011 is the equivalent
of 91. The oracle’s job can then be restated as, “Given an in-
teger that represents a program (for any computer that can
be simulated by a universal Turing machine), output a ‘1’ if
the program will terminate or a ‘0’ otherwise.”

The oracle consists of a perfect measuring device and a
store, or memory, that contains a precise value—call it τ for
Turing—of some physical quantity. (The memory might, for
example, resemble a capacitor storing an exact amount of

Using an Oracle to Compute
the Uncomputable

Even among experts, Turing’s
pioneering theoretical

concept of a hypermachine
has largely been forgotten.

100001. . .001111

BINARY REPRESENTATION
OF PROGRAM

COMPUTER PROGRAM

EXCERPT FROM TURING’S THESIS

PR
IN

C
ET

O
N

 A
R

C
H

IV
ES

Copyright 1999 Scientific American, Inc.

of any other information-processing ma-
chine. This proposition, widely but in-
correctly known as the Church-Turing
thesis, implies that no machine can carry
out an information-processing task that
lies beyond the scope of a universal Tur-
ing machine. In truth, Church and Tur-
ing claimed only that a universal Turing
machine can match the behavior of any
human mathematician working with
paper and pencil in accordance with
an algorithmic method—a considerably

weaker claim that certainly does not rule
out the possibility of hypermachines.

Even among those who are pursuing
the goal of building hypercomputers,
Turing’s pioneering theoretical contribu-
tions have been overlooked. Experts
routinely talk of carrying out informa-
tion processing “beyond the Turing lim-
it” and describe themselves as attempt-
ing to “break the Turing barrier.” A re-
cent review in New Scientist of this
emerging field states that the new ma-

chines “fall outside Turing’s concep-
tion” and are “computers of a type nev-
er envisioned by Turing,” as if the
British genius had not conceived of such
devices more than half a century ago.
Sadly, it appears that what has already
occurred with respect to Turing’s ideas
on connectionism is starting to happen
all over again.

The Final Years

In the early 1950s, during the last
years of his life, Turing pioneered the

field of artificial life. He was trying to
simulate a chemical mechanism by
which the genes of a fertilized egg cell
may determine the anatomical structure
of the resulting animal or plant. He de-
scribed this research as “not altogether
unconnected” to his study of neural net-
works, because “brain structure has to
be . . . achieved by the genetical embry-
ological mechanism, and this theory
that I am now working on may make
clearer what restrictions this really im-
plies.” During this period, Turing
achieved the distinction of being the first
to engage in the computer-assisted ex-
ploration of nonlinear dynamical sys-
tems. His theory used nonlinear differ-
ential equations to express the chem-
istry of growth.

But in the middle of this groundbreak-
ing investigation, Turing died from
cyanide poisoning, possibly by his own
hand. On June 8, 1954, shortly before
what would have been his 42nd birth-
day, he was found dead in his bedroom.
He had left a large pile of handwritten
notes and some computer programs.
Decades later this fascinating material is
still not fully understood.

Alan Turing’s Forgotten Ideas in Computer Science Scientific American April 1999 103

S

The Authors

B. JACK COPELAND and DIANE PROUDFOOT are the di-
rectors of the Turing Project at the University of Canterbury, New
Zealand, which aims to develop and apply Turing’s ideas using
modern techniques. The authors are professors in the philosophy
department at Canterbury, and Copeland is visiting professor of
computer science at the University of Portsmouth in England.
They have written numerous articles on Turing. Copeland’s Tur-
ing’s Machines and The Essential Turing are forthcoming from
Oxford University Press, and his Artificial Intelligence was pub-
lished by Blackwell in 1993. In addition to the logical study of hy-
permachines and the simulation of B-type neural networks, the
authors are investigating the computer models of biological
growth that Turing was working on at the time of his death. They
are organizing a conference in London in May 2000 to celebrate
the 50th anniversary of the pilot model of the Automatic Comput-
ing Engine, an electronic computer designed primarily by Turing.

Further Reading

X-Machines and the Halting Problem: Building a Super-Turing

Machine. Mike Stannett in Formal Aspects of Computing, Vol. 2,
pages 331–341; 1990.

Intelligent Machinery. Alan Turing in Collected Works of A. M.
Turing: Mechanical Intelligence. Edited by D. C. Ince. Elsevier Science
Publishers, 1992.

Computation beyond the Turing Limit. Hava T. Siegelmann in Sci-
ence, Vol. 268, pages 545–548; April 28, 1995.

On Alan Turing’s Anticipation of Connectionism. B. Jack
Copeland and Diane Proudfoot in Synthese, Vol. 108, No. 3, pages
361–377; March 1996.

Turing’s O-Machines, Searle, Penrose and the Brain. B. Jack
Copeland in Analysis, Vol. 58, No. 2, pages 128–138; 1998.

The Church-Turing Thesis. B. Jack Copeland in The Stanford Encyclo-
pedia of Philosophy. Edited by Edward N. Zalta. Stanford University, ISSN
1095-5054. Available at http://plato.stanford.edu on the World Wide Web.

TO
M

 M
O

O
RE

8,735,439

DECIMAL EQUIVALENT
OF BINARY NUMBER

ORACLE

0

ORACLE’S MEMORY WITH τ = 0.00000001101. . .

PROGRAM
WILL
NOT

TERMINATE

electricity.) The value of τ is an irrational number; its written representation would
be an infinite string of binary digits, such as 0.00000001101. . .

The crucial property of τ is that its individual digits happen to represent accu-
rately which programs terminate and which do not. So, for instance, if the integer
representing a program were 8,735,439, then the oracle could by measurement
obtain the 8,735,439th digit of τ (counting from left to right after the decimal
point). If that digit were 0, the oracle would conclude that the program will process
forever.

Obviously, without τ the oracle would be useless, and finding some physical vari-
able in nature that takes this exact value might very well be impossible. So the search
is on for some practicable way of implementing an oracle. If such a means were found,
the impact on the field of computer science could be enormous. —B.J.C. and D.P.

Copyright 1999 Scientific American, Inc.

