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CO M PU T E R  SC I E N C E

Rise of the  
Robo Scientists 
Machines can devise a hypothesis, carry out experiments  
to test it and assess results—without human intervention 

I
s it possible to automate scientific discovery? i don’t mean 
automating experiments. I mean: Is it possible to build a 
machine—a robot scientist—that can discover new scientif-
ic knowledge? My colleagues and I have spent a decade try-
ing to develop one. 

We have two main motives. The first is to better under-
stand science. As famed physicist Richard Feynman noted: 

“What I cannot create, I do not understand.” In this philosophy, 
trying to build a robot scientist forces us to make concrete engi-
neering decisions involving the relation between abstract and 
physical objects and between observed and theoretical phe-
nomena, as well as the ways hypotheses are created. 

Our second motivation is technological. Robot scientists 
could make research more productive and cost-efficient. Some 
scientific problems are so complex they require a vast amount 

of research, and there are simply not enough human scientists 
to do it all; automation offers our best hope for solving those 
problems.

Computer technology for science has been steadily improv-
ing, including “high-throughput” laboratory automation such 
as DNA sequencing and drug screening. Less obvious are com-
puters that are automating the process of data analysis and 
that are beginning to generate original scientific hypotheses. In 
chemistry, for example, machine-learning programs are help-
ing to design drugs. The goal for a robot scientist is to combine 
these technologies to automate the entire scientific process: 
forming hypotheses, devising and carrying out experiments to 
test those hypotheses, interpreting the results and repeating 
the cycle until new knowledge is found.

The ultimate question, of course, is whether we can devise a 

By Ross D. King

Some scientific questions are so com-
plex that designing and carrying out 
the experiments needed to find an-
swers requires a prohibitive amount of 
scientists’ time. 

Robot scientists could fill the void. One 
prototype, called Adam, can originate 
hypotheses about yeast genes and their 
functions, design experiments to test 
the ideas and conduct the work. 

Using artificial intelligence, reasoning 
and robotic hardware, Adam discov-
ered three genes that encode specific 
yeast enzymes, a determination human 
scientists had not been able to make. 

Skeptics say Adam is not a scientist, 
because it requires human input and 
occasional intervention. But together, 
human and robot scientists could 
achieve more than either one alone. 

i n  b r i e f
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robot scientist that can actually accomplish the entire process. 
The capabilities of two robots designed at our laboratory, and a 
handful of others around the world, suggest we can.

AdAm TAkes on YeAsT
the pioneering work of applying artificial intelligence to sci-
entific discovery took place at Stanford University in the 1960s 
and 1970s. A computer program named DENDRAL was de-
signed to analyze mass-spectrometer data, and the related 
 Meta-DENDRAL program was one of the first machine-learn-
ing systems. The researchers were trying to create automated 
instruments that could look for signs of life on Mars during 
the 1975 NASA Viking mission. Unfortunately, that task was 
beyond the technology of the day. Since then, programs such 
as Prospector (for geology) and Bacon (for general discovery) 
and more recent successors have automated such tasks as pro-
posing hypotheses and experiments to test them. Yet most 
lack the ability to physically conduct their own experiments, 
which is crucial if artificial-intelligence systems are to work 
even semi-independently. 

Our robot, Adam, is not humanoid; it is a complex, automated 
lab that would fill a small office cubicle [see box on opposite page]. 
The equipment includes a freezer, three liquid-handling robots, 
three robotic arms, three incubators, a centrifuge, and more, 
 every piece of it automated. Of course, Adam also has a powerful 
computational brain—a computer that does the reasoning and 
controls the personal computers that operate the hardware. 

Adam experiments on how microbes grow, by selecting mi-
crobial strains and growth media, then observing how the strains 
grow in the media over several days. The robot can initiate about 
1,000 strain-media combinations a day all on its own. We de-
signed Adam to investigate an important area of biology, one 
that lends itself to automation: functional genomics, which in-
vestigates the relations between genes and their functions.

The first full study was on the yeast Saccharomyces cerevisi-
ae—the organism used to make bread, beer, wine and whiskey. 
Biologists are most interested in the strain as a “model” organ-
ism for understanding how human cells work. Yeast cells have 
far fewer genes than human cells do. The cells grow quickly and 
easily. And although the last common ancestor between humans 
and yeast existed perhaps a billion years ago, evolution is very 
conservative, so most of what is true for a yeast cell is also true 
for our cells. 

Adam focused on understanding the unsolved problem of 
how yeast uses enzymes—complex proteins that catalyze partic-
ular biochemical reactions—to convert its growth medium into 
more yeast and waste products. Scientists still do not fully un-
derstand this process, although they have studied it for more 
than 150 years. They know of many enzymes yeast produces, but 
in some cases not which genes encode them. Adam set out to dis-
cover the “parental genes” that encode these “orphan” enzymes.

To be able to discover some novel science, Adam needs to know 
a lot of existing science. We programmed Adam with extensive 
background knowledge about yeast metabolism and the func-
tional genomics of yeast. The claim that Adam holds back-
ground “knowledge” rather than information is up for philo-
sophical debate. We argue that “knowledge” is justified because 
it is used by Adam to reason and guide its interactions with the 
physical world.

Adam uses logic statements to represent its knowledge. Log-

ic was first devised 2,400 years ago to describe knowledge with 
greater precision than natural language might allow. Modern 
logic is the most accurate way to represent scientific knowledge 
and to unambiguously exchange knowledge between robots and 
humans. Conveniently, logic can also be used as a programming 
language, which enables Adam’s background to be interpreted 
as a computer program. 

To start Adam’s investigation, we programmed it with many 
facts. Take a typical example: in S. cerevisiae, the gene ARO3 
 encodes an enzyme called 3-deoxy-D-arabino-heptulosonate-7-
phosphate. We also gave Adam related facts, such as that this en-
zyme catalyzes a chemical reaction, in which the compounds 
phosphoenolpyruvate and D-erythrose 4-phosphate react to pro-
duce 2-dehydro-3-deoxy-D-arabino-heptonate 7-phosphate, plus 
phosphate.

Connected together, the facts form a model of yeast metabo-
lism that integrates knowledge about genes, enzymes and me-
tabolites (small chemical molecules). The difference between  
a model and an encyclopedia is that a model can be converted 
into software that can act on data to make predictions. A robot 
scientist can integrate abstract scientific models with laborato-
ry robotics to automatically test and improve the models.

ReAsoning AbouT genes
when scientists follow the scientific method, they form hypoth-
eses and then experimentally test the deductive consequences 
of those hypotheses. In this manner, Adam first hypothesizes 
new facts about yeast biology, then deduces the experimental 
consequences of the facts using its model of metabolism. Next 
Adam experimentally tests the consequences to see if the hy-
pothesized facts are consistent with the observations. 

The cycle begins with Adam forming hypotheses about which 
genes could be the parents of orphan enzymes [see box on page 
76]. To focus on the most likely hypotheses, Adam used its knowl-
edge base. As an example, one orphan enzyme it knew about was 
2-aminoadipate transaminase. This enzyme catalyzes the reac-
tion: 2-oxoadipate plus L-glutamate yields L-2-aminoadipate 
plus 2-oxoglutarate (the reaction also occurs in the reverse di-
rection). This reaction is important because it is a potential tar-
get for antifungal drugs, but the parental gene is unknown. To 
form a hypothesis about which yeast gene could encode this en-
zyme, Adam first interrogated its knowledge base to see if any 
genes from other organisms are known to encode the enzyme. 
This query returned the fact that in Rattus norvegicus (the 
brown rat) a gene called Aadat encodes the enzyme.

Adam took the protein sequence of the enzyme encoded by 
the Aadat gene and examined whether any similar protein se-
quences are encoded in the yeast genome. Adam knows that if 
protein sequences are similar enough, it is reasonable to infer 
that the sequences are homologous—that they share a common 
ancestor. Adam also knows that if protein sequences are homolo-
gous, then the function of their common ancestor may have been 
conserved. Therefore, from similar protein sequences Adam can 
reason that their encoding genes may have the same function. 
Adam found three yeast genes with sequences similar to Aadat: 
YER152c, YJL060w and YJL202w. It hypothesized that these 
genes each encode the enzyme 2-aminoadipate transaminase.

To test its hypotheses, Adam conducted numerous physical 
experiments. It grew certain yeast strains selected from a com-
plete collection in its freezer, where each strain has a specific 
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h ow  i t  wo r k s 

Robotic Biology
Adam, a robot scientist at Aberystwyth University in Wales, investigates the relations 
between genes and their functions. In early work, its artificial-intelligence computer 
formulated 20 hypotheses about which genes might encode specific enzymes that 
are critical to yeast’s growth. It then performed thousands of experiments to find 
evidence for whether the hypotheses were true or false. Here’s how.

Samples Prepared   
Robot arm removes frozen yeast 
samples and mixes specific strains 
with growth medium in various wells 
on test plates (inset above).

Medium Removed   
Washer flushes away the 
medium and suspends the 
strains in saline solution.

Growth Read  
 Incubator warms each plate for 
several days. Every 20 minutes an 
arm puts plates into a reader that 
sends growth data to a computer. 

Strains Treated  
 Robot arm adds different  
combinations of growth  
media and molecules that affect 
metabolism to strains in specific  
wells, to test various hypotheses.

 
Yeast Grown   
Incubator warms the plates for 24 hours. Every  
40 minutes a robot arm inserts each plate into an 
optical reader that monitors growth (inset below).

Cells Separated   
Centrifuge  spins each plate to sepa-
rate yeast from remaining medium.

 

Data Analyzed    
Adam’s software  
analyzes results,  
which may take  
several hours.

 

 

 

 

 

A light beam  inside an optical reader 
(2 and 6) shines through each well. 
The amount of light that passes indi-
cates how much yeast has grown.

Freezer
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gene removed. The robot examined the growth of three yeast 
strains that were missing the genes YER152c, YJL060w and 
YJL202w, respectively, when grown in the presence of chemi-
cals such as L-2-aminoadipate that are involved in the reaction 
catalyzed by the enzyme.

The next step would be to experiment on the strains. Money 
for science is always limited. And often scientists race to be the 
first to solve a problem. We therefore designed Adam to devise 
efficient experiments that test hypotheses cheaply and quickly. 
To achieve this goal, Adam assumes that every hypothesis has a 
probability of being true. This assumption is controversial, and 
some philosophers such as Karl Popper have denied that hy-
potheses can have associated probabilities. Most working sci-
entists, however, tacitly assume that certain types of hypothe-
ses are more likely to prove true than others. For example, they 
generally follow the notion of “Occam’s razor”—that all else be-
ing equal, a simpler hypothesis is more probable than a com-
plex one. Adam also considers the cost of a possible experi-
ment, which currently is just the cost of the chemicals involved. 
A better approach would include the “cost” of time as well.

Given a set of hypotheses with associated probabilities and a 
set of possible experiments with associated costs, the goal we set 
for Adam is to choose a series of experiments that minimizes the 
expected cost of eliminating all but one hypothesis. Pursuing 
this approach optimally is computationally very difficult, but 
our analyses have shown that Adam’s approximate strategy se-
lects experiments that solve problems more cheaply and quickly 
than other strategies, such as simply choosing the cheapest ex-
periment. In some cases, Adam can design one experiment that 
can shed light on many hypotheses. Human scientists struggle 
to do the same; they tend to consider one hypothesis at a time. 

20 HYpoTHeses, 12 novel
once adam’s artificial-intelligence system homes in on the 
most promising experiments, Adam uses its robotics to carry 
them out and observe the results. Adam cannot directly observe 
genes or enzymes; its observations consist only of how much 
light shines through cultures of yeast. From these data, through 
a complicated chain of reasoning, Adam infers whether or not 
the evidence is consistent with hypotheses about genes and en-
zymes. Such chains of reasoning are typical of science; astrono-
mers, for example, infer what is happening in distant galaxies 
from the radiation they observe in their instruments. 

Deciding on the consistency of hypotheses was one of the 
most difficult tasks for Adam, because scientists have already 
discovered all the genes whose removal causes qualitative dif-
ferences in yeast’s growth. Removing other genes generally pro-
duces only minor growth differences. To decide whether any of 
the minor differences is significant when a gene is removed, 
Adam uses sophisticated machine-learning techniques. 

Adam generated and experimentally confirmed 20 hypothe-
ses about which genes encode specific enzymes in yeast. Like 
all scientific claims, Adam’s needed to be confirmed. We there-
fore checked Adam’s conclusions using other sources of infor-
mation not available to it and using new experiments we did 
with our own hands. We determined that seven of Adam’s con-
clusions were already known, one appeared wrong and 12 were 
novel to science. 

As a check, our own manual experiments confirmed that 
three genes (YER152c, YJL060w and YJL202w) encode the en-

T H O U G H T  E X P E R I M E N T

How Robots Reason
How does a robot scientist “reason?” It uses the same options 
people use. One is deductive inference, which is the foundation 
for mathematics and computer science. Deductive reasoning is 
“sound.” That is, if you start with truth you can infer only new 
truths. Unfortunately, in the absence of a consummate “theory of 
everything,” deduction is insufficient for science, because it can 
work out only the consequences of what is already known. 

A second option, abductive reasoning, is not sound, as is obvi-
ous from the swan example below; many things are white but are 
not swans. Yet abduction does provide a way of generating hy-
potheses that may be true. The great insight of science is that the 
way to decide truth is not by pure deduction from assumptions 
but rather by experimenting on the physical world. If Adam hy-
pothesizes that Daisy is a swan, then the way to decide on the 
truth of this proposition is for Adam to experimentally catch Daisy 
and test whether she is a swan, a duck or something else. 

Induction, like abduction, provides a way to infer new hypoth-
eses. If every swan we see is white, it is natural to infer, as Aristotle 
actually did, that all swans are white. But induction is not sound, 
and Aristotle’s induction was disproved by the discovery of black 
swans in Australia. We constantly use induction in our daily lives. 
It reassures us that the sun will rise tomorrow and that our break-
fast won’t poison us. Induction’s role in science is controversial, 
however, because the main justification for induction is that it 
generally works, which is itself an induction. 

Deduction

all swans are white. 

daisy is a swan. 

therefore,  
daisy is white. 

Abduction

all swans are white. 

daisy is white. 

therefore,  
daisy is a swan. 

induction

daisy is a swan  
and white. 

danny is a swan  
and white. 

dante is a swan  
and white 

[and so on].

therefore, all swans  
are white.

Like humans, robots can use various methods  
of reasoning. The methods may or may not be  
sound, but they provide ways to form hypotheses 
and suggest experiments that can be performed  
to test those hypotheses.
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zyme 2-aminoadipate transaminase. The probable reason that 
the role of these genes had not previously been discovered is 
that the three genes encode the same enzyme, and the enzyme 
can catalyze a series of related reactions; a simple mapping of 
one gene to one enzyme function—the common scenario—was 
not the case here. Adam’s careful experimentation and statisti-
cal analysis were required to disentangle these complications.

is THe RoboT A scienTisT?
some people object to the term “robot scientist,” pointing out, 
with some justification, that Adam resembles more of an assis-
tant than an independent scientist. So is it legitimate to claim 
that Adam autonomously discovered new scientific knowl-
edge? Let’s start with “autonomously.” We cannot simply set up 
Adam and come back several weeks later to examine its conclu-
sions. Adam is a prototype, and its hardware and software of-
ten break down, requiring a technician. Integrating Adam’s 
software modules also needs to be improved so that they work 
together seamlessly without some human interaction. Adam’s 
process of hypothesizing and experimentally confirming new 
knowledge, however, does not depend on human intellectual 
or physical effort.

The term “discovered” raises an argument that dates back 
to the 19th century and the romantic figure of Lady Ada Love-
lace. She was the daughter of the poet Lord Byron and collabo-
rated with Charles Babbage, the first person to conceive of a 
general-purpose computing machine. Lady Lovelace argued: 
“The Analytical Engine has no pretensions to originate any-
thing. It can do whatever we know how to order it to perform” 
(her italics). One hundred years later the great computer scien-
tist Alan M. Turing proposed a counterargument by way of an 
analogy to children. Just as teachers do not get all the credit for 
their pupils’ discoveries, it would be unfair for hu-
mans to claim all the credit for the ideas of our ma-
chines. These arguments are of growing commercial 
importance; for example, in U.S. patent law only a 
“person” can “invent” something.

Finally, how novel is Adam’s science? Some of the mappings 
between genes and enzyme functions in S. cerevisiae that Adam 
has hypothesized and experimentally confirmed are certainly 
novel. Although this knowledge is modest, it is not trivial. In 
the case of the enzyme 2-aminoadipate transaminase, Adam 
found three separate genes that may solve a 50-year-old puzzle. 
Of course, some of Adam’s conclusions could be wrong; all sci-
entific knowledge is provisional. Yet it seems unlikely that all 
the conclusions are wrong. Adam’s results have now been in the 
public domain for two years, and no one has noted any mis-
takes. As far as I know, scientists outside of my group have not 
yet tried to reproduce Adam’s results. 

Another way of assessing whether Adam is a scientist is 
whether Adam’s approach to generating novel hypotheses is 
generalizable. Once Adam was off running experiments, we be-
gan developing a second robot. Eve applies the same automat-
ed cycles of research to drug screening and design, an impor-
tant medical and commercial pursuit. The design lessons we 
learned from Adam make Eve a much more elegant system. 
Eve’s research is focused on malaria, schistosomiasis, sleeping 
sickness and Chagas disease. We are still developing Eve’s soft-
ware, but the robot has already found some interesting com-
pounds that show promise of being active against malaria.

Some researchers are applying approaches that are similar 
to Adam’s. Hod Lipson of Cornell University is using automated 
experimentation to improve the design of mobile robotics and 
to understand dynamic systems. Other researchers are trying to 
develop robot scientists for chemistry, biology and engineering.

Several groups, including my own, are looking into ways to 
automate quantum physics research, in particular how to con-
trol quantum processes. For example, Herschel A. Rabitz of 
Princeton University is investigating ways to use femtosecond 
(10–15) lasers to learn how to make or break targeted chemical 
bonds. Here the challenge is how to quickly formulate intelli-
gent experiments.

HumAn pARTneRs
if we accept that robots can be scientists, we would like to know 
their limits. Comparing the task of automating science with 
automating chess is instructive. Automating chess is essential-
ly a solved problem. Computers play chess as well or better 
than the best humans and make strikingly beautiful moves. 
Computer mastery is possible because chess is a bounded, ab-
stract world: 64 squares, 32 pieces. Science shares much of the 
abstract nature of chess, but automating science will be harder 
because experimentation takes place in the physical world. I 
expect, however, that developing robot scientists capable of 
performing quality science will probably be easier than devel-
oping artificial-intelligence systems that can socially interact 
with humans. In science it is safe to assume that the physical 
world is not trying to deceive you, whereas that is not true in 
society.

The most accomplished human chess masters now use com-
puters to improve their game—to analyze positions and to pre-
pare new attacks. Similarly, human and robot scientists work-

ing together, with contrasting strengths and weak-
nesses, could achieve more than either one could 
alone. Advances in computer hardware and in artifi-
cial-intelligence systems will lead to ever smarter ro-
bot scientists.

Whether these creations will ever be capable of paradigm-
shifting insights or be limited to routine scientific inquiries is a 
key question about the future of science. Some leading scien-
tists, such as physics Nobel laureate Philip Anderson, argue 
that paradigm-shifting science is so profound that it may not 
be accessible to automation. But another physics Nobel laure-
ate, Frank Wilczek, has written that in 100 years the best physi-
cist will be a machine. Time will tell who is correct.

Either way, I see a future where networks of human and ro-
bot scientists will collaborate. Scientific knowledge will be de-
scribed using logic and disseminated instantaneously using the 
Web. The robots will gradually assume an ever greater role in 
the advancement of science. 
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