
Sorting a Compressed List

Nathan Brunelle
University of Virginia

njb2b@virginia.edu

Gabriel Robins
University of Virginia
robins@cs.virginia.edu

abhi shelat
University of Virginia
shelat@cs.virginia.edu

July 16, 2012

Abstract

We consider the task of sorting and performing kth order statistics on a list that is stored
in compressed form. The most common approach to this problem is to first decompress the
array (usually in linear time), and then apply standard algorithmic tools. This approach, how-
ever, ignores the rich information about the input that is implicit in the compressed form. In
particular, exploiting this information from the compression may eliminate the need to de-
compress, and may also enable algorithmic improvements that provide substantial speedups.
We thus suggest a more rigorous study of what we call compression-aware algorithms.

Already the string-matching community has applied this idea to developing surprisingly
efficient pattern matching and edit distance algorithms on compressed strings. In this paper,
we begin to study the problem of sorting on compressed lists. Given an LZ77 representation
of size C that decompresses to an array of length n, our algorithm can output an LZ77-
compressed representation of the sorted dataset in O(C + |Σ| log |Σ| + n) time, with Σ as
the alphabet. Secondly, we consider a compression scheme in which an n-integer array is
represented as the union of C arithmetic sequences. Using priority queues, we can sort the
array in O(n log C) time. Lastly, given an array compressed with a context free grammar
of size C we can find the sorted array in O(C · |Σ|), where Σ is the alphabet of the string.
Additionally we present algorithms for indexing an LZ77 compressed string in O(C), and
finding the kth order statistic in O(C log C) in the arithmetic sequences model.

1 Introduction

1.1 Motivation

As observed in the real world, data tends to exhibit various regularities, thus allowing for com-
pression. For example, the schematic of an office building will likely feature a grid-like pattern
of windows, offices, etc. Therefore, a CAD drawing of this schematic could gain much space ben-
efit by compressing these regularities. There is a gap, however, between how classical algorithms
operate, and the potential benefits attainable by exploiting these regularities. Many state-of-the
art methods still require a user to decompress data, operate some method, and then potentially
recompress as necessary. We seek to work towards closing this gap between the operation of
classical algorithms, and the potential benefits for operating directly on compressed data.

As a result of their compression-independence, classical algorithms’ complexities are often
expressed in terms of their performance on some worst case example, or some average case anal-
ysis. This, however, also ignores the regularity of the data. Since the data is far from random, an
average case analysis considering the data’s regularity would be a more accurate representation
of its real-world run time. For operations on such data, it is more useful to express run time in
terms of the size of the compressed input. This measure will be a greater indicator of how well
an algorithm utilizes its data regularities.

A further benefit is gained with knowledge that as the underlying complexity of the com-
pression grows, the volume of data represented explodes faster. This means that for large inputs
of compressed data, the benefit of the compression-aware algorithm will also grow as compared
to the functionally-equivalent classical algorithm.

1.2 Problem Statement and Results

In this paper we begin with some of the most well-understood and fundamental problems to
solve for any data: sorting and kth order statistic. We present algorithms answering each of
these questions under three models of compression. The first represents a sequence in terms of a
union of embedded arithmetic sequences, the second is the LZ77 compression scheme presented
by Abraham Lempel and Jacob Ziv in 1977 [25], and the third represents a string as a context free
grammar.

For sorting a list compressed by its arithmetic sequences we present an algorithm which uses
priority queues. This runs in O(n log C) time, where n is the number of points to be sorted,
and C is the number of sequences in the compression. This is to compared with the standard
approach which would require decompression in time O(n) and sorting in time O(n log n). We
also present an algorithm which finds the kth order statistic in O(C log C) time. The classical
approach would require at least O(k) to decompress, and O(k) to find the kth order statistic.

For sorting an LZ77-compressed sequence we present a sorting algorithm which can operate
in O(C log C + n). Where C is the compression size, and n is the length of the sequence. In most
instances of use, it will be the case that C � n, thus our algorithm can give dramatic time benefits
over the classical sorting algorithm, as in many cases O(n) will be the dominating term. This is
an improvement over the O(n log n) run time of the classical approach. Additionally, at no cost
to its asymptotic time complexity, the output data can be expressed in LZ77-compressed form.
We also present a way of indexing into the sequence in O(C) time. By combining these two, we
have a method for obtaining the kth order statistic in O(C + |Σ| log |Σ|+ n) time, meaning that
in the case when C � n we have the dominating term as O(n).

For sorting a list compressed by a context-free grammar we present an algorithm which can

1

find the sorted sequence in O(C · |Σ|) time. Here, C is the size of the compression, which in this
case is the total number of symbols in all of the grammar’s substitution rules, and Σ is the set of
characters in the alphabet of the string. This result has the advantage of being independent of
the size of the uncompressed list. From here, we can produce a grammar for the sorted list which
will be of size |Σ| log n, where n is the length of the decompressed list. The classical approach
would require O(n log n) time to decompress and then sort.

2 Related Work

There has already been much research done on compression aware algorithms, and it is well-
known that there is frequently a time and space benefit by doing so. One of the most well-
explored areas is pattern matching on compressed strings, including both exact pattern matching
[2, 15, 16, 19, 23], and approximate pattern matching [1, 4, 7, 14, 15, 18, 20]. Others have studied
compression-aware edit-distance algorithms [3, 8, 11, 6, 17]. There have also been algorithms
presented which act directly on JPEG-compressed images [24, 9].

In this paper we focus on sorting under three different compression schemes. The first is
one in which a sequence of colinear points is represented by a union of embedded arithmetic
sequences. Algorithms for detecting these hidden arithmetic sequences have been presented in
[12, 13, 21, 10]. The second that we cover is Lempel-Ziv ’77 (called LZ77 throughout), which
was first presented in [25]. The final compression scheme considered is one in which a string is
represented as a context free grammar, as presented in [19].

3 Arithmetic Sequences Compression

Under this model of compression, a set of natural numbers S ⊆ N is represented by some
set of underlying arithmetic sequences. That is, we say that S = A1 ∪ A2 ∪ ... ∪ AC for some
number of arithmetic sequences C. Here, we will assume for the sake of simplicity that all
arithmetic sequences start at 0, and subsequent values in arithmetic sequence Ai are all δi apart.
So, for example, if C = 2 we may have arithmetic sequences A1 = {0, 5, 10, 15, 20, ...} and A2 =
{0, 12, 24, 36, 48, ...} thus giving S = A1 ∪ A2 = {0, 5, 10, 12, 15, 20, 24, ...}. We will denote an
arithmetic sequence with interval δ as A(δ). Additionally, to simplify notation, we will say that
Ai = A(δi).

Note that with the arithmetic sequences compression there is not necessarily a finite number
of points defined. Therefore we do not use n to refer to the decompressed size of the list,
but rather ask for the number of elements to sort as additional input. A query to our sorting
algorithm will intuitively read as “With this list of arithmetic sequences, what are, in order, the
first n points in the combined sequence?”.

3.1 Priority Queue Sorting

The simplest way for sorting a sequence of points under an arithmetic sequences compression
uses priority queues. This method, shown in Algorithm 1, begins by adding the first element of
each sequence to a priority queue. The priority queue will therefore be built in O(C log C) time.
From here we extract the element of minimum priority from the queue, we will call the value of
this point v. This is put into an output data structure.

Since it is possible for two points from the same sequence to be consecutive in the sorted
list, we must then replace the element just removed from the queue with the next from the same

2

sequence. This maintains the invariant which requires the smallest element from each sequence
always be present in the priority queue.To accomplish this we first check from which sequence
the extracted point came. Then, assume the point came from A(δ), we will simply add δ to this
point and insert this new point into the queue. We repeatedly query the queue n times, until the
n smallest elements are found in sorted order.

In the end, we will have performed n inserts into and n deletes from the priority queue. Since
the queue is guaranteed to be no greater than size C at any time, our algorithm will run in time
O(n log C) time.

We also achieve linear space complexity, in terms of n. The largest data structure for this
algorithm will be the output list, which is of size n. The priority queue will be no larger than
C at any time, and therefore as long as C � n it will not be the dominant occupant of memory.
Note that there is no benefit to giving the result compressed by arithmetic sequences, as that
would undo the work just done. Therefore a reduction in space complexity is only achievable if
a secondary form of compression is used.

In order to simplify the association of a point to its derivative sequence we use a data type
pair, which is a pair of a value v and the interval of its source sequence δ. An object of this type
will have priority v. Using this it is easy to see that the lookup will be constant time.

Algorithm 1: pq Sort-A method for sorting arithmetic sequences using a priority queue.
Here, pair contains an element v which is the value of a point, and δ which is the interval
for its source arithmetic sequence.

Input: set of C arithmetic sequences A = {Ai, ..., AC}, the number of values to sort n
Output: set of n ordered smallest values

initialize priority queue pq;1

intialize an array of size n sorted;2

foreach Ai ∈ A do3

pq.insert(pair(0, δi));4

for i = 0; i < n; ++ i do5

pair p = pq.poll();6

sorted[i] = p.v;7

pq.insert(pair(p.v + p.δ, p.δ));8

return sorted;9

3.2 kth Order Statistic

The regularity of the data for arithmetic-sequences compressed data allows for fast computation
of the kth order statistic. The intuition used for performing this calculation is that an arithmetic
sequence has similar appearance to a Poisson arrival process, which is the approach presented
in Algorithm 2. To begin, we consider each sequence as a Poisson process with rate λ = 1

δ .
Conceptually, this is just a shift from saying that “all points are δ units apart” to “ 1

δ points appear
every unit”.

We must now combine all of the processes (sequences) into a single process (sequence). The
combined process can be seen as a single process with rate Λ where each event will have one of
C types. If the probability of a point being of type i is pi, and ∑C

i=1 pi = 1, then the combined
process is equivalent to the combination of C slower concurrent processes, each having rate

3

Λ · pi. Therefore we can say that Λ = ∑C
i=1 λi = ∑C

i=1
1
δi

. Conceptually, we are summing together
all the sequences’ arrival rates in order to say that, on average points appear every Λ units, or
equivalently, on average points are 1

Λ units apart.
We can now find the location of position k in the combined sequence using this combined

process. For this Poisson process the expected time of arrival of the kth event is simply k
Λ , or

conceptually if points are an average of 1
Λ units apart then to get k points one must look about k

Λ
units deep. We will label this “guess” of k

Λ as g. We now must count the actual number of points
which occur in [0, g]. For each sequence Ai there will be b g

δi
c points in the range. Therefore the

actual number of points in [0, g] is ∑C
i=1b

g
δi
c. By construction we know that ∑C

i=1
g
δi
= k, and it is

also clear that for any sum of positive rationals ∑
j
i=1

a
b ≤ ∑

j
i=1b

a
bc+ j. Therefore, the number of

points actually occurring in [0, g] is between k and k− C. The computation time bottlenecks of
the above are the calculations of Λ and ∑C

i=1b
g
δi
c, each of which can be calculated in O(C) time.

Algorithm 2: Index Arithmetic-Finds the kth element in the combined sequence. Here,
pair contains an element v which is the value of a point, and δ which is the interval for its
source arithmetic sequence. The method next mult(a, b) finds the next multiple of b which
is greater than a.

Input: set of C Arithmetic Sequences A = {Ai, ..., AC}, the index queried k
Output: value of the kth smallest element

k = k− C;1

initialize priority queue pq;2

Λ = 0;3

foreach i < C do4

Λ += 1
δi

;5

d = k
Λ ;6

count = 0;7

foreach i < C do8

count += b d
δi
c;9

pq.add(pair(next mult(d, δi),δi));10

Initialize value = 011

for i = 0; i < k− count; ++ i do12

pair p = pq.poll();13

value = p.v;14

pq.insert(pair(p.v + p.δ, p.δ));15

return value;16

From here we can use a method similar to pq sort presented in Section 3.1. We add the next
element from each sequence into a priority queue. Then we remove the lowest priority point,
calculate the next point from that sequence and insert it into the queue, and then repeat until
we have reached k− ∑C

i=1b
g
δi
c points. Finding the next multiple of some δi after g can be done

in constant time, as it is simply δi + g− (g mod δi). Since the priority queue will never be of
size greater than C, and 0 < k− b g

δi
c < C, the run time of this section is O(C log C). Therefore

the k-th order statistic can be calculated in O(C log C) time, and is constant with respect to k. In
contrast, a simple application of Algorithm [?] would require O(k log C).

Note that since Poisson processes require that there be 0 events at time 0, we must actually

4

find event k − C in the Poisson process to get the kth point in the sequence. More details on
Poisson processes as well as proofs to the claims mentioned can be found in [22].

4 Lempel-Ziv ’77 Compression

The LZ77 compression scheme was presented in [25] by Jacob Ziv and Abraham Lempel in 1977.
With this scheme, a compression is a sequence of terms of one of two types: terminals and back
pointers. A terminal is a character from the original alphabet of the string, call this Σ, and a back
pointer is of the form (back, length) where back is the index (in the uncompressed string) from
which to start a substring and length is the number of characters to copy starting from back. As
an example, consider the string a b (1, 2) (2, 3) c (1, 5). The term (1,2) instructs the user to start
at index 1 and copy 2 characters, and therefore (1,2) = a b. The whole sequence will therefore
decompress into a b ab bab c ababb. It is possible for a back pointer to have length larger than
the depth of back (that is back− current location). In this case it is understood that the referenced
string is repeated to fill in the gap. For example, if we have the compression a b (1,6), this would
decompress into a b ab ab ab.

4.1 Sorting

The intuition behind Algorithm 3, which sorts a LZ77 compressed string, is that for any string
s, where lz(s) is a LZ77-compression of s, the set of terminals present in s is equal to those in
lz(s). This means that in order to sort the decompressed string it suffices to sort all of Σ, and
then count the number of each character which appears in the decompression. Therefore we
begin by first copying all literals to a list. Next we sort the literals. These steps can be done in
O(C + |Σ| log |Σ|) time.

The next step is to count the number of each type of literal in the decompressed string.
To do this, we count characters while mimicking the action of the decompression. First we
scan through the compression looking for the length of the deepest back pointer (the maximum
back− current location). We then create a circular buffer of this size (we will call this variable size).
Now we perform a normal decompression of the string, except whenever we would append a
character to the decompression we instead write that character to the next space in the buffer,
and iterate a counter for that character. When reading a back pointer we begin copying from that
location in the circular buffer. Since we defined the length of the circular buffer to be depth of
the deepest back pointer, we are guaranteed that the reference be in the circular buffer. In all,
this step can be completed in O(n) time, as it is effectively a decompression, giving the overall
running time of the algorithm to be O(C + |Σ| log |Σ|+ n). The advantage gained by using the
circular buffer over a complete decompression is that this reduces the space complexity of the
algorithm is O(C + size).

With the multiplicity of each character we can then return a LZ77 compressed sorted string
in time O(|Σ|). Assume Σ = {σ1, σ2, ...σ|Σ|}, and that σi has multiplicity mi in the string. Then the
compressed string will be: σ1 (1, m1 − 1) σ2 (m1 + 1, m2 − 1) ... σ|Σ| (n−m|Σ|, m|Σ|).

4.2 Indexing

Algorithm 4 gives a method for finding the character at index i of a LZ77 compressed string.
The algorithm keeps track of two read heads. The one labeled j is the current location in the
compressed list, the one labeled count is the location in the decompressed string if all terms up
to j were decompressed.

5

Algorithm 3: LZ77 Sort-A method for sorting a LZ77 compressed string. Here back is the
location of the back pointer index, and length is the number of characters to copy. It is
assumed that if an index is not in Σ then it is a back pointer.

Input: An LZ77-compressed list LZ
Output: An LZ77-compressed sorted list

initialize a list Lit;1

initialize a table map where key ∈ Σ, value = 0;2

initialize a circular buffer b with size = length of longest back reference;3

foreach α ∈ LZ do4

if α ∈ Σ ∧ α 6∈ Lit then5

Lit.insert(α);6

Lit.sort();7

initialize j = 0;8

for i = 0; i < C do9

if LZ[i] ∈ Σ then10

b[j mod size] = LZ[i];11

++ map.value(LZ[i]);12

++ j;13

else14

for m = LZ[i].back; m < (LZ[i].back + LZ[i].length) do15

b[j mod size] = b[m mod size];16

++ map.value(b[m mod size];17

++ j;18

return map;19

The first step in the algorithm is to scan the compression until we reach or pass the index
i. This is done by advancing count by 1 if LZ[j] is a literal, and by LZ[j].length otherwise. If
we reach index i on a literal then we simply output that literal and terminate. If we end on a
back pointer then we search backward in the compression until we go back by one term in the
compressed data, and from this location we scan in reverse until we reach or pass LZ[j].back +
LZ[j].length− (count− i)− 1. Again, if we end on a literal then we output that literal. Otherwise
we repeat until we reach a literal. Assuming that the compression is well-formed, we will be
guaranteed to eventually terminate on a literal. As an example, consider the compression a
b (2,1) (1,3) (4,3) at index i = 8. The back pointer (4,3) occupies positions 7, 8, and 9 in the
uncompressed string. Therefore to find position 8 we will look backward for position 5 in the
uncompressed string. Position 5 is in the (1,3) term, which is not a literal. Therefore we will
again look backward to position 2, which is b.

The most difficult step in the algorithm deals with those back pointers where the depth of the
reference is less than the number of characters to be copied. This condition is handled in lines 11

and 12 of Algorithm 4. We know that we are in such a situation if i > count− LZ[j].length, as
this says that our new index is still within the back pointer referenced by j. If we are in such a
situation we first figure out the depth into the copy (given by i− LZ[j].back). We then must find
the length of the string copied (given by count− LZ[j].length− LZ[j].back + 1). We are then able
to figure out how far to go into the copied string by performing (i− LZ[j].back) mod (count−

6

LZ[j].length − LZ[j].back + 1). This new number is the distance we must go from the location
of the back reference (LZ[j].back), thus our new index will be

(
(i − LZ[j].back) mod (count −

LZ[j].length− LZ[j].back + 1)
)
+ LZ[j].back.

The total running time of this algorithm will be O(C). We first use time O(C) to scan forward
into the compression. Also, since no pointers point forward in the compression, we will be
guaranteed to traverse backward in the compression to find a terminal in no more than O(C)
time. Thus the total running time of the algorithm is O(C).

Algorithm 4: LZ77 Index-A method for indexing a LZ77 compressed string. Here back is
the location of the back pointer index, and length is the number of characters to copy. It is
assumed that if an index is not in Σ then it is a back pointer.

Input: An LZ77-compressed list LZ, a query index i
Output: The ith element of a decompressed LZ

initialize count = 1;1

initialize j = 1;2

while count < i do3

++ j;4

if LZ[j] ∈ Σ then5

++ count;6

else7

count+ = LZ[j].length;8

while LZ[j] 6∈ Σ do9

i = LZ[j].back + LZ[j].length− (count− i)− 1;10

if i > count− LZ[j].length then11

i =
(
(i− LZ[j].back) mod (count− LZ[j].length− LZ[j].back + 1)

)
+ LZ[j].back;12

while count ≥ i do13

if LZ[j] ∈ Σ then14

count = count− 1;15

j = j− 1;16

else17

count = count− LZ[j].length;18

j = j− 1;19

++ j;20

if LZ[j] 6∈ Σ then21

count = count + LZ[j].length;22

else23

++ count;24

return LZ[j];25

7

5 Context Free Grammar Compression

Using a context free grammar, one is able to represent a long string as a relatively short grammar.
That is, we list a series of variables (call this set V), and literals (call this set Σ), as well as a list
of rules for variable substitution. For example, consider the string aababbabbb. This can be
translated into the context free grammar:

A0 → aA1A2A3
A1 → ab
A2 → A1b
A3 → A2b

5.1 Sorting

Similar to Algorithm 3 for sorting LZ77 compressed strings, Algorithm 5 relies on the intuition
that all literals in the uncompressed string must occur in the compression. Therefore, again, we
begin by first finding and sorting Σ, which will take O(C + |Σ| log |Σ|) time. Next we turn the
context free grammar into a dependency graph. For this, we say that if the variable v0 ∈ V has
in its substitution rule v1 ∈ V, then v0 depends on v1. Since the context free grammar may only
produce a single string, we are guaranteed that the resulting dependency graph be acyclic. The
dependency graph for the above context free grammar is shown in Figure 1. Since the graph is
acyclic, we are able to compute a topological sort on the graph. Since there are |V| vertices and
C edges, and |V| ≤ C, the topological sort will take O(C) time.

GFED@ABCA0

 A
AA

AA
AA

AA
//

��

GFED@ABCA1
OO

GFED@ABCA3 // GFED@ABCA2

Figure 1: The dependency graph for the context free grammar given in Section 5.

We will then consider each literal as a vector of |Σ| dimensions in such a way that for the
minimal element σ1 ∈ Σ, σ1 = (1, 0, ..., 0), and the next smallest element σ2 = (0, 1, 0, ..., 0), and so
on. As a notational convenience we will say that 〈σ〉 refers to the respective vector for symbol σ.

The final step is to follow backwards through the topological sort and sum up each symbol’s
respective vector as we come to it. In the example given we begin with a = (1, 0) and b = (0, 1).
We then calculate the vector 〈A1〉 = 〈a〉+ 〈b〉 = (1, 0) + (0, 1) = (1, 1). We can then calculate
A2 = (1, 2). Eventually we will calculate the start symbol A0 = (4, 6), which says that in the
decompressed string there are 4 a’s and 6 b’s. In this final step we must do exactly C vector
additions, each one taking |Σ| time, thus giving a total sort time O(C · |Σ|).

We are now able to return to the user a context free grammar of size |Σ| log n. This is done by
writing a grammar in which for each letter in the alphabet, we have log n variables, where each
doubles the number of that letter represented. So, for example, if we wanted a grammar which
represents the string a8b16, our grammar would be:

S0 → A2B3
A0 → aa
A1 → A0A0
A2 → A1A1

B0 → bb
B1 → B0B0
B2 → B1B1
B3 → B2B2

8

Algorithm 5: Sort CFG-Sorts a context free grammar. Here, Σ is the alphabet of the string
represented by the grammar, and V is the set of variables.

Input: Context free grammar CFG
Output: The sorted string represented by CFG with start variable A0

Convert the Variables in CFG into a dependency graph G;1

perform a topological sort on G;2

reorder rules in CFG to be the reverse of G;3

Sort Σ;4

transform each literal into a |Σ|-dimensional vector;5

foreach rule r ∈ CFG do6

initialize a vector sum = 〈0〉;7

foreach Symbol S ∈ Σ ∪V listed in r do8

sum+ = 〈S〉9

Σ = Σ ∪ {A + r}, where Ar is the variable associated with rule r;10

〈Ar〉 = sum;11

return 〈A0〉;12

6 Lempel-Ziv ’78 Compression

In addition to the LZ77 compression scheme presented above, Lempel and Ziv in 1978 presented
a secondary compression scheme (here on out called LZ78) [26]. Each term in this scheme is a
pair of a natural number back ∈N and a character σ ∈ Σ. The rule for decompression is to copy
the string represented by term i, then append σ. For example (0,a) (1,b) (0,b) (2,a) (3,a) (2,b) will
become a ab b aba ba abb.

6.1 Sorting

This algorithm acts similarly to sort cfg in that we sort the symbols, and then accumulate
vectors respresenting symbol multiplicity. As before we will sort the alphabet O(|Σ| log |Σ|). We
will then define 〈σi〉, where σi is the ith symbol in sorted order, to be a |Σ|-dimensional vector
where all terms are 0, save the ith term which is 1. Thus 〈σ1〉 = (1, 0, 0, ...).

The reader should be aware that LZ78 compression is actually a restricted version of context-
free grammar compression. The only difference (other than notation) between the two is that
while cfg compression allows an unbounded number variables and literals be concatenated to-
gether in a substitution rule, LZ78 only allows for a single variable and a single literal be present.
The example above can be expressed as as cfg as follows:

A0 → A1A2A3A4A5A6 A4 → A2a
(0,a) (1,b) (0,b) (2,a) (3,a) (2,b) −→ A1 → a A5 → A3a

A2 → A1b A6 → A2b
A3 → b

With this construction it is clear that the variables in this cfg are already in topological-sorted
order. Therefore the algorithm for sorting such a compression will be a simplified version of
cfg sort.

9

We will first create a second list of terms to parallel the compression. In this list, instead of
pairs, we will have these |Σ|-dimensional vectors as described above. Next we will scan through
the compressed sequence. For each term we first check if back == 0. If this is so then we know
that this term in the compression represents a single character, call this σ. Thus we add into the
array at this index the vector 〈σ〉. Otherwise if back > 1 we will add together map[back], the
count for the referenced string, and 〈σ〉, where σ is the character to append for this term.

The data structure which uses the most space in this algorithm is the array of vectors. In
total there will be C items in this vector, each with |Σ|-dimensional vector. Therefore the space
complexity of this algorithm is O(|Σ| · C). The time complexity is also O(|Σ| · C), as we scan
through the compressed list at most once, and at each turn we will do at most one constant-time
array access, and one vector addition (each of which will take |Σ| time).

Algorithm 6: LZ78 Sort-A method for sorting a LZ78 compressed string. Here back is the
location of the back pointer index, and σ is the symbol to append.

Input: An LZ77-compressed list LZ
Output: An LZ77-compressed sorted list

initialize an array map where elements are in N|Σ|;1

initialize a |Σ|-dimensional vector sum = 〈0〉;2

for i = 1; i < |LZ|; i ++ do3

if LZ[i].back == 0 then4

map[i] = 〈LZ[i].σ〉;5

else6

map[i] = map[(LZ[i].back)] + 〈LZ[i].σ〉7

sum += LS[i];8

return sum;9

7 Conclusion

The primary contribution of this paper is its presentation of various sorting algorithms which
operate on compressed data. Not only does this save the user time from decompressing and then
recompressing data in order to perform a sort, but operating on the compressed data may give
a performance benefit. In fact, the algorithms presented in this paper will guarantee large speed
up whenever C � n.

Algorithm 1 (priority queue sorting on data compressed by arithmetic sequences) will run in
O(n log C) time, and will therefore be no worse than a decompression followed by a sort, even
for inputs with a poor compression ratio. Algorithm 3 (sorting on data compressed by LZ77), by
running in O(C + |Σ| log |Σ|+ n), effectively gives linear sorting time in n. Finally, Algorithm 5

(sorting on data compressed by a context free grammar), by running in O(C · |Σ|), gives a sorting
time independent of n.

We also present other noteworthy algorithms for indexing and finding kth order statistics.
Algorithm 2 provides O(C log C) running time for computing the kth order statistic of a set of
data compressed by arithmetics sequences. Algorithm 4 provides a method for indexing into
data compressed by LZ77 in O(C) time. If this indexing is done into a sorted LZ77 compressed
data then this will give the kth order statistic. One could use previous work done on random

10

access on sorted grammar-compressed data, such as the method presented in [5], in order to find
the kth order statistic for grammar-compressed data.

11

References

[1] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in z-compressed
files. Journal of Computer and System Sciences, 52:299–307, 1993.

[2] A. Amir, G. M. Landau, and D. Sokol. Inplace 2d matching in compressed images. In Pro-
ceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’03, pages
853–862, Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics.

[3] O. Arbell, G. M. Landau, and J. S. B. Mitchell. Edit distance of run-length encoded strings.
Inf. Process. Lett., 83(6):307–314, September 2002.

[4] P. Bille, R. Fagerberg, and I. L. Gørtz. Improved approximate string matching and regular
expression matching on ziv-lempel compressed texts. ACM Trans. Algorithms, 6(1):3:1–3:14,
December 2009.

[5] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann. Random
access to grammar-compressed strings. In Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’11, pages 373–389. SIAM, 2011.

[6] H. Bunke and J. Csirik. An improved algorithm for computing the edit distance of run-
length coded strings. Inf. Process. Lett., 54(2):93–96, April 1995.

[7] P. Cégielski, I. Guessarian, Y. Lifshits, and Y. Matiyasevich. Window subsequence problems
for compressed texts. In Proceedings of the First international computer science conference on
Theory and Applications, CSR’06, pages 127–136, Berlin, Heidelberg, 2006. Springer-Verlag.

[8] M. Crochemore, G. M. Landau, and M. Ziv-ukelson. A sub-quadratic sequence alignment
algorithm for unrestricted cost matrices. In In Symposium of Discrete Algorithms (SODA, pages
679–688, 2002.

[9] R. Dugad and N. Ahuja. A fast scheme for image size change in the compressed domain.
Circuits and Systems for Video Technology, IEEE Transactions on, 11(4):461 –474, apr 2001.

[10] B. L. Robinson G. Robins and B. S. Sethi. On detecting spatial regularity in noisy images.
Information Processing Letters, 69:189–195, 1999.

[11] D. Hermelin, G. M. Landau, S. Landau, and O. Weimann. A unified algorithm for accelerat-
ing edit-distance computation via text-compression. In Susanne Albers and Jean-Yves Mar-
ion, editors, 26th International Symposium on Theoretical Aspects of Computer Science (STACS
2009), volume 3 of Leibniz International Proceedings in Informatics (LIPIcs), pages 529–540,
Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[12] A.B. Kahng and G. Robins. Optimal algorithms for determining regularity in pointsets. In
Proc. Canadian Conference on Computational Geometry, pages 167–170, 1991.

[13] A.B. Kahng and G. Robins. Optimal algorithms for extracting spatial regularity in images.
In Pattern Recognition Letters, 12, pages 757–764, 1991.

[14] J. Kärkkäinen, G. Navarro, and E. Ukkonen. Approximate string matching over ziv-lempel
compressed text. In Proceedings of the 11th Annual Symposium on Combinatorial Pattern Match-
ing, COM ’00, pages 195–209, London, UK, UK, 2000. Springer-Verlag.

12

[15] J. Kärkkäinen and E. Ukkonen. Lempel-ziv parsing and sublinear-size index structures for
string matching (extended abstract). In Proc. 3rd South American Workshop on String Processing
(WSP’96, pages 141–155. Carleton University Press, 1996.

[16] Y. Lifshits. Processing compressed texts: a tractability border. In Proc. CPM 2007, pages
228–240. Springer, 2007.

[17] J. J. Liu, G. S. Huang, Y. L. Wang, and R. C. T. Lee. Edit distance for a run-length-encoded
string and an uncompressed string. Inf. Process. Lett., 105(1):12–16, January 2008.

[18] V. Mäkinen, G. Navarro, and E. Ukkonen. Approximate matching of run-length compressed
strings. In Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching, CPM
’01, pages 31–49, London, UK, UK, 2001. Springer-Verlag.

[19] U. Manber. A text compression scheme that allows fast searching directly in the compressed
file. In Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching, CPM ’94,
pages 113–124, London, UK, UK, 1994. Springer-Verlag.

[20] G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster approximate string
matching over compressed text. In Proceedings of the Data Compression Conference, DCC ’01,
pages 459–, Washington, DC, USA, 2001. IEEE Computer Society.

[21] G. Robins and B. L. Robinson. Landmine detection from inexact data. In Proc. International
Symp. on Aerospace/Defence Sensing and Dula-Use Photonics, pages 189–195, 1994.

[22] S. M. Ross. Introduction to Probability Models, chapter Chapter 5, pages 312–339. Academic
Press, 10th edition edition, 2010.

[23] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and S. Arikawa.
Speeding up pattern matching by text compression. In Proceedings of the 4th Italian Conference
on Algorithms and Complexity, CIAC ’00, pages 306–315, London, UK, UK, 2000. Springer-
Verlag.

[24] R. V. Babu and K.R. Ramakrishnan. Compressed domain human motion recognition using
motion history information. In Acoustics, Speech, and Signal Processing, 2003. Proceedings.
(ICASSP ’03). 2003 IEEE International Conference on, volume 3, pages III – 41–4 vol.3, april
2003.

[25] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE TRANS-
ACTIONS ON INFORMATION THEORY, 23(3):337–343, 1977.

[26] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Trans. Inf. Theor., 24(5):530–536, September 2006.

13

