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I Introduction: Types of Prob'lams

In the control and protective circuits of com­

plex electrical systems it is frequeutly necessary to

make intricate interconnections of relay con~acts and

switches. Examples of these circuits occur in auto­

ma.tic telephone exchanges, industr5.al motor control

equipment and in almost any circuits designed to ger­

form cornplex operations a.utomatically. Twu problems

that occur in connection with such ne~works of switches

will be treated here. ·rb.e first, which will be c9.11ed

analysis, is to cietermine the opera~ing characterj.. s­

tics of a given circuit. It is, of course, alwa.ys pos­

sible to analyze any given circuit by setting up all

possible sets of initial conditions (positions of

switches and relays) and following through the chain

of event£ so instigated. This method is, however,

very tedious and open GO frequent error.

The second problem is that of synthesis.

Given certain characteristics, it is required to find

9. circuit irLcorporating these characteristics. ~rhe

solution of this type of problem is not unique and it

is -cI-J.erefore additiollally desira.ble that the circuit

requiring the least number of sVii te h blades and relay
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COL~ac:s be ~ound. Although a solution can usually be

obtai ned. by a lieu t and try" m_e tho d , fi rs t sa ti s fyi ng

one requirement and then making additions until all

are satisfied, the circuit so obtained will seldom

be the simples~. '.mis method 9.1so ha.s the disadvan­

tages of being long, and the resulting design often

contains hidden "sneak circuits."

The method of solution of these problems which

will be developed here may be described briefly as

follows: An;! cireui t is represented by a set of equa­

tions, the terms of the equations representing the

variot~s relays and switches of the circuit. A cal­

culus is developed for manipulating these equations

by simple mathematical processes, most of which are

.. similar to ordinary algebraic algorisms. This Ca.l­

culus is shown to be exactly analogous to the Qalcu­

lUs of P,ropositions \lsed in the s'ymbolic study of

logic. For the synthesis problem the desired charac­

teristics are f~rst written as a s~rs"tem of eauations,

and the equations are then ffianipulated into tha form

representing the simplest circuit. The circuit may

then be inwediately drawn from the equations. By

this nethod it is always possible to find the simplest

circ~it containing only series and 9arallel connections,
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and for certain types of functions it is 903sible to

find the simplest circuit containing any type of con­

nection. In the analysis problem the equations re~re­

senting the given circuit are written and may then be

interpreted in terms of the ogerating characteristics

of the circuit. It is alGo possible with the calculus

to obtain any number of circuits equivalent to a given

circuit.

phraseology will be borrowed frJm ordinary

network theory for con06pts in switching circuits

that are rough~y aL~logous to those of iffipedencJ

networks.
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II ~eries-parallel Two Terminal Jircuits

Funda~ental Definitions and Postulates. Tve sha 11

limit our treatrn8nt to circuits containing only re­

lay contacts and switches, and therefore at any given

time the circui t between any tVifo termi nals must be

either open (infinite impedance) or Closed (zero

impedance). Let us associate a symbol Xao or more

simply X, with the terminals a ana b. This variable,

a. function of time, lNill be called the hinderance

of the two terminal ~ircuit a-b. The symbol 0 (zero)

will be used to represent the hinderance of a closed

circuit, and the s-ymbol 1 (unity) to represent ·the

hinderance of an open circuit. trhus when the cir-

\ cult a-b is open Xab = 1 and when closed Xah =O.

Two hinderances Xab and Xed will oe said to be equal

if \'Vhenever the circuit a-b is o'pen, tl1.8 circuit c-d

is open, qnd. v'Jhenevc:r a-b is closed, c-d is closed.

NoW let the symbol + (plUS) be defined to mean the

series connection of the tvYO terr!linal circuits whose

hinderanc as are ad1ied toge"thel' • Thus Xa b • i~cd i:3

the ~li Ilderanc e 0 f the eireui t a.cd when band care

co~nected together. Similarly the product of two

hinderances (Xab • Xed) will be defined to mean the
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hinderance of the cir~uit formed by connecting the

circuits a-b and c-d in parallel. A relay contact

or switch will be represented in a circuit by the

symbol in Fig. 1, the letter being the corresponding

hinderance function. Fig. 2 shows the interpreta-

tion of the plus sign and Fig.! the r:lul tiplicq tion sign.

Xab
a ..._IIIlIftIO Do---..b x y _ (X+Y)

....... 0-0'-' ---eo---
x

-Ci}.
_ X·y
- ---0 .......

Fi g. 1 Fig. 2 Fig. :3

This choice of symbols makes the manipulation of

hinderancea very similar to ordinary numerical alge~

bra.

It is evident tha"G \vi th the abo~le defini tions

the folluwing postulates will hold:

Po s tula. te s

1. a. 0-0 =0

b. 1 at 1 =·1

2. a. 1 • 0 =0 • 1 =1

o. 0-1 ~ ~.O =0

A closed Circuit in parallel
vii th a c lose d c i rcu i tis 8.

c los ed eire ui t •

An aoen circuit in series
vv1th an open circuit is an
open c ir'c ui t.

An o?en ~ircuit in series
with a closed circuit in
ei~her order is an ogen
eire ui "t.

A closed circuit in parallel
with an open ~ircuit in
either order is a closed
~ircuit.
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3. a~ 0 + 0 = 0 A closed ~ircuit in 8eries
with a closed circuit is a
cl as ad ~i rC\J.i t.

6

b. 1-1 = 1 An ODen circuit in parallel
with an open circuit is an
open cireui t.

4: ~ At an~r givan tj.me el ther X =0
or X : 1.

These are sufficient to develop all the theo-

rems ";J"hich will be \lsed in connection \vith cir4 cuit3

containing only series and 'parallel connections. The

pos~L11ates are arranged in pairs to emphasize a duality

relationsrJ.ip betweerl the operations of additioIl and

ml11tiplication ar.Ld the q.uantities zero C:ind on~. Thus
y ~,

if in any of the BpOstulates the zero's are replaced

t;y one's and the multiplications by additions and vice

v9rsa , tb_e corresponding· bi

postulate will. reS'"tllt.

This fgct is of great importance. It gives each theorem

e dtlal~ it being necessary to prove only o'ne to esta-

blish both. T~e only one of these postulates which

differs from ordinary algebra is lb. However, this

ens bl e s gJ~ef-1 t simpl i fi os ti on sin th_e me!li pula ti on of

Theorems. Irl. this section a numbar of theorems gov-

erning the combination of hinderances will be ~iven.

Ina smucl:1 a s an;T of the theorems ma,,- he Druved by a

very simple process, tl1.e proofs will not be g:iver
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except for an illu str~tive example. Tbe method of

Proof is that of' "perfect induction," i.e., the veri-

fication of the theorem for all possi ble cases. Since

~r Pos~llpte 4 each variable is limited to the values

o Bn d 1, this is B simple rna tter. Some of the the orems

may be Droved more elegantly by recourse to p~evious

theorems, Cut the method of perfect induction is so uni-

ver·sal tha tit is pro ba bly to be preferred.

1. 8. X + Y • y + x

b. xy =yx

2. a. x + (y + &) = (x + y) + g

b. X(YIi) .. (xy)&..
3. a • x(y + ii) .. xy + X5-

b. x + yfll - (x + y) (x + a-)-
4. a • l-x .. x-

b. 0 + x - x-
5. a • 1 + x

• 1
b. O·x = 0

For example, to Drove theo rem 4A, note the t

X is either ° or 1. If it is 0, the theorem f'ollows

from 1)ostll1ate 2b; if 1, it folLOWS from rOs'tulate 3b.

'Je shall now define a new ope!'ation to be

oalled negstion. rhe negative of a ~inderance X Will

be Written Xt and is defined as a variable Which is

equal to 1 When X equals 0 and equal to 0 When X
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equals 1 .. If X is the }1-ind-=Jr'3TIce of the make contacts

of a rela:T:i then XI is trte hinderance of the break con-

tacts of the same relay. The definition of the nega-

tive of 8 hinder8nce gives the following theorems:

6. 8 • X + XI - 1-
b. V"" - 0.n.~\. • ...

7. a. 0' - 1-
b. 1 1 - 0-

8. (X t ) I - X-
Analogue ~flith the calculus of Propos1tiotL~s. '·.Te Rre

now in A position to demonstrate the equivalence of

this calculus vvith certain elementary p3rts of the

calCtl1u_s of propositions. Yne algebra of lo~c (1) I

(2), (3) originated b~r Geor~e Ecole, is a symoolic

method of investigating logical relationships. The

symbols of Boolean algebra admit of two logical inter-

pl"etati6ns. If interpreted in terms of classes, the

varta b1 '33 are no t limited to tn.G possible values

o and 1. This interpretation is kno~vn as the algebra

of classes. If, hoVJ8Ver, the terms are taken to repr~e-

sent propositions, \ve have the calClll1..1S of p,roposi tions

in W~ich variables are limited to the values 0 and 1*,

*I'his ref3rs only to the c18 ssic8l theory of the oa1­
cul'J.s of Propositions • Recently some ~vork ha s been
done vvi trt logi cal systems in vVhich pro posi tion s ma:T
ha ve more than tvvo t1 truth vallIe s ."
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as are the hinderance functions above. Usually t~e two

sUbjects are developed simultaneously from tae Same set

01 postulates, except for the addition in t~e case of

the Cctlculus of Propositions of a postulate e~uivalent

to postulate 4 aoove. S.V. Huntington (4) gives tne

followin5 set of postulates for symbolic logic:

1. Tne class K contains at least two distinct

elements.

2. If a and b are in tne class K tnen a+ b is

in tl1.e class K.

3- a+bzb+a

4. (a. b) + C = a + (b ... c)

5. a+a:a

6. ab + ab ':: a where ab is defined as (a'+ b ' )'

If we let t~e class K be t~e class consisting of the

two elem~nts 0 and 1, taen tnese postulates follow from

those given on pages 5 and 6. Also postulates 1, 2,

and 3 given tnere can be deduced from Huntington's

postulates. Aduing 4 and restricting our discussion

to tile CEi.lculus of propos i tions, i t is evident that a

perf'ect tine.logy exists between tne calculus for swi tcn-

ing cireuits B.Jlli tIlis br2J1Ch of symbolic loSlc. * The

two interpretctions of t~e symbols are sh:wn in Table 1.

*This 8.nalogy lllay also be seen from a slishtly d.ifferent
viewpoint. Instead of associating Xab directly wltfi the
circuit a-b let Xab represent t~e grooosition tnat the
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Ole to thi s analogy any theorem 0 f tre calculus

of Propositions is also a true theorem if interpreted in

terms of ~alay circuits. The remaining theorems in this

section are taken directly from this field.

IDe Mor~8ns theorem:

9. 8. (X + Y + ••• )t = Xt.y'.Z' •••

b. (X.Y.Z • • • )' =X' + y, + Z1 + •••

This theorem gives the negative of a sum or product in

terms of the negatives of the summands or factors. It

may be easily verified for two terms by ~~bstltut1ng

all possible values and then extended to any numbe~ n

of variables by mathematicsl induction.

A function of certain varia ble S Xl, ~2" - - - -Xx,. 1s

any expression formed fl'om the variables with the opara-

t10n S 0 f a ddi t1on, mul tipl i ca t1on, and ne ga t1on. The

notation t'(Xl , X2 , ••• Xu) will be used to represent a

flJ.:1~t1on. Thus we m1@:ht have f{X, Y, Z)) =XY + X' (y' + Z').

In infinitesimal calculus it is shown that any run~t1on

(providing it is continuous and all derivatives era eon-

, tinuous) may be expanded in 8 T8:rlor Serie s • A somewha t

similar expansion is possible in the calculus of propos1-

tions. To develop the series expansion of functions

(Footnote continued from preceding page)
circuit a-b is open. Then all the symbols are directly
interpreted as P:--'oposit1ons and the operations of addition
and ~ultipllcat1on will ~e seen to represent series and
parallel con~ections~
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TABLE I

Analo~ue Between the Calculus of Propositions

and the Symbolic Relay Anslysis

symbol

x
o

1

X+Y

XY

x'

=

Interpretation in relay
clrcu1·cs

The c1rcul t X.

The c1rcl.A.i t 1 s closed.

The clr ru1 t is open.

fhe series connection of
c1reu1 t s X and Y

The parallel connection
of c1reu1ts X and Y

'rhe cireu1 t whic h 1 S 0 pen
when X is closed, and
closed when X is open.

The at rcu1 ts open and
close simultaneously.

Interpretation in the
calculus of Propositions

The proPosition X.

The proposition 1s
false.

The proposition 1s
true.

The proposition which
1 s true if a1 ther X o:r
Y 1s true.,

The proposition Which
1s true if both X an.d
yare true.

The contradictory of
proposition X.

Each proposition
implies the other.
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first note the following equations:

a. f (Xl X2 ••• Y ) :: ~ i{,l X2 • • •y ) + X' r (0 , X2 • •Xn )" "'-0, f'" , ·11 I ,

b. f(Xl ••• Xn > • [f(O,X2 •• Xn) + x1l.(f(l,X2 •••Xn)+Xi)

These reduce to identities if. we let Xl aqual either

o or 1. In these equations the fUnction f is said to

be expanded arout Xl. The coefficients of X end Xi
ill~ 1 1

in ~are functions of the (n-l) variatiles X2 ••••XU
and may thus be expanded smut any o.f these variables

in the same manner. The additive terms in \a:ke1so may

be exnanded in this manner. Thus we get:

11. a. f(XI •••Xn ) =XI X2 f(l~l,X3 ••Xn) + XIX~ f(I,O,X3 ••Xn)

+ X1X2 f(O,1,X3···Xn ) + X!X~ f(O,O,X5 •••Xn )

b. f(Xl ••• ·Xn ) e [Xl + X2 + f(O.O,X3···Xn )] • [Xl +

X~ + f(O,ll·· .Xn )] - [Xi + X2 + f(l.O •••••Xn )]

• lX' + XI + f(l,l,X •••x )]
1 2 3 n

Continuing this process n times we will arive at the

complete series expansion haVing the fo I'm:

1 •••1) Xt X2 •••X + ••••••• + f(O,O,O •••O)
1 n

XIX' •••x'
1 2 n

b. f(XI ••••Xn ) : [Xl + X2 + ••• xn + f(O,O,O •••O)]

-[Xi + X2 ••• + Xn + f(l,O!O •••O»' •••••• [Xl

+ Xl + ••• xt + f(l,l, •••l)]
2 n
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By 129, f 1s equal to the sum of t'he produ cts formed

by permuting primes on the terms of X
1

X2 ••••Xn in all

Possi ble ways and giVing each product a coefficient

equal to the value of the fU.nction when that product

is 1. Similarly for 12b.

As an application of the series expansion it

should be noted that if we wish to find a circuit

representing any gi van function we can always expand

the function by at ther lOa or lOb in such a way that

any given variable appears at most twice, once as a

make contact and once 8S 8 break contact. This is

shown in Fi fl;. 4:.

x'1

x,

={

Fig. ~

Similarly by 11 any other variable need apJEsr no more

than ~ times (two make and two break contacts) etc.
,

A generalization of De Morgans theorem is

represented symbolically in the following equation:

13. [r(Xl,x21 •••~I + ,.)]1. = f(Xi'X~ ••••Xri'·,+)

By this we mean that the negative of any function may
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be obtained by replacin~ each variable by its negative

and lntarchanging the + and • s'YUlools. EXPlicit and

implicit parentheses will, of course, remain in the

same plaees. For example, the negative of X + y.

(Z + 'fIX') will be XI (y' + Z' ('~ll + X»).

Soma other theorems usefUl in simpli£ying

expressions e re g1 van below:

14. 8 • X - X + X =X + X + X - etc.- -
b. X - X • X - X • X • X - etc.- - -

15a 'S. X + XY =X

b. X(X + y) =X

16. 8. XY+ X'~ - X:Y + xt~ + 'ye-
b. (X + Y)(Xf + 8) = (X + Y) (XI + ~}(y + ~)

17. a • Xf(X) =Xf(l)

b. X + f(X) =X + f{O)

18. 8. X'f(X). =X1f(O)

b • X' + f(X) =XI -+. f(l)...

An~ expression formed with the operations of

addition, multiplication, and negation represents

eXPlicitly a c1r~~1t containing only series and

pa rallsl connec tior!. s • Su ch a ci rou1 t will be calla d

a series-parallel circuit. Each letter in an axpres-

sian of this sort represents a make or break relay

conts ct, or e swi toh blade and conts ct • To find the

circuit requiring the least number of contacts, it is
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therefore necessary to manipulate the expression into

the form in which the least numb~r of letters appear.

The theorems ~iven above are always sufficient to do

this. A ].1 ttle practice in the manipulation of these

s;rm1:o1s is 811 that is required. Fortunately most of

the theorems are exactly the same as those of numeri-

cal al~eora--the associative, commutative, and distrib-

ut1ve laws of algebra hold here. The writer has found

theorems 3, 6, 9,14, 15, 16a, 17, and 18 to be es-

peclally useful in the simplification of complex ax-

pres sian s.

AS a n exampl e of the 81 mp11 fica tion of ex-

pressions consider the circuit shoWn in Fi~. 5.

5'

~.- .
v y

_-.....--0 0---0 •

~ WI

•x
Fi Q;. 5

o

z'
...... '0

Z

The hind'3rance function Xab for this circlli t will be:

Xab = W+\\II(X+Y) + (X+~HS+W'+e)(~'+Y+S'V)
,

~ "i\[=~+X+Y+(X+~)(S+l+g)(gl+Y+stV) v

=W+X+y+g(~'+S'V)

lthesa reductions walee made \'V1"tth 17b using first ~N, then X and
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y as the "XU of 17b. }IO\iV multiplying out:

Xab =W + X + Y + gel + ~~SIV

: W + x + y + ~SIV

The circuit corresponding to this expression

is shown in Fig. 6. Note the large reduction in the

number of elements.

z
w X· Ya _.-lIDO ViO----00 DlO--_.n.o a----.....--a

Fig. 6

It is convenient in drawing circuit~ to label

a relay With the same letter as the hinderance of

make contacts of the relay. Thus if a relay is con-

neoted to e source of voltBQ:6 through a network whose

hlnder8nce function is X, the relay and any make con-

tecta on-it would be labeled X. Break aontects would

be labeled XI. This assumes tr~t the relay operates

instarltlY and that the make oontacts close end the

break contacts open s1multaneousl.. y. Cases in which

there 1s 8 time delay will be treated later.

It is also possible to use the analogy between

Booleian algebra and relay circu1~s in th9 opposite

direction, i.e., to represent logical relations by
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means of electric circuits. Some interesting resultz

have been obtained alon~ this line, hlt are of no im­

portance here.
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III Multi-terminal end Non-aeries-parallel Circuits

Equivalence of n-Tetlminal Networks.

control cirrn~1t will take the form of Fig. 7, where

x ,X ••••• X are relays or other devices controlled
1 2 n

by the eireuit and N is a network of relay- contacts and

sw1 tches.

+

Fig. 7

--

It is desirable to find transformations that ~ey be

applied to N which will keep the operation of all

the rela:vs Xl •••Xn the same. So fa r V~e he. ve only

considered transformation s Which may be apPlied to

a two..;terminel network keeping the operation 0 f one

relay in s-31"~ies With this network the sama. To

this en.d we shall define equivalence of two n--term..

ina 1 networks as follows:

Defini tion: TvvQ n-termina 1 networks hI an d N wi 11

be said to be equivalen t wi th respect to the se
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terminals if and only if X jk =Y jk .j, k = 1, 2, :3,-. ••n

'r.7r~er·e X is the hinderance on network 1-T bet~veen termi-
jk

nels ,1 and k, and Y is that for 11 between the cor-
jk

respondin~ terminals.

Thus under this definition the equ_ivelenc3s

of the preceding sections were \\'1 th respect to two

Star-Mesh end Delta-vVye Transformations.
. - As in ordi-

nary network theory there exiet :3 l;l:1r to me fJh 2nd delta

to vvy-e transforms tions. The del ta to wye tl~8n sforms-

tion is shown in Fig. 8. These two netwo~ks are

equivalent with respect to the three terminal~ a,

b, and c, since by the distrllntive law Xab = R(S + T)

=RS + RT and similarly for the other pairs of termi-

nels a-c end b-c.

b- - b

1
R S R·S--

ReT S·T

a/ 'ca
T

Fig. 8
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The wye to del ta tran sformation i s shown in

Fig. 9. This follovJS from the fact that Xab = R + S :

(R + S)(R + T + T + S).

(R~S)

a

(Tot-a)

c

An n po in t s ta r a1 so he s a me shequ 1va 1 en t

with the central node eliminated. This is formed

axe ctly 8 s in the simple three pain t s ta r, by Con-

nect1ng each pair of terminals of the mesh through

8 h1nderan ce which is the sum 0 f the co z:~esponding

For n :: 5 this is s h..Q\vn in~Fig. 10.
b

arms of the star.
b

&1
R

e

c

/

Fig. 10

a c____----.~~ .....tI!I~---..,

e
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Hinderance Function of a Non-Series-parallel Network,

The methods of part II were not sufficient to handle

circuits which contained connections other than those

of a series-parallel type. The bridge of Fig. 11, for

examPle, is a non-aeries-parallel network. These net­

works v'ill lJe handled by reducing to en equivalent

series-parallel cireuit. 'rhree methods have baen

developed for finding the equivalent of a network

such e s the bridge.

b

v

s

u

R

Fig.

The first is the obVious method of aPPlying

the transformstions until the network is of the

serie s-parallel type an d then wr1 t1ng the h1nderan ce

function bv inspection. This process is exactly

the same a s is used in simplifying complex impedal1 c e

networks. To apply this to the circuit of Fig. 11,

first eliminate the node c, by applying the star

to mesh transformation to the star a-c, b-c, d-c.

This ~i ves the network of Fig. 12.
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Fig. 12

'The hinderance function may be wri tten dovvn from

inspection for this network.

Xab = (R + S)[U(R + T) + V (T + S)}

Slmp11fyin~ by the theorems gives:

x = RU + S'J + RTV + SID
ab

The second method of anal:rs1 s is to draw

sll Pas 81 ble paths between the points under oonsid-

eretion throu.gh the network. These paths ere drawn

Blon~ the lines representing the component hinder-.,.,

Bnce eleJllents of the circuit. If anyone of these

pa ths h8 s zero hinderen as, the requ ired :f\ln etlen

must be zero. Hence if the ~esult is written 8S

a product, the hirlderanes of each path vlill be a

factor of this product. The required result may

therefore be wr1 ttan as the product of the hlnder-

ances of all passi ble pe ths b9tween the two points.

Paths whioh touCh the sarna point more than once need
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not be con sid-3red. In Fi~. 13 this method is apPlied

to the bridge.

8..

The paths are marked in red.

~_b

Fig. 13

The :f\.lnction 1s therefore g1 van by:

Xab = (R + sHu + V)(R + T + V)(U + T + S)
v

:; RU + SY + RTV + UTS

The same result is thus obtained as with the first

method.

The tl1.ird method, the dual of the second, is

to draw all possible lines Which VJould br-e8k t he cir-

cui t between the point s under cons! dara tion, making

the lines go through the hinderances of the circuit.

The ras111t is written as 8 sum, each term corres-

pending to a Qdrtain line. The sa t arms a re the J:Jrod­

ucts of all the hinderances on the line. This method

is apnlied to the bridge in F1~. 14, the lines be1n~

drawn in red.

-..b

Fig. 14
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This 8~a1n gives for the hinderance of the network:
-t-

Xab = RUt SV + RTV + sm

The third method is usually the most convenient

and rapid, for it ~ves the result directly 8S a sum.

It seems much easier to p..8ndle S'lms than products due,

no dOUbt, to the fact that in ordinary algebra we

have the distr11:utlve law X{Y + Z) =n + XZ, bUt not

its dual X + yz = (X + Y)(X + Z). It is, however,

sometime s d1 ff'lcul t to 8 pply th.e third me thod to non­

planar networks (networks which cannot be drawn on 8

plane without crossing lines) and in this case one of

the other t'iVO methods may 1Je used.

Simultaneous Equations. If there are n dependent

variables, there will be n simultaneous equations da-

fining the system. Any addit1 va tsrms which 8 re Common

to several of the functions may be factored out in the

manner 1.11ustrated by the following example. These

terms need only be realized onoe to take ears of all

c

B\~l =A + B + OW ~

X =A + B + \VX
Y • A + CY A
~ =E~ + f

'ft[

~I A + IB +I,~X
y Cy
~ - E~ + f-

the functions in which they epte 81'.

Fig. 15
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Sometimes the relation ab t =0 obtains "between

two relays 8 end b. This 1s true, for example, in a

sequ ent1Bl sy stem whe re ee ch relay of the sequen ce

1.oCks itself in and a precedes b in t he sequence.

'Nhenever b is o'perated 8 is operated. In such a case

the following simplifications may be made:

If a b l = 0

Then a' b t = s , b l + a b' - b l-
ab - eb + a b l = 8-

8 I + b =1

(a' + b l ) - (a l + b'){e' + b) - a l- -
(a + b) = (e + b) (8' + b) = b

Matrix Methods. It is also possible to trsat mult1-

terminal networks by means of matrices. Although use-

ful for theoretical work the method is cumbersome foxa

practical problems and will th'3r l3fore only be briefly

sketched. ?/e shall as mma the same ru19s of mBnipulat~on

of matrices as usuell-:T defined in v/orks on higher alge-

bra, the only difference ba1n~ that the elements of

our matrices will be hinderance functions rather than

ordinary algebraic numbers or variables. The XI matrix

of 8 networkwithn nodes will be defined as the fol-
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I I I

1 X12 X13 • • • • • • • · • • • •X1n
I , IX21 1 X23 • • • • • • • • · · • •X2n

· . . . . .. .. . . . . . . .. . . . .. . . . .
· ... . . .
·.. . . . . . . . . , .

X I • • • • • • • • • • • . • •• 1
n2

where X'j is the negative of the hinderance common to
~k

nodes j and k.

Theorem: The X' matrix of a network formed by con­

necting two n node networks in pa~811el (oorrespond-

ing nodes togethsI') is the sum of tr18 1nd1 Vidual XI

matrices. This theorem 1s more general thaD might

appear at first since any interconnection of two net-

works may be oonsidered 8S a parallel connection of

two networks wi th the same numb3r of nodes by adding

nodes 8S ~eded whose mutual hinderances to the other

nodes is one.

Now define s matrix to be celled the U' mB-

trix of a network 8S follows:

~ U12 ••.....• Uln

U21 1 •....... U2n
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WhA-rA TIl" 1-g the ne~ative of trle hinderance function.- . - - jk ~

from node j to k, the network considered 8S a two te~-

1nal cirelli t. Thus for the three node network of

Fig. 16 the X' and TIl matrices are as shown at the

right.

2

xl\y 1 Xl z' 1 X '+y' Z I z'+x1y'

x' 1 y' x'+y' z' 1 y'+X'7.'

lL~3
Zl y' 1 z'+x'y' :fl+X'Z' 1

z

Fig. 16 X' Matrix U' Matrix

Theo~em: Any pO~er of the XI matrix of 8 network

gives a netvlork which is equivalent With respect

to 811 nodes. The matrix is raised to a powsr by

the usual rule for multiplication of matrices.

Theorem:
I t

, I

1 U12 .... U1n 1 X12 ... X1n s

I t , XlU21 1 ... . U2n X21 1 ...- 2rl-.... . . . . . . ......
U~l· • • • • • · • • •

,
•

...... " .
,

X1n •.•.... 1 II
s ~ n-l

Theorem: Any node., say the kth, may be alirnina ted

les'tling the network equivalent with respect to all

remaining no des by adding to each eleraent X~s of the
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Xi matrix the oroduct of the elemoo.ts X'k and Xk' , andr _8

s'criking aut the kth rowan d column.

Thu s elimina tin ~ the 3rd node of Fig. 16 we p;et:

L+z' z t x'+z'y'

l+y'y'

I:,
1

x'+J1z'

X'+y1zl

1

The proofs of these theorems are of a simple

nature, but quite lon~ end will no't be given.

Special TyP3 s of Relays Band SVrl tches. In certain type s

of circuits it is necessary to preserve 8 definite

sequential relation in t'he operation of the con'tacts

of a relay. This is done with make-barare-break (or

con tinui ty) and brae k-make (ot' tra nsfer) con ta ct s.

In hand11np; this type of 01 rout t the simple st me thad

seems to be to assume in setting up the equations

that the make and break contaots operate s1multane-

ously, and aft:3I' all simplifications of the equations

have been made end the resulting ciI'cult drawn the

required type of contact sequence is found from in-

spection.

Relays haVing a time delay in onsrat1ng or

deoner8ting may be treated similarly or by shiftin~
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tha tiu!" tixis. 'rnus if 8 !'elay coil is Con_naeted to 8

battery through a hinderance X, and the relay has a

delay of p seconds in opereting and releasing, then

tha hinderance fUnction of the eontacts of the relay

will also be X, but at a time p seconds later. This

may be indicated by writing X(t) for the hinderance in

series With the relay, and X(t-p) for that of the re­

lat oontacts.

There Bre many special types of relays end

sWitches for particular Plr-poses, such as the stepp1n~

switches and selector switches of various so~ts,

multi-winding relays, cross-bar switches, etc. The

operation of all these types may be described with

the words "or," "and,n "if," l1oparated," and "not

operated." This is a sufficient eonditlon that may

be descri bed in terms of hinderance fUnctions with

the operations of addition, multiPlication, nega­

tion, end equality. Thus 8 two windin~ relay might

be So constructed that it is operated if the first

or the second winding is operated (activated) and

the first ~ the seeond windings are not operated.

Usually, however, these special relays occur only at

the end of a complex aircuit and may be omitted en­

tirely from the oalculetions to be added after the

rest of the circuit is designed.



30

50m~~~mes a relay X 1s to operate when B cir­

cuit r closes and to remain closed independent of r

until a circuit S opens. Suoh e circuit is known as

e lock-in circuit. Its equation is:

X = rX + S

Replacing X by X. ~ ves:

XI =rX' + S

or

X : (r l + X)S'

In this ca sa X is opened when r closes and remains

open until S opens.
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IV Synthesis of Networks

Some General Theorems on }letworks and FUnctions. It

he 3 bee'n shown _that any furl etton may be expanded in a

ser1e s con 81 st1n g 0 f a sum of produ eta, each prodU at

beinp; of the form XlX2 ••••Xn wi th some permutation of

primes on the letters, and each product having the co­

efficient 0 or 1. Now since each of the n variables

mayor may not have a prime, there 1s 8 total of 2n

different products of this form. Similarly each prod­

uct may have the coeffi~1ant 0 or the coefficient 1

2
2n

thso there are possible sums of 1s SOI't. Each of

these sums will represent a unique function, but some

of the functions may actually involve less than n vari-

a bles (i.e., they ere ·of such a form thQ t fo r one or

more of the n variables, say X~, we have identioally

f(Xl, •• ·Xk~l' 0, Xk+l'···Xn ) =f(X1···.Xk-1J 1, Xk +1 ,

•••Xn ) so the t under no oo.ndi t10n s do as the va lue of

the function depend on the value of X •
k

Hence we have the theorem:

Theorem: The number of functions of n variables or

2n
less is 2 •

To find the number of functions Which 80tua lly

involve n variables we proceed as follows. Let r/(n) be

the required number. Then Q1 the theorem just given:
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where (~) : nl/k Hn-k) ~ is the number of comb1.nation s

of n things taken k at a time. Solv1n~ for ~(n) gives:
2n n~

;(n) =2 - ~ (R);{k)
k=O

By 5Ubst1tuting for ¢,(n-l) on the right the similar

expression found by replacing n by n-l in this equation,

x then similarly sUbstituting for ~(n-2) in the expres-

sian thus obtained, etc, an equation may be obtained

involving only ~(n). This equation may than be slm­

p11 fi ad to t he form:

~
n 2k n-k

;(n) : [(k)2 (-1) ]
k:

As n increases this ex~ession approaches its leading
n

term 22 asymptotically. The error in uSing only this

term for n : 5 is less than .01%.

We shall now determine those fUnctions of n

vert.s ble s which require tb.e mo st relay con tacts to re-

eliza, and find the number of contacts required. In

order to do this, it 1s necessary to define a function

of two variables krtown as the sum modulo two or dis-

junct of the ~lariebles. This function 1s written

x.
l
ex

2
end is defined by the equation:

Xl~X2 =X1X2 + X1X2
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It is easy to sP£w that the sum modulo two obeys the

commutative, asso(}iative, and the distrihltive law

with resoect to multiplication, i.e.

x
1
ex2 : ~exl

(X1eX2 )eX3 =X18(X2eX3 )

Also:

x el : X'
1 1

Since the sum modulo two obeys the associative law,

we may omit parentheses in a sum of several terms

Without ambiguity_ The sum modulo two of the n var1-

ables X
1
'A

2
••••X

n
will for convenience be written:

n

Xlex2ex3···e~ =~Xk

Theorem: The two functions of n variables which re-

quire the most elements (relay contacts) in a series-
n n

parallel realization Bre ~X"and (~X~)I, each of wlUch12 1

requires (3·2n -1 _2) elements.



This will be proved by mathematical induction.

First note that it is true for n = 2. There Bre 10

fUnctions of 2 variaQles, namely, rl, X+Y, Xty, XI+Y,

XY', X+Y' J. X'Y' J XI +Y', XY' + X'Y, XY+X'Y'. All of

these but the last two require two elements; the lest

two re~lre· four elements and ara XfY and (X8Y)'

respectively. Thus the theorem is tru~ for n =2.

NoW 8 SBuming 1 t true for n-l, we shall prove 1 t true

fo!' n and thus complete the induetlon • Any function

of n variables may be V'/rl ttan by (lOa):

l~ow the terms f(1,X2 ••• Xn ) and f(O,Xe:> •••X ) are f\1nc"...., n .

tiona of n-l variables, and if they individually re-

quire the most elements for n-l varia bles, 'then f will

require the most elements for n variables, providing

there is no other method of writing f so that less

elements ere required. t~Je have assumed that the most

elements for these n-l variables are required by

~Xk and (~Xk) f - If we therefore su bsti tu te for
n

f{1,X2 -- .Xn ) the function ~x and for f{O,X2 - _Xn )
n ..., k

the ~unction (teXk)f we get:
2

n' n n
f =Xl.,#Xk + I Xi(f2Xk ) t = (~2Xk) I
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From the symetry of thi s functlon there is no other Vv8y

of expandi'n~ "vhich v~ill reduce the number of elements.

If the r11nctions ere stlbstituted in the other order,

we ~et:

This oomvletes the proof that these functions require

the most elements- To show that each requires (3_2n - 1 _2)

elements, let the number of elements required be de­

noted by s(n). Then from (19) we ~at the differenoe

equation:

s(n) : 2s(n-l) + 2

With s(2) = 4. This is linear, ~v1th constant coeffi­

cients, end may be solved by the usual me thods (5).

The solution is:
n-l

s(n) = 3.2 -2

a s may be ~a s Uy verlf1 ad by subst1 tu tin g in the dl f­

terence equation and toundary condition.

Note t"hat the above only apPlies to 8 ssries-

parallel realization. In a later section it Will be
n

shown that the fllnction~Xk and its negative may be
1

reslized with 4:(n-l) elements usin~ 8 more p:eneral

type of circuit. The fUnction requiring the most

elements usin~ any type of circuit has not as yet

been determined.
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The ne~et1ve of any network m87 be

found b;y De ~lor'genls theorem, bu t tm ne tv~ork must

first be transformed into an eQUivalent series-parallel

circuit (unless it is already of this type). A theorem

Will be developed With which the negative of any planar

two-terminal cirouit may be round directly. As B coro­

llary a method of finding a constsn t current 01 rcui t

equivalent to e ~iven constant voltage circuit and

vice versa Will be gi van.

Let N represent a planer network of hinder­

snoas, With the function Xab between the terminals

a and b Which are on the outer edge of the network.

For definiteness eonslder the netwo!'k of Fig. 17

(here the hinderances are shown merely as lines).

NoW let M represent the dual of N, as found by the

follow! np; pro cess; fo r as ch c on tour or me sh 0 f N

assign a n9de or junction point of M. For eaoh

element of' N say Xkl sepir8tin~ the contours rand

s there corresponds an el~ment Xk connecting the

nodes rand s of M. The area ext3r1o~ to N is to

be considered as tVlQ meshes, c and d, corresponding

to nodes c end d of M. Thus the dual of F1~. 17 is

the network of Fi~. 18.



a

m.esh c

s

mesh d
Fig. 17

b

Fig.

c
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Theorem: If M and N bear this duality relationship,

then Xa b =X~d·

To pro va thi S J let t he networks M end N be

superimposed, the nodes of M within the corresponding

meshes of M and corresponding elements crossing. For

the network of Fig. 17, this 1s shoWn in Fig. 19,

With N in black and M in red. Incidentally, the

sa si e st me thad 0 f finding the dual of a ne two rk .

(Whether of this type or an 1mpedlnce nstwork) 1s to

draw the required ne two rk superlmpo sed on t h.e g1. van

networtk. Now, if' Xab : 0, then there must be some

-path fI'om 8 to b alon~ the lines of N such that every

element on this path equals zero. But this path repre­

sents a pa th across M d1 vi ding the circuit from c to d

along wni~h every element of M 1s ona. Hence Xed =1.

Similarly, if Xed =0, then X
ab

=1, and it follows that

X -VI
8b - "''"''ad-

a

Fig.

b
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In a eonstant-voltage relay system all the

relays are in parallel across the line. To open a

relay a series conneotion 1s open~d. The general con-

stant-voltage system 1s shown in Fig. 20. In a constant-

currant system the relays are all in series in the line.

To de'~operate a relay, it is short clrouitad. The gen-

eral constant-current circuit corresponding to Fig. 20

is shown in F1~. 21. If the relay Yk of Fi~. 21 is

to be operated whenever the relay X
k

of Fi~. 20 is

opera ted and not otherwi se, than eVidentl y the hin­

der8tlCe in parallel wi th Yk whi_ch Shorts 1.t out mus t

be the na ga tiva 0 f the hinderan ce ~. . .,- in sari as vii th

Xk Which connects it across the voltage source. If

this is true for all the relays, we shall say that the

oonstant-currant and constant-voltage systems are equiv-

alent. The 8 Cove theorem may "be used 'to find equivalent

Circuits of this sort. For, if we make the networks

N end M of Figs. 20 and 21 duels in the sense described,

than the condition will be satisfied.

E
constant voltage
source.

Fig. 20

Constant
I current t1

source.

~ Yn
l ~-""''''I---------"

Fig. 21
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A simple example of this is shown in Figs. 22 and 23.

E

R
~---..

Fig. 22

I R'

F1~. 23

y
:3

, Synthesis of the General Sxmet~1c FUnction. As ha s

been shown, any function represents explicitly a

series-parallel circuit. The series-parallel ~e811z8-

tion may require mo re elements J howev61", the n some

other circuit representing.the same function. In

this section a method will be given for finding a cir­

ouit representing B certain type of fUnction which

in ~eneral is much more economical of elements than

the best series-perallel circuit. This type of fUnc-

t10n frequently appears in relay circui'Cs and is of

much importance.

A funct ion 0 f the n varia bl es Xl' X2 ,··· .Xn

is said to be symmetric in these variables if any

tnt erchan~e of the sa varia bles leaves the function



identically the same. Thus XY + XZ + yz is symmetr1a

i"n the variables X, Y, and Z. Since any permutation

of variables may be obtained by sucaessive 1nterchengas

of two variables, a necessary and sufficient condition

that 8 function be symmetric is that any 1nterchan~e

of two variables leaves the fUnction unaltered.

We now give a theorem Which forms the besis

of the method of synthesis to be d~acr1bed.

Theorem: The necessary and sufficient condition

that 8 fUnction be symmetric 1s that it may be spec1-

tied bf stating a set of numbers 81' 8 2 , •••••8 k such

thB t i faxa ctl y a j (j =1, 2, :3, •••k) 0 f t he va r1 a b1e s

are zero,then the fUnction is zero and not otherwise.

This follows easily f~om the definition. For the ex-

ample g1 van the sa num bars are 2 and 3.

Theorem: There are 2n+1 symma'tric functions of n

vat-1ables. For eV8I'y selection of 8 set of numbal's

from the numbers 0, 1, 2, •••• n corresponds to one and

only ona s~~etric function. Since there are n+l numbers

each of Which may be a1 ther taken or not in our selec­
n+l

t1on, the total number of functions is 2 • Two of

these fUnctions are trivial, however, namely the se-

lactians in Which none and all of the numbers are

taken. These give the "functions"l and 0 respectively.
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B'! proper selection of the varialbes many

apparently uns~rmmetric functions may te made symmetric.

For example, XY'Z + X'YZ 1-. X'Y'Z', although not symmetric

in X~ Y, end Z, is symnetl"io in X, Y, and Z'.

~e set of ~mbers a
l

, a
2

, ••••sk will for con­

venience be called the 8-n'umbers of the function.

The theorems concerning comtlnations of symmetric

functions ere most easily stated in terms of the

018 s sa S 0 f 8 -num bar s • For thi s rea son we dena ta the

cless of a-numbers by a s1n~le letter A. If two differ-

ent sets of a-numbers are under consideration they will

be denoted by A
1

and A2 • The symmetric function of n

varia ble s he ving the a -num bel'S 8 1 , 82 •••sk will 'be

written Sn{al , 8 2 •••a k ) or an(A).

Theorem: 3n (Al )· Sn(A2 ) =Sn(Al + A2 )

where A1 + A2 means the l06!ca l sum or the classes Al

and A2 i.e., the cla ss of tho sa numbers which B re members

of either Al or A2 or both. Thus 36(1, 2, 3). 86(2, 3, 5)

is equa 1 to S6(1, 2, 3, 5).

Theorem: 3n (Al ) + 5n(Aa) ~ Sn(A1,A2)

where AlwA2 is the logical product of the mlassas i.e.,

the ala ss 0 f numbers Which are common to A1 and A2. Thus

5 6 (1, 2, 3) + S6 (2, 3, 5) '"C 36(2, 3).

These theorems follow from the fact that 8 product is
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zero if either factor is zero, while 8 sum is zero only

if both terTI1S are zex'o. The negs ti va of 8 set of a -numbers

will be \"I1'1tten AI and meBns the class of all the numbers

from 0 to· n 1nclusiva which a re not members of A. Thus

if A is the set of numbers 2, 3, and 5, and n • 6 then

AI is the set of numbers 0, 1, ~, and 6.

Theorem:

These thaorams are useful if several symmetric functions

are to be obtained simultaneously ..

Before we study the synthesis of 8 network for

the general symmetric fUnction consider the circuit 8-b

of Fig. 2~. Th1.s circuit represents 33(2).

LoX~
XI

2

7
L :n-3__• 0

XI
3

The line comL~g in st a first encounters a pair of

h1nderancas Xl and xl. If Xl = 0, the line is switched
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up to the level marked 1, meaning that 1 of the var1eQles

1s zero. If Xl =1, the line stays on the level marked

0; next hinderanaas X2 and X~ Bra encountered. If X2

is ~ero, the line is switched up a level; if not, it

stays at the same level. Firlslly reaching the right

hand set of terminals the line has been switched up
~

to 8 level representing the number of variables which
;.:..

are dqua]. to zero. Terminal b 1s connected to leval

2 and therefore the circui t a-b will be comPleted if

and only if 2 of the variables are zero. Thus the

function 33 (2) is rep~esented. If 33(0,3) had been

desired, terminal b would 'be connected to both levels

o end 3. In figure 24 certain of the elements Bre

evlden tly Sll perf'luous. The c1 rout t may be simplified

to the form of Fig. 25.

Fig. 25

For the general function exactly the same

method is follov'Jed. Using the general CirC1..1it for n

b



varia "bles of Fig. 26, the terminal b is cOllnected "to the

levels corres-;~onding to the a-numbers of the desired

svmmetric function. In Fig. 26 the hinderances Bra

represented by simple lines, and the lette~s are omitted

from the circuit, hut the hinderance of each line may

easily be seen by generalizing Fig. 24:.

NOTE: All sloping lines
have hinderance of the
varia ble \vri tten below;
horizontal lines have
negative of this hinder-
ance.

•
•
•

~b

2

to a­
1 numbers
o

(n-:-l)

n

........ ...
a

Fig. 26

Aftar terminal b is connected, all superfluous ele-

ments may be deleted.

In certain cases it is possi ble to greatly

simplify the circuit by shifting the levels down.

Supnose the rbnction 36(0,3,5) 1s desired. Instead

of continuing the circuit up to the 6th level, we
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oonnect the 2nd level tsck down to the zero level as

shown in Fig. 27. The zero level then also becomes

the 3rd level and the 6th level.

2,5

1,4

0,3,6
a ....---.j....----.---~I11'----~~------..------....-.-... b

~Ni th terminal b connected to this level, we have rea­

l1zed the function with a great saving of elements.

Eliminating unnecessary elements tIlo circuit of Fig. 28

1s obtained. This deVice 1s e3pecia·lly useful if the

8-numbers form an arit~met1c progression, although it

can sometimes be applied in other cases. The fUnctions
n n

l:2Xk end CC2Xk )1 Which were shown to require the most
1 io 1

elements for a ser1es~parallel realization have very

simple circuits when developed in this mann,er. It
n

/Jan be easily shown that if n is even, then!:2Xk is
1

the symmetric function with all the even numbers

for a-numbers, if n is odd it has all the odd numbers
n

for a-numbers. The function ~Xk) I is, of course,
1

just the opcos1te. Using the shifting down process
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the circuits are- as shown in Fig. 29.

a -----.........~--.-..~--_w:~--....._--- .......---....... b

n
~2 Xk for n odd;
1

a ------~ b

Xl ~ X3 xn-l Xnn n
l:2 Xk for n even; (1;2 Xk)1 for n odd.

1 1
Fig. 29

These circuits each require 4{n-l) elements. They

will be recognized as the familiar circuit for con­

tro llinJ2; a 11 ght from n pain ts; If at an:, one of the

points the position of the switch 1s changed, the

total number of vAriables which equal~ ~ero is changed

by one, so that if the light 1s on, it will- be turned

off end if alr/~ad~r off, it will be turned on.
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The general network of Fig. 26 contains n(n + 1)

elements. It can be shown that for any ~iven s~lection

'of a-numbers at least n of the elements will be super-

fluous. It follows that any symmetric function of n

variables can be raalized With at most n2 elements.

Equations from Given operatin~ Characteristics. In gen-

eral, there is a certain set of independent variables

A, B, a, ••• Which may be s\ntches, exte~lellY operated

or protective relays. Thera is also a set of depend~nt

variables x, y, z •••• Which represent relays, motors or

other devi~es to be controlled by the c1rcui t. It 1s

required to find a network which ~1vas for each possible

comtanetion of values of the independent variables, the

correct value s for all the dependent variables. The

followin~ principles gi va the general method of solu­

tion.

1.- Additional dependent variables must be

introduced for each added phase of operation of 8

sequential system. Thus if it is desired to construct

.8 system which operates in three steps, two additional

v8riables must be introduced to represent th~ beginnir~

of the last t\'Vo st!3ps. These additional variables

may rep~esent contacts on a stepping switch or relays

Which lock in sequentially. Similarly each required

time de18~T wl11 reqt1.ire a nevv variable, representing
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a time delay relB;T of sona so rt • Other forms of relays

which may be uscessary will usually be obvious from

the nature of the problem.

2. The hinderance equations for each of the

dependent variables should noW be written down. These

t~nctions may involve any of the variables, dependent

or independent, including the variable whose fUnction

is being determined (as, for example, in a lo~k in

cirCUit). The conditions may be either conditions

fc\r operation or for non-operation. Equations are

written from operating characteristics accordin~ to

Table II. TC' illustrate the use of this table stlP-

pose a relay A is to operate if x 1s op~r8ted and·y

or z is operated end x or w or z 1s not operated.

The expression for A will 1)8:

A =x + yz + X'W'ZI

Lock in relay equations have alr-gadv been disoussed.

It does not, of course, matter if the seme conditions

are pllt in tb.e expression more than once--sll super­

fluous material will disappear in the final simplifi­

cation.

3. The expre s sian s for the 'va rious dependent

variables should next be simplified a s much 8 s possible

by means of the theorems on manipUlation of these quan­

ti ties. Jus t ho\v mtlch this 0811 be done depends somewhat

r



TABLE II

RELATIO~: OF OPERATlllG CF~RACTERISTICS AtTD EQUA·rIOrIS

Symool

X

--
XI

•

+

( -- ) ,

In Terms of operation

The switch or relay
Xis 0 pe ra ted.

If.

The switoh or relay
X is not operated.

Or •

And.

The circuit (--) is not
closed, or apply De
Morgan's Theorem.

In Terms of Non-operation

The switch or relay X
1 s not operated.

If.

The switch or relay X
1 s 0 p3 ra tad.

And.

Or.

The circuit (--) is
closed, or apply De
Morgans Theorem.
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on the in genu~.. ty 0 f the de s1 .~ er •

4. The resulting circuit should now be

drawn. Any necessary additions dictated by practical

oonsiderations such as current oarrying ability, se­

quence of contact operation, etc., shculd be made.
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v Illustrative Examples

In this section several problems will be

solved with the methods whiah have been developed.

The examples are intended more to show the versatil­

ity of relay and sWitching circuits and to illustrate

the us e of the calculus in aotual pro blems than to de s­

cribe practical devices.

It is possible to ~rform complex mathematical

or;>eretions by means of relay circuits. lTumbers may be

represented b1 the positions of relays or stepping

sWitches, and interconnections between sets of relays

can be made to represent various mathematioal opera­

tions. In fect, any operation that can be completely

described to the required accuracy (if numerical) in

a finite number of steps using the words nif," nor,"

Uand, U etc. (see Ta ble II) CBn be done a utoma ticelly

with relayse_ The lest two examples are illustrations

c f ma thems -tical opera tioris a C; conpli shed wi th relays.
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A Selective Circuit

A relay 1:\ is to ope ra te when anyone, any

three or \vhen all four of the relays w, x, Y, and z

are ope ra ted. The hinderance function fo r A. will

eViden tly be:

A = wxy& + wtxtya + w'xyl~ + w'xy~' + wX'y'& +

wX'yii' + wxyli§t

Reducing to the simplest series-parallel form:

A =w[x(ys + yt&l) + X'(y1& + y~t») + w'[x(y'& + ya')

+ x'ya]

Th.le circuit is sho'lm. in F1~. 30. It requires 20 ele-

ments.

W WI A
+ -.-..---.a e-----e---..... ....---.....--------nI

x Xl x Xl

Fig. 30

However, using the 8:.~metric function method, we may

write for A:
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w x y

Fig. 31

z

ThjEj circuit conta ins OTlly 15 elements. A still fur-

ther reduction m8~T be made wi th the follow1 ng device.

First write:

A I • ~S~ ( 0 , 2 )

l'hi s he s the cireui t of Fig. 32. 'J~lhatis required is

the negati va of ttl1 s funotion. Thi s is B planar net­

work and we msy apply the theorem on the duel 0 f a net-

work, thus obtaining the circuit shown in Fig. 33.

+

~? •
.~~~

.c:. ~. ~ ...--....... O--.-L. .."ArJ'11~__

w x y
Fig. 32

z

This contains 14 elements and is probably the most econom-

1c"81 circuit of any sort.
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z
.~

Zl

Fig. 33

Wi

"f'l,

A

54
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Desi@l of an Electric Comtanation Lock

An electric lock 1s to be constructed with

the following oharacteristics. There Bre to be 5 push

button switches available on the front of the lock.

These will be labeled a, b, c, d, 9. To operate the

lock the blttons must be pressed in the following

order - c, 0, e and c simultaneously, d. l~lhen Op3rated

in this sequence the lock is to be unlocked, but if any

button is pressed incorrectly an alarm U is to operate.

To relock tIle system 8 sWi tch g mus t be operated. To

release the alarm once it has startad)8 sWitch h must

-be operated. This being a saquen tiel system a1 ther 8

stepping switch or additionsl sequential relays are

required. Using sequential relays let them be denoted

by w, x, y, and Z oorresponding respectively to the

co!'~ect seq.uence of operating the push rottons. An

additional -t1~e delay relay is also required due to

the third step in the operation, ObViously, even

in correct operation a and c cannot be pressed at ex­

actly the same time, but if only one is pressed and

held down the alarm should operate. Therefore assume

an auxiliary time delay relay y Which will operate

if either a or c alOne is pressed at the end of step 2

end held down longer than time s the del~Y of the relay.
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11Vhen z has opersted the lock unloclcs and at this point

let all the other relays drop out of the circuit. The

equations of the system may be written down immediatelY:

W • cw + ~, + U t ~

~

x = bx + ~+&I + UI
I - ..... '; ,t' ! .

y = (a + c)y + x + 6' + U'

& =ll.(~ + y) + g' + U'

v =x + y' + 8e + a'o' + a' + U'

U : e(wl + abd)(w + Xl + ad)(X + yl + dv(t-s»(y + b)LI

'it' + hI + at
./

These expressions ean be simplified considerably, first

by comb1n1nB; the second and third factors in the first

term of U J and then by !Bctor1n~ out the common terms

of the several functions. The final s implittad form

1s as below:

u : h t + e [ a d ( b+w t) + X t ] (x 1- yo' + d v ) (y + b )U

w = w

x :

y :

v =
• =

&t+ 1f1 bx + w

\

(s+C)y
x +

yt+ac+8'C~

g I + ('1 + 4& + U I

This corresponds to the cirtcuit on the fol.lolJVin~ page.



tJ

•

w. -----C:

7
a-

d
•.]-7'. -oX

a
~'"=oiiiiiiii 4

u·

Zl

_--- U' .t
_0_-------. CI --e__[7·
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A Vote Counting Circuit

A circuit is to be eonstructed with the follow-

ing properties. Thera are to be thirteen lights, marked

0,1,2 •••12 and twelve two-position switches, ~l' x2 •••

x
12

' one for each voter, each me rked with two possible

votes, yes or no. There is also a control tutton c.

The lights are to count the number of 'yes' votes.

tt 5 voters move th9ir sWitches to the 'yes' position

and the remain1n~ 7 vote Ino,' the light marked 5 1s

to light up providing the control button C is pressed,

and simile rl:r for any number of votes.

This is clearly an application of symmetric

functionS diseussed previously. If we represent the

ll~hts hv'the synltols La' L
l

, ••• L
12

, the th'3 equ.s­

t10ns of the system will evidently be:

k = 0, 1, ••••12

The oircuit representing this system according to the

symmetric function development will be:

c

X2 x 3 .•• · · · · · · · ·

Fig * :35

+
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Electric Adder to t"b..e Base T"wvo

A circuit is to be designed that will 8utomat-

ically add two numbers, us1n~ only relays and switches.

Althou~h any numbering base could be used the circuit is

greatlY simplified b~T using the scale of two. Each digit

i 8 thus el ther 0 0 r 1; the number Who sa di~ t s in order

are sk' 8 k _1 , Bk _2 , •••• 8 2 ,8
1 , 8 0 has the value

k
L B 2 j • Let the two numbers whi ch B re to be added be
j'";O j

represented by a series of sWitches,sk' a
k

_
1

, ••••~l' 8 0

representing the various digits of one of the numbers

and ~, '\:-1' ••••~, bO the di~ ts 0 f the other number.

The sum vv111 be repres-3nted by the pOsitions of a set

of relays sk+1' 5 k , ~-1 •••• 5
1

, SO. A number which

is carried to the jth column from the (j-l)th column

will be repre sen ted by a re1a Y C j • 1fthe value of

any d1 gi t 1-5 zero, the corres'POnd1n~ relay or awi tch

will be taken to be in the position of zero hinderance;

if one, in the position Where the hinderance is one.

The e ctual eddition is sho\:Vn 1:elow:

ck+1 Ok c·+1cj °2 c1 carried numbers
t1

oak ----- 8 .;+18 ~ 8 2 a1 e.o 1st number

~ bj~lb j b2 ~ be 2nd number

Sum
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starting from the right, So is one if 8 0 1 S ona and bo

is zero or if 8
0

1s zero and bo one but not otherwise.

Hence:

C
1

is one if both 8 0 and bo are one but not otherwise.

5j is one if just ana of 83' b j , Cj 1s one, or if 811

three are one.

va ria ble s l el' b~, C,.]

C j +1 is one if two or if threa of these variatiles ~re one.

\

Using the method of symme'tric functions, and shift-

ing down for s j ~ives the ci rout ts of Fig. 36.

j a 1, -2, •••• k j • 0

+

a-l
J

c ~
J

°.j+1-

Fig. 36

+
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E11minetin~ ~lperfluous elements we arrive at F1~. 37.

j - 1, 2, 3 s ••••• k

+

b 1

j
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A Factor Table Machine

A machine is to be designed which will auto-

matically print 8 table of factors and primes of all

the integers from 1 to 100,000,000. If 8 number 1~

prime, it 1s to be so marked; if composite, its least

factor is to be printed beside it. The principle

Which will be used is that of the sieve of Eratosthenes

(6) • Let the na tural numbers be wr1 tten in order:

1, 2,3, 4, 5, 6,7,8, •••••.••.•.•

Now consider the prime numbers in ordar, 2, 3, 5, 7,

11,13,17 ••••• Each 2nd number after 2 in the row of

natural numbers has the least prime factor 2; each'

third number after 3 Which is not 8 multiple of 2 has the

least prime factor 3; each 5th number after 5 not divi9­

ible by 2 or 3 has the least prime fector 5, etc. Any

number F not haVing a prime factor less than itself

is, of course, e prime. It is customary in ta blas

of this sort to omit numbers divisible by 2, 3, or 5

thus reducing the numbar of integers which need be

Qonsidered to 4/15 of the largest number N (108 in

this case). It should also be noted that any composite

number less than or equal to N has a least factor less

than or equal to IN. Thus in 011 r ca sa only prime s

less than 10,000 need be considered in the f11terin~
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process described. The asymptotic formula N/ln N

(for the number of primes less than N) shows that

there are abo~t 1000 primes less than 10,0000 Let

each of these nrimes after 5 be represented Of a

counter Ok with the following properties. There ere

three magnets, M2' M~, and lvI6 • ~vhen M2 operetes all

the counters are advanced 2 units; M~ and M6 advance

the oounters ~ and 6 units ~espsctively. The purpose

of these magnets is to automatically omit numbers

divisible by 2,3, and 5. l'Jote that st8rtin~ with 1

the next number not divisible by 2, 3, or 5 is 7,

an advance of 6; the next advanoe is 4 (to 11), then

2 (to 13). The total cycle of advanees is as follows:

6, 4:, 2, ~, 2, ~, 6, 2 (l)

after which the seme se~1as 15 repeated (the period

1s 30, the least common multiple of 2, 3, and 5).

As the successive numbers are considered for factors

or p~ima11ty, the aounters will advance accordin~ to

this sequence. When any counter Ok representing the

prime P
k

rep.ches the value of this prime it is to be

so constructed that it automatically makes a connec­

tion Xke Each counter is to have a return magnet R~J

Which when activated returns the counter to zero. The

general opeI'stion of the devi cs will then be as folloVJs.

Starting at the number 1 (the counter and printer



rep11ssent1ng the numbe'!' being con sidered set at 1) and

with the counters rep~esentlng the primes less than

10,000 all set at zer~ the counters are advanced accord­

ing to the sequenoe (1). If for any number N, Xk makes

cont-act, then P
k

is a factor of N; the least P
k

being

the least factor. If no Xk makes contact, N 1s 8

prime. When any Xk makes oontact, it is to be auto­

matically returned to zero by means of Rk • To record

the result s a prain tar Uk should be a s socia ted wi th

each counter which will print the value of the prime

Pk oPPOsite N when ma gnet Uk is activated. If N is a

prime, a Print er S should prin t a symto 1 -to call 8 tten­

tlon to the fact.

Althou~h this entire design could be es
4
rr1ed

out with relays alone, it is probably more economical

to construct the counters on mechanical princi·Ples,

and 1;herefore only the control circuits vnil be des­

cribed. To automatioally advance the numbers Bt

short intervals some kind of an impulse generator is

n~cess8ry. The simplest method of obtaining this 1s

to use a relay with a small time delay 8. If the

relay is labeled z( t), then the con tacts have 8 hinde:ra­

ance function Z( t- 3), and the connection Z( t) - Zt (t- B)

Will ~ive e series of impu.lses of J)er1od 21. The se­

quence of advances may oe easily obt8ined with an 8



pO~illt :potary switch.. Let this switch have a magn,et L

v\rlii·eh ad.vtanoas ttle sV:ii toh one point wh.ans ottva te.d.

Tlfttal."'i1f~a eonn~lot, L so the t L= Z( t .. ,.) and Clonnect

ljite contacts of the rotary s\"J1 tch to. the ma gnets M
2

,

M:;lla!!ld AtlS according to theord,er of (1'), the cOttuters

w,tll all b'a a dv,sn cad pe riodi as l.ly in this S6qtt$nde.

65

tna Xk$ wi..*l equal ~ero i f the n.UIl'1~r 1. s compost te.

1.n tltd.sc9s·e these }tkS sh.ou1d (laU sa t hasmalle $ tfac'"

ta::r to J)J!·tnt.and then retuX'n to zero. This condition

W·111be sst:1sfied by the follow!.ng equati ons:
It:~·l.

tJ .: X... + ..·..I./.·.t.•~.X·t.. + 0. t (t- 3) k :: 1, 2 , 3.....
k k'=l j

l~ :: ltk +1(t-e) ( 2 )

y{ t )= .. ("6-6).

tJ:hat·»is, -0,119 pr1r.lter tT opepates if Xk.•·..... :: 0 and tht:) x..
J
-9.. e,. ..... .... k ~

j(:k, do nco t . equal z ere> • Also a ftera d a1.8 y e to ai.low

. £01: p:rinting, the counter is rZ"7turned to zero. If

none of the Xksmake contact .on a !1l1mbep bT, it is a

'P:p:tmeand S should prin. t • Phi saan be a c co mplished

'With the fol1o~ving eqtlation:

:rnhemain printer B'nd counter ~J should print on each
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Usin~ the method of factorj.ng of simultaneous equations

the system (2) can be greatlY simplified as fOllows:

U1 =X1

U2
- X ~- 2

U
3

- X3 + X'- 1

U - X .... \+-n n
~-l\S ..

+ X'-
n

The circuit of the entire device is sho\m schematically

in Fig. 38.
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Fig. 38



This design requires tnat t~e primes less

than 10)000 be known. If desired, tne machine could

be made to autoITl9.tic8.11y connect in neVi counters as

the primes were found, but there 8.re many 8.ccurs,te

tables of primes up to 10,000 so that this would not

be necessary.

As to the practicability of ellen a device, it

mi~~t be s~id tnat J.P. Kulik spent 20 years in

constructing a table of primes up to 100,000,000 and

when finished it was found to contain so many errors

that it was not worth publlsning. The macnine described

here could probably be made to nandle 5 numbers per

second so tnat the table would require only about 2

months to construct.
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