Basic Concepts and Notation

Gabriel Robins

"When | use a word," Humpty Dumpty said, in a rather scornful tone,
"it means just what | choose it to mean -- neither more nor less."

A set is formaly an undefined term, but intuitively it is a (possibly empty) collection of
arbitrary objects. A set is usualy denoted by curly braces and some (optional) restrictions.
Examples of setsare{1,2,3}, { hi, there}, and {k | k is a perfect square}. The symbol € denotes

set member ship, while the symbol ¢ denotes set non-member ship; for example, 7e{p | p
prime} statesthat 7 is a prime number, while gz {0,2,4,6,...} statesthat q is not an even number.

Some common _set s are denoted by special notation:

The natural numbers M ={123,..}
Theintegers £ = {..-3-2-10123,..}
Therational numbers Q:{% |abe Z, bz0}
Thereal numbers R ={x | xisarea number}
The empty_set: a={}

When only the positive elements of anumerical set are sought, a superscript "+" may be used to

denote this. For example, Z* = N denotes the positive integers (i.e., the natural numbers), F*

denotes all the positive reals, and more generally, S* = {s<S | s>0}.

The logical symbol | (pronounced "such that", and sometimes also denoted as 3) denotes a
conditional (which usualy follows this symbol). The logica symbol V' (pronounced "for all")

denotes universal _quantification. For example, the formula "Vxe R x < x%+1" reads "for al

X a member of the redl numbers, x is less than or equa to x-squared plus one" (i.e., no red

number is greater than one more than its own square). The logical symbol 3 (pronounced "there



exists') denotes existential _quantification. For example, the formula "3Ixe & |x2:5x" states

that there exists an integer whose square is equal to 5 timesitself (i.e., x is either 5 or 0) . These

connectives may be composed in more complicated formulae, asin the following example: "Vxe &

dyed | y>x" which states that there is no largest integer.

Thelogical connective / (pronounced "and") is a boolean-valued function that yields true if
and only if both of its two arguments are true. The logical connective % (pronounced "or") isa
boolean-valued function that yields true if and only if one or more of its two arguments are true.
The symbol = (pronounced "implies") denoteslogical implication; that is, A=B means that B is
true whenever A istrue; for example, "1<x<y = x3 < y3 The symbol < (pronounced "if and

only if", and sometimes written as "iff") denoteslogical equivalence tha is, A<B means that

B istrue if and only if A istrue. More formally, A&B means A=B /. B=A; an example is
"min(x,y)=max(x,y) < x=y". Itiseasily shownthat A=B implies™B = ™ A, where ™ denotes

logical negation.

A set Sisasubset of aset T (denoted S=T) if every element that isamember of S is also a

member of T. More formaly, S=T & (xeS= xeT). A set Sisaproper subset of a set T
(denoted S=T) if Sisasubset of T, but Sand T are not equal. Moreformally, S=T < (S=T /M
S#T). Clearly every set has the empty set and the set itsdlf as subsets (i.e., VS @=S /A S=S).
Two sets are equal if and only if each is a subset of the other, i.e.,, S=T < (T=S /A S=T).

The union of two sets S and T (denoted SUT) is the (duplicate-free) "merger” of the two
sets. Moreformally, SUT={x |xe S % xe T}. Theintersection of two sets S and T (denoted
SAT) is their greatest common subset. More formally, SNT={x | xe S / xe T}. Two sets are

said to be digoint if their intersection isempty (i.e,, Sand T are digoint < SNT=@).



The union and intersection operators are commutative (SUT=TuUS, and SNT=TnNYS),
associative Su(TuV) = (SUT)wV, and SN(TNV) = (SNT)NV, and distribute over each other
SU(TNV)=(SUT)N(SWUV), and SN(TLV) = (SNT)u(SNV). Absorption occurs as follows:
SU(SNT)=S, and SN(SUT)=S. Thecomplement of aset S (with respect to some universe set)
isthe collection of dl elements (in the universe set) that are not in S, and is denoted S' (or by S

with ahorizontal bar over it). Moreformaly, S ={x |x¢ S}.

A setissaid to be closed under a given operation if the operation preserves membership in
the set. Formally, S is said to be closed under an operation ¢ iff x0yeSV x,yeS. For
example, the set of integers 2 is closed under addition (+), since the sum of any two integers is

also an integer; on the other hand, 2 is not closed under division.

A relation over adomain D isaset of ordered pairs, or more generally, a set of ordered k-

tuples. For example, the relation v defined as{(a,1), (b,2), (b,3)} means that "a" is related to 1,
and "b" is related to both 2 and 3; this may aso be written as av 1, bv2, and bv3. A more
familiar relation (over 2) isthe "lessthan” relation, often denoted as <, which actudly consists of

an infinite set of ordered pairs such that the first element is less than the second; that is, the <

relation isformally defined to be the set { (X,y) | x,ye &, y>X}.

A relation is said to be reflexive if every ement in the relation domain is aso related to
itself; i.e., w isreflexiveiff xwx VxeD. A relationissaid to be symmetric if it commutes; i.e.,
v issymmetriciff xwy = ywx. A reaion istransitive if xwy / yvz = xvz. For example,

the subset operator is reflexive (S=S), and transitive (=T /A TSV = SZV), but not

symmetric. Thetransitive closure of a reation is the extension of that relation to al pairs that

are related by trangitivity; i.e., the transitive closure of ¥ containsall pairsof v, aswell asal pairs
(x,y) such that for some finite set of elements d, dy, ds, ..., d¢ in ¥'s domain, dl of xvd;,

divdy, dowds, ..., di_qvdy, dcvy hold. Put another way, the transitive closure a of a relation v



isthe smallest relation containing v but which is still closed under transitivity (i.e., satisfying xay

M yaz = xaz). For example, the predecessor relation £ may be defined as { (x,x-1) | xe £}, and

the transitive closure of T isthe > relation. Similarly, the symmetric closur e of a relation is the

smallest containing relation that is closed under symmetry, etc.

"I don't understand you," said Alice. "Its dreadfully confusing!"

A relation that is reflexive, symmetric, and transitive is cdled an equivalence relation; an

example of this is the familiar equaity relation =. It is easy to show that an equivalence relation

partitions its domain into mutually digoint subsets, cdled equivalence classes A specid kind

of reation iscaled agraph, where the domain elements are called nodes and the relation pairs are
referred to as edges.  For example, one ssimple graph may be {(a,b), (a,c), (b,d)}. Graphs are
often drawn using ovalsto represent the nodes and arcs to represent the edges. A graph is said to
be undirected when the relation that it represents is symmetric, and directed otherwise. The
trangitive closure of an undirected graph is an equivaence relation where the equivalence classes

correspond to the connected components of the graph.

"You'll get used to it in time," said the Caterpillar;

An important property of set operations is the analogue of DeMorgan's _Law: (SuT)' =

SNT' and (SNT)' = SUT'. These equdities follow from DeMorgan's law for classical logic:
if X and Y are boolean variables, then (XAY)'=X"Y" and (X*%'Y)'=X"/AY" always hold. This
is an artifact of the elegant duality between the operators /A and %' in the prepositional caculus: if
one starts with a true theorem (logica preposition) and simultaneously replaces dl the /.'s with

%"'s, and al the %'swith /'s, the result is aso a true theorem.

The differ ence between two sets Sand T isthe set containing dl elements that are in S but
notinT. Moreformally, ST ={s|seS /" sz T} = SNT'. Thesymmetric differ ence between

two sets Sand T isdefined as SUT - SNT. The cross-product of two sets S and T, denoted by

SXT, isthe set of dl ordered pairs whose first eement comes from S and whose second eement
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comes from T. More formaly, ST = {(s;t) | s€ S, te T}. For example, {1, 2, 3} x {ab} =
{(1,8),(1,b),(2,8),(2,b),(3,3),(3,b)}. A set may be crossed with itself a number of times: s =
sxs lwheres! = s.

Thecardinality (or Size) of afinite set is defined to be the number of dementsin it, and is
denoted by vertical bars placed around the set. For example, [{a,b,c}|=3, {p | p a prime less than
20} |=8, and |3|=0. The power set of a set S (denoted 25) is the collection of dl subsets of S,
more formally, ZS:{T | T=S}. If Sisfinite, the cardinality of its powerset is precisaly 2 raised to
the cardinality of S (i.e,, |23|:2|S|); this is true because each subset of S can be represented by a
unique sequence of |S binary digits (where 1 represents membership of the corresponding eement
in the subset, and O represents non-membership). Since there are 218l such sequences, and each

corresponds to a unique subset of S, there must be 28! subsets of S.

A function f which mapsa set Stoa set T (denoted f:S—T) is said to be one-to-one (or

injective) if any two distinct elementsin S are mapped to distinct elements in T. More formally,
f isinjective iff abeS /A azb = f(a)=f(b). In this context S is said to be the domain of f,

while T is said to be the range of f. Intuitively, a function is one-to-one if no two distinct

elementsin its domain are mapped to the same dlement in itsrange. For example, f:& —& defined

as f(x)=2x is one-to-one, while g(x):x2 IS not, since g maps both -2 and 2 to 4.

The rate of growth of numerical functions is often described asymptotically. This is

especialy useful when discussing the time or space complexities of algorithms, since it enables
implementation- / hardware-independent comparisons of the relative merits of specific algorithms.
A function f(x) issaid to be O(g(x)) (pronounced "big-oh of g(x)") if for some positive constant
c we have c « f(x) < g(x) for dl but a finite number of values of x. If other words, g(x) is an

upper bound for f(x) in the limit, modulo a multiplicative constant. More formally, this may be
expressed as f(x) = O(g(x)) @ I ceR* Ix'eR" 5 f(x)< c+g(X) V x> x'. Smilarly, a



function f(x) issaid to be (g(x)) (pronounced "omega of g(x)") if for some positive constant ¢
we havec f(x) > g(x) for all but afinite number of valuesof x. If other words, g(x) is alower

bound for f(x) in the limit, modulo a multiplicative constant. More formally, this may be
expressedas f(X) = Q(g(x)) @ FceR* I xeR" 5 f(x)> c-g(X) V x >X.

Finally, a function f(x) is said to be ®(g(x)) (pronounced "theta of g(x)") if both the
reations f(x) = Q(g(x)) and f(x) = O(g(x)) hold; in other words, f(x) and g(x) have the same
asymptotic growth rate, modulo a multiplicative constant, so that each of f(x) and g(x) gives a
tight bound (or exact bound) for the other. For example, f(n) = n is both O(n) and aso O(n3).
Similarly, g(n) =8+ nlog nisQ(n) and O(n1'5), but not Q(nz). Finally, the constant function h(n)
= 1001 js O(1), as is any constant, no matter how large. Note that care must be taken when
considering asymptotic notation; for example, h(x) = O(1) does not imply that h is a constant
function, since non-constant yet bounded functions such as h(x) = sin(x) are dso O(1) by the
above definitions. Both O and Q are reflexive and trangitive relations, but are not commutative.

On the other hand, is ® is commutative as well.

f:S—>Tissaidto beonto (or surjective) if for any elementtin T, there exists an eement s

in Ssuch that f(s)=t. Moreformally, fisontoiff VteT 3seS> f(s)=t. Intuitively, a function
isontoif itsentirerangeis "covered" by its domain. For example, f:& —& defined as f(x)=13-x
isonto (and coincidentally one-to-one as well), while g(x):x2 IS not, since some eements of g's

range do not have a corresponding element x in g's domain (i.e., there is no integer k such that

9(k)=3).

A function that is both injective and surjective is caled bijective and is said to be (or to

congtitute) a one-to-one-correspondence between its doman and range. Intuitively, a

bijection (denoted <) isaperfect pairwise matching between two sets, with each eement in each

set participating in exactly one match with an element of the other set. For example, the identity



function on an arbitrary domain D isalways abijection (i.e. f:D <D > f(x)=x). Another example
of a bijection is h:M—Z defined as h(x)= X71 if x isodd, 5 if x is even. The last example

illustrates the fact that an infinite set can be put into one-to-one correspondence with a proper

subset of itself! (which isof course never possible for afinite set).

The cardinality of aset Sissaidtobe at least as |lar ge asthe cardinality of a set T, if there

exists an onto function from Sto T. Moreformally, |[S|T| < 3 f:S—T, f isonto. Note how this

definition generalizes the notion of cardinality comparisonsto infinite sets. For example, the onto

function r:[H—& defined as "r(x)=integer closest to x" is witness to the fact that the redls have a

cardinality at least aslarge as the integers.

If |S[T| and a bijection between Sand T exists, the cardinality of S is said to be the same
as the cardindlity of T. If |[S[T| but no bijection between S and T exists, the cardindity of S is

saidto bestrictly larger than the cardindity of T, denoted |S|>[T|. The bijection h defined earlier

proves tha the natural numbers have the same cardindity as do the integers, even though the

former is a proper subset of the latter!

It turns out that the cardinality of the reals is gtrictly larger than the cardinality of the natura

numbers (formally |[R|>|I]). Thiscan be proved using a diagonalization argument: we aready

know that |F|=|M|, since y:E—M defined as "y(x)=abs(truncate(x))" is onto. Now assume that
there exists an arbitrary bijection f:IM«>[F. Now consider the red number Q defined so that Q's
kth digit (to the right of the decima point) is equal to [f(k)'s kth digit] + 1 (modulo 10), for
k=1,2,3,... Clearly Q isawell-defined red number, but is not in the range of f by construction.

It follows that f therefore cannot be a bijection as claimed, and since f was arbitrary, no bijection

between [R and [ can possibly exist. Diagonalization is a powerful proof method which is often

employed to establish non-existence results.



Bijections may be composed to form new bijections, so that if we have two bijections aS—T
and b:T—V, then we can form a new bijection c:S—V, defined as c(x)=b(a(x)). Asan example of

an application of this composition principle, we note that no bijection between [ and £ can

possibly exist: h (as defined earlier) isabijection between M and £ , and we dready know that no
bijection between [R and [ can possibly exist (by our earlier diagonalization proof). Therefore a
bijection between [R and & would automatically yield (using our composition principle) a bijection
between [R and [, a contradiction.

"Oh!" said Alice. She was too much puzzled to make any other remark.

Aninfinite set isaset than can be put into one-to-one correspondence with a proper subset
of itsdlf (or intuitively, a set with acardinality greater than any integer ke £). Any set that is finite,
or else that can be put into one-to-one correspondence with the integersis said to be countable (or

countably infinite). Any infinite set that can not be put into one-to-one correspondence with the

integersis said to be uncountable (or uncountably infinite). For example, I, £x£&, T, and {p |

p prime} are al countable sets, while [, {x | xe |, O<x<1}, and M are all uncountable sets,

An alphabet is afinite set of symbols (e.g., £ ={ab,c}). A string is a finite sequence of
symbols chosen from a particular adphabet (e.g., w = abcaabbcc). The length of a string is the

numbers of symbolsit is composed of (e.g., |ocal = 3). A languageisa set of strings over some
alphabet. For example, for the alphabet £={ a,b}, aaabbbabab is a string of length 10 over X, and

{d'b" | n>0} isan infinite language over . The unique string of length O is the empty _string,

and is denoted by € or ». The concatenation of two strings x and y (denoted xy) is obtained by

following the symbols of x with the symbols of y, in order. More formally, if X=x1xoX3...X, and
Y=Y1Y2Y3.--Ym, Where xje X for 1<i<n and yje X for 1<j<m, then Xy=X;XoX3...Xny1Y2Y3.--Ym- It
follows that for dl strings w over some alphabet, we=ew=w. For example, the string "hi"

concatenated to the string "there" yields the string "hithere".



The concatenation operator may be extended to languages L, and L, as follows: L1L, ={xy |
Xelq and yeLo}. LL may be denoted by L2 more generally, Lk:LLk'l, where LO:{ e}. The

Kleene closure of a language L (denoted by L*) is defined as the infinite union

LO0LTUL?0L80. .., while L is defined as the infinite union LYUL2UL30... It follows that
L+=LL" (note that this"superscript plus' notation is distinguished from the "superscript plus' used
earlier to denote the positive eements of a numerical set, e.g., #* = M, and usualy the context

may be consulted to avoid confusion).

For example, the language { a, b} concatenated to the language { 1, 2, 3} yields the language
{al, a2, a3, b1, b2, b3}, while {a,b}”" denotesthe set of dl finite strings over the two symbols a
and b; more generally, = denotes the set of al finite strings over the alphabet . It turns out that

(L*)"=L", and that unless L isthetrivial language (i.e., {€}) or the empty language (i.e., @)

then L* is countably infinite. Note that the trivia language {€} is not the same as the empty

language &: the former contains one exactly string (i.e., the empty string) but the latter contains

none.

Any language L over a finite alphabet £ is composed of some collection of finite strings.
More formaly, L=X". Cleally X* is countable (Smply arrange the finite strings in ** by
increasing length, and within length by lexicographic dictionary order). Similarly, the set of dl

finite descriptions is countable (smply arrange the description by increasing lengths and

lexicographically within the same length). On the other hand, the set of dl languages Zz*is
uncountable. This immediately implies that some languages are not finitely describable!  Put
differently, the set of dl possible finite agorithms (or descriptions) is countable (sort the finite
computer programs by size and lexicographicaly), while the set of problems (languages) is
uncountable; this means that any way of matching solutions to problems must leave out some
problems unmatched (i.e., unsolved), and therefore some problems have absolutely no solutions,
even intheory! Exhibiting an actual "finitely undescribable" set requires a little more work, but is
not altogether difficult; thisiswhat Alan Turing did in his 1936 dissertation.
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"Curiouser and curiouser!" cried Alice.

The infinity corresponding to the cardinality of the integers is denoted by X

(pronounced "aeph null"). The infinity corresponding to the cardinality of the reals is

denoted as X 1. Our previous discussion established that X < X4, and formally we have X1 =
20, For many years mathematicians have tried to find some infinity Q such that Ng<Q< X4, 0r
prove that none exists. This question of whether there exists some infinity strictly larger than that
of the integers, yet gtrictly smaller than that of the reals, came to be known as the "continuum

hypothesis," and was finally settled by Cohen in 1966, who showed that to be independent of

the axioms of set theory. That is, the consistency of set theory would not be changed if one
chooses to assume as an axiom ether this hypothesis, or its negation! Severa other well-known
mathematica statements enjoy this unique status of being independent of the axioms, and these

include the parallel _postulate, as well as the axiom of choice (shown to be independent of

the other axioms by Godel in 1938).

More generally, we can obtain a whole hierarchy of infinities each one strictly greater

than its predecessor; in particular, we have X;,; = 2%i, where X; < X;,;. But when the indexes
of the alephs keep growing, nothing prevents them from soon becoming aephs themselves! In
other words, our "number-line" now looks like:

0, 1, 2,..., k, k+1,..., Ro, X1, Xo oy Ry, Rpq 4o NNO’ le,..., ka, ka_'_l,...

where the subscripts soon acquire subscripts which are themselves aephs, giving rise to an infinite
hierarchy of infinities! Doesthere exist any infinity "bigger" then any of these unimaginably large
cardinalities? It turns out that there isl The next "jump" in this sequence is denoted by ®
(pronounced "omega") and is bigger than any of the alephs"below" it. It is sometimes referred to

asthe"first _inaccessible infinity" because there is no way to "reach” it via any composition,
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exponentiation, or subscript-nesting of alephs, etc., very much like there is no way to reach the

first aleph via any finite sequence of arithmetic operations on the ordinary integers.

The Red Queen shook her head. "you may call it 'nonsense’ if you
like," she said, "but I've heard nonsense, compared with which that
would be as sensible as a dictionary!"

Interestingly, this fascinating progression of ever-increasing infinities does not stop; using
certain logical constructs is it possible to exhibit a vast hierarchy of inaccessible infinities past !
Logicians have even "found” infinities "larger” than any of the inaccessible ones, by stretching the
power of their axiomatic proof systems to the limit. Note that finding a new families of infinities
requires new and novel proof techniques, since the "jump" from one "level” of infinities to the next
"level" is as fundamental and conceptually difficult as the initial jump from the integers to the first
level a X, or the jump from the alephsto ! Currently only about six more fundamental "jumps’
in conceptudization are known to logicians, enjoying names such as the hyper-Mahlo cardinals,
the weakly compact cardinals, and the ineffable cardinals. It is not clear (even in theory) what

exotic mathematical constructs, if any, lay beyond that.
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