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Theorem: some real numbers are not finitely describable!
Theorem: some finitely describable real numbers are not computable!

Generalized Numbers



Problem: Solve the following equation for X:

where the stack of exponentiated x’s extends forever.

= 2

X = 2
X

X
X

X

This “power tower” converges for:

0.065988 ≈ e−e < X < e1/e ≈ 1.444668

Generalization to 

complex numbers:

 X2=2 X=2





Problem: Given any five points in/on the unit

square, is there always a pair with distance ≤     ? 

1

1

2

1

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations



Problem: Given any five points in/on the unit 

equilateral triangle, is there always a pair with 

distance ≤ ½ ? 

1 1

1

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations



Historical Perspectives

George Boole (1815-1864)
• Mathematician and philosopher

• Invented symbolic / Boolean logic

• Invented Boolean algebra, i.e.

“calculus of reasoning”

• A founder of computer science

• “An Investigation into the Laws of Thought”

• Influenced De Morgan, Schröder, Shannon

• All modern computers, electronics, phones, 

data transmission, rely on Boolean principles











Historical Perspectives

Augustus De Morgan (1806-1871)
• Mathematician and logician

• Developed logic & mathematical induction

• De Morgan’s Laws in logic & set theory

• Invented relational algebra

• Corresponded extensively with Hamilton

• Influenced Russell, Whitehead, and Tarski

• Studied paradoxes



Historical Perspectives

Charles Babbage (1791-1871)
• Mathematician, philosopher, inventor 

mechanical engineer, and economist

• The father of computing

• Built world’s first mechanical computer

- the “difference engine” (1822)

• Originated the programmable computer

- the “analytical engine” (1837)

• Worked in cryptography

• Developed Babbage’s principle

of division of labor



• World’s first mechanical computer

• Designed in 1822, redesigned in 1847-1849

• 25,000 parts, 15 tons, 8ft tall, 31 digits of precision 

• Tabulated polynomial functions, used Newton’s method

• Approximated logarithmic and polynomial functions

• Used decimal number system and hand-crank

Babbage’s Difference Engine



Babbage’s Difference Engine



Babbage’s difference engine 

built from Mechano and Lego



• World’s first general-purpose computer

• Designed in 1837, redesigned throughout Babbage’s life

• Turing-complete, memory: 1000x50 digits (21 kB)

• Fully programmable “CPU”, used punched cards

• Featured ALU, “microcode”, loops, and printer!

• Could multiply two 20-digit numbers in 3 min

• Few components built by Babbage; constructed in 1991

Babbage’s Analytical Engine

















Historical Perspectives

Countess Ada Lovelace (1815-1852)
• Daughter of Lord Byron

• Tutored in math and logic by De Morgan

• Wrote the “manual” for Babbage’s analytical 

engine, as well as programs for it

• World’s first computer programmer!

• Foresaw the vast potential of computers

• Babbage: “The Enchantress of Numbers”

• DoD’s Ada language “MIL-STD-1815”



http://en.wikipedia.org/wiki/File:Ada_Lovelace_1838.jpg
http://en.wikipedia.org/wiki/File:Ada_Lovelace_1838.jpg






Ada Lovelace notes on “Sketch of the Analytical Engine Invented by

Charles Babbage”, by L. F. Menabrea, 1843

Her notes (three times longer than the paper itself!) contain the

world’s first computer program (for calculating Bernoulli numbers):



World’s first computer program (for calculating Bernoulli
numbers), by Ada Lovelace, 1843:



Quotes from the Ada Lovelace notes on 
“Sketch of the Analytical Engine Invented by Charles Babbage”, 1843

“We may say most aptly, that the Analytical Engine weaves algebraical

patterns just as the Jacquard-loom weaves flowers and leaves.”

“Again, it might act upon other things besides

number, were objects found whose mutual

fundamental relations could be expressed by those of

the abstract science of operations, and which should

be also susceptible of adaptations to the action of the

operating notation and mechanism of the engine.

Supposing, for instance, that the fundamental relations

of pitched sounds in the science of harmony and of

musical composition were susceptible of such

expression and adaptations, the engine might compose

elaborate and scientific pieces of music of any degree

of complexity or extent.”



Quotes from the Ada Lovelace notes on 
“Sketch of the Analytical Engine Invented by Charles Babbage”, 1843

“Many persons who are not conversant with mathematical studies, imagine that

because the business of the engine is to give its results in numerical notation,

the nature of its processes must consequently be arithmetical and numerical,

rather than algebraical and analytical.  This is an error.  The engine can arrange

and combine its numerical quantities exactly as if they were letters or any other

general symbols; and in fact it might bring out its results in algebraical

notation, were provisions made accordingly.”

“But it would be a mistake to suppose that because its

results are given in the notation of a more restricted

science, its processes are therefore restricted to those of

that science. The object of the engine is in fact to give the

utmost practical efficiency to the resources of numerical

interpretations of the higher science of analysis, while it

uses the processes and combinations of this latter.”





Historical Perspectives

John Venn (1834-1923)
• Logician and philosopher

• Worked in logic, probability, set theory

• Introduced the “Venn diagram” (1880)

- Very widely used, many applications

- Ties together fundamental concepts from

logic, geometry, combinatorics, knot theory





N=4 N=5 N=6

Ellipses only 

N=5

Borromean rings 

analogue N=5

Generalized Venn diagrams [John Venn, 1880]

ellipses

only

N=4

Borromean rings 

N=3

N=3 N=4 N=5 N=6

http://upload.wikimedia.org/wikipedia/commons/0/0f/Venn4.svg
http://upload.wikimedia.org/wikipedia/commons/0/0f/Venn4.svg
http://upload.wikimedia.org/wikipedia/commons/3/39/Venn5.svg
http://upload.wikimedia.org/wikipedia/commons/3/39/Venn5.svg
http://upload.wikimedia.org/wikipedia/commons/4/49/Edwards-Venn-five.svg
http://upload.wikimedia.org/wikipedia/commons/4/49/Edwards-Venn-five.svg


N=5 N=7

N=6 N=8

rectangles

only

N=5
N=7

Rotationally-symmetric

Venn diagrams



Symmetric

Venn diagram

N=11

One set of 

N=11

Triangles only Venn diagram (N=6)

Area-proportional

Venn diagrams



http://www.combinatorics.org/Surveys/ds5/VennEJC.html

Venn 
polyominoes

exposed Venn 
diagrams n=5

sphere-based 
Venn diagram

“Vennice ball” n=4

symmetric k-fold 
Venn diagrams n=2



Venn diagram puzzles:

Puzzle solution:



http://graphjam.com/2008/04/29/song-chart-memes-judging-web-site-author-sanity/
http://graphjam.com/2008/04/29/song-chart-memes-judging-web-site-author-sanity/






Historical Perspectives

Charles Dodgson (1832-1898)
• AKA “Lewis Carroll”

• Mathematician, logician, author, photographer

• Wrote “Alice in Wonderland”, “Jabberwocky”,    

and “Through the Looking Glass”

• Popularized logic & syllogisms and made it fun!

• Invented “Scrabble” and “word ladder” games

• Profoundly influenced literature, art, and culture



























Alice and the White Knight:
A Lesson in Logic, Semantics, and Pointers

`You are sad,' the Knight said in an anxious tone: `let me sing you a song to 

comfort you.' 

`Is it very long?' Alice asked, for she had heard a good deal of poetry that day. 

`It's long,' said the Knight, `but it's very, very beautiful. Everybody that hears 

me sing it -- either it brings the tears into their eyes, or else --' 

`Or else what?' said Alice, for the Knight had made a sudden pause. 

`Or else it doesn't, you know. The name of the song is called “Haddocks' Eyes”.' 

`Oh, that's the name of the song, is it?' Alice said, trying to feel interested. 

`No, you don't understand,' the Knight said, looking a little vexed. `That's 

what the name is called. The name really is “The Aged Aged Man”.' 

`Then I ought to have said “That's what the song is called”?' 

Alice corrected herself. 

`No, you oughtn't: that's quite another thing! The song is called “Ways and Means”: 

but that's only what it's called, you know!' 

`Well, what is the song, then?' said Alice, who was by this time completely bewildered. 

`I was coming to that,' the Knight said. `The song really is “A-sitting On a Gate”: 

and the tune's my own invention.'

law of the excluded middle!

logical disjunction!

pointer to a pointer!

pointer dereferencing: meta-pointer resolved!

the song is
“A-sitting On a Gate”

the name of the song is
“The Aged Aged Man”

the name is called
“Haddocks’ Eyes”

the song is called
“Ways and Means”separation of abstractions: variable vs. pointer!

call-by-name vs. call-by-value!











Historical Perspectives

Georg Cantor (1845-1918)
• Created modern set theory

• Invented trans-finite arithmetic

(highly controvertial at the time)

• Invented diagonalization argument

• First to use 1-to-1 correspondences with sets

• Proved some infinities “bigger” than others

• Showed an infinite hierarchy of infinities

• Formulated continuum hypothesis

• Cantor’s theorem, “Cantor set”, Cantor dust,

Cantor cube, Cantor space, Cantor’s paradox

• Laid foundation for computer science theory

• Influenced Hilbert, Godel, Church, Turing







Problem: How can a new guest be accommodated 

in a full infinite hotel? ƒ(n) = n+1



Problem: How can an infinity of new guests be 

accommodated in a full infinite hotel?

…

ƒ(n) = 2n
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4

5

6

7

8

9

10

11

12

13

14

15

one-to-one 
correspondence

Problem: How can an infinity of infinities of new

guests be accommodated in a full infinite hotel?







Problem: Are there more integers than natural #’s?

ℕ  ℤ
ℕ  ℤ
So |ℕ|<|ℤ| ?

Rearrangement:
Establishes 1-1

correspondence 

ƒ: ℕℤ

|ℕ|=|ℤ|

-4 -3 -2 -1 1 2 3 40-4 -3 -2 -1 1 2 3 40

1 2 3 4 6 7 8 95

ℤ

ℕ
ℤ



Problem: Are there more rationals than natural #’s?
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ℕ  ℚ
ℕ  ℚ
So |ℕ|<|ℚ| ?

Dovetailing:
Establishes 1-1

correspondence 

ƒ: ℕ ℚ

|ℕ|=|ℚ|



Problem: Are there more rationals than natural #’s?
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ℕ  ℚ
ℕ  ℚ
So |ℕ|<|ℚ| ?

Dovetailing:
Establishes 1-1

correspondence 

ƒ: ℕ ℚ

|ℕ|=|ℚ|
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Problem: Are there more rationals than natural #’s?
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ℕ  ℚ
So |ℕ|<|ℚ| ?

Dovetailing:
Establishes 1-1

correspondence 

ƒ: ℕ ℚ

|ℕ|=|ℚ|
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Problem: Why doesn’t this “dovetailing” work?

1

2

3

4

6

5

7

1

1
2

1
1

1
3

1
5

1
4

1
6

1
7

2

2
2

2
1

2
3

2
5

2
4

2
6

2
7

3

3
2

3
1

3
3

3
5

3
4

3
6

3
7

4

4
2

4
1

4
3

4
5

4
4

4
6

4
7

5

5
2

5
1

5
3

5
5

5
4

5
6

5
7

6

6
2

6
1

6
3

6
5

6
4

6
6

6
7

7

7
2

7
1

7
3

7
5

7
4

7
6

7
7

8

8
2

8
1

8
3

8
5

8
4

8
6

8
7

…

…

…

…

…

…

…

…

1 2 3 4 5 6 7 8

There’s no 

“last” element 

on the first line!

So the 2nd line 

is never reached!

 1-1 function

is not defined!



Dovetailing Reloaded

Dovetailing: ƒ:ℕℤ

0 1 2 3 4 5 6 7 8 …

-1 -2 -3 -4 -5 -6 -7 -8 -9 …

To show |ℕ|=|ℚ| we can construct ƒ:ℕℚ by sorting x/y

by increasing key max(|x|,|y|), while avoiding duplicates:

max(|x|,|y|) = 0 : {}

max(|x|,|y|) = 1 : 0/1, 1/1

max(|x|,|y|) = 2 : 1/2, 2/1

max(|x|,|y|) = 3 : 1/3, 2/3, 3/1, 3/2 

. . . {finite new set at each step}

• Dovetailing can have many disguises!

• So can diagonalization!

ℕ
ℤ

-4 -3 -2 -1 1 2 3 40-4 -3 -2 -1 1 2 3 40

1 2 3 4 6 7 8 95

1 2

3 4

6 7 85



Theorem: There are more reals than rationals / integers.

Proof [Cantor]: Assume a 1-1 correspondence ƒ: ℕℝ
i.e., there exists a table containing all of ℕ and all of ℝ:

ƒ(1) = 3 . 1 4 1 5 9 2 6 5 3 …

ƒ(2) = 1 . 0 0 0 0 0 0 0 0 0 …

ƒ(3) = 2 . 7 1 8 2 8 1 8 2 8 …

ƒ(4) = 1 . 4 1 4 2 1 3 5 6 2 …

ƒ(5) = 0 . 3 3 3 3 3 3 3 3 3 …

. . . . . .
2 1 9 3 4X = 0 .  ℝ

But X is missing from our table!   X ƒ(k) "kℕ
ƒ not a 1-1 correspondence

 contradiction 

 ℝ is not countable!

There are more reals than rationals / integers!

ℕ ℝ



Problem 1: Why not just insert X into the table?

Problem 2: What if X=0.999… but 1.000… is already in table?

• Table with X inserted will have X’ still missing!

Inserting X (or any number of X’s) will not help!

• To enforce unique table values, we can avoid 

using 9’s and 0’s in X.

ƒ(1) = 3 . 1 4 1 5 9 2 6 5 3 …

ƒ(2) = 1 . 0 0 0 0 0 0 0 0 0 …

ƒ(3) = 2 . 7 1 8 2 8 1 8 2 8 …

ƒ(4) = 1 . 4 1 4 2 1 3 5 6 2 …

ƒ(5) = 0 . 3 3 3 3 3 3 3 3 3 …

. . . . . .
2 1 9 3 4X = 0 .  ℝ

ℕ ℝ





Non-Existence Proofs

• Must cover all possible (usually infinite) scenarios!

• Examples / counter-examples are not convincing!

• Not “symmetric” to existence proofs!

Ex: proof that you 

are a millionaire:

“Proof” that you 

are not a millionaire ?

PNP



Cantor set:
Start with unit segment

• Remove (open) middle third

• Repeat recursively on all remaining segments

• Cantor set is all the remaining points

Total length removed: 1/3 + 2/9 + 4/27 + 8/81 + … = 1

Cantor set does not contain any intervals

Cantor set is not empty (since, e.g. interval endpoints remain)

An uncountable number of non-endpoints remain as well (e.g., 1/4)

Cantor set is totally disconnected (no nontrivial connected subsets)

Cantor set is self-similar with Hausdorff dimension of log32=1.585

Cantor set is a closed, totally bounded, compact, complete metric  

space, with uncountable cardinality and lebesque measure zero



Cantor dust (2D generalization): Cantor set crossed with itself



Cantor cube (3D):
Cantor set crossed with

itself three times



Historical Perspectives

Bertrand Russell (1872-1970)
• Philosopher, logician, mathematician, 

historian, social reformist, and pacifist

• Co-authored “Principia Mathematica” (1910)

• Axiomatized mathematics and set theory

• Co-founded analytic philosophy

• Originated Russell’s Paradox

• Activist: humanitarianism, pacifism, education,   

free trade, nuclear disarmament, birth control

gender & racial equality, gay rights

• Profoundly transformed math & philosophy,

mentored Wittgenstein, influenced Godel

• Laid foundation for computer science theory

• Won Nobel Prize in literature (1950)























"Most people would 

sooner die than think; 

in fact, they do so." 

- Bertrand Russell 

(1872-1970) 



Russell’s paradox was invented by Russell in 1901 

to show that naïve set theory is self-contradictory:
Define: set of all sets that do not contain themselves

S = { T | T  T }

Q: does S contain itself as an element?  

S  S  S  S   contradiction!

Similar paradoxes:

• “A barber who shaves exactly those

who do not shave themselves.”

• “This sentence is false.”

• “I am lying.”

• “Is the answer to this question ‘no’?”

• “The smallest positive integer not 

describable in twenty words or less.”



Star Trek, 1967, “I, Mudd” episode

Captain James Kirk and Harry Mudd use a logical 

paradox to cause hostile android “Norman” to crash





Problem: Give as many proofs as you can for the 

Pythagorean Theorem.  i.e., a2 + b2 = c2 holds for 

any right triangle with sides a & b and hypotenuse c.



Problem: Does the Pythagorean theorem generalize to

arbitrary figures on the sides of a right triangle?



Problem: compute 1111111112 in your head.



Problem: What is the approximate value of:

(1+9^(-(4^(7*6))))^(3^(2^85)) ≈ ?



Problem: Does every closed simple curve contain

the vertices of an equilateral triangle?

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations



A Simple Closed Curve!



A Simple Closed Curve!



A Simple Closed Curve!



A Simple Closed Curve!



Traveling Salesperson Art

• Compute TSP Tour

• Optimal is NP-complete

So use heuristics

• Convert image to B&W

• Sample image density 

to obtain a pointset

• Run TSP heuristics

• Can use minimum spanning 

trees (easy to compute)

• Can also use minimum

matchings (easy to compute)

• What about colors?



Ex 1: Using software (with a GUI)

Ex 2: Using Lego!

Turing Machine Simulators

See: http://www.youtube.com/watch?v=cYw2ewoO6c4

http://www.youtube.com/watch?v=cYw2ewoO6c4


Historical Perspectives

Godfrey Hardy (1877-1947)
• Mathematician: contributed to analysis, 

number theory, physics, and genetics 

• Wrote “A Mathematician’s Apology”

which popularized mathematics

• Discovered & mentored Ramanujan



Historical Perspectives
Srinivasa Ramanujan (1887-1920)
• Mathematician: contributed to number theory,

analysis, infinite series & continued fractions

• Studied math on his own in isolation

• Proved 3,900 theorems!

• Influenced many other fields, including physics

• Inspired generations of mathematicians

• Entire mathematical societies and

journals are devoted to his work!





G. H. Hardy on Ramanujan:

“I remember once going to see him 

when he was ill at Putney. I had ridden 

in taxi cab number 1729 and remarked 

that the number seemed to me rather a 

dull one, and that I hoped it was not an 

unfavorable omen. ‘No,’ he replied, ‘it 

is a very interesting number; it is the 

smallest number expressible as the sum 

of two cubes in two different ways.’ ”

A Fermat “near-miss”:

1729 = 93 + 103 = 123 + 13

“The

Hardy-Ramanujan 

Number”



“My greatest contribution to mathematics was discovering 

Ramanujan.” - G. H. Hardy

“Ramanujan's theorems must be true, because, if they were 

not true, no one would have the imagination to invent them.”

- G. H. Hardy, upon first seeing Ramanujan’s results







Historical Perspectives

Frank Ramsey (1903-1930)
• Contributed to mathematics, decision theory, 

game theory, logic, philosophy, economics

• Pioneered Ramsey theory

• Was Wittgenstein’s Ph.D. advisor

• Influenced Church, von Neumann, Keynes

• Died at age 26



Pigeon-Hole Principle

• J. Dirichlet (1834)

• “Drawer principle”

• “Shelf Principle”

• “Box principle”

Theorem (pigeon-hole): There is no injective (1-to-1) function 

from a finite set (domain) to a smaller finite set (range).

Generalization:
N objects placed in M containers; then:

• at least 1 container must hold

• at least 1 container must hold











M

N











M

N



Problem: Show that any group of six people contains 

either 3 mutual friends or 3 mutual strangers.

A more elegant approach is needed!

Q: Is this true for N=5? Brute force approach?

78 possible friends-strangers 

graphs with 6 nodes

No mono-chromatic triangles



Problem: Show that any group of six people contains 

either 3 mutual friends or 3 mutual strangers.

6 is said to be the “Ramsey number” R(3,3).

Theorem: any group of 18 people contains either 4

mutual friends or 4 mutual strangers.  R(4,4)=18

Pigeon-hole 

principle!



• R(3,3)=6 is the tip of a deep mathematical theory.

Theorem [Ramsey]: For any pair of positive integers 

b and r, there exists a least positive integer R(b,r) 

such that any complete graph over R(b,r) vertices, 

where each edge is colored either blue or red, 

contains a monochromatic clique of size b or r.

• Ramsey theory seeks “order” among “chaos”:

i.e., even “random” graphs / configurations still 

contain regular and predictable sub-structures.

• Pigeon-hole principle is a special case!

Ramsey Theory



Other known Ramsey numbers (and bounds):

“Imagine an alien force, vastly more powerful than us, landing on Earth and 

demanding the value of R(5,5) or they will destroy our planet. In that case, we 

should marshal all our computers and all our mathematicians and attempt to find 

the value. But suppose, instead, that they ask for R(6,6). In that case, we should 

attempt to destroy the aliens.” – Paul Erdös (1913-1996)



Generalizations of Ramsey numbers  
• Multi-colors: only known non-trivial exact value is R(3,3,3)=17

E.g.: 16-node graph containing no mono-chromatic triangles:

• Hypergraphs (where “edges” can be vertex subsets of size > 2)

• Infinite graphs (which imply the finite cases as a corollary)

“Complete disorder is impossible.” 

– T. S. Motzkin (1908-1970)

Extra credit: 

prove that 

R(3,3,3)=17



Historical Perspectives

David Hilbert (1862-1943)
• One of the most influential mathematicians

• Developed invariant theory, Hilbert spaces

• Axiomatized geometry, “Hilbert’s axioms”

• Co-founded proof theory, mathematical 

logic, meta-mathematics, & formalist school

• Created famous list of 23 open problems

that greatly impacted mathematics research 

• Defended Cantor’s transfinite numbers

• Contributed to relativity theory & physics

• Hilbert’s students included Courant, Hecke, 

Lasker, Weyl, Ackermann, and Zarmelo

• Influenced Russell, Gödel, Church, & Turing

John von Neumann was Hilbert’s assistant!





Hilbert curve:

• Hilbert's axioms 

• Hilbert class field 

• Hilbert C*-module 

• Hilbert cube 

• Hilbert symbol 

• Hilbert function 

• Hilbert inequality

• Hilbert matrix 

• Hilbert metric 

• Hilbert number 

• Hilbert polynomial 

• Hilbert's problems 

• Hilbert's program 

• Hilbert–Poincaré series 

• Hilbert space 

• Hilbert spectrum 

• Hilbert transform 

• Hilbert's Arithmetic of Ends 

• Hilbert’s constants 

• Hilbert's irreducibility theorem 

• Hilbert's Nullstellensatz 

• Hilbert's hotel paradox

• Hilbert's theorem

• Hilbert's syzygy theorem 

• Hilbert-style deduction system 

• Hilbert–Pólya conjecture 

• Hilbert–Schmidt operator 

• Hilbert–Smith conjecture 

• Hilbert–Speiser theorem 

• Einstein–Hilbert action 

• Hilbert curve

Hilbert’s Impact



Hilbert’s Problems
International Congress of Mathematics, Paris, 1900

• David Hilbert proposed 23 open problems

• Most successful open problems compilation ever

• Set the direction for 20th century mathematics

• Hilbert’s problems received much attention to date

• Several have been resolved (e.g., Continuum hypothesis)

• Others still open (e.g., Riemann hypothesis)

• Catalyzed other open problems lists:
– Clay Institute’s Millennium Prize problems

– DARPA Mathematical Challenges, 2009



Introduction from Hilbert’s Lecture
“Who of us would not be glad to lift the veil behind which the future lies hidden; to cast a glance at the next 

advances of our science and at the secrets of its development during future centuries? What particular goals 

will there be toward which the leading mathematical spirits of coming generations will strive? What new 

methods and new facts in the wide and rich field of mathematical thought will the new centuries disclose?

History teaches the continuity of the development of science. We know that every age has its own problems, which 

the following age either solves or casts aside as profitless and replaces by new ones. If we would obtain an 

idea of the probable development of mathematical knowledge in the immediate future, we must let the 

unsettled questions pass before our minds and look over the problems which the science of today sets and 

whose solution we expect from the future. To such a review of problems the present day, lying at the meeting 

of the centuries, seems to me well adapted. For the close of a great epoch not only invites us to look back into 

the past but also directs our thoughts to the unknown future.

The deep significance of certain problems for the advance of mathematical science in general and the important role 

which they play in the work of the individual investigator are not to be denied. As long as a branch of science 

offers an abundance of problems, so long is it alive; a lack of problems foreshadows extinction or the cessation 

of independent development. Just as every human undertaking pursues certain objects, so also mathematical 

research requires its problems. It is by the solution of problems that the investigator tests the temper of his 

steel; he finds new methods and new outlooks, and gains a wider and freer horizon.

It is difficult and often impossible to judge the value of a problem correctly in advance; for the final award depends 

upon the gain which science obtains from the problem. Nevertheless we can ask whether there are general 

criteria which mark a good mathematical problem. An old French mathematician said: "A mathematical theory 

is not to be considered complete until you have made it so clear that you can explain it to the first man whom 

you meet on the street." This clearness and ease of comprehension, here insisted on for a mathematical theory, 

I should still more demand for a mathematical problem if it is to be perfect; for what is clear and easily 

comprehended attracts, the complicated repels us.

Moreover a mathematical problem should be difficult in order to entice us, yet not completely inaccessible, lest it 

mock at our efforts. It should be to us a guide post on the mazy paths to hidden truths, and ultimately a 

reminder of our pleasure in the successful solution.”

Occam’s 

Razor!



Hilbert’s Problems
Problem 1: The continuum hypothesis (conjectured by 

Georg Cantor: there is no set whose cardinality is 
strictly between those of the integers and the reals) 

Status: The continuum hypothesis was proven by Gödel 
(1939) and Cohen (1963) to be independent of (i.e., 
impossible to prove or disprove) Zermelo–Frankel set 
theory.  Related open questions remain (e.g., regarding 
the generalized continuum hypothesis), and there is still 
much active research in this area.

Problem 2: Prove the axioms of arithmetic are consistent. 

Status: Gödel (1931) proved that the consistency of Peano 
arithmetic can not be proven within Peano arithmetic 
itself.  Gödel also proved that every consistent formal 
axiomatic system is incomplete.  Gentzen (1936) 
proved the consistency Peano arithmetic within a 
different system (that is weaker than set theory).



Hilbert’s Problems
Problem 3: Given any two polyhedra of equal volume, is it 

always possible to cut the first into finitely many 
polyhedral pieces which can be reassembled to yield the 
second? 

Status: Proved via counter-example to be impossible by 
Hilbert’s student Dehn (1901). The Wallace-Bolyai–
Gerwien theorem (1807): in 2D this is always possible 
for polygons of equal areas.

Problem 4: Construct all metrics where lines are geodesics.

Status: Too vague for a definite answer.

Problem 5: Are continuous groups automatically 
differential groups?

Status: Resolved in the negative by von Neumann (1929), 

Pontryagin (1934), Gleason-Montgomery-Zippin

(1950’s), and Yamabe (1953).



Wallace-Bolyai–Gerwien 

Dissections



Wallace-Bolyai–Gerwien 

Dissections



Hilbert’s Problems
Problem 6: Axiomatize all of physics. 

Status: Since Hilbert stated this problem in 1900, relativity
theory was developed by Einstein (1905 and 1915), as 
was quantum mechanics by Dirac (1920’s), followed by 
other more modern approaches, e.g. quantum field 
theory, the standard model, quantum gravity, and string 
theory. Hilbert himself made significant contributions to 
relativity and physics, but his original problem/goal of 
axiomatizing all of physics remains mostly open.

Problem 7: Is ab transcendental, for algebraic a ≠ 0,1 and 
irrational algebraic b ?

Status: Shown to be true by Gelfond and Schneider (1934), 
even for complex a and b.  This proves that, e.g.,       

ep ii

are all transcendental.  But many similar problems 
remain open, such as the trancendance (or even the 
irrationality) of pe, 2e, or even p+e and p/e.
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Hilbert’s Problems
Problem 8: The Riemann hypothesis (the real part of any 

non-trivial zero of the Riemann zeta function is ½) and 
Goldbach's conjecture (every even number > 2 can be 
written as the sum of two primes). 

Status: Both the Reimann hypothesis (1859) and 
Goldbach’s conjecture (1742) remain open to this day.  
The Reimann hypothesis has many far-reaching 
implications in mathematics, logic, and computer 
science.  It was numerically verified for the first ten 
trillion zeroes, and appears on the Millennium Prize list 
($1M bounty) as well as the ARPA Mathematical 
Challenges List.  The Goldbach conjecture was verified 
for the first 1018 values.

Problem 9: Find most general law of the reciprocity
theorem in any algebraic number field.

Status: Partially solved by Artin (1924), Takagi & Hasse, 
and Shafarevich (1948); still some open issues.


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Theorem (Jingrun, 1973): Every sufficiently 
large even number can be written as either 
the sum of two primes, or the sum of a prime 
and a product of two primes.

Theorem (Ramaré, 1995): Every even 
number >2 is the sum of at most six primes.

Evidence for Goldbach’s conjecture: the number of distinct 
ways to write an even number as the sum of two primes 
(computational data for 4 < n < 1,000,000):









Problem 10: Find an algorithm that determines 

whether a given Diophantine (i.e., multi-variable 

polynomial) equation has any integer solutions.

Ex: x2+y2=z2 has many integer solutions

(Pythagorean theorem, e.g., x=3, y=4, z=5)

x9+y9=z9 has no integer solutions (corollary of Fermat’s 

Last Theorem, conjectured in 1637, proved in 1995 

by Andrew Wiles)
Many attempts at solution & partial results: Emil Post (1944), 

Martin Davis (1949), Julia Robinson (1950), Hilary Putnam (1959) 

Hilbert’s Problems



Hilbert’s Tenth Problem
Solving even simple Diophantine equations is hard:

Q: $ an integer solution for x3 + y3 + z3 = 29 ?

A: Yes: x=3, y=1, z=1

Q: $ an integer solution for x3 + y3 + z3 = 30 ?

A: Yes: x = 2220422932, y = -2218888517, z = -283059965

Q: $ an integer solution for x3 + y3 + z3 = 33 ?

A: still unknown!

Q: Is {x3 + y3 + z3 | x, y, z  ℤ} = ℤ ?

A: still unknown!

Q: Is {x3 + y3 + z3 | x, y, z  ℤ} Turing-decidable?

A: still unknown!

Theorem [Lagrange]: {w2 + x2 + y2 + z2 | w, x, y, z  ℤ} = ℤ





Pigeon-Hole Principle

• J. Dirichlet (1834)

• “Drawer principle”

• “Shelf Principle”

• “Box principle”

Theorem (pigeon-hole): There is no injective (1-to-1) function 

from a finite set (domain) to a smaller finite set (range).

Generalization:
N objects placed in M containers; then:

• at least 1 container must hold

• at least 1 container must hold


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
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Hilbert’s Tenth Problem

Theorem [Matiyasevich, 1970]: Every 

Turing-enumerable set is Diophantine

(i.e., the solutions of some polynomial)

Ex: the set of primes coincides exactly with the
positive values of this 26-variable polynomial:

(k + 2)(1 − [wz + h + j − q]2 − [(gk + 2g + k + 1)(h + j) + h − z]2

− [16(k + 1)3(k + 2)(n + 1)2 + 1 − f2]2 − [2n + p + q + z − e]2

− [e3(e + 2)(a + 1)2 + 1 − o2]2 − [(a2 − 1)y2 + 1 − x2]2 

− [16r2y4(a2 − 1) + 1 − u2]2 − [n + l + v − y]2 − [(a2 − 1)l2 + 1 − m2]2

− [ai + k + 1 − l − i]2 − [((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1 

− (x + cu)2]2 − [p + l(a − n − 1) + b(2an + 2a − n2 − 2n − 2) − m]2

− [q + y(a − p − 1) + s(2ap + 2a − p2 − 2p − 2) − x]2

− [z + pl(a − p) + t(2ap − p2 − 1) − pm]2)

as a, b, c, … , z range over the nonnegative integers!



Corollary [Matiyasevich, 1970]: There is  

a fixed “universal” polynomial P such that 

for any Turing-enumerable set S there 

exists an integer n0 such that: 

S = {w | $ x1, x2, …, xk ' P(n0,w,x1, x2, …, xk)=0 

i.e., there is a fixed polynomial that can “output”

any computable set, depending on one parameter.

This is an analogue of a universal Turing machine!

Hilbert’s Tenth Problem



Q: What is the minimum Diophantine degree and 
dimension (i.e., number of variables) of a given
Turing-enumerable set?

Theorem [Skolem]: degree 4 suffices.

Theorem [Matiyasevich]: dimension 9 suffices.

But there is a dramatic tradeoff between the degree
and the number of variables.

This is analogous to finding small universal TMs
(where there is a tradeoff between the alphabet size 
and the number of states).

Hilbert’s Tenth Problem

(k + 2)(1 − [wz + h + j − q]2 − [(gk + 2g + k + 1)(h + j) + h − z]2

− [16(k + 1)3(k + 2)(n + 1)2 + 1 − f2]2 − [2n + p + q + z − e]2

− [e3(e + 2)(a + 1)2 + 1 − o2]2 − [(a2 − 1)y2 + 1 − x2]2 

− [16r2y4(a2 − 1) + 1 − u2]2 − [n + l + v − y]2 − [(a2 − 1)l2 + 1 − m2]2

− [ai + k + 1 − l − i]2 − [((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1 

− (x + cu)2]2 − [p + l(a − n − 1) + b(2an + 2a − n2 − 2n − 2) − m]2

− [q + y(a − p − 1) + s(2ap + 2a − p2 − 2p − 2) − x]2

− [z + pl(a − p) + t(2ap − p2 − 1) − pm]2)



From “Undecidable Diophantine Equations” by James P. Jones, 
Bulletin of the American Mathematical Society, vol 2, No 3, 
1980, pp. 859-862.

Tradeoff between degree and the
number of variables in universal
polynomials:

Examples:
58 variables & degree       4 suffice
28 variables & degree     20 suffice
19 variables & degree 2668 suffice
14 variables & degree ~105 suffice
13 variables & degree ~1043 suffice
9 variables & degree ~1045 suffice

Corollary: 100 additions and/or
multiplications suffice to “prove”
any provable proposition.

Catch: using very large integers!



Hilbert’s Tenth Problem

Q: Find an algorithm that determines whether 

a given Diophantine (i.e., multi-variable 

polynomial) equation has any integer solutions.

A: Still open!

rational





Hilbert’s Problems
Problem 11: Solving quadratic forms with algebraic 

numerical coefficients. 

Status: Partially solved by Hasse (1923).

Problem 12: Extend the Kronecker–Weber theorem on 
abelian extensions of the rational numbers to any base 
number field. 

Status: Still unsolved. 

Problem 13: Solve all 7-th degree equations using 
functions of two parameters. 

Status: Partially solved by Kolmogorov (1956), Arnold 
(1957), and Shimura (1976).

Problem 14: Proof of the finiteness of certain complete 
systems of functions. 

Status: Counter-examples found by Nagata (1959).



Hilbert’s Problems
Problem 15: Find a rigorous foundation for Schubert's 

enumerative calculus.

Status: Partially resolved.

Problem 16: Topology of algebraic curves and surfaces.

Status: Open-ended: some results, but unresolved.

Problem 17: Expression of definite rational function as 
quotient of sums of squares

Status: Resolved in the affirmative by Artin (1927) and 
Delzel (1984).



Hilbert’s Problems
Problem 18: Is there a non-regular, space-filling 

polyhedron? What is the densest sphere packing?

Status: Anisohedral tilings were found in 3D by Reinhardt 
(1928), and for 2D by Heesch (1935).  

Sphere packing in 3D (Kepler’s problem, 1611) was 
solved by Toth (1953) and Hale (1998).  Regular sphere 
packing in 24 dimensions was solved by Cohn and 
Kumar (2004), where the “kissing number” is 196,560.   

Many related open problems remain, including non-
regular, non-uniform, and ellipsoid packings.



Aperiodic Tilings
Goal: tile the entire plane without overlaps, non-periodically

• Non-periodic tiling is not equal to a translation of itself

• Aperiodic tile set admits only non-periodic tilings

“Kites and Darts” 2-tile aperiodic set, Roger Penrose, 1974

Open question: 

$ a single-tile 2D
aperiodic tiling?



Aperiodic Tilings
Penrose tilings in architecture and design:



Pinwheel 
fractal

Aperiodic Tilings
“Pinwheel tiling”, John Conway and Charles Radin, 1992

• Tiles occur in infinitely many orientations,

with uniform distribution!

• Despite irrational edge lengths and incommensurable

angles, all vertices of tiles have rational coordinates!



Aperiodic Tilings

Federation Square

Melbourne, Australia

“Pinwheel tiling”, John Conway and Charles Radin, 1992



3D Aperiodic Tilings
Goal: tile all of 3D space non-periodically

“Quaquaversal” non-periodic tiling of 3D space, 

John Conway and Charles Radin, 1998

• Generalization of 2D Pinwheel tiling

Q: $ a single-tile aperiodic 3D tiling?

(i.e., that does not admit any periodic tiling?)

A: Yes!  (yet this is still open for 2D)



Aperiodic 3D Tiling

The Schmitt-Conway 
“biprism” tiles 3D 
space aperiodically
using 1 convex tile!

This is more than 
Hilbert asked for, 
since the biprism 
tiling is also 
anisohedral, and 
with an infinite
number of tile 
orientations!

Note slight 
irrational

skew!



Undecidability of Tiling Problem
Q [Wang, 1961]: Is there an algorithm for determining whether a given 

set of tiles can tile the entire plane? (Tiles can not be rotated)

Wang gave a decision algorithm for periodic tilings (and falsely 

assumed that non-periodic tilings do not exist).

Theorem [Berger, 1966]: Tiling is undecidable.

Proof idea: A tiling can “simulate” an arbitrary Turing computation.

Berger discovered a set of 20,426 Wang tiles that can tile the plane only 

aperiodically, and conjectured that smaller sets exist.

Theorem [Culik, 1996]: The following 13 tiles is an aperiodic tiling set. 



Single tile

Periodic tiling

Aperiodic tiling
Wang tiles

Aperiodic Tiling for Texure Generation





3D “Wang Cubes”
Generalizations to higher dimensions: “Wang cubes”

16 Wang cubes and a partial aperiodic 3D tiling:

Applications in graphics:

• Texture generation

• Volume rendering

• Video synthesis

• Geometry placement

• Self assembly





Aperiodic Tilings

“Kites and Darts”

Roger Penrose, 1974



Aperiodic Tilings

“Pentagon, Boat, and Star”
Roger Penrose, 1974



Aperiodic Tilings

“Penrose 
Rhombuses”

Roger Penrose, 1974



Aperiodic Tilings

“Ammann A3”
Robert Ammann, 

1977



Aperiodic Tilings

“Ammann A4”
Robert Ammann, 

1977



Aperiodic Tilings

“Ammann Chair”
Robert Ammann, 

1977



Aperiodic Tilings

“Ammann 
Beekner”

Robert Ammann, 
1977



Aperiodic Tilings

“Ammann Beekner 
Rhomb triangle”

Robert Ammann, 
1977



Aperiodic Tilings

“Binary”

F. Lançon, 1988



Aperiodic Tilings

“Colored Golden 
Triangle”

Ludwig Danzer 
and G. van 

Ophuysen



Aperiodic Tilings

“Conch”
G. Rauzy, 1982



Aperiodic Tilings

“Cubic Pinwheel”
E. Harriss



Aperiodic Tilings

“Cyclotomic  
rhombs 7-fold”

Ludwig Danzer   
and D. Frettlöh 



Aperiodic Tilings

“Danzer 7-fold”

K.-P. Nischke and 
Ludwig Danzer, 
1996



Aperiodic Tilings

“Golden Pinwheel”

D. Frettlöh

Tiles occur in infinitely 

many orientations!



Aperiodic Tilings

“Goodman-Strauss 
7-fold rhomb”

C. Goodman-
Strauss 



Aperiodic Tilings

“Harriss’s 9-fold 
rhomb”

E. Harriss 



Aperiodic Tilings

“Kenyon (1,2,1) 
Polygon”

R. Kenyon 



Aperiodic Tilings

“Kenyon 2 
Polygonal”

R. Kenyon 



Aperiodic Tilings

“Kenyon non FLC”

R. Kenyon 



Aperiodic Tilings

“Kite-Domino”

D. Frettlöh and  
M. Baake,  
1994 



Aperiodic Tilings

“Lord”

E. Lord 



Aperiodic Tilings

“Maloney’s 7-fold”

G. Maloney 



Aperiodic Tilings

“Nautilus”

P. Arnoux, 

M. Furukado, 

E. Harriss, 

and S. Ito 



Aperiodic Tilings

“Nautilus (volume 
hierarchic”

P. Arnoux, 

M. Furukado, 

E. Harriss, 

and S. Ito 



Aperiodic Tilings

“Pinwheel”

John Conway 

and C. Radin

Tiles occur in infinitely 

many orientations!

Despite irrational edge 

lengths and 

incommensurable 

angles, all vertices of 

tiles have rational 

coordinates!



Aperiodic Tilings

“Pinwheel-3-1”

L. Sadun, 1998



Aperiodic Tilings

“Quartic Pinwheel”

L. Sadun, 1998

Tiles occur in infinitely 

many orientations!



Aperiodic Tilings

“Pythagoras-3-1”

J. Pieniak 



Aperiodic Tilings

“Pythagoras-3-1”

J. Pieniak 



Aperiodic Tilings

“Pythia-3-1”

D. Frettlöh 

Tiles occur in infinitely 

many orientations with 

statistical 

equidistribution !



Aperiodic Tilings

“Watanabe Ito 
Soma 12-fold”

Y. Watanabe, 

T. Soma and 

M. Ito, 1995



Aperiodic Tilings

“Watanabe Ito 
Soma 12-fold 
(variant)”

Y. Watanabe, 

T. Soma and 

M. Ito, 1995



Aperiodic Tilings

“Viper”



Aperiodic Tilings

“Tuebingen 
Triangle”

R. Lück, M. Baake, 
M. Schlottmann, 
1990



Aperiodic Tilings

“Rorschach”

B. Sing, 2007 



Aperiodic Tilings

“Shield”

F. Gähler, 1988 



Aperiodic Tilings

“Smallest Pisot 
(dual)”

E. Harriss 



Aperiodic Tilings

“Socolar”

J. E. S. Cocolar, 
1989 



Aperiodic Tilings

“Sphinx”

J.-Y. Lee, and 

R. V. Moody



Aperiodic Tilings

“Sqrt6 Triangles”

D. Walton

Tiles occur in infinitely 

many orientations with 

statistical 

equidistribution !



Aperiodic Tilings

“Square-triangle”

M. Schlottmann



Aperiodic Tilings

“Squeeze”

C. Goodmann-
Straus



Aperiodic Tilings

“Tipi-3-1”

D. Frettlöh 



Aperiodic Tilings

“Triangle Due”

L. Danzer and  

C. Goodman-
Strauss 

Tiles occur in infinitely 

many orientations!



Aperiodic Tilings

“Triangle Due 
(single mirror)”



Aperiodic Tilings

“Triangle Due 
(twin mirror)”



Aperiodic Tilings

“Tribonacci Dual”

G. Rauzy 



Aperiodic Tilings

“Penrose triangle”

Roger Penrose

“Limhex”

J. Socolar



Aperiodic Tilings

“Pentomino”

J. Pieniak 

“Pinwheel variant”

I. Suschko



Aperiodic Tilings

“Pinwheel variant

(13 tiles)”

I. Suschko

“Pinwheel-1-2”

I. Suschko



Aperiodic Tilings

“Pinwheel-2-1”

I. Suschko

“Plate Tiling”

H. U. Nissen



Aperiodic Tilings

“Psychedelic Penrose 
variant I”

I. Suschko 

“Rhomb square 
oktagon”

I. Suschko



Aperiodic Tilings

“Tangram”

I. Suschko 

“Tetris”

I. Suschko



Aperiodic Tilings

“Trihex”

Folklore

“Wheel Tiling”

H.U. Nissen 



Hilbert’s Problems
Problem 19: Are solutions of Lagrangians always analytic?

Status: Resolved in the affirmative by Bernstein (1904).

Problem 20: Do all variational problems with certain 
boundary conditions have solutions? 

Status: Resolved in the affirmative.

Problem 21: Proof of the existence of linear differential 
equations having a prescribed monodromic group

Status: Resolved by Plemelj (1908), Schlesinger (1964), 
Dekkers (1978), and Bolibrukh (1989).

Problem 22: Uniformization of analytic relations by means 
of automorphic functions

Status: Resolved.

Problem 23: Further development in calculus of variations 

Status: Unresolved.





“DARPA-hard” problems!

http://www.gogeometry.com/mindmap/darpa_mathematical_challenges_elearning.html

http://www.mathisfunforum.com/viewtopic.php?id=10753

DARPA’s Mathematical Challenges



1:  The Mathematics of the Brain: Develop a mathematical theory to build a functional 

model of the brain that is mathematically consistent and predictive rather than merely 

biologically inspired.

2:  The Dynamics of Networks: Develop the high-dimensional mathematics needed to accurately 

model and predict behavior in large-scale distributed networks that evolve over time occurring in 

communication, biology and the social sciences.

3:  Capture and Harness Stochasticity in Nature: Address Mumford’s call for new mathematics 

for the 21st century. Develop methods that capture persistence in stochastic environments.

4:  21st Century Fluids: Classical fluid dynamics and the Navier-Stokes Equation were 

extraordinarily successful in obtaining quantitative understanding of shock waves, turbulence and 

solitons, but new methods are needed to tackle complex fluids such as foams, suspensions, gels 

and liquid crystals.

5:  Biological Quantum Field Theory: Quantum and statistical methods have had great success 

modeling virus evolution. Can such techniques be used to model more complex systems such as 

bacteria? Can these techniques be used to control pathogen evolution?

6:  Computational Duality: Duality in mathematics has been a profound tool for theoretical 

understanding. Can it be extended to develop principled computational techniques where duality 

and geometry are the basis for novel algorithms?

DARPA’s Mathematical Challenges



7:  Occam’s Razor in Many Dimensions: As data collection increases can we “do more 

with less” by finding lower bounds for sensing complexity in systems? This is related to 

questions about entropy maximization algorithms.

8:  Beyond Convex Optimization: Can linear algebra be replaced by algebraic geometry in a 

systematic way?

9:  What are the Physical Consequences of Perelman’s Proof of Thurston’s Geometrization

Theorem? Can profound theoretical advances in understanding three dimensions be applied to 

construct and manipulate structures across scales to fabricate novel materials?

10:  Algorithmic Origami and Biology: Build a stronger mathematical theory for isometric and 

rigid embedding that can give insight into protein folding.

11:  Optimal Nanostructures: Develop new mathematics for constructing optimal globally 

symmetric structures by following simple local rules via the process of nanoscale self-assembly.

12:  The Mathematics of Quantum Computing, Algorithms, and Entanglement: In the last century 

we learned how quantum phenomena shape our world. In the coming century we need to develop 

the mathematics required to control the quantum world.

13:  Creating a Game Theory that Scales: What new scalable mathematics is needed to replace 

the traditional Partial Differential Equations (PDE) approach to differential games?

DARPA’s Mathematical Challenges



14:  An Information Theory for Virus Evolution: Can Shannon’s theory shed light 

on this fundamental area of biology?

15:  The Geometry of Genome Space: What notion of distance is needed to incorporate biological 

utility?

16:  What are the Symmetries and Action Principles for Biology? Extend our understanding of 

symmetries and action principles in biology along the lines of classical thermodynamics, to 

include important biological concepts such as robustness, modularity, evolvability and variability.

17:  Geometric Langlands and Quantum Physics: How does the Langlands program, which 

originated in number theory and representation theory, explain the fundamental symmetries of 

physics? And vice versa?

18:  Arithmetic Langlands, Topology, and Geometry: What is the role of homotopy theory in the 

classical, geometric, and quantum Langlands programs?

19:  Settle the Riemann Hypothesis:  The Holy Grail of number theory.

20:  Computation at Scale: How can we develop asymptotics for a world with massively many 

degrees of freedom?

21:  Settle the Hodge Conjecture: This conjecture in algebraic geometry is a metaphor for 

transforming transcendental computations into algebraic ones.

DARPA’s Mathematical Challenges



22: Settle the Smooth Poincare Conjecture in Dimension 4: What are the implications 

for space-time and cosmology? And might the answer unlock the secret of “dark energy”?

23:  What are the Fundamental Laws of Biology? This question will remain front and center for 

the next 100 years. DARPA places this challenge last as finding these laws will undoubtedly 

require the mathematics developed in answering several of the questions listed above.

DARPA’s Mathematical Challenges



Historical Perspectives

Kurt Gödel (1906-1978)
• Logician, mathematician, and philosopher

• Proved completeness of predicate logic

and Gödel’s incompleteness theorem

• Proved consistency of axiom of choice

and the continuum hypothesis

• Invented “Gödel numbering”

and “Gödel fuzzy logic”

• Developed “Gödel metric” and 

paradoxical relativity solutions:

“Gödel spacetime / universe”

• Made enormous impact on logic, 

mathematics, and science









Gödel’s Incompleteness Theorem
Frege & Russell:
• Mechanically verifying proofs
• Automatic theorem proving

A set of axioms is:
• Sound: iff only true statements can be proved
• Complete: iff any statement or its negation can be proved
• Consistent: iff no statement and its negation can be proved

Hilbert’s program: find an axiom set for all of mathematics
i.e., find a axiom set that is consistent and complete

Gödel: any consistent axiomatic system is incomplete!
(as long as it subsume elementary arithmetic)

i.e., any consistent axiomatic system must contain true but 
unprovable statements

Mathematical surprise: truth and provability are not the same!



Gödel’s Incompleteness Theorem
That some axiomatic systems are incomplete
is not surprising, since an important axiom may 
be missing (e.g., Euclidean geometry without 
the parallel postulate)

However, that every consistent axiomatic system must be
incomplete was an unexpected shock to mathematics! 
This undermined not only a particular system (e.g., logic),
but axiomatic reasoning and human thinking itself!

Truth Provability

Justice Legality



Gödel’s Incompleteness Theorem
Gödel: consistency or completeness - pick one!

Which is more important?

Incomplete: not all true statements can be proved.
But if useful theorems arise, the system is still useful.

Inconsistent: some false statement can be proved.
This can be catastrophic to the theory:

E.g., supposed in an axiomatic system we proved that “1=2”.
Then we can use this to prove that, e.g., all things are equal!
Consider the set: {Trump, Pope}

| {Trump, Pope} | = 2

 | {Trump, Pope} | = 1 (since 1=2)

 Trump = Pope QED

All things become true: system is “complete” but useless!



Gödel’s Incompleteness Theorem

Moral: it is better to be consistent than complete,
If you can not be both.

“It is better to be feared than loved, if you cannot be both.”  
- Niccolo Machiavelli (1469-1527), “The Prince”

“You can have it good, cheap, or fast – pick any two.”

- Popular business adage 



Gödel’s Incompleteness Theorem
Thm: any consistent axiomatic system is incomplete!

Proof idea:

• Every formula is encoded uniquely as an integer

• Extend “Gödel numbering” to formula sequences (proofs)

• Construct a “proof checking” formula P(n,m) such that 
P(n,m) iff n encodes a proof of the formula encoded by m

• Construct a self-referential formula that asserts its own 
non-provability: “I am not provable”

• Show this formula is neither provable 
nor disprovable

George Boolos (1989) gave shorter proof 
based on formalizing Berry’s paradox

The set of true statements is not R.E.!





Gödel’s Incompleteness Theorem
Systems known to be complete and consistent:
• Propositional logic (Boolean algebra)
• Predicate calculus (first-order logic) [Gödel, 1930]
• Sentential calculus [Bernays,1918; Post, 1921]
• Presburger arithmetic (also decidable)

Systems known to be either inconsistent or incomplete:
• Peano arithmetic
• Primitive recursive arithmetic
• Zermelo–Frankel set theory
• Second-order logic

Q: Is our mathematics both consistent and complete?
A: No [Gödel, 1931]

Q: Is our mathematics at least consistent?
A: We don’t know!  But we sure hope so.



Gödel’s “Ontological Proof” that God exists!

Formalized Saint Anselm's ontological 

argument using modal logic:

For more details, see:

http://en.wikipedia.org/wiki/Godel_ontological_proof







Historical Perspectives

Alonzo Church (1903-1995)
• Founder of theoretical computer science

• Made major contributions to logic

• Invented Lambda-calculus, Church-Turing Thesis

• Originated Church-Frege Ontology, Church’s theorem

Church encoding, Church-Kleene ordinal, 

• Inspired LISP and functional programming

• Was Turing’s Ph.D. advisor! Other students: 

Davis, Kleene, Rabin, Rogers, Scott, Smullyan

• Founded / edited Journal of Symbolic Logic

• Taught at UCLA until 1990; published “A Theory 

of the Meaning of Names” in 1995, at age 92!



http://fp.bakarika.net/
http://fp.bakarika.net/




Historical Perspectives

Alan Turing (1912-1954)
• Mathematician, logician, cryptanalyst, 

and founder of computer science

• First to formally define computation / algorithm

• Invented the Turing machine model

- theoretical basis of all modern computers

• Investigated computational “universality”

• Introduced “definable” real numbers

• Proved undecidability of halting problem

• Originated oracles and the “Turing test”

• Pioneered artificial intelligence

• Anticipated neural networks

• Designed the Manchester Mark 1 (1948)

• Helped break the German Enigma cypher

• Turing Award was created in his honor







Bletchley Park (“Station X”), Bletchley, Buckinghamshire, England

England’s code-breaking and cryptanalysis center during WWII



“Bombe” - electromechanical computer designed by Alan Turing.

Used by British cryptologists to break the German Enigma cipher









Program for ACE computer

hand-written by Alan Turing











Another famous belated apology:



Turing’s Seminal Paper

≡

“On Computable Numbers, with an Application to the

Entscheidungsproblem”, Proceedings of the London 

Mathematical Society, 1937, pp. 230-265.

• One of the most influential & significant papers ever!

• First formal model of “computation”

• First ever definition of “algorithm”

• Invented “Turing machines”

• Introduced “computational universality”
i.e., “programmable”!

• Proved the undecidability of halting problem

• Explicates the Church-Turing Thesis





Turing



































Turing’s insight:

simple local actions 

can lead to arbitrarily 

complex computations!



See: http://www.youtube.com/watch?v=cYw2ewoO6c4

Lego Turing Machines

http://www.youtube.com/watch?v=cYw2ewoO6c4


Lego Turing Machines



Babbage’s difference engine

“Mechano” Computers



Tinker Toy Computers

Plays 

tic-tac-toe!



Tinker Toy Computers



Mechanical Computers



Hydraulic Computers

Resistor

Voltage source

or inductor

Diode

Transistor

Simple circuit



Hydraulic Computers

Wire

Resistor

Transistor

Capacitor

Diode

Simple

circuit

Theorem: fluid-based “circuits” 

are Turing-complete / universal!

http://upload.wikimedia.org/wikipedia/commons/f/f2/Electrionics_Analogy_-_Pipe_(Wire).svg
http://upload.wikimedia.org/wikipedia/commons/f/f2/Electrionics_Analogy_-_Pipe_(Wire).svg
http://upload.wikimedia.org/wikipedia/commons/5/5d/Electrionics_Analogy_-_Valve_(Diode,_conducting).svg
http://upload.wikimedia.org/wikipedia/commons/5/5d/Electrionics_Analogy_-_Valve_(Diode,_conducting).svg
http://upload.wikimedia.org/wikipedia/commons/0/0c/Electrionics_Analogy_-_Reduced_Pipe_(Resistor).svg
http://upload.wikimedia.org/wikipedia/commons/0/0c/Electrionics_Analogy_-_Reduced_Pipe_(Resistor).svg
http://upload.wikimedia.org/wikipedia/commons/c/cd/Electrionics_Analogy_-_Flexible_Tank_(Capacitor).svg
http://upload.wikimedia.org/wikipedia/commons/c/cd/Electrionics_Analogy_-_Flexible_Tank_(Capacitor).svg
http://upload.wikimedia.org/wikipedia/commons/d/d3/Electrionics_Analogy_-_Pressure-activated_valve_(Transistor).svg
http://upload.wikimedia.org/wikipedia/commons/d/d3/Electrionics_Analogy_-_Pressure-activated_valve_(Transistor).svg
http://upload.wikimedia.org/wikipedia/commons/0/04/Electrionics_Analogy_-_Example_Circuit.svg
http://upload.wikimedia.org/wikipedia/commons/0/04/Electrionics_Analogy_-_Example_Circuit.svg
http://upload.wikimedia.org/wikipedia/commons/3/38/Electrionics_Analogy_-_Valve_(Diodes_comparison).svg
http://upload.wikimedia.org/wikipedia/commons/3/38/Electrionics_Analogy_-_Valve_(Diodes_comparison).svg








Theorem [Turing]: the set of algorithms is countable.

Proof: Sort algorithms  programs by length:

“main(){}”

“main(){int n; n=13;}”

“<UNIX OS>”

“<Windows Vista>”

“<super intelligent program>”

 set of algorithms is countable!
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Theorem [Turing]: the set of functions is not countable.

Theorem: Boolean functions {ƒ|ƒ:ℕ{0,1}} are uncountable.

Proof: Assume Boolean functions were countable; i.e., 
$ table containing all of ƒi’s and their corresponding values:

ƒi ƒi(1) ƒi(2) ƒi(3) ƒi(4) ƒi(5) ƒi(6) ƒi(7) ƒi(8) ƒi(9)

ƒ1 0 0 0 0 0 0 0 0 0 …

ƒ2 1 1 1 1 1 1 1 1 1 …

ƒ3 0 1 0 1 0 1 0 1 0 …

ƒ4 1 1 0 1 0 0 0 1 0 …

ƒ5 0 1 1 0 1 0 1 0 0 …

… … … … … … … … … … …

1 0 1 0 0 ƒ’:ℕ{0,1}

But ƒ’ is missing from our table! ƒ’ ƒk "kℕ
table is not a 1-1 correspondence between ℕ and ƒi’s

 contradiction  {ƒ | ƒ:ℕ{0,1} } is not countable!

 There are more Boolean functions than natural numbers!

ƒ’(i) = . . .



Theorem: the set of algorithms is countable.

Theorem: the set of functions is uncountable.

Theorem: the Boolean functions are uncountable.

Corollary: there are “more” functions than algorithms / programs.

Corollary: some functions are not computable by any algorithm!

Corollary: most functions are not computable by any algorithm!

Corollary: there are “more” Boolean functions than algorithms.

Corollary: some Boolean functions on ℕ are not computable.

Corollary: most Boolean functions on ℕ are not computable.



Theorem: most Boolean functions on ℕ are not computable.

Q: Can we find a concrete example of an uncomputable function?

A [Turing]: Yes, for example, the Halting Problem.

Definition:  The Halting problem: given a program P and input I,

will P halt if we ran it on I?  

Define H:ℕℕ{0,1}

H(P,I)=1 if TM P halts on input I

H(P,I)=0 otherwise

Notes: 

• P and I can be encoded as integers, in some canonical order.

• H is an everywhere-defined Boolean function on natural pairs.

• Alternatively, both P and I can be encoded as strings in Σ*.

• We can modify H to take only a single input: H’(2P3I) or H’(P$I) 

Gödel numbering / encodingWhy 2P3I ?

What else will work?



Theorem [Turing]: the halting problem (H) is not computable.

Corollary: we can not algorithmically detect all infinite loops.

Q: Why not?  E.g., do the following programs halt?

main()

{ int k=3; }

main()

{ while(1) {} }

Halts! Runs forever! ?

main()

{ Find a Fermat

triple an+bn=cn

with n>2 then stop}

Runs forever!

Open from 1637-1995!

main()

{ Find a Goldbach

integer that is not a sum

of two primes & stop}

?

Still open since 1742!

Theorem: solving the halting problem is at least as hard 

as solving arbitrary open mathematical problems!

Corollary: Its not about size!









Number of steps to termination 

for the first 10,000 numbers

Theorem [Turing]: the halting problem (H) is not computable.

Ex: the “3X+1” problem (the Ulam conjecture):

• Start with any integer X>0

• If X is even, then replace it with X/2

• If X is odd then replace it with 3X+1

• Repeat until X=1 (i.e., short cycle 4, 2, 1, ...)

Ex: 26 terminates after 10 steps

27 terminates after 111 steps

Termination verified for X<1018

Q: Does this terminate for every X>0 ?

A: Open since 1937!

“Mathematics is not yet ready for such confusing, 

troubling, and hard problems." - Paul Erdős, who 

offered a $500 bounty for a solution to this problem

Observation: termination is 

in general difficult to detect!



Theorem [Turing]: the halting problem (H) is not computable.

Proof: Assume $ algorithm S that solves the halting problem 

H, that always stops with the correct answer for any P & I.



P
I

yes

no
Does 

P(I) halt?

S

X

T

T(T) halts
Q ~Q  Contradiction!

P
I

yes

no
Does 

P(I) halt?

S

P
I

yes

no
Does 

P(I) halt?

S

 S cannot exist! (at least as an algorithm / program / TM)

Using S, construct algorithm / TM T:

 T(T) halts

 T(T) does not halt

T(T) does not halt



Q: When do we want to feed a program to itself in practice?

A: When we build compilers.

Q: Why?

A: To make them more efficient!

To boot-strap the coding in the compiler’s own language!

Program C
compiler

Executable
code



Theorem: virus detection

is not computable.

Theorem: Infinite loop 

detection is not computable.



One of My Favorite Turing Machines

Apple iPad (2015):

• < ¼” thin

• < 1 pound weight

• 2048 x1536 (326 ppi res)

multi-touch screen

• 128 GB memory

• 1.5 MHz 64-bit 3-core A8X 

• 8 MP camera & HD video

• WiFi, cellular, GPS

• Compass, barometer

• battery life 10 hours



Another Great Touring Machine
Tesla Model S (2013):

• EV with 300 mi range

• 0-60 in 2.8 seconds!

• Auto-pilot! (hands free)

• Safest car ever tested

• Big “iPad” dash

• Internet software updates 
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Theorem: some real numbers are not finitely describable!
Theorem: some finitely describable real numbers are not computable!

Generalized Numbers



Theorem: Some real numbers are not finitely describable.
Proof: The number of finite descriptions is countable.

The number of real numbers is not countable.
 Most real numbers do not have finite descriptions.

Theorem: Some finitely describable reals are not computable.

Proof: Let h=0.H1H2H3H4… where Hi=1 if i=2P3I for some 

integers P&I, and TM P halts on input I, and Hi=0 otherwise.

Clearly 0 < h < 1 is a real number and is finitely describable.

If h was computable, then we could exploit an algorithm that 

computes it, into solving the halting problem, a contradiction.  

 h is not computable.

Gödel numbering / encoding



Theorem: all computable numbers are finitely describable.
Proof: A computable number can be outputted by a TM.

A TM is a (unique) finite description.

What the unsolvability of the Halting Problem means:

There is no single algorithm / program / TM that correctly
solves all instances of the halting problem in finite time each.

This result does not necessarily apply if we allow:

• Incorrectness on some instances

• Infinitely large algorithm / program

• Infinite number of finite algorithms / programs

• Some instances to not be solved

• Infinite “running time” / steps

• Powerful enough oracles



Oracles

• Originated in Turing’s Ph.D. thesis

• Named after the “Oracle of Apollo” 

at Delphi, ancient Greece

• Black-box subroutine / language

• Can compute arbitrary functions

• Instant computations “for free”

• Can greatly increase computation power of basic TMs

E.g., oracle for halting problem 



The “Oracle of Omaha”



The “Oracle” of the Matrix



• A special case of “hyper-computation”

• Allows “what if” analysis: assumes certain

undecidable languages can be recognized

• An oracle can profoundly impact the

decidability & tractability of a language

• Any language / problem can be

“relativized” WRT an arbitrary oracle

• Undecidability / intractability exists even 

for oracle machines!

Turing Machines with Oracles

Theorem [Turing]: Some problems are still not computable, 
even by Turing machines with an oracle for the halting problem!



Theorem [Turing]: the halting problem (H ) is not computable.

Proof: Assume $ algorithm S that solves the halting problem 

H, that always stops with the correct answer for any P  & I.



P
I

yes

no
Does 

P(I) halt?

S

X

T

T (T ) halts
Q ~Q  Contradiction!

P
I

yes

no
Does 

P (I) halt?

S

P
I

yes

no
Does 

P (I) halt?

S

 S cannot exist! (at least as an algorithm / program / TM)

Using S, construct algorithm / TM T :

 T (T ) halts

 T (T ) does not halt

T (T ) does not halt

*

*

*

*

*

*

*

*

*

* * * *

* * * *

*

*

H

Add to P an H-oracle:

P*
P* is “relativized” P.

S* is “relativized” S.

T* is “relativized” T.

*

*

* *

The halting problem for 

TMs with an H-oracle is

not computable by TM’s 

with an H-oracle!



Ø 

• Turing (1937); studied by Post (1944) and Kleene (1954)

• Quantifies the non-computability (i.e., algorithmic
unsolvability) of (decision) problems and languages

• Some problems are “more unsolvable” than others!

Turing Degrees

Emil Post
1897-1954

Alan Turing
1912-1954

Stephen Kleene
1909-1994

Students of 
Alonzo Church:

HH

H*

Turing degree 0Turing degree 1Turing degree 2

• Defines computation 

“relative” to an oracle.

• “Relativized computation”

- an infinite hierarchy!

• A “relativity theory

of computation”!

Georg Cantor
1845-1918



• Turing degree of a set X is the set of all Turing-equivalent

(i.e., mutually-reducible) sets: an equivalence class [X]

• Turing degrees form a partial order / join-semilattice

• [0]: the unique Turing degree containing all computable sets

• For set X, the “Turing jump” operator X’ is the set of indices   

of oracle TMs which halt when using X as an oracle

• [0’]: Turing degree of the halting problem H; [0’’]: Turing 

degree of the halting problem H* for TMs with oracle H.

Turing Degrees

Emil Post
1897-1954

Alan Turing
1912-1954

Stephen Kleene
1909-1994

Students of 
Alonzo Church:

Turing 

jump

Turing 

jump



Turing Degrees

Emil Post
1897-1954

Alan Turing
1912-1954

Stephen Kleene
1909-1994

Students of 
Alonzo Church:

Turing 

jump
Turing 

jump

• Each Turing degree is countably infinite (has exactly 0 sets)

• There are uncountably many (20) Turing degrees

• A Turing degree X is strictly smaller than its Turing jump X’

• For a Turing degree X, the set of degrees smaller than X is

countable; set of degrees larger than X is uncountable (20)

• For every Turing degree X there is an incomparable degree 

(i.e., neither X  Y nor Y  X holds).

• There are 20  pairwise incomparable Turing degrees

• For every degree X, there is a degree D strictly between X

and X’ so that X < D < X’ (there are actually 0 of them)

The structure of the Turing degrees 

semilattice is extremely complex!
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Historical Perspectives
John von Neumann (1903-1957)

• Contributed to set theory, functional analysis, 

quantum mechanics, ergodic theory, economics, 

geometry, hydrodynamics, statistics, analysis,

measure theory, ballistics, meteorology, …

• Invented game theory (used in Cold War)

• Re-axiomatized set theory

• Principal member of Manhattan Project

• Helped design the hydrogen / fusion bomb

• Pioneered modern computer science

• Originated the “stored program”

• “von Neumann architecture” and “bottleneck”

• Helped design & build the EDVAC computer

• Created field of cellular automata

• Investigated self-replication

• Invented merge sort



Ulam   Feynman

"Most mathematicians 

prove what they can; 

von Neumann proves 

what he wants."





von Neumann’s Legacy
• Re-axiomatized set theory to address Russell’s paradox

• Independently proved Godel’s second incompleteness theorem:

aximomatic systems are unable to prove their own consistency.

• Addressed Hilbert’s 6th problem: axiomatized quantum mechanics

using Hilbert spaces.

• Developed the game-theory based Mutually-Assured Destruction

(MAD) strategic equilibrium policy – still in effect today!

• von Neumann regular rings, von Neumann bicommutant theorem,   

von Neumann entropy, von Neumann programming languages

Language Architecture

variables  storage

control  test-and-set

assignment  fetch/store

expressions  memory refs 

& arithmetic



“Surely there must be a less primitive way of making big 

changes in the store than by pushing vast numbers of words 

back and forth through the von Neumann bottleneck. Not 

only is this tube a literal bottleneck for the data traffic of a 

problem, but, more importantly, it is an intellectual bottleneck

that has kept us tied to word-at-a-time thinking instead of 

encouraging us to think in terms of the larger conceptual units 

of the task at hand. Thus programming is basically planning 

and detailing the enormous traffic of words through the Von 

Neumann bottleneck, and much of that traffic concerns not 

significant data itself, but where to find it.”

- John Backus, 1977 ACM Turing Award lecture 
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EDVAC (1945):

• 1024 words (44-bits) – 5.5KB

• 864 microsec / add (1157 / sec)

• 2900 microsec / multiply (345/sec)

• Magnetic tape (no disk), oscilloscope

• 6,000 vacuum tubes

• 56,000 Watts of power

• 17,300 lbs (7.9 tons), 490 sqft

• 30 people to operate

• Cost: $500,000



Self-Replication
• Biology / DNA

• Nanotechnology

• Computer viruses

• Space exploration

• Memetics / memes

• “Gray goo”

Problem (extra credit): write a program that

prints out its own source code (no inputs of 

any kind are allowed).

Self-replicating 

cellular automata 

designed by von Neumann



“In mathematics you don't

understand things. You

just get used to them.” 

– John von Neumann























Historical Perspectives
Claude Shannon (1916-2001)

• Invented electrical digital circuits (1937)

• Founded information theory (1948)

• Introduced sampling theory, coined term “bit”

• Contributed to genetics, cryptography

• Joined Institute for Advanced Study (1940)

Influenced by Turing, von Neumann, Einstein

• Originated information entropy, Nyquist–Shannon, 

sampling theorem, Shannon-Hartley theorem, 

Shannon switching game, Shannon-Fano coding,

Shannon’s source coding theorem, Shannon limit,

Shannon decomposition / expansion, Shannon #

• Other hobbies & inventions: juggling, unicycling, 

computer chess, rockets, motorized pogo stick, 

flame-throwers, Rubik's cube solver, wearable 

computer, mathematical gambling, stock markets

• “AT&T Shannon Labs” named after him









Theseus: Shannon’s electro-mechanical 

mouse (1950): first “learning machine” 

and AI experiment

Chess champion Ed Lasker

looking at Shannon’s

chess-playing machine



Shannon’s home 

study room

Shannon’s On/Off machine















Entropy and Randomness
• Entropy measures the expected “uncertainly” (or “surprise”)

associated with a random variable.

• Entropy quantifies the “information content” and represents 

a lower bound on the best possible lossless compression.

• Ex: a random fair coin has entropy of 1 bit.

A biased coin has lower entropy than fair coin.

A two-headed coin has zero entropy.

• The string 00000000000000… has zero entropy.

• English text has entropy rate of 0.6 to 1.5 bits per letter.

Q: How do you simulate a fair coin with a

biased coin of unknown but fixed bias?

A [von Neumann]: Look at pairs of flips.  HT and TH both occur 

with equal probability of p(1-p), and ignore HH and TT pairs.



Entropy and Randomness
• Information entropy is an analogue of thermodynamic 

entropy in physics / statistical mechanics, and 

von Neumann entropy in quantum mechanics. 

• Second law of thermodynamics: entropy of an 

isolated system can not decrease over time.

• Entropy as “disorder” or “chaos”.

• Entropy as the “arrow of time”.

• “Heat death of the universe” / black holes

• Quantum computing uses a quantum information 

theory to generalize classical information theory.

Theorem: String compressibility decreases as entropy increases.

Theorem: Most strings are not (losslessly) compressible.

Corollary: Most strings are random!



“My greatest concern was what to call it. I thought of calling it ‘information’, but the word 

was overly used, so I decided to call it ‘uncertainty’. When I discussed it with John von 

Neumann, he had a better idea. Von Neumann told me, ‘You should call it entropy, for two 

reasons. In the first place your uncertainty function has been used in statistical mechanics

under that name, so it already has a name. In the second place, and more important, nobody 

knows what entropy really is, so in a debate you will always have the advantage.’ ”

- Claude Shannon on his conversation with John von Neumann 
regarding what name to give to the “measure of uncertainty” 

or attenuation in phone-line signals (1949) ”







Historical Perspectives

Stephen Kleene (1909-1994)
• Founded recursive function theory

• Pioneered theoretical computer science

• Student of Alonzo Church; was at the 

Institute for Advanced Study (1940)

• Invented regular expressions

• Kleene star / closure, Kleene algebra, 

Kleene recursion theorem, Kleene fixed 

point theorem, Kleene-Rosser paradox

“Kleeneliness is 

next to Gödeliness”





Historical Perspectives

Noam Chomsky (1928-)
• Linguist, philosopher, cognitive scientist,    

political activist, dissident, author

• Father of modern linguistics

• Pioneered formal languages

• Developed generative grammars

Invented context-free grammars

• Defined the Chomsky hierarchy

• Influenced cognitive psychology, 

philosophy of language and mind

• Chomskyan linguistics, Chomskyan

syntax, Chomskyan models 

• Critic of U.S. foreign policy

• Most widely cited living scholar

Eighth most-cited source overall!







“…I must admit to taking a copy of 

Noam Chomsky's ‘Syntactic Structures’ 

along with me on my honeymoon in 

1961 … Here was a marvelous thing: a 

mathematical theory of language in 

which I could use as a computer 

programmer's intuition!”

- Don Knuth on Chomsky’s influence












