
Confronting Science’s Logical Limits

To anyone infected with the
idea that the human mind is
unlimited in its capacity to an-

swer questions, a tour of 20th-century
mathematics must be rather disturbing.
In 1931 Kurt Gödel set forth his incom-
pleteness theorem, which established
that no system of deductive inference

can answer all questions about numbers.
A few years later Alan M. Turing proved
an equivalent assertion about computer
programs, which states that there is no
systematic way to determine whether a
given program will ever halt when pro-
cessing a set of data. More recently,
Gregory J. Chaitin of IBM has found
arithmetic propositions whose truth can
never be established by following any
deductive rules.

These findings proscribe our ability to
know in the world of mathematics and
logic. Are there similar limits to our abil-
ity to answer questions about natural
and human affairs? The first and per-
haps most vexing task in confronting

this issue is to settle what we mean by
“scientific knowledge.” To cut through
this philosophical Gordian knot, let me
adopt the perhaps moderately contro-
versial position that a scientific way of
answering a question takes the form of
a set of rules, or program. We simply
feed the question into the rules as input,
turn the crank of logical deduction and
wait for the answer to appear.

Thinking of scientific knowledge as
being generated by what amounts to a
computer program raises the issue of
computational intractability. The diffi-
culty of solving the celebrated travel-
ing-salesman problem, which involves
finding the shortest route connecting a
large number of cities, is widely believed
to increase exponentially as the number
of destinations rises. For example, pin-
pointing the best itinerary for a sales-
man visiting 100 cities would require
examining 100 × 99 × 98 × 97 × . . . × 1
possibilities—a task that would take
even the fastest computer billions of
years to complete.

But such a computation is possible—at
least in principle. Our focus is on ques-
tions for which there exists no program
at all that can produce an answer. What
would be needed for the world of phys-
ical phenomena to display the kind of
logical unanswerability seen in mathe-
matics? I contend that nature would
have to be either inconsistent or incom-
plete, in the following senses. Consis-
tency means that there are no true para-
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TRAVELING SALESMAN would need
the world’s fastest computer running for
billions of years to calculate the shortest
route between 100 destinations. Scientists
are now seeking ways to make such daunt-
ing problems more tractable.
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doxes in nature. In general, when we
encounter what appears to be such a
paradox—such as jets of gas that seemed
to be ejected from quasars at faster than
light speeds—subsequent investigation
has provided a resolution. (The “super-
luminal” jets turned out to be an opti-
cal illusion stemming from relativistic
effects.)

Completeness of nature implies that a
physical state cannot arise for no rea-
son whatsoever; in short, there is a cause
for every effect. Some analysts might
object that quantum theory contradicts
the claim that nature is consistent and
complete. Actually, the equation gov-
erning the wave function of a quantum
phenomenon provides a causal expla-
nation for every observation (complete-
ness) and is well defined at each instant
in time (consistency). The notorious
“paradoxes” of quantum mechanics
arise because we insist on thinking of
the quantum object as a classical one.

A Triad of Riddles

It is my belief that nature is both con-
sistent and complete. On the other

hand, science’s dependence on mathe-
matics and deduction hampers our abil-
ity to answer certain questions about
the natural world. To bring this issue
into sharper focus, let us look at three
well-known problems from the areas of
physics, biology and economics.

• Stability of the solar system. The
most famous question of classical me-
chanics is the N-body problem. Broadly
speaking, this problem looks at the be-
havior of a number, N, of point-size

masses moving in accordance with New-
ton’s law of gravitational attraction.
One version of the problem addresses
whether two or more of these bodies
will collide or whether one will acquire
an arbitrarily high velocity in a finite
time. In his 1988 doctoral dissertation,
Zhihong ( Jeff) Xia of Northwestern
University showed how a single body
moving back and forth between two bi-
nary systems (for a total of five masses)
could approach an arbitrarily high ve-
locity and be expelled from the system.
This result, which was based on a special
geometric configuration of the bodies,
says nothing about the specific case of
our solar system. But it does suggest that
perhaps the solar system might not be
stable. More important, the finding of-
fers new tools with which to investigate
the matter.

• Protein folding. The proteins mak-
ing up every living organism are all
formed as sequences of a large number
of amino acids, strung out like beads on
a necklace. Once the beads are put in
the right sequence, the protein folds up
rapidly into a highly specific three-di-
mensional structure that determines its
function in the organism. It has been es-
timated that a supercomputer applying

plausible rules for protein folding would
need 10127 years to find the final folded
form for even a very short sequence
consisting of just 100 amino acids. In
fact, in 1993 Aviezri S. Fraenkel of the
University of Pennsylvania showed that
the mathematical formulation of the
protein-folding problem is computation-
ally “hard” in the same way that the
traveling-salesman problem is hard.
How does nature do it?

• Market efficiency. One of the pillars
on which the classical academic theory
of finance rests is the idea that financial
markets are “efficient.” That is, the
market immediately processes all infor-
mation affecting the price of a stock or
commodity and incorporates it into the
current price of the security. Conse-
quently, prices should move in an un-
predictable, essentially random fashion,
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PROTEIN-FOLDING PROBLEM con-
siders how a string of amino acids (left)
folds up almost instantaneously into an
extraordinarily complex, three-dimension-
al protein (right). Biologists are now try-
ing to unravel the biochemical “rules” that
proteins follow in accomplishing this feat.

IL
LU

S
TR

A
TI

O
N

S
 B

Y
 L

A
U

R
IE

 G
R

A
C

E

Copyright 1996 Scientific American, Inc.



discounting the effect of inflation. This,
in turn, means that trading schemes
based on any publicly available infor-
mation, such as price histories, should
be useless; there can be no scheme that
performs better than the market as a
whole over a significant interval. But ac-
tual markets do not seem to pay much
attention to academic theory. The fi-
nance literature is filled with such mar-
ket “anomalies” as the low price–earn-
ings ratio effect, which states that the
stocks of firms whose prices are low rel-
ative to their earnings consistently out-
perform the market overall.

The Unreality of Mathematics

Our examination of the three ques-
tions posed above has yielded what

appear to be three answers: the solar
system may not be stable, protein fold-
ing is computationally hard, and finan-
cial markets are probably not complete-
ly efficient. But what each of these pu-
tative “answers” has in common is that
it involves a mathematical representa-
tion of the real-world question, not the
question itself. For instance, Xia’s solu-
tion of the N-body problem does not
explain how real planetary bodies move
in accordance with real-world gravita-
tional forces. Similarly, Fraenkel’s con-
clusion that protein folding is computa-
tionally hard fails to address the issue
of how real proteins manage to do their
job in seconds rather than eons. And,
of course, canny Wall Street operators
have thumbed their noses at the effi-
cient-market hypothesis for decades. So
to draw any conclusions about the in-
ability of science to deal with these ques-
tions, we must either justify the mathe-
matical model as a faithful representa-
tion of the physical situation or abandon
the mathematics altogether. We consid-
er both possibilities in what follows.

What these examples show is that if
we want to look for scientifically unan-
swerable questions in the real world,
we must carefully distinguish between
the world of natural and human phe-
nomena and mathematical and compu-
tational models of those worlds. The ob-
jects of the real world consist of directly
observable quantities, such as time and
position, or quantities, such as energy,
that are derived from them. Thus, we
consider parameters such as the mea-

sured position of planets or the actual
observed configuration of a protein.
Such observables generally constitute a
discrete set of measurements taking their
values in some finite set of numbers.
Moreover, such measurements are gen-
erally not exact.

In the world of mathematics, on the
other hand, we have symbolic represen-
tations of such real-world observables,
where the symbols are often assumed
to belong to a continuum in both space
and time. The mathematical symbols
representing attributes such as position
and speed usually have numerical values
that are integers, real numbers or com-
plex numbers, all systems containing an
infinite number of elements. In mathe-
matics the concept of choice for charac-
terizing uncertainty is randomness.

Finally, there is the world of compu-
tation, which occupies the curious posi-
tion of having one foot in the real world
of physical devices and one foot in the
world of abstract mathematical objects.
If we think of computation as the exe-
cution of a set of rules, or algorithm, the
process is a purely mathematical one
belonging to the world of symbolic ob-
jects. But if we regard a computation as
the process of turning switches on or off
in the memory of an actual computing
machine, then it is a process firmly root-
ed in the world of physical observables.

One way to demonstrate whether a
given question is logically impossible to
answer by scientific means is to restrict
all discussion and arguments solely to
the world of natural phenomena. If we
follow this path, we are forbidden to
translate a question such as “Is the so-
lar system stable?” into a mathematical
statement and thereby to generate an
answer with the logical proof mecha-
nism of mathematics. We then face the
problem of finding a substitute in the
physical world for the concept of math-
ematical proof.

A good candidate is the notion of
causality. A question can be considered
scientifically answerable, in principle, if
it is possible to produce a chain of causal
arguments whose final link is the answer
to the question. A causal argument need
not be expressed in mathematical terms.
For example, the standard deductive ar-
gument “All men are mortal; Socrates is
a man; therefore, Socrates is mortal” is
a causal chain. There is no mathematics

involved, just plain English. On the oth-
er hand, constructing a convincing caus-
al argument without recourse to mathe-
matics may be a daunting task. In the
case of the stability of the solar system,
for example, one must find compelling
nonmathematical definitions of the
planets and gravity.

Given these difficulties, it seems wise
to consider approaches that mix the
worlds of nature and mathematics. If
we want to invoke the proof machinery
of mathematics to settle a particular real-
world question, it is first necessary to
“encode” the question as a statement in
some mathematical formalism, such as
a differential equation, a graph or an
N-person game. We settle the mathemat-
ical version of the question using the
tools and techniques of this particular
corner of the mathematical world, even-
tually “decoding” the answer (if there is
one!) back into real-world terms. One
challenge here is establishing that the
mathematical version of the problem is
a faithful representation of the question
as it arises in the real world. How do
we know that mathematical models of
a natural system and the system itself
bear any relation to each other? This is
an old philosophical conundrum, en-
tailing the development of a theory of
models for its resolution. Moreover,
mathematical arguments may be sub-
ject to the constraints revealed by Gö-
del, Turing and Chaitin; we do not know
yet whether the real world is similarly
constrained.

The Noncomputational Mind

There may be ways to sidestep these
issues. The problems identified by

Gödel and others apply to number sys-
tems with infinite elements, such as the
set of all integers. But many real-world
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problems, such as the traveling-sales-
man problem, involve a finite number
of variables, each of which can take only
a finite number of possible values.

Similarly, nondeductive modes of rea-
soning—induction, for instance, in which
we jump to a general conclusion on the
basis of a finite number of specific ob-
servations—can take us beyond the
realm of logical undecidability. So if we
restrict our mathematical formalisms to
systems using finite sets of numbers or
nondeductive logic, or both, every math-
ematical question should be answer-
able; hence, we can expect the decoded
real-world counterpart of such ques-
tions to be answerable as well.

Studies of the human mind may re-
veal other ways to bypass logical limits.
Some artificial-intelligence proponents
have proposed that our brains are com-
puters, albeit extremely sophisticated
ones, that perform calculations in the
same logical, step-by-step fashion that
conventional computers (and even par-
allel processors and neural networks)
do. But various theorists, notably the

mathematical physicist Roger Penrose
of the University of Oxford, have ar-
gued that human cognitive activity is not
based on any known deductive rules and
is thus not subject to Gödelian limits.

Recently this viewpoint has been bol-
stered by studies carried out under the
aegis of the Institute for Future Studies
in Stockholm by me, the psychologist
Margaret A. Boden of the University of
Sussex, the mathematician Donald G.
Saari of Northwestern University, the
economist Åke E. Andersson (the insti-
tute’s director) and others. Our work
strongly suggests that in the arts as well
as in the natural sciences and mathemat-
ics, the human creative capacity is not
subject to the rigid constraints of a com-
puter’s calculations. Penrose and other
theorists have conjectured that human
creativity stems from some still unknown
mechanisms or rules, perhaps related to
quantum mechanics. By uncovering
these mechanisms and incorporating
them into the scientific method, scien-

tists may be able to solve some seem-
ingly intractable problems.

Of course, science’s ability to plumb
nature’s secrets is limited by many prac-
tical considerations—such as measure-
ment error, length of computation, phys-
ical and economic resources, political
will and cultural values. But none of
these considerations bears on whether
there is a logical barrier to our answer-
ing a certain question about the natural
world. My contention is that there is not.
So a tour of 20th-century mathematics
need not be so disturbing after all!
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N-BODY SYSTEM consisting of a point
mass oscillating between two binary sys-
tems (left) is unstable, according to a the-
orem by Zhihong Xia of Northwestern
University. Such work may reveal wheth-
er the solar system will someday expel
one of its planets into deep space.
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