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“ONLY A S STRONG A S THE WE AKEST LINK” describes the 
construction of a bridge as well as that of a computer 
program. Like bridges, software programs are key 
components of the critical infrastructure of modern society—
but researchers only recently have invented effective ways 
to pretest the soundness of software designs. 
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Dependable

Design
Software

by

Computers fly our airliners and run most of the 
world’s banking, communications, retail and 
manufacturing systems. Now powerful analysis 
tools will at last help software engineers ensure 
the reliability of their designs

By Daniel Jackson
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A n architectural marvel when it 
opened 11 years ago, the new 
Denver International Airport’s 
high-tech jewel was to be its au-

tomated baggage handler. It would au-
tonomously route luggage around 26 
miles of conveyors for rapid, seamless 
delivery to planes and passengers. But 
software problems dogged the system, 
delaying the airport’s opening by 16 
months and adding hundreds of millions 
of dollars in cost overruns. Despite years 
of tweaking, it never ran reliably. Last 
summer airport managers finally pulled 
the plug—reverting to traditional manu-
ally loaded baggage carts and tugs with 
human drivers. The mechanized han-
dler’s designer, BAE Automated Systems, 
was liquidated, and United Airlines, its 
principal user, slipped into bankruptcy, 
in part because of the mess.

The high price of poor software de-
sign is paid daily by millions of frustrat-
ed users. Other notorious cases include 
costly debacles at the U.S. Internal Rev-
enue Service (a failed $4-billion modern-
ization effort in 1997, followed by an 
equally troubled $8-billion updating 

project); the Federal Bureau of Investiga-
tion (a $170-million virtual case-file 
management system was scrapped in 
2005); and the Federal Aviation Admin-
istration (a lingering and still unsuccess-
ful attempt to renovate its aging air-traf-
fic control system).

Such massive failures occur because 
crucial design flaws are discovered too 
late. Only after programmers began 
building the code—the instructions a 
computer uses to execute a program—

do they discover the inadequacy of their 
designs. Sometimes a fatal inconsisten-
cy or omission is at fault, but more often 
the overall design is vague and poorly 
thought out. As the code grows with the 
addition of piecemeal fixes, a detailed 
design structure indeed emerges—but it 
is a design full of special cases and loop-
holes, without coherent principles. As in 
a building, when the software’s founda-
tion is unsound, the resulting structure 
is unstable.

Managers involved in high-profile 
software blowouts could claim in their 
defense that they followed standard in-
dustry practices, and unfortunately they 

would be right. Developers rarely ar-
ticulate their designs precisely and ana-
lyze them to check that they embody the 
desired properties. But with computers 
now flying airplanes, driving trains and 
cars, and running most of the financial, 
communications, trading and pro-
duction machinery of the world, society  
has an urgent need to improve software  
dependability.

Now a new generation of software 
design tools is emerging [see box on page 
74]. Their analysis engines are similar in 
principle to tools that engineers increas-
ingly use to check computer hardware 
designs. A developer models a software 
design using a high-level (summary) 
coding notation and then applies a tool 
that explores billions of possible execu-
tions of the system, looking for unusual 
conditions that would cause it to behave 
in an unexpected way. This process 
catches subtle flaws in the design before 
it is even coded, but more important, it 
results in a design that is precise, robust 
and thoroughly exercised. One example 
of such a tool is Alloy, which my research 
group and I constructed. Alloy (which is 
freely available on the Web) has proved 
useful in applications as varied as avion-
ics software, telephony, cryptographic 
systems and the design of machines used 
in cancer therapy [see box on page 73].

Alloy and related design-checking 
tools build on a quarter of a century of 
existing research into ways to prove 
mathematically whether programs are 
correct. But rather than requiring proofs 
to be done by hand, they employ auto-
mated reasoning techniques that treat a 
software design problem as a giant puz-
zle to be solved. These analyzers operate 
on designs, not program code, so they 

■   Despite the ever increasing importance of computer software in our daily 
lives, software engineers rarely analyze their designs to ensure reliability. 
That situation is starting to change with the recent development of software 
design checking tools such as Alloy.

■   Alloy combines a language that eases the modeling of complex software 
designs with an analysis engine that checks extensively for conceptual and 
structural flaws in an automated fashion, treating designs as huge puzzles  
to be solved. 

■   In the relatively near future, tools similar to Alloy will greatly improve the 
dependability of software by basing program development on more robust 
and constructive design practices. 

Overview/Software Design Checkers

Almost all grave software 
problems can be traced to 
conceptual mistakes made 
before programming started.

Failed automated baggage system at Denver International Airport.
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ALLOY IN ACTION

d r s:  se t  D i r,
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module filesystem

abstract sig Object {}
sig File, Dir extends Object {}

sig FS {
 dirs: set Dir,
 files: set File,
 contains: dirs -> (dirs + files)
 }

pred move_dir (fs, fs': FS, d, to: Dir) {
d + to in fs.dirs
fs'.contains = fs.contains - Dir->d + to->d
fs'.files = fs.files and fs'.dirs = fs.dirs
 }

check move_OK
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Problem: directory cannot move 
to itself

Map of relations

File

File

pred reachable (fs: FS) {
 some root: fs.dirs | fs.(dirs+files) in root.*(fs.contains)
 }

assert move_OK {
 all fs, fs': FS, d, to: Dir |
    reachable (fs) and move_dir (fs, fs', d, to) implies reachable (fs')
 }

BLUEPRINT      

Contains
STATE1

EFFECT

File

STATE 12
File File

File

File

Alloy helps software designers fi nd and fi x design fl aws by 
providing both a language that clarifi es a program’s structure 
and an automated analyzer that searches the vast numbers 
of possible executions of a system for a “counterexample” 
that shows how it could fail to behave as desired. In the 
simplifi ed example below, an engineer uses Alloy to evaluate 

the design of a fi le system—the software that organizes your 
computer fi les into folders and stores them on a disk. A crucial 
task for Alloy is to work out the effects various operations 
would have on the fi le structure. Here is how a designer might 
model and check the operation that moves a folder, or 

“directory,” from one location in the fi le hierarchy to another.

STEP 4: FIND AND FIX THE FL AW 
Alloy executes “check move–OK” by generating all 
possible states of the system (up to a certain size) 
and checking the assertion for each—thus 
simulating possible moves as they might occur when 
the software is run. Alloy fi nds a counterexample to 
the assertion—a directory that can be moved to 
itself. The action would disconnect the directory 
from a root, making it unreachable. As a remedy, a 
designer could add a new con straint disallowing a 
directory to move to itself or any of its descendants.

STEP 3: SPECIF Y REQUIREMENTS
The designer then formulates a crucial 
requirement: every fi le and directory should be 
“reachable” (have a pathway) from some root. This 
is recorded in the Alloy model as an “assertion” 
(called “move–OK”), which says that executing the 
move operation does not make a fi le or directory 
unreachable from a root. 

STEP 2: MODEL THE OPERATION
Next, the designer models the move (“move–dir”) 
of the fi le system before (“fs”) to a fi le system after 
(“fs'”). The operation involves two directories: “d,” 
the directory being moved, and “to,” the place it is 
being moved to—its new parent. Three constraints 
follow, which describe the intended effect, on three 
separate lines: First, both the moved object and its 
new location are directories of the fi le system. 
Second comes the essence of the operation: it says 
that the new containment mapping is the old one, 
with every mapping from a directory to “d” removed, 
and the mapping from “to” to “d” added. The third 
line says that nothing else changes. 

STEP 1: DEFINE THE OBJECTS
The designer identifi es the system’s objects—
fi les, directories and the fi le system as a whole—
and their relations with one another. The Alloy 
model says the fi le system (FS) has three 
components: “fi les” (its set of fi les), “dirs” (its set 
of directories) and “contains” (a mapping that 
gives, for each directory, the set of fi les and 
directories it contains).
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cannot guarantee that a program will 
not crash. But they potentially offer soft-
ware engineers the first practical tools to 
ensure that designs are robust and free 
from conceptual flaws and thus provide 
a firm foundation on which to build reli-
able software systems.

Evaluating Designs
bad soft ware is not a new problem. 
Warnings of a software crisis go back to 
the 1960s and have only intensified as 
computers have been woven into the fab-
ric of society [see “Software’s Chronic 
Crisis,” by W. Wayt Gibbs; Scientific 
American, September 1994].

Today most software typically is de-
bugged and refined by testing. Human 
engineers run the program using a wide 
range of starting conditions (or inputs) 
to see if it operates as expected. Al-
though the practice catches a raft of 
small flaws, it often overlooks faults in 
the basic design of the software. In some 
sense, these test procedures miss the 
(diseased) forest for the (rotting) trees.

What is worse, bugs “fixed” during 
the testing process often exacerbate de-
sign problems. As programmers debug 
the code and insert new features, the 
software invariably grows barnacles of 
complexity, creating more opportunities 
for errors and inefficient operation. This 
situation is reminiscent of the (incorrect) 
Ptolemaic theory of planetary motion 

first developed by the ancient Greeks. In 
the Middle Ages, as observations showed 
the predictions to be inaccurate, astron-
omers adjusted Ptolemy’s system, which 
relied on epicycles. When that proved 
insufficient, they resorted to adding epi-
cycles to the epicycles. Further fine-tun-
ing over the centuries never solved the 
problem, because the initial concept was 
fatally flawed.

Similarly, bad software tends to get 
more and more complicated and less and 
less reliable, however much time and 
money are poured into improving it. It is 
well known that serious problems with 
software systems rarely arise from pro-
gramming errors; almost all grave diffi-
culties can be traced back to conceptual 
mistakes made before programming 
even started. In contrast, a small amount 
of modeling and analysis during the ini-
tial determination of requirements, spec-
ifications, or program design costs only 
a tiny fraction of the price tag of checking 
all the code but provides a large part of 
the benefit gained from an exhaustive 
analysis. Focusing on design early saves 
costly headaches down the road.

Design tools for software have been 
slow in coming because software does 
not obey physical laws. Because com-
puter programs are in essence mathe-
matical objects whose values are con-
structed from bits, software programs 
are discrete (particlelike) rather than 

continuous. A mechanical engineer can 
stress a component with a large force 
and assume that if it survives it will not 
fail when subjected to a slightly smaller 
force. When an object is subject to the 
(mostly continuous) principles of the 
physical world, a small change in one 
quantity generally produces a small 
change in another. Unfortunately, no 
such generalities apply to software: one 
cannot extrapolate between test cases. If 
one chunk of software works, that fact 
says nothing about the operations of a 
similar chunk of code; they are discrete 
and separate.

In the early days of computer science, 
researchers hoped that programmers 
might prove their codings were correct in 
the same way that mathematicians prove 
their theorems. With no way to automate 
the many steps involved, however, a hu-
man expert had to do much of the work. 
These so-called heavy-duty formal meth-
ods were impractical except for relatively 
modest but especially critical pieces of 
software, such as an algorithm for con-
trolling railroad intersections.

More recently, researchers have ad-
opted a very different approach, one that 
harnesses the power of today’s faster 
processors to test every possible scenar-
io. This method, known as model check-
ing, is now used extensively to verify in-
tegrated-circuit designs. The idea is to 
simulate every possible sequence of 
states (the conditions of the system at 
specific times) that might arise in prac-
tice and to determine that none leads to 
a failure. For a microchip design, the 
number of states to evaluate is often 
huge: 10100 or more. The challenge is far 
more stringent for software. But clever 
encoding techniques (by which large sets 

DANIEL JACKSON leads the Computer Science and Artificial Intelligence Laboratory’s 
Software Design Group at the Massachusetts Institute of Technology. His main research 
interest is software engineering, with a focus on software design, specification and 
analysis, particularly of critical systems. Jackson received an M.A. from the University 
of Oxford in physics, and his S.M. and Ph.D. from M.I.T. in computer science. Before his 
professorship at M.I.T., he taught at Carnegie Mellon University. An avid photographer, 
Jackson recently exhibited his work at the Newton Free Library outside of Boston. 
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The idea is to simulate  
every state that the software 
can take to determine that 
none leads to a failure. 

Alloy helped to make an avionics system hacker-proof. 
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of software states can be represented 
very compactly) make it possible to 
check every state by considering these 
large sets simultaneously.

Model checking alone regrettably 
cannot handle states with complex struc-
tures, which is characteristic of most 
software designs. My research colleagues 
and I have developed an approach that 
shares the same spirit yet employs a dif-
ferent mechanism. Like model checking, 
it considers all possible scenarios (al-
though in truth, some bounds need to be 
introduced to keep the problem finite, 
because software is not restricted by the 
physical limitations imposed by hard-
ware). Unlike model checking, however, 
our technique does not examine scenar-
ios in their entirety, one at a time. In-
stead it searches for a bad scenario—one 
that results in failure—by filling in each 
state in an automated fashion, one bit at 
a time, in no particular order. 

The process is in some sense compa-
rable to a robotic arm fitting each piece 
of a jigsaw puzzle into place one by one 
until the completed image finally emerg-
es. If that image corresponds to a bad 
scenario, Alloy would have done its job. 
Alloy thus treats design analysis as if it 
were a puzzle to be solved. Some other 
recently developed software model 
checkers work this way as well.

The Solution Is a Puzzle
to understa nd how Alloy solves 
software design puzzles, it helps to con-
sider an old riddle: A farmer goes to 
market where he buys a fox, a goose and 
a bag of corn. On his way home, he has 
to carry his goods across a river by boat. 
The skiff will hold only the man and one 
purchase at a time, however. Herein lies 
a problem: if left unsupervised, the fox 
would eat the goose and the goose would 
eat the corn. So how does the farmer get 
all of his goods to the far bank intact?

This variety of puzzle involves find-
ing scenarios that satisfy a collection of 
constraints. Mentally we do this task by 
imagining a series of steps: The farmer 
transports the goose first; on the next 
trip, he takes the fox, whereupon he 
brings back the goose and then, leaving 
it behind, crosses with the corn; he then 

returns to fetch the goose. By checking 
whether each step satisfies the con-
straints, we ensure that each item re-
mains safe.

A successful software design impos-
es a similar, though much more compli-
cated, array of rules. To be useful, a de-
sign-checking tool must be able to find 
counterexamples: solutions to the puz-

zle that meet all the “good” constraints 
(and thus could occur when the pro-
gram is run) and an additional “bad” 
constraint (and thus yield an unaccept-
able outcome). If any such counterex-
amples turn up, they will reveal flaws in 
the design. So whereas the puzzle solver 
is happy to find a solution to the “farm-
er’s dilemma,” a solution to a software 

Debugging Cancer Therapy Machines
Modern medical devices rely on software for almost every aspect of their operation. 
In a machine used for cancer therapy, even the “emergency stop” button is not an 
actual electrical switch but a software program: hitting it causes about 15,000 
lines of code to execute and shut the system down—unless, of course, there is a 
bug or design flaw in the software. That is where Alloy comes in—it analyzes 
programs to find the design problems.

Working with the developers of a cancer-therapy system, for example, we have 
used Alloy to explore the design of some of its features. In one case, we took a 
design for a new scheduling system that determines the treatment room to  which 
the beam is sent. We set Alloy to look for scenarios in which interactions between 
the operator in the main control room and the therapists in the treatment rooms 
would produce unexpected results. Alloy found various scenarios that had not been 
anticipated originally. 

In another case, we applied Alloy to the design of an elaborate protocol for 
positioning the patient under the proton beam, which turned out to have a subtle 
and unexpected consequence: the angle of the gantry crept around over time, even 
when it was not being intentionally adjusted. With a small Alloy model we showed 
how, by choosing the right abstractions, this problem could be reduced to the same, 
rather simple problem as that for designing a car accessory system that 
remembers driver-seat positions. In fact, the therapy system has many safeguards 
and the gantry movement was not a dangerous problem. But if the correct 
abstractions had been used from the start, the design would have been much 
simpler and operating the software considerably easier.  —D.J.

CORRECT POSITION of a patient—controlled by software—is critical to control radiation dosage 
in a cancer therapy machine. Alloy helped to improve the software design for a similar machine. 
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design puzzle is bad news: it means that 
an undesirable scenario exists and the 
design is defective. In practice, the coun-
terexample might not itself lead to any 
problems. It may instead reveal a dis-
crepancy in how the designer originally 
characterized the unacceptable out-
comes. Either way something needs to 
be fixed—the design or the designer’s  
expectations.

The great difficulty in searching for 
counterexamples is that the number of 
potential scenarios in a software design 
of even moderate complexity is typically 
vast, but only a tiny proportion corre-
spond to counterexamples. Imagine try-

ing to plan who sits next to whom at a 
wedding reception. If all attendees get 
along, the solution is trivial. Throw in a 
few ex-spouses who require separation, 
and the problem gets trickier. Now con-
sider the seating chart for Romeo and 
Juliet’s reception. If there are 20 seats 
and any of 10 guests can sit in each, that 
makes 1020 possible combinations. Even 
checking a billion scenarios per second, 
a computer would take 3,000 years to 
explore them all.

In the 1980s, researchers identified 
problems of this form as a special class 
of problems that, in the worst case, can 
be solved only by enumerating all pos-

sible scenarios. But in the past decade, 
with new search strategies and algo-
rithms and by building on ever increas-
ing computational power, researchers 
have developed tools called SAT (satisfi-
ability) solvers that can handle these 
problems fairly easily. Many are now 
freely available and can often solve prob-
lems with millions of constraints.

Importance of Abstraction
as its name suggests, Alloy melds 
two elements that help make software 
designs more robust. One is a new lan-
guage that helps to elucidate the struc-
ture and behavior of the software design. 
The other is an automated analyzer 
(which incorporates a SAT solver) to 
hash through a multitude of possible 
scenarios.

The first step in applying Alloy is to 
create a model of the design: not the 
rough sketch or flowchart typical in 
software engineering but a precise mod-
el that spells out the “moving parts” and 
specific behaviors, both desired and un-
desired, of the system and its compo-
nents. A software engineer first writes 
down definitions of the various kinds of 
objects in the design, then groups those 
objects into mathematical sets: collec-
tions of things that are alike in their 
structure and behavior (for example, the 
set of all Capulets) and linked by math-
ematical relations (such as the relation 
that associates guests sitting next to one 
another).

Next come facts that constrain these 
sets and relations. In a software design, 
the facts include the mechanism of the 
software system and assumptions about 
other components (say, statements about 
how human users are expected to be-
have). Some of these facts are simple as-
sumptions—for example, that nobody is 
both a Capulet and a Montague and that 
every guest sits next to exactly two other 
guests. Some of them reflect the design 
itself: in our seating planner, for in-
stance, the rule that each table, with the 
exception of the top table, is assigned ei-
ther to one family or the other.

Finally, there are assertions, which 
are constraints that are expected to fol-
low from the facts. In our example, with 

Tools for Checking Software Designs
Computer scientists have developed a new generation of software design checking 
tools (in addition to Alloy) that programmers can use to analyze and test their 
codings for structural and conceptual inconsistencies that could lead to system 
failure. In general, these commercial and open-source design-evaluation tools 
are based on specialized high-level languages (notations that summarize blocks 
of code) that researchers have developed to ease the specification, modeling and 
simulation of different types of software schemes. 

Such tools incorporate automated analysis engines that explore the huge 
number of potential executions of systems for subtle design flaws that would 
cause them to behave in undesirable ways (an instance of which is called a 
counterexample). These software design tools often include facilities that can help 
designers visualize counterexamples or relations between blocks of code.

LANGUAGE TOOL SOURCE WEB SITE

B B-Toolkit B-Core www.b-core.com

Atelier-B Steria www.atelierb.societe.com

Pro-B University of 
Southampton

www.ecs.soton.ac.uk/˜mal/systems/ 
prob.html

CSP FDR Formal Systems 
Europe

www.fsel.com

FSP LTSA Imperial College 
London

www.doc.ic.ac.uk/˜jnm/book/ltsa/LTSA.
html

Lotos CADP INRIA Research 
Institute

www.inrialpes.fr/vasy/cadp/

OCL USE University of 
Bremen

www.db.informatik.uni-bremen.de/ 
projects/USE/

PROMELA Spin Bell 
Laboratories

spinroot.com/

Statecharts Statemate I-Logix www.ilogix.com

VDM VDMTools CSK Corp. www.csk.com/support–e/vdm/

www.vdmbook.com/tools.php

Z Jaza University of 
Waikato

www.cs.waikato.ac.nz/˜marku/jaza/

Zing Zing Microsoft 
Research

research.microsoft.com/zing/
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the exception of Romeo and Juliet, no 
Capulet should be seated next to a Mon-
tague. The assertions say that the system 
can never get into certain undesirable 
states and that specific bad sequences of 
events can never occur.

The analyzer component of Alloy 
harnesses a SAT solver to search for 
counterexamples—possible scenarios of 
the software system that are permitted 
by its design but that fail a sanity check 
(which is accomplished by writing asser-
tions that must be true if the model is 
correctly designed). In other words, the 
tool attempts to construct situations that 
satisfy the facts but violate a stated as-
sertion. In our case, it would generate a 
seating plan in which a Capulet (other 
than Juliet) sits next to a Montague (oth-
er than Romeo) at the top table. To fix 
the seating rule, we can add a new fact: 
that Romeo and Juliet occupy the top 
table alone. Now Alloy would find no 
counterexample.

Together the declarations of the sets 
and relations, the facts, and the asser-
tions make up an abstraction that cap-
tures the essence of the software design. 
Writing all this out makes the limita-
tions of the design explicit and forces 
engineers to think hard about exactly 
which abstractions will work best. Bad 
abstraction choices lie at the root of 
many unnecessarily complicated or un-
reliable systems.

Systems that rely on software built 
on simple and robust abstractions should 
also be easier to use. Consider how  
e-ticketing simplified air travel, how uni-
versal product codes made shopping 
easier or how 800-number-based con-
ference calls made teleconferencing more 
feasible. Each of these innovations 

stemmed from a transformation in the 
basic abstractions embodied in the un-
derlying software.

The Road to Reliability
tools akin to  alloy are currently 
used primarily in research and in cut-
ting-edge industrial settings. The tech-
nology has been employed to explore 
new architectures for telephone switch-
ing systems, to design avionics proces-
sors that are secure against hackers and 
to describe access-control policies for 
communications networks. We have used 
it to check widely used and robust soft-
ware devices, such as protocols for find-
ing printers on networks and tools for 
synchronizing files across machines. 

In addition, Alloy has uncovered se-
rious deficiencies in published software 
designs—such as a key management pro-
tocol that was supposed to enforce spe-
cial-access rules based on membership 
in a group but turned out to grant access 
to former members who should have 
been rejected. It is noteworthy that many 
programmers who have used Alloy have 

been surprised by the number of flaws 
that the tool turns up in the designs for 
even their simplest applications.

It is most likely only a matter of time 
until tools resembling Alloy are adopted 
more widely in industry. Improvements 
in the underlying SAT solvers will make 
analysis tools faster and better able to 
handle very large systems. Meanwhile a 
new generation of software designers, 
educated in these methods, will incorpo-
rate them into their work. Modeling is 
growing in popularity, particularly 
among managers desperate to see some 
description of a software system’s design 
beyond the code itself. 

At some point, there may come a 
time when software becomes so essen-
tial to our day-to-day infrastructure 
that society will no longer tolerate bad 
software. As a result, governments may 
even establish inspection and licensing 
regulations that enforce high-quality 
program construction techniques. One 
day, perhaps, software systems will be 
truly robust, predictable and easy to 
use—by design.  

M O R E  T O  E X P L O R E
Exploring the Design of an Intentional Naming Scheme with an Automatic Constraint 
Analyzer. Sarfraz Khurshid and Daniel Jackson in Proceedings of the 15th IEEE International 
Conference on Automated Software Engineering, Grenoble, France. IEEE, September 2000. 
(Describes application of Alloy to the design of a system for finding resources on a network.)
Automating First-Order Relational Logic. Daniel Jackson in Proceedings of the 8th ACM SIGSOFT 
International Symposium on Foundations of Software Engineering: Twenty-First Century 
Applications. ACM Press, 2000. (Explains Alloy’s analysis.)
A Micromodularity Mechanism. Daniel Jackson, Ilya Shlyakhter and Manu Sridharan in 
Proceedings of the Joint 8th European Software Engineering Conference (ESEC) and 9th ACM 
SIGSOFT Symposium on the Foundations of Software Engineering. ACM Press, 2001. (Explains 
key concept in the latest version of Alloy language.) 
Alloy: A Lightweight Object Modeling Notation. Daniel Jackson in ACM Transactions on Software 
Engineering and Methodology, Vol. 11, Issue 2, pages 256–290; April 2002. (Original description 
of Alloy.) 
Software Abstractions: Logic, Language, and Analysis. Daniel Jackson. MIT Press, 2006. 
Daniel Jackson’s Web site: http://people.csail.mit.edu/dnj/
Alloy Web site: http://alloy.mit.edu

Alloy has uncovered  
serious deficiencies  

in published  
software designs. 

Alloy checked a software program that finds printers on wireless networks.
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