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I 1Introduction: Types of Problems

In the control and protective circuits of com=
plex electrical systems it 1s frequently necessary %o

make intricate intercommections of relay contacts and

switches. Examples of these circults occur in auto-

matic telephone exchanges, ingdgustrial motor control
equipment and in almost any circuits designed to ver=
form compleX operations automatically.

that

Two problens
occur in connection with such networks of switches

will be treatsd here. ‘he first, which will be called

analysis, is to aetermine tThe operating charactsris-

tics of a given circuit. It is, of course, always pos=

sible to analyze any given circuit by setting up all
possible sets of initial conditions (positions of

switches and relays) and following through the o

L '.-Lai 1'1
of events so instigated. This method is, however,

very tedious and open uo frequent error.

The second problem is that of synthesis.
Given certain characteristics, it is reauired to find
a circuit incorporating these characteristics., The
solution of this type of vroblem is not unique and it
i1s tnerefore additionally desireble that the circuit

requiring the least number of switch blades and relay



convacis be Tound. AlfThougn a solution can usually be

obtaired by a "cut and try" method, first satisfyving

one requirement and tnen making additions until all

are satisfied, the circuit so obtained will seldon

be the simplesc. This method 2lso has the disadvan-

tages of being long, and the resulting design often

contains nidden "sneak circuits."

The method of solution of these problems which

will be developed here may be describhed briefly as

follows: Any circuit 1s represented by a set of ecua=

tions, the terms of the equations repreéenting the

various relays and switches of the circuit. A cal-

culus is developed for manipulsting these squations
by simple mathematical processes, most of which are

*gsimilar to ordinary algebraic algorisms, This cal-

culus 1s shown to be exactly analogous to the Calcu-
lus of Propositions used in thée symbolic study of

logic. For the synthesls problem the desired charac-

teristics are first written as a system of eocuations,
and the equations are then manipulated into the form

representing the simplest c¢ircuit. The circuit may

then be immediately drawn from the eauations. By
this methocd it is always possible to find the simplest

circuit containing only series and pvarallel connecsions,



and for certain types of functions it is vossible %o

find the simplest c¢ircuit containing any type of con-

nection. In the analysis problem the equations repre-
senting the given circuit are writteén 2nd may then be

interpreted in terms of the overating characteristics

of the circuit, It is alsc possible with the calcuius

to obtain any number of circuits equivalent to & given
circuit.

Phrassology will b2 borrowed from ordinary
network theory for conceonts in switching circults

that are roughly analiogous to those of impedenca

networks,



II 3eries-Parallel Two Terminal Jircuits

Fundamental Definitions and Postulates.

‘We shall

limit our treatmsnt to circuits containing only re-

lay contacts and switches, and thnerefore st any given

tims the circuit between any tWwo terminals must be

elther oven (infinite impedance) or closed (zero

impedance). Let us associate a symbol xab cr more

simply X, with the tsrminals a ana b. This variable,

a function of time, will be called the hinderancse

of the two terminal circuit a-b., The symbol O (zero)

will be used to represent the nhinderance of a closed
circuit, ana the symbol 1 (unity) to represent -the

hinderance of an open circuit. Thus when the cir-

cuit a~b is cpen Xab 2 1 and when closed Xab = 0.
Two ninderances X . and Xcd will ve said to be equal
if whenever the circult &-o is open, the circuit c-4

is ooen, and whenever a-b is closed, c¢c-d is closed.

Now let the symbol 4 (plus) be defined to mean the

series connection of the two terminal circuits whose
ninderances are added together. Thus Xab * Xcd is
the uninderance of the circuit a<=d when b and ¢ are
conmected together. Similarly the oroduct of two

hinderances (Xab . Xcd) will be defined to mean the



hinderance of the circuit formed by connecting the

circuits a=b and ¢-d in parallel. A relay contact

or switch will be represented in a circuit by the

symbol in Fig. 1, the letter bsing wte corresponding

hinderance function. Fig. 2 shows the interpreta-

tion of the plus sign and Fig.:3 the multiplication sign.

X X
a ab X Y _ (X+Y) _{: L = XY

Fige. 1 Fig. 2 Fige 3

This choice of symbols makes the manipulation of

hinderances very similar to ordinary numerical alge-~

bra.

It is evident that with the above definitions

the following postulates will hold:

Postulates

A closed circuit in parallel
with a closed circuit is a
closed circuit,

An open circuit in series
with an open circuit is an
open circuit.,

2, 2., 1 0 =0+¢+1=1 An open circuit in series
with a closed circuit in
el ther order is an ovnen
circuiczt.

0, Oe¢l 3 10 = 0O A closed circuit in parallel
with an open circuit in
either ordsr is & closed
sircuite.



3. a. 0+ 0

0 A c¢lossd eircult in serises
with 8 closed circuit 1s 2
closed circuite.

be 1°1

1l An open circuit in parallel

with an open circuit is an
open circuit,.

At any given time elther X = 0
or X = 1.

Thase eare sufficient to develop all the theo-

rems which will be used in connection with circuits

cont2ining only s=ries and p2réd 1lel connections. The

postulates are apfanged in pairs to emphasize a duality

relationshiv bvetween the operations of addition and

mualtiplication end the guantities zZzero ¢nd onse. Thus

if in eny of the 8 postulates the zsro's are repleced
by onet's and the multiplications by additicns end vice

versa, the corresponding;b’Dostulate will result.

This fact is of great imprortsnce. It glves esch theorem

8 dval, it being necssssrv to prove only one to esta-

blish bocthe Th2 only one of thesz postulstes which

differs from ordinary algebra is lb. Howsver, this

enables arent simplificetions in the menipulation of
these svmbols.
Theorems.

In this section a numbsr of theorems gov=-

erming the combination of hinderences will be given.

Ingasmuch as any of the theorems mav be proved by a

very simple rrocess, the proofs will not be egiver



except for an illu stretive €xample. The method of

Proof is thet of "perfsct induction," 1.e., the veri -

fication of ths thsorem for all possible cages. Since

=

Soms of the theorems

ma8y be vroved more €élegantly by recourse to previous

thscrems, it the méthod of perfact induction is so uni-
versal that it is Probably to be vreferraed,
l. a, x «+ Y =y + x
be Xy = yx

2. a, x + (y + &)

(x+vy) + 3

b. x(y®) = (xy)s

5. a. x(y + B) = xy + x»

De X+ y8 2 (x+y) (x+ a)

4. a, lex = x
b. O+ x =x

5 8. 1 +x =]
be Qex = 0

For szxzmple, to Prove theorem 4s, note the g

X 1s either O op l. If it is O, ths theorsem follows

from nostulate 2v; if 1, it Tollows from rostulate 3y,

‘18 shell now define a new operation to be
called negstion, The negative of a ninderance X will
e Written X' end is defined ag g variable which is

8Qqual to 1 when X equals 0 and 2qual to O when X



aquals 1. TIf X is ths hind=rence of the make contacts

of @ relay; then X! is the hinderance of the break con=-
tacts of the same relay. The definition of the nega=
tive of & nindsrencs gives the following theorems:

6., 8., X+ X' =1

be XXt =90
7. 8a. or =1

Ge 1t =0
8. (Xrjr = X

Analogue with the ¢8lculus of Preocvositions. YWe are

now in a vosition to demonstrate the equiveslence of
this calculus with csertain slementary mwmrts of the
calculus of propositions. The algebre of 1ogic (1),
(2), (3) origineted by George Roole, is a symbolic
method of investigating logical relationships. The
symools of RBoolean slgebra admit of two loglcal intsre
pretaticons., If interprsted in terms of classes, the
variatlss are nct limited to thec twe possible values
O and 1. This interpretation is known as the algetra
of classesz., If, however, the terms sre taken to repre=-
ent propositions, we have the calculus of propositions

in which variakles ars limited to the values O and 1%,

"This refars onlyvy to the clessicel theory of the Ga2l-
culus of Proprositions. Recently some work hes been
done with logical systems in which propositions mey
have more than two "truth values."



as are tne ninderznce functions above. Usuglly tne two
subjecte sre developed simultaneously from tne same set
o1 postulates, except for the addition in tae case of
the Calculus of Propositions of a postulate equivalent

to postulate 4 zbove. =.V. Huntington (4) gives thne

following set of postulates for symbolic logic:
1. Tae class X contains at least two distinct
elements.
2. If a and b are in tane class K taen s+ b is
in tne clase X.
32, a+b=zDb+ a
4, (a+b)+ c=a+(b+ c)
5. a+a=z=s
6. &b+ ab'z a  where ab is defined as (a'+ b')!
If we let tne class X be tue class consisting of tne
two elements 0 and 1, then these postulates fcollow from
those given on vzges 5 and 6. Also postulates 1, 2,

and 3 given tuaere can bpe deduced from Huntington's

postulates. Adding 4 and restricting our discussion
o tne calculus of propositions, it is evident tanzt &
verfect snslogy exists between tre calculus for switca-
ing circuits and tnis branch of symbolic losic.®* The

two interpretaticns ol tae sympols are sazwn in Teavle 1.

*This anslogy may alsc pe seen from a slightly different
viewpoint. TInstead of associzting X, directly witn the
circult a-b let X p represent the proposition tnat the
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Due to this gnelogy any theorem of tke Calculus
of Propositions 1s 8lso 2 true theorem 1f interpreted in

terms of relay circuits. The remsining theorsems in this

section are taken directly from this field.
De Morgan's theorem:
9. 8, (X + Y+ ...)t = Xt.Y'.,Z'...
be (Xo¥eZ oue )Y = X' + ¥ + 20 +,,,
This theorem gives the negative ¢f a sum or product in
terms of the negatives of the summands or factors. It
mey be easlily verifiled for two terms by substituting
all possible values and then extended to any number n
of variabtles by mathematical induction.

A function of certein variables xl’ g eeoeeXy is
eny expression formed from the varisbles with the opera=
tions of addition, multiplication, and negation. The
notation f(xl, KXoy eee Xn) will be used to represent @&
fun~tion. Thus we might have f(X, Y, Z)) = XY + X' (Y' + 2').,
In infinitesimal calculus it is shown that any function
(providing it is continuous and all derivetives are con=-

" tinuous) may be expanded in s Tavlor Series.

A somewhst

similesr expansion is possible in the Calculus of proposi-

tions. To develop the series expansion of functions

(Footnote continued from preceding page)
circuit a-b is open. Then all the symbols &8re directly
interpreted 2s propositions and the operatlons of addition

and multiplication will »e seen to repressnt series and
psrallel connections.



TABLE I

Analogue Betwaen the Calculus of Propositions

Symbol

X+Y

?

and the Symbolic

Interpretation in relay
circults

The circult X.

The circuit i1s closed.
The c¢ir~uit is open.

The geries connaction of
circuits X and Y

The parallel connection
of circuits X and Y

The circuit which 4s open

when X is closed, and
closed when X is open.

The circuits open and
close simultanscusly.

Relay Analysls

Intsrpretation in the
Calculus of Propositions

The proposition X.

The proposition 1is
false.

The proposition is
true.

The proposition which
is true if either X or
Y is truas.

The proposition which
i1s true 1if both X and
Y are trus.

The contradictory of
proposition X.

Each provosition
implies the othsr.
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first note the following equations:
1Q. ., f(x1’x2"°° xn)§XJq;{X2...Xn) + X:’P(O’XZQOXn)

be £(X1 .es Xp) ® [£(0,X2 o0 X,) + X1l [ £(1,Xg. 0 Xy )+X{])

These raduce to identitiss 1f we let Xl

Oorle In thesec equations the function f is said to

8qual either

be expanded aout Xlo The coefficients of X and Xi
in 5§§ara functions of the (n-l) variatles XgesesXy
and mayv thus be expanded about any of these varianles
In the same menner. The additive terms 1n13£.also may

bs 9xnanded in this manner. Thus w8 get:
11, a,. f(xl...xn) = xlxz f(lll,xs..xn) + XX f(1,o,x3..xn)

+ xix2 £(0,1,Xz.X,) + XIXg £(0,0,Xz4+X )

Do £(Xye000X,) # [Xg + X5 + £(0,0,X5...X )] ¢ [X; +

Xy + £(0,1,...X )] ° [Xi + X, + £(1,0, ....xn)]

I IXi + Xé + f(l,l,xsoooxn)]

Continuing this process n times we will arive at the

complete series expansion having the form:

120 a, f(XooooXn) - f(l,l,loool) XlXZ...Xn + f(O,l,

loool) XiX2.¢0xn + ® @00 0o + f(0,0,00QQO)

Xt e X!
Xl 2 Xn

be £(X3eeeX) 2 [X) + X5 * «o0 X, + £(0,0,0...0)]

.-[Xi + xz... + xn + f(l’onoocO)]‘oonooo [Xi
+ Xé * eee Xﬁ + f(l,l,cool)]
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By 128, f 1s equal to the sum of the products formed
by permuting primes on the terms of X1X2""Xn in 211
Possible ways and giving each product a coefflicient
equal to the velue of the functlion when that product
is 1. Similsrly for 1l2b.

As an application of the series expsnsion it
should be noted that if we wish to find & circuit
ropresenting any given function we can always expasnd
the function by either 102 or 10b in such & way thet

any given variable appesrs at most twice, once asg a

make conteact and once as & break contact. This is

shown in Mg, 4.

X1 f(o x2..xn X1 f(O,Xg,..Xn)
£(X3.:Xg), [ T
.——C‘L.. - F'-._
£(1,Xpe+Xn) x X]  £(1,X5..Xp)
Fig. 4

Similsrly by 11 any other variable need aprear no morse

than 4 times (two make snd two brsak contacts) etc.

A generalization of De MorganE theorem is

represanted symbolically in the following equation:

l
150 [f(xle2,.ttxrx’ + ’.)] : f(Xi,Xéo-.-Xﬁ","’)

By this we mean thst the negative of any function mey
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be obtained by replacing each varisble by its negative
eand intarchenging the + and ¢ gsymbols. Explicit and
implicit paréntheses will, of course, remain in the
same places. For example, the negative of X + Ye
(Z + WXt) will be X*(Y' + z'(W' + X)).

Soma other theorems useful in simpliifying

expressions eare given below:

14. a. X =X+ X=X +X+X

otce.

be X 2X *X X *X * X = atc.
15. 8. X+ XY =X
be X(X +7Y) =X
16. a. XY + X'% = XY + X'% + Y&
be (X + Y)(X' + B) = (X +Y) (Xt + BY(Y + B)
17. 8. XP(X) = X£(1)
be X + f£(X) =X + £(0)
18. a. X'f(X) = X'£(0)

be X' + £(X) = Xt + £(1)

-

Any expression formed with the operations of
addition, multiplication, 2nd negation reprssents
explicitly a circult containing only series and
parallel connections. Such 2 circuilt wiil be called
2 series-parallel circult. Each letter in &n expres-
sion of this sort represents a meke or break relay
contact, or 8 switeh blade and contact. To find the

circuit requiring the lesst number of contacts, it is
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therefore necessary to manlpulate the sxpression into
the form in which the least numbsr of letters appear.

The theorems given above sre always sufficient to do

this. A little practice In the meénipulation of these

symbols ig €11 thet is required. Fortunately most of

the theorems are exactly the same 2s those of numeri-
cal algebra--the associative, commtativs, and distrib-

utive laws of el gebra hold here. The writer has found

theorems 3, 6, 9, 14, 15, 16a, 17, and 18 to be es=-

peclally useful in the simplification of complex ex-

pressionse.

as an example of the simplification of ex-

pressions consider the circuit shown in Pig. 5.

g
‘Cle“_'zﬁ

. X
a o
—n O—— ———-#——cér—ﬂhr——qao--—————‘
. —o ¢
we o —— o—

Fig_o 5

The hindsrence function Xab for this circuit will be:

Xgp = WHWH(XHY) + (X+B)(S+WI+E) (B +Y+31V)

FEXHAY+( X+ ) (SH1+B) (B1+Y+S1V) o

W X+HY+ZR(BT+3V)

These reductions wars made with 17b using first W, then X and
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Y as the "X" of 17b. Wow multiplving out:

Xgp ="+ X + Y + 22! + &3'V

W+ X+ Y+ BSY

The circult corresponding to this expression

is shown in PFig. 6. Note the large rsduction in the

number of elements.

Z
P — |
a W X Y ST_W
—0

Ot O —) O 40—-———-‘1)

e B e d

Figo 6
It 1s convenient in drawing circuits to latvel

a relay with the same letter as the hindsrance of

make contacits of the relev. Thus if 8 relsy is con-

nected to & source of voltage through & network whoss
hinderence function 1s X, the relsy and any make con-
tacts on it would e labeled X. Break contacts would
b8 labeled X', This assumes that the relay operates

instantly eand that the make contacts close end the

break contacts open simultaneously. Cases in which

there is 8 time delay will be treated leter.

It 1s also vossible to use the analogy between

Boolsian algebra and relay circuits in the opposite

direction, i;e., to represent logiecal relations by
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mesns of electric circuits. Some interesting results
have been obvtained along this line, tut are of no im-

portance here.
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IIT Multli-terminal and Non-ssries-parallel Circuits

Equivalence of n-Terminal Networkse. The usual relay

control circuit will teke the form of ®ig. 7, where

Xl,Xz, ceoe Xn are relays or other devices controlled

by the circult and N is a network of relay contacts and

switchese.

+ 23 -

/‘——fm‘)a('?m-——

Flge 7

It is desirable to find transformations that may be

applied to N which will keep the cperation of all

the relays Xl...xn the same. So far we héve only

considered transformations which may be applied to
a two-terminal network keeping the operation of one

relay in s3riss with this network the sams, To

this end we shall define equivalence of two n-~term-

inel networks as folilows:

Definition: Two n=-terminal networks M and N will

be s83d to be equivalent with respect to these
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terminals if and only if Xjk = ij iy k 21, 2, 3,eeen
where X . is the hindsrancse on network N between termi-

negls j and k, and Y . is that for M between ths cor-

rgsponding terminsls.
Thus under this definition the equivelencszs

of ths preceding sections were with respect to two

tarminal se

Star-Mesh and Delta-Wye Transformetions. As in ordi-

nary network theorv there extst siur to mesh end delta

tc wye transformetions. The delta to wye trsnsformse-

tion is shown in Fig. 8., These two networks are

equivelent with respact to the three terminals s,

b, end ¢, since by the distritutive law X, = R(S + T)

= RS + RT and similarly for the other peirs of termi-

nals a-¢c snd b-c.

I
=

3

X

-3
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The wye to delta trensformsation is shown in

Fige 9. This follows from the fact that Xa

b SR *S S
(R+S)R+T+T+s).
|
C)
] - e (1+8)
N R/\O T
a c  a (%ﬂ.h)
Fige. 9

An n point star 21so hes a2 mesh equivalent
with the central node eliminated, This is formed
exactly as in the simple three point star, bv con=-
necting each pair of terminals of the mesh through

8 hinderance which is the sum of the corresponding

arms of the star. Forn = 5 this is shown in.F{g. 10.

b
8 Sl c
~~ T o
R -
4 U
VARERN

Fig. 10
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inderance FPuanction of 2 Non-Series=-Parallel Network.

The methods of Part IT were not sufficient to handle

circulits which conteined connsctions other than those

of a series-parallsl type. The bridge of Fig. 11, for

example, is @ non=-series-pasreallel network. These net-

works will be handled by reducing to en edquivalent

series-parallel circult. Three methods have bsen

developed for finding the equivalent of a network

such 8s the bridge.

R S
ey
L_< T b
U\I/ v
d
Fig. 11

The first is the obvious method of epplying

the transformations until the network is of the

series-parallel type #nd then wrlting the hinderence

function by inspection. This process is exactly

the same as is used in simplifying complex impedance

networks. To apply thls to the circuit of Fig. 11,

first eliminate the nods ¢, by applying the star
to mesh transformation to the star a-c, b-c, d-c.
This eives the nestwork of Fig. 12,



. R+
3N

a < \
\\\\\ R+T
U

// b
T+S

&

The hindersance function mav be written down from
inspection for this networke.

Xgp = (R + S)U(R + 7) + VvV (T + 3)]
Simplifying by the theorems gives:

X S RU + SV + RV + STU

ab
The second method of snalysis is to draw

a1l possibtle paths Betwaen the points under consid-

eration through the network. These paths are drawn

aljong the lines representing the component hinder-

ance elements of the circult. If any one of these

paths has zero hindersnce, the required function

mast @ 2Z3ro. Hence if the result is written as

a product, the hinderance of each path will be a

factor of this producte The required result may

therefore be writtsn as the product of the hindsr-

ances of all possible psths between ths two points.

Paths which touch the sams point more then once nsed

22
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not bve considsred. In Flg. 13 this method is applied

to the bridce. The paths ars marksd in red.

Fig. 13

The function is therefore given by:
Xgp = (R + S)(U + V(R + T + V)(U + T + 8)
v
= RU + SY + RTV + UTS

The same result is thus obtained as with the first

method.

Ths third method, the duel of the second, is
to draw 21l possibls 1lines which would bregk the cir-
cult betwsen the points under considerstion, meking
the lines go through the hindersnces of the circuit,
The resulé is written as a8 sum, each term corres-

ronding to & ¢srtain line., These tsrms are the prod-

ucts of 81l the hindersnces on the line., This method

is apnlied to the bridge in Figz. 14, the lines being

drawn in red.
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This again gives for the hinderance of the network:

—+
Xy, T RUL SV + RTV + ST

The third method is usually the most convenient
and repid, for it gives the result dirsctly as 8 sum.
I‘c' seems much easiser to handle sums than products due;
no doubt, tc the fact that in ordinary algebra we

nave the distritutive law X(Y + Z) = XY + XZ, but not

1ts dual X + YZ = (X + ¥)(X + Z). It is, howsever,

sometimes difficult to apply the third method to non-
rlanar networks (networks which cannot be drawn on &
Plane without c¢ressing lines) end in this case one of

the other two methods may be used,.

Simultaneous EBquations.

If there are n dependent

variables, there will be n simultaneous equations de-

fining the system. Any additive terms which are common

to several of the functions may be factored cut in the
manner iliustrated by the following exsmple. These
terms need only be realized onee to take cere of sll

the functions in which thev apre ar.

C
oW x -

W=A+R“+ -
X =A + B+
v = A +(CY A W‘:}—"rnb
g:Eg-rf pr—)  Qr———
X
Y = CY Y
%2 =R + °f
0——| o ———
< © —~§ § 0
S
yA
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Sometimes the relation 8b! = O obtains bestween
two relays a and b. This is true, for example, in a

sequential system where esch reley of the sequance

locks itself in and a precedes b in t he sequence.

Whenever b 18 overated a is opereated. In such a case

the following simplifications may be made:
If abt =0

Then atb! = gtp! + abp!

p!
ab = ab + ab! = g
at + p =1
(at + b') = (ar + v1)(a' + b) < at

(& + b) = (a + b)(a' + b) = b

Matrix Methodse It is also possibvle tc trsat multi-

terminal networks by means of matrices. Although use-
ful for theoretical work ths method is cumbsersome for
practical problems and will ther3afore only be briefly
sketched.’ o shall assame the same rulss of menipulation
of matrices as usually defined in works on higher alge=-
bra, the only difference being that the elements of

our mé8 trices will be hinderance functions rather than
ordinary algebraic numbers or variablss. The X! matrix
of a network with n nodes will be defined @s the fol-

lowing array:
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1
l xlz Xls e 80 0 0 LI Xln
t 1 !
le l x23 ® 8 0 % 00 0 0 . . .in
X . X' 1
nl n2 IR I I B A ]

where ng is the negstive of the hinderesnce common to

nodes J and k.

Theorem: The X! matrix of a network formed by con=-

necting two n node networks in perallel (correspond-
ing nodes togethsr) is the sum of the individual Xt
matrices. This theorem is more general them might
appear at first since any interconnection of two net-
works may be considered as a parallel connection of
two networks with the same number of nodes by 2dding
nodes &8s needed whose mutual hinderances to the other

nodes is onse.

Now define & matrix to be called the U' ma-~

trix of a nsetwork ss follows:

l U12 o0 s e c o Uln

Uzl 1 Ol‘l".lU

oooooooooooooooooo
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whera U' 1s the negstive of the ninderance function

from node j to k, the network considered as a two term-

inal circuit. Thus for the three node network of

Pig. 16 the X' and U! metrices are as shown at the

right.
2
1 xt 2! 1 x'sytz' z'+x'y!
x /\ :y. x] l yl x....y'z' l y‘+x‘¢?_'
/ z! y' 1 z'ex'y! ylex'z' 1
—l
1 . 3
Fig. 16 X' Matrix U' Matrix
Theorem:

Any vower of the X' matrix of a network

glves a network which is equivalent with respsct

to a1l nodes. The matrix is raised to a powsr by

the usual mile for multiplication of matrices.

Theorem:
1 \
1 U eees Ul U Xy eee Xpp|le
] 1 1 ]
Upy 1 «... Ugy Xop 1T o X5y

1]
(1]
A\
o]
]
'—J

Theorem; Any node, say the kth, may be eliminated

ie&ving the network equivalent with respect to 2ll

remaining nodes by adding to each element X}  of the
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Xt matrix the product of the slements X;k and Xﬁs’ and
8triking out the kth row and column.

Thus elimineting the 3rd node of Fig. 16 we get:

lez'z! X'ezty! 1 X'eytz!

X'vy'z! 1vytyt I x'+¥'z! 1
The proofs of thesse theorems 8re of 2 simple

ngture, mut qﬁite iong eand will not be given,

Speclial Types of Relays and Switchesg. In certein types

of circuilts it is necessary to pressrve & definite

sequential relation in the operetion of the contacts
of a relay. This is done with maske-before-breask (or
continuity) eand bresk-make (or transfer) contacts.
In handling this type of circult the simplest me thod
gseems to be to assume in setting up the equations
thet the make and bresk contacts operate simultane-
ously, and aftzr all simplifications of the equations
have been made end thes resulting clrcuit drawn the
required type of contact sequence is found from in-
spectione.

Relays having a time dslay in overating or

deovpersting mayvy be trsated simlilarly or by shifting
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onS viwe wxise Tnus i1f & relay coill is connacted to @
battery through a hindsrance X, and the relsy has a
deley of p seconds in opesreting and releasing, then
the hinderance function of the contacts of the relay
will also be X, tut 8t 2 time P seconds later. This
may be indicated by writing X(t) for the hinderance in

series with the relsy, and X(t-p) for that of the re-
lay contacts.

There are many specisl types of rslays and
switches for psrticulsr purposes, such as the stepping
switches and sslector switches of verious sorts,
maltl-winding releys, cross=-bar switches, etc. The
opsration of 811 these types may be described with
the words "“or," "and," "if," "operated." and "not
operated," This is & sufficient condition that may
be described in terms of hinderance functions with

the operations of addition, multiplication, nega-

tion, and equality. Thus a two winding relay might

be so0 constructed that it is operated 1f the first
or the second winding is operated (activated) and
the first and the second windings are not ovsrated,
Usually, however, these special relays occur only at
the end of & complex circuit end may be omitted en=-
tirelv from the calculetions to be added after the

rest of the circuit is designsed.
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Somutimes 8 reilay X 1s to operate when a cir-

cuit r closes and to remsin closed independant of r
until a circuit S opens. Such &8 circuit is known as
8 lock=in circuit. Its equation is:

X=rX+3
Replecing X by Xt gives:

Xt = pX' + 8
or

X = (rt + X)8°

In this case X is opened when r closes and remains

open until S opens.,
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IV Svnthesis of Networks

Some Genersl Theorem3 on Networks and Functions,. It

has been shown that any function may be expandaed in &

series consisting of a sum of products, each product
bteing of the form xlxz....xn wilth some permutation of

primes on the letters, and each product having the co=-

efficient O or 1« Now sinece each of the n varisbles

may or may not have & prime, there is a total of 20

different products of this form. Similarly each prod-

uct may have the coefficlent O or the coefficient 1

S0 there are 22n possible sums of this sort. Each of
these sums will represent & unique function, but some
of the functions may actually involve less then n vari-
ables (1.e., they are of such a form that for one or
more of the n variables, say Xk’ we have identically
f(xl’...xkfl’ o, xk+1’°"xn) 2 f(XyeeeeXpays 1, X410
¢e+Xpn) 80 that under no condlitions does the value of

the function depend on the wvalue of X

Hence we have the thesorem:

Theorem: The number of functions of n variaebles or

n
less is 22 .

To find the number of functions which sctually

involve n variasbles we proceed as follows. Lzt ¢(n) be

the required number. Then by the thsorem just given:
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.

n
2n - N 7 .- e
227 =32 (Ryg (k)

k
where (ﬁ) = nt/k t(n-k)! is the number of combinations

of n things taken k at a time.

Jin) = 227 2 (pyste)
k=0

Solving for d(n) glves:

By substituting for ¢(n-1) on the right the similar
sxpression found by replacing n by n-1l in this equatlon,
x then similarly substituting for ¢#(n-2) in the expres-

sion thus cbteined, etce, 8n equation may be obtained

{involving only ¢(n). This equation mey then be sim-

plified to the form:
n. 2k n-k
d(n) = k)% [(2)225 (1))

As n increases this expression epproaches its leadling
n

term 22 agymptotically. The error in using only this

tepm for n = 5 is less then .0l%.
We shall now detsrmine those functions of n
variableslﬁhich require the most reley con tacts to re-

salize, snd find the number of contacts required. 1In

ordar to do this, it 1s necessary to define a8 function
of two varisbles known as the sum modulo two or dis-

junct of the varisbles. This function is written

x10x2 end is defined vy the equation:

i = t o+ X!
X, B, = X X5 T XiXp
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It 1s easy to shcw that the sum modulo two obsys the
commtative, associative, and the distrimtive law
with resvect to multiplication, i.e.

xl(xzexs) = xlx20x1x5
Also:
.' -
(X,9X5) = X, ®x}
xleo - X
®1 = X
Xl xl

Since the sum modulo two obeys the associative law,
we may omlt parentheses in a sum of several terms
without ambiguitve The sum modulo two of the m vari-

abl es Xl,Xé....Xn will for convenience be writtsn:

n
X, X 050 .. 8X = Eixk

Theorem: The two functions of n variables whizch re-

quire the most elements (relay contacts) in a series-

n n
parallel realization are zz".and (%xk)' s 88ch of which
1

reQuires (3'2n'1-2) glements.
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This will bes prroved by mathematical induction.

First note that it is true forn = 2, There 8re 10

functions of 2 variables, namely, XY, X+Y, Xty, X'+Y,
XYyt, X+yr, Xryr, Xr+yr, Xyv + Xty, Xy+Xtyt., All of
theses tut the last two require two slements; the last
two require four elements and are X&Y and (X&Y)!
respectively. Thus the theorem is trmus forn = 2,
Now assuming it true for n-l, we sheil prove it true
for n end thus complete the induction. Any function
of n variables may be written by (1l0sa):
£(X)sXgseeeXpy) = X F(1,X55 00X ) + XJE(0,X, 000X )

¥ow the terms f(l,xz...xn) and f(O,Xg...xn) are_func-
tions of n-l variables, and if they individually re-
quire the most elements for n-l1 variables, then f will
require the most slements for n variables, providing

there is no other method cf writing f so that less

slements a}e raquired. ™We heve asssumed that the most

slements for these n~-1 veriables are required by

n
gkxk and.(%bxk)'. If we thersfore substitute for

n
£(1,X5+-.X_ ) the function é’exk and for £(0,X,..X,)

n
the function (bek)' we get:
2

n- e n
£ = xl}%‘gxk +'xi(§gxk)' = (ngxk)'

(19)
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From ths symetry cf this function there 1s no other way

of expendiang which will reduce the number of elements,

If the functions are substituted in the other order,

we get:

n n n
£ = xl(zz:gxk)t + X:'ngxk =§2Xk

This comvletes the vroof that these functions require

the most eloaments.

alements, let the number of elements required be de=-
noted by s(n). Then from (19) we get the difference
squation:

3(n) = 2a(n-1) + B

with s{2) = 4. This is linear, with constant coeffi-

cients, end may be solved by the usuel methods (5).
The solution is:

a(n) = 3.2%7te2

as may be easily verified by substltuting in the dif-

ference equation and toundary condition.

Note that the ebove only appliss to 8 ssries=-

parallel reslization. 1In a later section it will be

n

shown that the finction 35X, end 1ts negative may be
1l

rasilized with 4(n-1) elomsnts using 8 more gsnsral

tvpe of circuit. The fuanction requiring the most

alements using any type of circuit has not as yet

been determined.

To show thest sach requires (3-2n-l-

2)
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Dual Networks.

The negative of anv network ma~r bse

found by De Morgads theorem, tut the network must

first be transformed inte an equivalent series-parallel

circuit (unless it is already of this typs). A theorem

will be developed with which the negative of any planar

two-terminal circult mav be found directlvy. AS 8 coro=-

llary a method of finding 2 constsnt current circuit
equivalent to & given constant voltags circuit and

vice versa will bs given.

Let N ropresent a planer network of hinder-

snces, with the function Xab between the tsrminals

a2 and b which are on the outer edge of the network.
For definiteness consider the network of ™Mg. 17
(here the hinderances sre shown merely as lines).
Yow let M represent the dual of N, as found by the
following process; for each ¢ontour or mesh of N

assign 8 node or junction polnt of M. For each

8lement of N say Xk, separating the contours r and

8 there corresponds an element Xi connecting the

nodes r snd s of M. The arsa exta3rior to N is to

be considered as two meshes, ¢ and d, corresponding

to nodes ¢ and 4 of M« Thus the dual of Mg. 17 is

the network of Fig. 18.



mesh 4
Mg, 17

d
Fig. 18

Theorem: If M 2nd N besr this duallity relationship,
then Xab s Xéd.

To prove this, 1let the networks M asnd N be
supsrimposed, the nodes of M within the corrssponding

meshes of M and corresponding elements crossing. For

the network of ¥ig. 17, this is shown in Fig. 19,

with N in bviack and M in red. Incidentally, the

eesiest method of finding the dual of a network.
(whether of this tvype or an impedance natwork) is to

draw the required network superimposed on the glven

network. Now, if Xab = O, then there must be some

vyath from a to b along the lines of N such that evsry

element on this path equals zero. But this path repre-

seants a path across M dividing the circuit from ¢ to d
along which svsry elemsnt of M 1is one. Hence X.q = 1.

Similarly, if Xcd = 0, then Xab =1, and it follows that

Xap = Xiae
- c
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In a eonstant-voltage ralay system 8ll the

relays are in psrallel across the line. To open a

reley a series connection 18 opened., Tha general con-

stant-voltage systsm is shown in Fig. 20, In & constaent-
current svstem the relays are all in series in the 1line.

Tc de=-opsrate a relay it is short circuited. The gen-

eral constant-current circuit corresponding to Fig. 20

is shown in Fig. 21. If the relsy Yk of Mg. 21 is

to be operated whenever the relay Xk of Mg, 20 is

operated and not otherwlse, then svidently the hin=-

derance in parallel with Yy, which shorts 1t out must

b8 the negative of the hinderance - - ~ in series with

xk which connects 1t across the voltage source.' If

this 1is true for gll1l the relays, we shall say that the

constant-current a2nd constant-voltage systems are equiv=-

alent. The above theorsm may be used to find equivalent

circuits of this sort. For, if we make the networks

N and M of Figs. 20 and 21 duels in the sense descri bed,
then the condition will bve satisfied.

1
E j v
constant voltage
gource.
~FV-
B L
X Constant ;
- 2% I current M ,
N - - - - source. {
- 3
Xn 3 Y
-|
Fig. 20

Mg. 21



A simple example of this is shown in Figs. 22 and 23.

E

[ N el
v I Rlg o' Y
L_.R.___.T X2 W
vl
w Y
Xz IQ. z' YS
EC BN | 1
yA
Fig. 22 Mg, 23
‘ Synthesis of the Gensral Symetric Function. As has

been shown, any function represents explicitly a

series-parallel circult. The seriss-parsllel realiza-

tion may require more elements, howsver, than some

other circult representing the same function. 1In

this ssction a method will be given for finding a cir-
cult representing 8 certain type of function which

in general is much morse economicel of elements than

the best series-parallel circuit. This type of func-

tion frequently appeers in relay circuits and is of

much importancs.

A function of the n veriables Xl, X2,....Xn

13 sai1d to be svimmetric in these variables 1if anv

int erchenge of these variabvles lesves the function
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identically the same., Thus XY + XZ + YZ is svmmetric

in the variables X, Y, eand Z. Since any permutation

of varlaules may be obtained by successive interchangas
of two variables, 8 necessary and sufficient condition
thaet a function be symmetric is that anv interchange
of two variables lesves ths function unaltered.

e now give a theorem which forms the besis

of the method of synthesis to be described.

Theorem: The necessary and sufficient condition

that a function be symmetric 1s that it mav be speci-

fied by stating a set of numbers a,, 835000008y such

that 1f exactly a; (jJ =1, 2, 3,.0.k) of the variaules
are zero,then the function 1s zero and not otherwlss.

This follows easily from the definition. PFor the 6x-

ample given these numbsrs are 2 and 3.

Theorem: There arve 2°%l symmetric functions of n

variables. For every selection of a set of numbars

from the numbers 0, 1, 2,....n Gorresponds to one and

only cne symmetric function. Since there are n+l numbsrs

each of which may be either taken or not in our selec-

-+
tion, the total numbsr of functions is ol l. Two of

these functions are trivial, however, namely the se=-

lections in which none and a2ll1l of the numbers are

taken. These give the "functions"l and O respectively.
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By Proper selection of the varialibes many

aprarently unsymmetric functions may be made symmetric.

For example, XY'2 + X'YZ + X'Y'Z2', although not symmetric
in X, ¥, 8nd Z, is symmetric in X, Y, and 7!,

The set of numbers al, 82,....ak will for con=-

venience be called the a-numbers of the function.
The theorsms concerning comtinations of symmetric

functions sre most easily stated in terms of ths

classes of a-numbers. For this reason we denote the

cless of a-numbers bv a single lettsr A. If two differ-

ent sets of a-numbers are under consideration thaey will

bve denoted by Al and Ag. The symmetric function of n

variables having the a-numbers 815 800008y will be
written Sn{\al’ a2"'ak) or Sn(A)o

Theorem: S (Ay). S, (Ag) =S (A + Ap)

where Ay + Ap mesns the logical sum of the classes Aq

and Ao 1i.8., the class of those numbers which are members

of sither Al or Az or both.

is equal to Sg4(1l, 2, 3, 5).

Theorem: S (Ay) *+ S,(Ag) = S/ (Ayeha)

where Ajsig is the loglecal producﬁ of the e¢lassas i.e.,
the class of numbers which are common to Aj and Age. Thus
Se(l, 2, 3) + 36 (2, 5, 5) hd 56(2) 3)0

These theorems follow from the fact that & product is



zero 1f either factor is zero, while 8 sum is zero only

if bvoth terms are zero. The negative of & set of a-numbers

will be written A! and means the class of all the numbars
from O to n inclusive which ar not membsrs of A. Thus
if A 1s the set of numbers 2, 3, and 5, and n = 6 then

A' is ths s8t of numbers O, 1, 4, and 6.

Theorem; sn(At) = SA(A)
These theorsms are useful if several symmetric functions

are to b cbtained simultaneously.

Befora we study the synthesis of a network for
the general symmetric function consider the circuit a-b

of Flg. 24, This circuit represents 83(2).

Xo
X
b SI
::: ::: X, ‘/////°
a : ° °
Xi X!
Flg. 24

The line coming in st a first encounters & pair of

hindersnces X, end X{. If X; = O, the 1ine is switched
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up to the level marked 1, meaning that 1 of the variahles

is zero. If X, = 1, the 1ine stays on the level marked

O; next hinderances X

' [ ]
o end X2 are encountered If X2

is aero, the line is switched up a level; if not, it

stays at the same level. PFinally resaching the right

hend set of terminals the 1line has been switched up

to 8 level representing the numbsr of variables which

are dgqual to zero. Terminal b is connected to level

2 and therefors the circuit a-bH will be completed if

and only if 2 of the variables are zero. Thus the

function Sz(2) is represented. If S3(0,3) hed bsen

desired, terminal b would be connected to both levels

O and 3. In figure 24 certain of the elements are

evidently superfluous. The circuit may be simvlified

to the form of Fig. 25.

X3 X3
X1
vﬁi:::no————////oxz s}
a xi
TMg. 25

For the genesral function exactly the same

method is followed. TUsing ths gensral circuit for n
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variables of Flg. 26, the terminal b is counected to the

levels corresvonding to the a-numbers of the desired

symmetric function. In Fig. 26 the hinderances ars
represented by simple lines, and the lettsrs are omitted
from the circuilt, hut the hinderence of each line may

casily be ssen ULy generslizing Fig. 24.

. n
. é (n=1)
a « - - - 555;25
X

NOTE: All sloping linses
have hinderance of thse
variable written below;
horizontal lines have

negative of this hinder-
ance.

to a-

numbers £§g
b

o H -

n
™Mg. 26

Aftsr terminal b is connected, a1l superfluous ele-

ments may be delsted.

In certein cases it is possible to Zreatly
simplify the circuit by shifting the levsls down,

Supross the function §4(0,3,6) is desired. Instesad

of continuing the circuit up tec the 6th level, we
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connect the 2nd level heck down to the zero level as

shown in Fig. 27. The zZero level then 21s0 becomes

the 3rd level and the 6th levsle.

Mg. 27

With terminal v conneceted to this level, we have rea-

l1ized the function with a great saving of elements.

Eliminating unnecesssry elsments the circuit of Fig. 28

is obtained. This device is especislly useful if the

a-numbers form an arithmetic progression, although it

can sometimes be applied in other casses., The functions
n

n
212}(1{ and (§2xk)' which were shown to require the most

elements for a series-parsllel realization have very

simpls circuits when developed in this manner. It

n
can be easily shown thet if n is even,then JoX, is
1

the symmetric function with 211 the even numbsers

for a-numbers, 1f n is odd 1t has 8all the odd numbers
n

for a-numbers. The function QZZXK)' is, of course,
1

just the oprosites. Using the shifting down process



46

the clrcuits are as shown in Fig. 29.

a M\ o)

Flg. 28
/> <> ——————— 2 g/ b
& x X ;\\\‘ ------- X X
1 2 3 s 00 ® o o e 8 8 0 0 o 0 n-—l n
n n
Efé Xy for n o0dd; (2:2 Xk)' for n even,
1 1
a < j iZ:: :: ——————— :ji f:j > 1
X Xo  KXg  eeeeerenen S
2o Xy for n even; (X, X)' for n odd.
1 1
] Flg. 29

These circuits each require 4(n-1) elements. They
will be recognized as the familisr circuit for con-

- trolling a 1ight from n points: If'at any one of the

points the position of the switch is changed, the
total number of variables which equals zero is changed
by one, so that if the light is on, it will be turned

off end if 2lrsady off, it will be turned on.
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The ceneral network of Fig. 26 contains n(n + 1)

8lsments. It can be shown that for any given szlection

of ea-numbers gt least n of the elements will be super-

fluous. It follows th2t eny symmetric function of n

variables can be raslized with at most n2 elements.,

Equations from Given Operating Characteristics.

In Zen=-

eral, there i1is a certsin set of indspendent variabies
Ay, By, Cyeee Which may be swltches, externelly operated
or protective relays. There is also 8 set of dependant
variables X, ¥y, Z.... Which represent relays, motors or

other devices to be controlled by the circult. It is

required to find a network which gives for sach possible
combination of values of the independent variatbles, the

correct values for all the dependent variablz=s. The

following principles give the gensral method of solu=-

tion.

l." Additionel dependent variabvles must be

introduced for esch added phase of operation of a

sequential systems Thus if it is desired to constract

8 systam which operstss in three steps, two addi tionel

variables must be introduced to reprasent the beginning

of the last two steps. These additional verisbles

mey rspresent contacts cn 8 stepping switch or relavs

which lock in sequentially. Similarly sach raquirsd

time delav will require a8 new veriavle, repressnting
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2 time delay rslayv of some sort. Othsr forms of relavs

which may be nscssservy will usuaelly be obvious from

the naturs of the provlem.

2. Thne hinderance squsgtions for 2ach of the

dependsnt variables should now be written down. These

functions may involve any of the variables, dspendent

or independent, including the variable whose function

i1s belng determined (as, for example, in a lo~k in

clrcuit). The conditions may b3 either conditions

for opsretion or for non-operation. Equations gre

written from operating charscteristics according to
Table II. Tec illustrate the use of this tabvle sup-
Pose a relay A is to operaste if x 1s opsrated end y
or z is operated and X or W or 2 1is not operated.
The expression for A will be:

A= x + yz + xtwtz!
Lock in relay equations have alrzady been discussed.
It does not,-of course, matter 1f the same conditions
ars put in the expression more than once--all super-
fluous material will disappear in the final simplifi-

catione.

3. The expressions for the various derendent

variables should next bs simplified as much 23 possidle

by means of the theorems on manipulation of these quan-

tities. Just how much this can be done depends somewhat
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RELATIOY OF OPERATING CHARACTERISTICS AND EQUATIOWS

Symbol

Xt

(==

In Terms of Operation

The switch or relay
X is operated.

If.

The switch or relay
X is not operated.

Or.

And.

The circuit (=--) is not
closed, or apply De
Morgen's Theorem.

In Terms of Non-Operation

The switch or relay X
1s not operated.

If.

The switch or relay X
is orerated.

And.
Oor.

The circuit (=--) is

closed, or apply De
Morgen's Theorem.



on the ingenulty of the desianer.

4, The resulting circuilt should now be

drawn. Any nscessary edditions dictated by practicsl

considerations such gs current ca2rrving abvility, se-

quence of contact operation, etc., shculd b2 made,
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V Illustrative Examples

In this section ssveral prcoblems will be
solved with the methods which have been developed.
The examples are intendsd more to show the versatil-
i1ty of relay end switching circuits and to illustrate

the use of the calculus in actual problsems than to des-

crive practical devices.

It is possible to vrerform complex mathematical

overations by meens of relay circults. Numbers may be
represénted by the positions of relays or stsepping
switches, and interconnections between ssts of relays
can be made to represent various mathematicsl opera-
tions. 1In fact, sny operstion that can be compleﬁely
describsd to the required accurecy (if numerical) in
a2 finite number cf steps using the words "if," "onp,"
"and," etc. (see Table II) can be done éutomatically

with relays.. The lest two examples are illustrations

of maethemeticel operstions accomplished with relsvys,



A Selective Circuit

A r=2lsey A is to operate when any one, any
three or when g1l four of the relays w, x, v, and 2
g8re operated. The hinderance function for A will
evidently be:
A = wxye + WIX'YyE + WiIXY'®s + Wixys! + wxty's +
wx'ys! + wxy'!s!

Reducing to the simplest series-psrallel form:
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A = w[x(yg + y1a!) + xt(y's + ygl)] + W'[X(y'ﬁ + ya')

+ xtys)

This circuit is showm in Pig. 30. It requires 20 ela=-

mentse.

+ Agiw; —0 O 1nnp

z z'| z! z | z2'] 2 z

Meg. 30

Howsver, using the symmetric function method, we may

write for A:

A = 34(1, 3, 4)
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4;237/_

w X y 2

Fig. 31

This circult containe only 15 elements., 2 still fur-

ther reduction may be made with the following device,

M™Mrst write:

At = 5,(0,2)

This has the circuilt of Flg, 32. What is required is

the negative of tnis function. This is a8 planar net-

work and we may epply the theorem on the dusl of 8 net-

work, thus obtaining the circuit shown in Fig. 33.

\

-0 :i;; °

o

A

—e

N\
N

— o- o— — AT ~
w X Yy zZ
Pig. 32

This conteins 14 elements and is probably the most sconom-

icsl circuit of any sort.



Fig.

33
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Design of an ZFlectric Comhinaticn T,0ck

An electric lock 1is to bse constructed with

the following characteristics. There are to be 5 push

batton switches availetle on the front of the lock.

These will be labeled 8, b, ¢, d, 8. To oPerate the

lock the muttons must e pressed in the follewing

order - ¢, b, 8 and ¢ simultaneously, d. "hen operated

in this sequence the lock is to b unlocked, tut if any
button 1s pressed incorrectly an 8larm U is to operate.

To relock the system a switch g must be operated. To

releass the alarm once it has started)a switeh h must

be operatad. This being & ssquential systsm either a

stepring switch or addi tional sequentiel relays are

required. Using sequential relays let them be danoted

by w, X, ¥, 8nd 2 corresponding respectivelvy to the

correct sequence of operating ths push tuttons. An

additicnal time delay reley 1s 82130 required due to

the third step in the operation. Obviously, sven

in correct operation a8 and ¢ cannot be pressed a8t ox-
actly the same tim2, but if only one is pressed and

held down the alarm should opsrete. Therefors &ssume

sn suXxiliary time delay reley v which will operate

if sither a or c alone is pressed at the end of step 2

and held down longer than time s the delav of the relay.
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When 2 has opersted the lock unlocks and at this point

let a1l the other releys drop out of the circuit. The

equations of ths svstem may be written down immedlstely:

. S - o
woscw + &+ Ul snmt L 2zes s

. / N L . VI
x = ox + WU/F B0+ U o o

vy =(a+tc)y +x+ & + U

g =zfd+ y)+ g + U

v 8 x +yt +ac +atc! + 8t + U
U =

e(wt + abd)(w + xt + ad)(x + y!' + dv(t-s))(y + b)TU'r

fg’"+ ht + gt
/

These expressions cen be simplified considerably, first
by combining the second and third factors in the first

tarm of U, eand then by factoring out the common terms

of the savergl functions. The final simplified form

is as below:

U = nt + efad(vtwr) + xt](x + y' + dv)(y + b)U
w = _OW
X -

Bf4|velDx + W
- +
y = L +|(evel)y

yt+ac+ato?

gt +(y+ ds-o- v'

This corresponds to the circuit on the following page.
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A Vote Counting Circuit

A circuit is to e constructed with the follow-

ing properties. There are to be thirteen 1ights, marked

0, 1, 2 ...12 and twelve two-position switches, Xys Xgeee

X107 one focr sach voter, each me rked with two possible

votes, yes Oor no. There is also a control matton C.

The lights are to count the number of 'vyes! votes,

If 5 voters move thalr switches to the 'yes'! position

and the remaining 7 vote 'mo,! the light marked 5 is

to light up providing the control tutton C is pressed,

and similerly for any number of votsse.

This 1s clearly an application of symmetric
functions discussed previously. If we reprsessent the

lights by the symtols Lo, Ll, coe ng, the the equsa-

tions of the system will evidently be:
Lk=0+312(k) k=0, 1, 000-12

The circuitnrepresenting this system according to the

symme tric function development will Dbe:
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Electric Adder to the Rase Two

A circuit is to be designed that will automat-
ically add two numbers, using only relays and switches.
Although any numbering base could bs used the circuit is

greatly simpiified by using the scals of two. Each diglt

1is thus eithsr O or 1; the numbsr whose diglts in order

are ak, ak-l’ ak_z, ceae 32, al, ao has the veluse
k

2 szj. Let the two numbers which are to be added be
j=0

ropresentad by a series of switches,ak, ak-l’ cee 8y, 8j
representing ths various digits of one of the numbers

end By, B ;s eeeeby, by the digits of the other gumber.
The sum will be repressnted by the positions of a8 set

of relays sk*l’ 8.0 S ....sl, so. A number which

i1s carrled to the jth column from the ( j-1)th column

will bs represented by a relsy cj. If the value of

eany digit is zsro, the corresponding relsy or swlitch
will be teken to b8 in the position of 2zero hinderance;
if one, in the position where the hindersnce is ons.

The actual eddition is shown below:

ck+l ck cj+1cj Co Cq carried numbers
By =me=- ai+la§ ---- 8 a; &, 1st number
bk b'j;lbj b2 bl Yo 2nd number

1

S+l
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starting from the right, sy, i1s one if a5 is one and b0

is zero or if 84 is zero and b0 one but not otherwlss.

Hence

= - { { -
3, = 8 bg + 8¢ bo_aoebo

Q

1 is one if both 8, end b. ars one mat not

o otherwise.

sj is one 1f just one of aj, bj’ °j i1is one, or 1f all

three 8re one.

SJ = 33(1,3) variables [ai, b 01]
cj+1 is one 1f two or i1f thres of these variables &2re one.

cJ+l H 33(2, 3) variables [a b

T TIY
Using the mathod of symmetric functions, and shift-

ing down for sj gives the clrcuits of Fig. 36.

j:l’—z, ooook j -0

°.%+1 - el

Fig. 36
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Eliminegting superfluocus elements we arrive at Flg. 37.

Pig. 37
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A PFactor Teble Mechine

A machine is to be designed which will auto-
matically print a8 table of factors and primes of all

the integers from 1 to 100,000,000. If & number is

prime, it 1s to be so marksd; if composite, 1ts least

factor is to bs printed beside it. The principle

which will be used is that of the sieve of Eratosthenes
(6).

Let the nstural numbers be written in order:
l, 2, 3, 4:, 5, 6, 7’ 8,0.--00-00...

Now consider the prime numbers in order, 2, 3, 5, 7,

11, 13, 17¢.... Each 2nd number after 2 in the row of

naturel numbers hes the least prime factor 2; esch
third number after 3 which is not 8 multiple of 2 has the

least prime factor 3; each 5th number after 5 not dlvis-

ivle by 2 or 3 has the least prime fector 5, etc. Any

number F not having a prime factor less than 1tself

is, of coursé} g prime. It is customery in tabvles

of this sort to omit numbers divisible by 2, 3, or 5
thus reducing the numbsr of integers which need be

considered to 4/15 of the largsst number ¥ (108 in

this case). It should 2lso be noted that any composite

number less than or equal to N has a least factor less

thean or equal to YN. Thus in our case only primes

less than 10,000 need be considered in the filtering
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process described. The asymptotic formula N/1n N
(for the number of primes 1less than N) shows that
there are abovt 1000 primes less than 10,000, Let
each of these vrimss after 5 be represented by a
counter ck with the following propertiss. There are
three megnets, Mo, My, and Mge. When M2 operetes all

the counters asre advanced 2 units; M4 and M. advance

6
The purpose

of these magnets is to automatically omit numbers

the counters 4 and 6 units respectively.

divisible by 2, 3, and 5. Note that starting with 1

the next number not divisivble by 2, 3, or 5 is8 7,

an advance of 6; the next advance is 4 (tec 1l1), then

2 (to 13). The total cycle of advances is as follows:
6, 4, 2, 4, 2, 4, 6, 2 (1)

after which the seame series is repeated (the psriod

is 30, the 1least common multiple of 2, 3, and 5).

As the successive numbers are considered for factors

or primality, the counters will advance according to

this saquencs. When any countsar Ck representing the

prime Pk res2ches the valus of this prime it is to be
so constructed that 1t automaticselly makes a connsec-
tion Xk- Bach counter is to have & return megnet Rk’
which when activated returns the counter to zero. The

general operation of the device will then be &8s follows.

Starting at the number 1 (the counter and printer
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representing the number being considered set 8t 1) snd
with ths counters representing the primes less than

10,000 all set at zero, the countsrs are advanced &ccord-

ing to the sequence (1). If for any number N, X, makes

,ne 1sast Pk being

the least factor. If no Xk makes contact, N is 8

prime. When any Xk makes contact, it is to bs auto=-

matically returned to zero by means of Rk' To record

the results a printer Uk should be associated with
each counter which will print the value of the prime

P, opposite N when magnet Uy 1s sctiveted. If N is a
prime, a printer S should print a symwl to call atten-
tion to the fact.

Althoueh this entire design could be carried
out with relays alone, it is proﬁably more economical
to construct the counters on mechanical principles,
and t.herefore only the control circuits will be des-
cribed. To automatically advence the numbers et
short intervals some kind of sn lmpulse generator is
nacessary. The simplest method of obteaining this is
to use 2 relay with a small time delsay 8\ If the
relay is labeled Z(t), then the contacts have a hinder-
ance function Z(t-8), end the connection Z(t) = Z'(t-29)
will give 2 series of impulses of period 28, The se=-

quencse of advances may ve e8sily obt2ined with an 8
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point rotary swlitch. Let this switch have s magnet I,
which advaneces the awitch one point When sctivated,
Then if We connect L so that L = Z(t-&) and connect
the contacts of the rotary switch to the magnets Ma’
Mz, and Mg according to the order of (1), the counters
will all bhe advanced periodicelly in this sequencs,
After the counters heve advanced a step, certsin of
the st will egual zero if the number is composite.

In this case these Xy 8 should cause the smallest fac-
tor to print and then return to zsro. This condition

will be sstisfied by the following équations:

kzl, 2, 5"0..

(2)

That is, t@s printer'nk operstes 1if Xk = 0 and the Xss,
j<k, do not equal zero. Also after a delay eto allow
“for printing, the counter is raturnsed to zeroc. If
none of the X, 8 make contact on a number W, it is a
primé end § should print. This ean be accomplished

with the following equation:

S = B(t-3a) +ZX‘3

The main printsr snd counter ¥ should print on each

number.
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N = 81 (t-9)
Using the method of factoring of simultaneous equations

the system (2) can be grsatly simplified as follows:

Uy 5%
Uy = %g)
Ug = Xgl* X!
+ x|
U =X ...\+ Xt
= - \ + X

The circuit of the entire device 1s shown schematically

in Pig. 38.
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This design requires taoat thne primes less
thsn 10,000 pe xnocwn. If desired, thze machine could
pe made to sutomstically connect in new counters as
the primes were found, but taere are many sccurste
tzbles of primes up to 10,000 so that this would not
be necessary.

As to tane practicability of sucn a device, it
migat be szid tast J.P. Kulik spent 20 years in
constructing a table of primes u» to 100,000,000 and
whnen finished it was found to contain so many errors
that it was not worth publisning. Tne macaine described
here could probably be made to nandle 5 numbers per
second so tanat the tsble would require only about 2

montas to construct.



(1)

(2)

(3)

(4)

(5)

(6)
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