
A
lthough mathematicians and sci-
entists must rank among the 
most rational people in the

world, they will often admit to falling
prey to a curse. Called the curse of di-
mension, it is one many people experi-

ence in some form. For example, a fam-
ilyÕs decision about whether to reÞnance
their mortgage with a 15- or 30-year
loan can be extremely diÛcult to make,
because the choice depends on an in-
terplay of monthly expenses, income,

future tax and interest rates
and other uncertainties. In sci-
ence, the problems are more
esoteric and arguably much
harder to cope with. In the
computer-aided design of
pharmaceuticals, for instance,
one might need to know how
tightly a drug candidate will
bind to a biological receptor.
Assuming a typical number of
8,000 atoms in the drug, the
biological receptor and the
solvent, then because of the
three spatial variables needed
to describe the position of
each atom, the calculation in-
volves 24,000 variables. Sim-
ply put, the more variables, or
dimensions, there are to con-
sider, the harder it is to ac-
complish a task. For many
problems, the diÛculty grows
exponentially with the number
of variables.

The curse of dimension can
elevate tasks to a level of diÛ-
culty at which they become in-
tractable. Even though scien-
tists have computers at their
disposal, problems can have
so many variables that no 
future increase in computer
speed will make it possible to
solve them in a reasonable
amount of time.

Can intractable problems be
made tractableÑthat is, solv-
able in a relatively modest
amount of computer time?
Sometimes the answer is, hap-
pily, yes. But we must be will-
ing to do without a guarantee
of achieving a small error in
our calculations. By settling
for a small error most of the

time (rather than always), some kinds
of multivariate problems become trac-
table. One of us (Wozniakowski) for-
mally proved that such an approach
works for at least two classes of math-
ematical problems that arise quite fre-
quently in scientiÞc and engineering
tasks. The Þrst is integration, a funda-
mental component of the calculus. The
second is surface reconstruction, in
which pieces of information are used
to reconstruct an object, a technique
that is the basis for medical imaging.

Fields other than science can beneÞt
from ways of breaking intractability.
For example, Þnancial institutions often
have to assign a value to a pool of mort-
gages, which is aÝected by mortgagees
who reÞnance their loans. If we assume
a pool of 30-year mortgages and per-
mit reÞnancing monthly, then this task
contains 30 years times 12 months, or
360 variables. Adding to the diÛculty
is that the value of the pool depends
on interest rates over the next 30 years,
which are of course unknown.

We shall describe the causes of in-
tractability and discuss the techniques
that sometimes allow us to break it.
This issue belongs to the new Þeld of
information-based complexity, which
examines the computational complexi-
ty of problems that cannot be solved
exactly. We shall also speculate brießy
on how information-based complexity
might enable us to prove that certain
scientiÞc questions can never be an-
swered because the necessary comput-
ing resources do not exist in the uni-
verse. If so, this condition would set lim-
its on what is scientiÞcally knowable.

I
nformation-based complexity fo-
cuses on the computational diÛ-
culty of so-called continuous prob-

lems. Calculating the movement of the
planets is an example. The motion is
governed by a system of ordinary dif-
ferential equationsÑthat is, equations
that describe the positions of the plan-
ets as a function of time. Because time
can take any real value, the mathemati-
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cal model is said to be continuous. Con-
tinuous problems are distinct from dis-
crete problems, such as diÝerence equa-
tions in which time takes only integer
values. DiÝerence equations appear in
such analyses as the predicted number
of predators in a study of predator-
prey populations or the anticipated pol-
lution levels in a lake.

In the everyday process of doing sci-
ence and engineering, however, contin-
uous mathematical formulations pre-
dominate. They include a host of prob-
lems, such as ordinary and partial dif- 
ferential equations, integral equations,
linear and nonlinear optimization, inte-
gration and surface reconstruction.
These formulations often involve a large
number of variables. For example, com-
putations in chemistry, pharmaceutical
design and metallurgy often entail cal-
culations of the spatial positions and
momenta of thousands of particles.

Often the intrinsic diÛculty of guar-
anteeing an accurate numerical solu-
tion grows exponentially with the num-
ber of variables, eventually making the
problem computationally intractable.
The growth is so explosive that in many
cases an adequate numerical solution
cannot be guaranteed for situations
comprising even a modest number of
variables.

To state the issue of intractability
more precisely and to discuss possible
cures, we will consider the example of
computing the area under a curve. The
process resembles the task of comput-
ing the vertical area occupied by a col-
lection of books on a shelf. More explic-
itly, we will calculate the area between
two bookends. Without loss of general-
ity, we can assume the bookends rest
at 0 and 1. Mathematically, this sum-
ming process is called the computation
of the deÞnite integral. (More accurate-
ly, the area is occupied by an inÞnite
number of books, each inÞnitesimally
thin.) The mathematical input to this
problem is called the integrand, a func-
tion that describes the proÞle of the
books on the shelf.

Calculus students learn to compute
the deÞnite integral by following a set
of prescribed rules. As a result, the stu-
dents arrive at the exact answer. But
most integration problems that arise in
practice are far more complicated, and
the symbolic process learned in school
cannot be carried out. Instead the inte-
gral must be approximated numerical-
lyÑthat is, by a computer. More exactly,
one computes the integrand values at
Þnitely many points. These integrand
values result from so-called information
operations. Then one combines these
values to produce the answer.

Knowing only these values does not

completely identify the true integrand.
Because one can evaluate the integrand
only at a Þnite number of points, the in-
formation about the integrand is par-
tial. Therefore, the integral can, at best,
only be approximated. One typically
speciÞes the accuracy of the
approximation by stating that
the error of the answer falls
within some error threshold.
Mathematicians represent this
error with the Greek letter ep-
silon, ε.

Even this goal cannot be
achieved without further re-
striction. Knowing the inte-
grand at, say, 0.2 and 0.5 indi-
cates nothing about the curve
between those two points. The
curve can assume any shape
between them and therefore
enclose any area. In our book-
shelf analogy, it is as if an art
book has been shoved be-
tween a run of paperbacks. To
guarantee an error of at most
ε, some global knowledge of
the integrand is needed. One
may need to assume, for ex-
ample, that the slope of the
function is always less than
45 degreesÑor that only pa-
perbacks are allowed on that
shelf.

In summary, an investiga-
tor trying to solve an integral
must usually do it numerically
on a computer. The input to
the computer is the integrand
values at some points. The
computer produces an output
that is a number approximat-
ing the integral.

T
he basic concept of
computational complex-
ity can now be intro-

duced. We want to Þnd the in-
trinsic diÛculty of solving the
integration problem. Assume
that determining integrand
values and using combinatory

operations, such as addition, multipli-
cation and comparison, each have a
given cost. The cost could simply be the
amount of time a computer needs to
perform the operation. Then the com-
putational complexity of this integra-

SCIENTIFIC AMERICAN January 1994       103

One solution to an intractable problem

JOSEPH F. TRAUB and HENRYK WOZNIAKOWSKI have been collaborating since 1973.
Currently the Edwin Howard Armstrong Professor of Computer Science at Columbia
University, Traub headed the computer science department at Carnegie Mellon Univer-
sity and was founding chair of the Computer Science and Telecommunications Board of
the National Academy of Sciences. In 1959 he began his pioneering research in what is
today called information-based complexity and has received many honors, including
election to the National Academy of Engineering. He is grateful to researchers at the
Santa Fe Institute for numerous stimulating conversations concerning the limits of sci-
entiÞc knowledge. Wozniakowski holds two tenured appointments, one at the Universi-
ty of Warsaw and the other at Columbia University. He directed the department of
mathematics, computer science and mechanics at the University of Warsaw and was the
chairman of Solidarity there. In 1988 he received the Mazur Prize from the Polish Math-
ematical Society. The authors thank the National Science Foundation and the Air Force
OÛce of ScientiÞc Research for their support.

´

´

Copyright 1993 Scientific American, Inc.



tion problem can be deÞned as the min-
imal cost of guaranteeing that the com-
puted answer is within an error thresh-
old, ε , of the true value. The optimal
information operations and the opti-
mal combinatory algorithm are those
that minimize the cost.

Theorems have shown that the com-
putational complexity of this integra-
tion problem is on the order of the re-
ciprocal of the error threshold (1/ε). In
other words, it is possible to choose a
set of information operations and a
combinatory algorithm such that the
solution can be approximated at a cost
of about 1/ε. It is impossible to do
better. With one variable, or dimension,
the problem is rather easy. The compu-
tational complexity is inversely propor-
tional to the desired accuracy.

But if there are more dimensions to
this integration problem, then the com-
putational complexity scales exponen-
tially with the number of variables. If
d represents the number of variables,
then the complexity is on the order of
(1/ε)dÑthat is, the reciprocal of the 
error threshold raised to a power equal
to the number of variables. If one
wants eight-place accuracy (down to
0.00000001) in computing an integral
that has three variables, then the com-

plexity is roughly 1024. In other words,
it would take a trillion trillion inte-
grand values to achieve that level of ac-
curacy. Even if one generously assumes
the existence of a sequential computer
that performs 10 billion function evalu-
ations per second, the job would take
100 trillion seconds, or more than three
million years. A computer with a million
processors would still take 100 million
seconds, or about three years.

To discuss multivariate problems
more generally, we must introduce one
additional parameter, called r. This pa-
rameter represents the smoothness of
the mathematical inputs. By smooth-
ness, we mean that the inputs consist
of functions that do not have any sud-
den or dramatic changes. (Mathemati-
cians say that all partial derivatives of
the function up to order r are bound-
ed.) The parameter takes on nonnega-
tive integer values; increasing values in-
dicate more smoothness. Hence, r = 0
represents the least amount of smooth-
ness (technically, the integrands are
only continuousÑthey are rather jagged
but still connected as a single curve).

Numerous problems have a compu-
tational complexity that is on the order
of (1/ε)d/r. For those of a more techni-
cal persuasion, multivariate integra-

tion, surface reconstruction, partial dif-
ferential equations, integral equations
and nonlinear optimization all have this
computational complexity.

If the error threshold and the smooth-
ness parameter are Þxed, then the com-
putational complexity depends expo-
nentially on the number of dimensions.
Hence, the problems become intractable
for high dimensions. An impediment
even more serious than intractability
may occur: a problem may be unsolv-
able. A problem is unsolvable if one
cannot compute even an approxima-
tion at Þnite cost. This is the case when
the mathematical inputs are continu-
ous but jagged. The smoothness pa-
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SAMPLING POINTS indicate where to evaluate functions in the randomized and av-
erage-case settings. The points are plotted in two dimensions for visual clarity. The
points chosen can be spaced over regular intervals such as grid points (a ), or in
random positions (b ). Two other types, so-called Hammersley points (c ) and hy-
perbolic-cross points (d ), represent optimal places in the average-case setting.

In the 1940s physicists working on
the Manhattan Project at Los Alamos

National Laboratory realized that some
of the problems they were trying to
solve, such as the movement of neu-
trons through materials, lay beyond the
reach of deterministic calculations.
They turned to the Monte Carlo method
of Nicholas C. Metropolis and Stanislaw
M. Ulam. The strength of the method is
that its error does not depend on the
number of variables in the problem.
Hence, if applicable, it breaks the curse
of dimension. The classical Monte Carlo
method for multivariate integration re-
quires at most of order 1/ε2 evalua-
tions at random points, where ε is the
error bound. An alternative statement
is that if the integrand is evaluated at n random points,
then the expected error of randomization is at most of or-
der 1/√n. Since its formulation, the Monte Carlo method
and its variations have proved to be useful to calculate a

variety of phenomena, from the size of
cosmic showers to the percolation of a liq-
uid through a solid.

For multivariate integration, the classi-
cal Monte Carlo method is optimal only if
the smoothness parameter, r, of integrands
is zero. In 1959 the Russian mathemati-
cian N. S. Bakhvalov began pioneering re-
search on the computational complexity
of multivariate integration in the random-
ized setting and devised an alternative to
the Monte Carlo method. Later, in 1988,
Erich Novak of the University of Erlangen-
Nürnberg extended the work of Bakhvalov
to establish that the computational com-
plexity in the randomized setting is of or-
der (1/ε) s, with s = 2/(1 + 2r/d ). Note
that 0 < s ≤ 2. If the smoothness parame-

ter equals zero, then s = 2, and the classical Monte Carlo
method is optimal. On the other hand, if r is positive, then
the classical Monte Carlo method is no longer optimal,
and Bakhvalov’s method can be used instead.

Developing a Random Approach

Stanislaw M. Ulam, 1909Ð84
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rameter is zero, and the computational
complexity becomes inÞnite. Hence, for
many problems with a large number of
variables, guaranteeing that an approx-
imation has a desired error becomes an
unsolvable or intractable task.

Mathematically, the computational
complexity results we have described
apply to the so-called worst-case deter-
ministic setting. The Òworst caseÓ phras-
ing comes from the fact that the ap-
proximation provides a guarantee that
the error always falls within ε. In other
words, for multivariate integration, an
approximation within the error thresh-
old is guaranteed for every integrand
that has a given smoothness. The word
ÒdeterministicÓ arises from the fact
that the integrand is evaluated at deter-
ministic (in contrast to random) points.

In this worst-case deterministic set-
ting, many multivariate problems are
unsolvable or intractable. Because these
results are intrinsic to the problem,
one cannot get around them by invent-
ing other methods.

O
ne possible way to break un-
solvability and intractability is
through randomization. To il-

lustrate how randomization works, we
will again use multivariate integration.
Instead of picking points deterministi-
cally or even optimally, we allow (in an
informal sense) a coin toss to make the
decisions for us. A loose analogy might
be sampling polls. Rather than ask ev-
ery registered voter, a pollster conducts
a small, random sampling to determine
the likely winner.

Theorems indicate that with a ran-
dom selection of points, the computa-
tional complexity is at most on the or-
der of the reciprocal of the square of
the error threshold (1/ε2). Thus, the
problem is always tractable, even if the

smoothness parameter is equal to zero.
The workhorse of the randomized

approach has been the Monte Carlo
method. Nicholas C. Metropolis and
Stanislaw M. Ulam suggested the idea
in the 1940s. In the classical Monte
Carlo method the integrand is evaluat-
ed at uniformly distributed random
points. The arithmetic mean of these
function values then serves as the ap-
proximation of the integral.

Amazingly enough, for multivariate
integration problems, randomization
of this kind makes the computational
complexity independent of dimension.
Problems that are unsolvable or intrac-
table if computed from the best possi-
ble deterministic points become trac-
table if approached randomly. ( If r is
positive, however, then the classical
Monte Carlo method is not the optimal
one; see box on the opposite page.)

One does not get so much for noth-
ing. The price that must be paid for
breaking the unsolvability or intracta-
bility is that the ironclad guarantee that
the error is at most ε is lost. Instead
one is left only with a weaker guaran-
tee that the error is probably no more
than εÑmuch as a preelection poll is
usually correct but might, on occasion,
predict a wrong winner. In other words,
a worst-case guarantee is impossible;
one must be content with a weaker 
assurance.

Randomization makes multivariate
integration and many other important
problems computationally feasible. It 
is not, however, a cure-all. Randomiza-
tion fails completely for some kinds of
problems. For instance, in 1987 Greg W.
Wasilkowski of the University of Ken-
tucky showed that randomization does
not break intractability for surface re-
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In the text, we mention that the average-case complexity of multivariate in-
tegration is on the order of the reciprocal of the error threshold (1/ε) and

that for surface reconstruction, it is the square of that reciprocal (1/ε2). For
simplicity, we ignored some multiplicative factors that depend on d and ε.
Here we provide more rigorous statements.

The average computational complexity, comp avg(ε, d; INT), of multivari-
ate integration is bounded by

The average computational complexity, comp avg(ε, d; SUR), of surface re-
construction is bounded by

Average-Case Complexity

g1(d )

ε
g2(d )

εcompavg (ε, d; INT)≤ ≤
(d–1)/2 (d–1)/2

log 
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ε log 
1
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ε2compavg (ε, d; SUR)≤ ≤
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Good estimates of g1(d ), g2(d ), g3(d ) and g4(d ) are currently not known.
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construction. Is there an approach that
does and that works over a broad class
of mathematics problems?

There is indeed. It is the average-case
setting, in which we seek to break un-
solvability and intractability by replac-
ing a worst-case guarantee with a weak-
er one: that the expected error is at
most ε. The average-case setting im-
poses restrictions on the kind of math-
ematical inputs. These restrictions are
chosen to represent what would hap-
pen most of the time. Technically, the
constraints are described by probabili-
ty distributions; the distributions de-
scribe the likelihood that certain inputs
occur. The most commonly used distri-
butions are Gaussian measures and, in
particular, Wiener measures.

Although it was known since the
1960s that multivariate integration is
tractable on the average, the proof was
nonconstructive. That is, it did not spec-
ify the optimal points to evaluate the
integrand, the optimal combinatory al-
gorithm and the average computation-
al complexity. Attempts to apply ideas
from other areas of computation to de-
termine these unknowns did not work.

For example, evaluating the integrand
at regularly spaced points, such as those
on a grid, are often used in computa-
tion. But theorems have shown them to
be poor choices for the average-case
setting. A proof was given in 1975 by
N. Donald Ylvisaker of the University
of California at Los Angeles. It was later
generalized in 1990 by Wasilkowski and
Anargyros Papageorgiou, then studying
for his Ph.D. at Columbia University.

The solution came in 1991, when
Wozniakowski found the construction.
As sometimes happens in science, a re-
sult from number theory, a branch of
mathematics far removed from aver-
age-case complexity theory, was crucial.
Part of the key came from work on
number theory by Klaus F. Roth of Im-
perial College, London, a 1958 Fields
Medalist. Another part was provided by
recent work by Wasilkowski.

Let us describe the result more pre-
cisely. First, put the smoothness para-
meter at zeroÑthat is, tackle a problem
that is unsolvable in the worst-case de-
terministic setting. Next, assume that
integrands are distributed according to
a Wiener measure. If we ignore certain

multiplicative factors for simplicityÕs
sake, the average computational com-
plexity has been proved to be inversely
proportional to the error threshold (on
the order of 1/ε) [see box on page 105].
For small errors, the result is a major
improvement over the classical Monte
Carlo method, in which the cost is in-
versely proportional to the square of
the error threshold (1/ε2).

The average case oÝers a diÝerent
kind of assurance from that provided
by the randomized (Monte Carlo) set-
ting. The error in the average-case set-
ting depends on the distribution of the
integrands, whereas the error in the
randomized setting depends on a dis-
tribution of the sample points. In our
books-on-a-shelf analogy, the distribu-
tion in the average-case setting might
rule out the inclusion of many oversize
books, whereas the distribution in the
randomized setting determines which
books are to be sampled.

In the average-case setting the opti-
mal evaluation points must be deter-
ministically chosen. The best points are
Hammersley points or hyperbolic-cross
points [see illustration on pages 104

and 105 ]. These deterministic points
oÝer a better sampling than randomly
selected or regularly spaced (or grid)
points. They make what would be im-
possible to solve tractable on average.

Is surface reconstruction also tracta-
ble on the average? This query is par-
ticularly important because, as already
mentioned, randomization does not
help. Under the same assumptions we
used for integration, we Þnd that the
average computational complexity is on
the order of 1/ε2. Hence, surface re-
construction becomes tractable on av-
erage. As was the case for integration,
hyperbolic-cross points are optimal.

We are now testing whether the aver-
age case is a practical alternative. A
Ph.D. student at Columbia, Spassimir H.
Paskov, is developing software to com-
pare the deterministic techniques with
Monte Carlo methods for integration.
Preliminary results obtained by testing
certain Þnance problems suggest the
superiority of the deterministic meth-
ods in practice.

In our simpliÞed description, we ig-
nored a multiplicative factor that aÝects
the computational complexity. This fac-
tor depends on the number of variables
in the problem. When the number of
variables is large, that factor can be-
come huge. Good theoretical estimates
of the factor are not known, and obtain-
ing them is believed to be very hard.

Wozniakowski uncovered a solution:
get rid of that factor. SpeciÞcally, we say
a problem is strongly tractable if the
number of function evaluations needed
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This article discusses intractability and breaking of intractability for multi-
variate integration and surface reconstruction. These are two examples

of continuous problems. But what is known about the computational com-
plexity of discrete, rather than continuous, problems? The famous traveling
salesman problem is an example of a discrete problem, in which the goal is
to visit various cities in the shortest distance possible.

A discrete problem is in-
tractable if its computational
complexity increases exponen-
tially with the number of its in-
puts. The intractability of many
discrete problems in the worst-
case deterministic setting has
been conjectured but not yet
proved. What is known is that
hundreds of discrete problems
all have essentially the same
computational complexity. That
means they are all tractable or
all intractable, and the common
belief among experts is that
they are all intractable. For tech-
nical reasons, these problems
are said to be NP-complete. One
of the great open questions in
discrete computational complex-
ity theory is whether the NP-
complete problems are indeed
intractable [see “Turing Ma-
chines,” by John E. Hopcroft; SCI-
ENTIFIC AMERICAN, May 1984].

Discrete Computational Complexity
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for the solution is completely indepen-
dent of the number of variables. Instead
it would depend only on a power of
1/ε. The possibility seems too much 
to hope for, but it was proved last year
that multivariate integration and sur-
face reconstruction are both strongly
tractable on the average.

A Þnal obstacle must be overcome
before these new results can be used.
We know there must exist evaluation
points and a combinatory algorithm
that make integration and surface re-
construction strongly tractable on the
average. Unfortunately, the proof of
this result does not tell us what the
points and algorithms are, thus leaving
a beautiful challenge for the future.

W
ork on information-based
complexity has led one of us
(Traub) to speculate that it

might be possible to prove formally
that certain scientiÞc questions are un-
answerable. The proposed attack is to
prove that the computing resources
(time, memory, energy) do not exist in
the universe to answer such questions.

One important achievement of math-
ematics over the past 60 years is the
idea that mathematical problems may
be undecidable, noncomputable or in-
tractable. Kurt G�del proved the Þrst
of these results. He established that in
a suÛciently rich mathematical sys-
tem, such as arithmetic, there are theo-
rems that can never be proved.

We believe it is time to up the ante
and try to prove there are unanswer-
able scientiÞc questions. In other words,
we would like to establish a physical
G�delÕs theorem. The process oÝers a
markedly diÝerent challenge from prov-
ing results about mathematical prob-
lems, because a scientiÞc question does
not come equipped with a mathemati-
cal formulation. Such questions include
when the universe will stop expanding
and what the average global tempera-
ture will be in the year 2001.

Why do intractability results suggest
that some scientiÞc questions might be
unanswerable? Recall the results. In the
worst-case deterministic setting, the
computational complexity of many con-
tinuous problems grows exponentially
with dimension. Also, the computation-
al complexity of many discrete prob-
lems is conjectured to grow exponen-
tially with the number of inputs [see
box on opposite page]. Furthermore, al-
though some problems are tractable in
the randomized or average-case set-
tings, it has been proved that others re-
main intractable. Such problems may
lurk in certain supercomputing tasks
or questions regarding the foundations
of physics. After all, they involve a large

number of variables or particles. Even
worse, many physics problems require
solutions to a kind of integral called 
a path integral, which has an inÞnite
number of dimensions. Solutions of
path integrals invite high-dimensional
approximations. Thus, the intractabili-
ty results and conjectures are certainly
daunting because they suggest that
many tasks with a large number of
variables or objects might be impossi-
ble to solve.

We emphasize the possibility of oth-
er impediments to answering scientiÞc
questions. One is chaos, the extreme
sensitivity to initial conditions. Because
the precise initial conditions are either
not known or cannot be exactly entered
into a digital computer, certain ques-
tions about the behavior of a chaotic
system cannot be answered. To focus
on the issue at hand, we limit ourselves
to intractability.

As we have already observed, a scien-
tiÞc question does not come equipped
with a mathematical formulation. Each
of a number of models might capture
the essence of a scientiÞc question. Be-
cause intractability results refer to a
particular mathematical formulation, it
might happen that although a partic-
ular mathematical formulation is in-
tractable, another formulation may be
found that is indeed tractable. This
prospect indicates a possible way to
prove the existence of unanswerable
scientiÞc questions. We can attempt to
show that there exist scientiÞc ques-
tions such that every mathematical for-
mulation that captures the essence of

the question is intractable. We would
therefore have scienceÕs version of G�-
delÕs theorem.

Humans are intrigued not only by the
unknown but also by the unknowable.
Here we have suggested one possible
attack to establish what may be forever
unknowable in science. The curse of di-
mension, broken now for many kinds
of problems, may yet cast its spell.
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REENTRY OF SPACE SHUTTLE provides an example of a computationally complex
task: modeling of the airflow around the craft. This job is difficult even though
only seven variables govern the dynamics. Added dimensions may yield problems
that can never be solved and thus limit what is scientifically knowable.
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