Formal Languages

e String reversal: wR

 Language reversal: LR={wR | wel}

 Language union:

 Language intersection;
L, ~ L,={w|welL,
 Language difference:
L, — L,={w|weL, anc
« Kleene closure: L™ =L°%u
L*=LtU

« All finite strings (over X): ¥~
Theorem: ¥* contains no oo strings.

(aabc)R=cbaa

{ab,cd}*={ba,dc}

—> set union
L, U L={w|wel, orwel,} {alu{baal={ab,aa}
—> set Intersection

wel,} {a,b}{
= Set ¢
wel,} {a,h}—{

0,c}=1b}

Ifference

0,d}={a}

LU L2u . {a} ={ec,a,aa,...}

fulPU.. fa}={aaa,.. .}

L™ VL f:aaa,800,.
only finite strings in X!



Formal Languages
Language complementation: L'=X"-L ‘“negation” w.r.t. ¥~

Theorem: (L") =L~ L"c(L")" & (L") "'cL”
Theorem: L*=LL"

« “Trivial” language: {c} {e}eL=Le{c}=L
« Empty language: @ @={c}
Theorem: X% is countable, |27 = |N| dovetailing

DM : L
Theorem: 2~ Is uncountable. diagonalization



Finite Automata

Basic idea: a FA is a “machine” that changes states
while processing symbols, one at a time.

Finite set of states: Q =409, 91, U3y ---» Ui}

Transition function:  6: OxX — O
 |nitial state: Jo € Q
- Final states: FcQ

- Finite automaton is M=(Q, £, 5, q,, F)

Ex: an FA that accepts all odd-length strings of zeros:

@ M=({0,,9}, {0}, 1((00,0).94), ((01,0),60)+, 9o £61})



Finite Automata

FA operation: consume a string weX” one symbol at a time
while changing states

Acceptance: end up in a final state
Rejection: anything else (including hang-up / crash)
Ex: FA that accepts all strings of form abababab...= (ab)”

But M “crashes” on input string “abba’!
- Solution: add dead-end state to fully specify M

M=({00.01.0,}, {ab}, £((00.2).y). ((c1.b).0),
((Q0,b),02), ((G1,2),0,). ((d,,2),0,), ((42,0),0,) ¥, Aoy {0o))



Finite Automata
Transition function 6 extends from symbols to strings:
0:0xE*F—0) 6(Go,Wx) = 6(5(0,W),X)
where 6(0;,€) = 0,
Language of M is L(M)={weZX*| 5(q,,w) €F}
Definition: language Is regular iff it is accepted by some FA.
Theorem: Complementation preserves regularity.

Proof: Invert final and non-final states in fully specified FA.
LI/

L=L(M)=(@b)" <o, %%
=L(1V")=Db(a+b)” + (a+b) e, e
+ (a+b)*(aa+bb)(a+b)” '

“simulates” M and
does the opposite!



Problem: design a DFA that accepts all strings over
{a,b} where any a’s precede any b’s.

ldea: skip over any contiguous a’s, then skip over
any b’s, and then accept 1ff the end 1s reached.

Q: What is the complement of L?

L = a*b*




Problem: what i1s the complement of L = a*b™* ?
. write a regular expression and then simplify.

L’ = (a+b)*b*(a+b)*a*(a+b)*
= (atb)*b(a+b)*a(atb)*
= (atb)*b*a(a+b)*
= (atb)*ba(a+b)*
= a*b*a(a+b)*

a b a,b
o R
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INTRODUCTION

MICHAEL SIPSER

We begin with an overview of those areas in the theory of computation that
we present in this course. Following that, you'll have a chance to learn and/or
review some mathematical concepts that you will need later.

O ] PR - A O P T - - S S O B = I < R B v
*

AUTOMATA, COMPUTABILITY, AND COMPLEXITY

This book focuses on three traditionally central areas of the theory of computa-
tion: automata, computability, and complexity. They are linked by the question:

What are the fundamental capabilities and limitations of computers?

This question goes back to the 1930s when mathematical logicians first began
to explore the meaning of computation. Technological advances since that time
have greatly increased our ability to compute and have brought this question out
of the realm of theory into the world of practical concern.

In each of the three areas—automata, computability, and complexicy—this
question is interpreted differently, and the answers vary according to the inter-
pretation. Following this inroductory chapter, we explore each area in a sepa-
rate part of this book. Here, we introduce these parts in reverse order because
starting from the end you can better understand the reason for the beginning.

neory H

COMPUTATION]

| |
deconcl !,.!onn

REGULAR LANGUAGES

The theory of computation begins with a question: What is a computer? It is
perhaps a silly question, as everyone knows that this thing I type on is a com-
puter. But these real computers are quite complicated—too much so to allow us
to set up 2 manageable mathematical theory of them directly. Instead we use an
idealized computer called a computational model. As with any model in science,
a computational model may be accurate in some ways but perhaps not in others.
‘Thus we will use several different computational models, depending on the fea-
tures we want to focus on. We begin with the simplest model, called the finite
state machine or finite automaton.

]"I B EPEE®EBSEBRC YD NDHEE &2 88§85 55830y a
FINITE AUTOMATA

Finite automata are good models for computers with an extremely limited
amount of memory. What can a computer do with such a small memory? Many
usefil things! In fact, we interact with such computers all the time, as they lie at
the heart of various electromechanical devices.

The controller for an automatic door is one example of such a device. Often
found at supermarket entrances and exits, automatic doors swing open when
sensing that a person is approaching. An automatic door has a pad in front to

31



Finite Automata
Theorem: Intersection preserves regularity.

Proof: (“parallel” simulation):
« Construct all super-states, one per each state pair.

N o "
New super-transition function jumps amon%t?\(‘)'
super-states, simulating both old transj&tigﬂ nctions

* |Initial super state contains both @mti states.
 Final super states contairgcﬁaﬂs of old final states.

+ Resulting DFA acceb"tg%ame language as original
NFA (but size can be the product of twq old sizes).
GivenM,=(Q, X, 6,, q’, Fy) and M,=(Q,,]%, 6,,q", F,)

construct M=(Q, 2, 0,0, F) Q=
F=FxF, 0=(q’,9")
0:0xX —> 0 0((9;,9):%) = (04(9;,X),0,(0;,X))




Finite Automata
Theorem: Union preserves regularity.
Proof: De Morgan's law: L, uL,=L; "L,
Or cross-product construction, I.e.,
parallel simulation with F = (F,xQ,) U (Q,xF,)

Theorem: Set difference preserves regularity.
Proof: Set identity L,— L,=L; " L,

Or cross-product construction, i.e.,

parallel simulation with F = (F,x(Q,-F,))

Theorem: XOR preserves regularity.
Proof: Setidentity L;® L, = (L, w L,) - (L L))

Or cross-product construction, i.e.,
parallel simulation with F = (F,x(Q—F,)) u ((Q,—F,)xF,)

Meta-Theorem: ldentity-based proofs are easier!




Finite Automata

Non-determinism: generalizes determinism, where
many “next moves” are allowed at each step:

Old 0:0xX — O
New 0:29%x> — 29

Computation becomes a “iree”. O
Acceptance: 3 a path from root (start state) O
to some leaf (a final state) oo

Ex: non-deterministically accept all strings
where the 7t symbol before the end is a “b””:

@ o= @@ @@
a,b Input: 2babbaaa — Accept!



Finite Automata

Theorem: Non-determinism In FAs doesn’t Increase powetr.
Proof: by simulation:

Construct all super-states,
one per each state subset.

New super-transition function

Jjumps among super-states,
simulating old transition function

Initial super state are those "“QO
containing old initial state.

Final super states are those
containing old final states.

Resulting DFA accepts the same

language as original NFA, but can
have exponentially more states.

@

]

Q: Why doesn’t thfs

"9

work for PDAS or TMs?



Finite Automata

Note: Powerset construction generalizes the cross-product
construction. More general constructions are possible.

EC: Let HALF(L)={v|d vw € X" 5> |v|=|w| and vw ¢ L}

Show that HALF preserves regularity.

N—

N—

A two way FA can move Iits head backwards

on the input: 8:QxX — Qx{left,right}

EC: Show that two-way FA are not

more powerful than ordinary one-way FA.

<+—O O O O O

g-transitions: [1 ---------- One super-state!

Theorem: e-transitions don’t increase FA recognition power.

Proof: Simulate e-transitions FA without using e-transitions.
l.e., consider e-transitions to be a form of non-determinism.



NICOLAS CAGE JULIANNE MOORE JESSICA BIEL The movie “Next” (2007)

| Based on the science fiction
story “The Golden Man”
by Philip Dick

> Premise: a man with
the super power of
non-determinism!

At any given moment his
R \ reality branches into multiple
B . Ty directions, and he can choose
R ’ the branch that he prefers!

———Transition function!



Top-10 Reasons to Study Non-determinism

1. Helps us understand the ubiquitous
concept of parallelism / concurrency;

2. llluminates the structure of problems;

3. Can help save time & effort by solving
Intractable problems more efficiently;

4. Enables vast, deep, and general studies of
“completeness” theories;

5. Helps explain why verifying proofs & solutions
seems to be easier than constructing them;



10.

Why Study Non-determinism?

Gave rise to new and novel mathematical
approaches, proofs, and analyses;

Robustly decouples / abstracts complexity from
underlying computational models;

Gives disciplined technigues for identifying
“hardest” problems / languages;

Forged new unifications between
computer science, math & logic;

OO0 ¢0¢0¢O

Non-determinism Is Interesting
fun, and cool!



1.2 NONDETERMINISM 47

This concludes the construction of the finite automaton M that recognizes
the union of A; and A». This construction is fairly simple, and thus its correct-
ness is evident from the strategy described in the proof idea, More complicated
construetions require additional discussion to prove correctness. A formal cor-
rectness proof for a construction of this type usually proceeds by induction. For
an example of a construction proved correct, see the proof of Theorem 1.54.
Most of the constructions that you will encounter in this course are fairly simple
and so do not require a formal correctness proof.

We have just shown that the union of two regular languages is regular, thereby
proving that the class of regular languages is closed under the union operation.
We now turn to the concatenation operation and attempt to show that the class
of regular languages is closed under that operation, too.

THEOREM 1,26

The class of regular languages is closed under the concatenation operation.
In other words, if A; and A; are regular languages then sois Ay o Ag.

To prove this theorem let’s try something along the lines of the proof of the
union case. As before, we can start with finite automata M; and M, recognizing
the regular langnages A; and As. But now, instead of constructing automaton
M to accept its input if either M; or My accept, it must accept if its input can
be broken into two pieces, where M, accepts the first piece and Mj accepts the
second piece. The problem is that M doesn’t know where to break its input
(i.e., where the first part ends and the second begins). To solve this problem we
introduce a new technique called nondeterminism.

]‘2 spam DA eES SR 0 HE RS8R EREDD
NONDETERMINISM

Nondeterminism is a useful concept that has had great impact on the theory of
computation. So far in our discussion, every step of a computation follows in a
unique way from the preceding step. When the machine is in 2 given state and
reads the next input symbol, we know what the next state will be—it is deter-
mined. We call this deterministic computation, In a nondeterministic machine,
several choices may exist for the next state at any point.

Nondeterminism is a generalization of determinism, so every deterministic
finire automaton is automatically a nondeterministic finite automaton. As Fig-
ure 1.27 shows, nondeterministic finite automata may have additional features.

‘l“ ition to

COMPUTAHON

dec

MICHAEL SIPSER

ond |

1.2 NONDETERMINISM 49

Nondeterministic
computation

Deterministic
computation

: [ l\.\'\y

' £y
{

Hl n

}

= accept or reject * accept

re] ect

FIGURE 1.28
Deterministic and nondeterministic computaticns with an accepting

branch

Let’s consider some sample runs of the NFA N; shown in Figure 1.27. The
computation of N on input 010110 is depicted in the following figure.

Symbol read

FIGURE 1.29
The computation of N7 on input 010110



Regular Expressions
Regular expressions are defined recursively as follows:

%) {c} X}V XeX
empty set trivial language singleton language

(%) (%)@

Inductively, If R and S are regular expressions, then so are:

(R+S) R*
union concatenatlon Kleene closure

@% W® i

Compositions! & 37
Examples: aa(a+b) bb (a+b)"b(atb) a(a+b)”
Theorem: Any regular expression Is accepted by some FA.




Regular Expressior
A FA for a regular expressions can be built

Ex: all strings over S={a,b} where 4 a “b”

(a+b)"b(a+b) a(a+b)”
WNY?——. = (a+b) ba(a+b)"

S
0y composition:

preceding an “a”




FA Minimization
ldea: “Equivalent™ states can be merged:




FA Minimization

Theorem [Hopcroft 1971]: the number N of states in a FA
can be minimized within time O(N log N).

Based on earlier work [Huffman 1954] & [Moore 1956].

Conjecture: Minimizing the number of states in a
nondeterministic FA can not be done in polynomial time.

Theorem: Minimizing the number of states in a pushdown
automaton (or TM) Is undecidable.

ldea: Implement a finite automaton minimization tool
« Try to design it to run reasonably efficiently
e Consider also including:
» Aregular-expression-to-FA transformer
« Anon-deterministic-to-deterministic FA converter



FAs and Regular Expressions

Theorem: Any FA accepts a language denoted by some RE.

Proof: Use “generalized finite automata” where a transition
can be a regular expression (not just a symbol), and:

Only 1 super start state and 1 (separate) super final state.

Each state has transitions to all other states (including itself),
except the super start state, with no incoming transitions,
and the super final state, which has no outgoing transitions.

Original FA M Generalized FA (GFA) M”



FAs and Regular Expressions

Now reduce the size of the GFA by one state at each step.
A transformation step is as follows:
(0,)P+RST (q))

Such a transformatlon step Is always possible, until the GFA
has only two states, the super-start and super-final states:

the regular expression corresponding
to the language of the original FA!

Corollary: FAs and REs denote the same class of languages.



Regular Expressions ldentities

« R+S =S+R

« R(ST)=(RS)T

+ R(S+T) = RS+RT

+ (R+S)T = RT+ST

e =g =¢

c Rt@ =0P+R =R

e Re=eR=R R+¢#R
« (R =R" RO #R
¢« (e+R)"=R"

¢« (R'S")" = (R+S)”

OH NO! THE KILLER
MUST HAVE FOLLOWED
HER ON VACATION !

%

BUT TD FIND THEM WED HAVE T0 SEARCH
THROUGH 200 MB (F EMAILS LOOKING FOR
SOMETHING FORMATTED LIKE AN ADDRESS!

I
_ i&-—-— 75 HOPELESS!

oo
K

7

LRl o




Decidable Finite Automata Problems

Def: A problem is decidable if 3 an algorithm which can
determine (in finite time) the correct answer for any instance.

Given a finite automata M, and M,

Qu: IsL(M)=@7?
Hint: graph reachability

Q,: Is L(M,) infinite ?
Hint: cycle detection

Qs IsL(My) =L(M,)?

Hint: consider L,-L, and L,-L,
L Q L,
2 0



Regular Experssion Minimization

Problem: find smallest equivalent regular expression
 Decidable (why?)
« Hard: PSPACE-complete

Turing Machine Minimization

Problem: find smallest equivalent Turing machine
* Not decidable (why?)
* Not even recognizable (why?)



Context-Free Grammars

Basic Idea: set of production rules induces a language
» Finite set of variables:  V ={V,, V,, ..., V. }
» Finite set of terminals: T ={t,, t,, ..., t.}

 Finite set of productions: P
- Start symbol: S

 Productions: V,—> A where V,eVV and A e(VUT)*
Applying V,— A to aVPp
yields: o AP
Note: productions do not depend on “context”
- hence the name “context free”!



Context-Free Grammars

Def: A language is context-free If it Is accepted by
some context-free grammar.

Theorem: All regular languages are context-free.

Theorem: Some context-free languages are not regular.
Ex: {0"1"|n>0}
Proof by “pumping” argument: long strings in a
regular language contain a pumpable substring.
dNeN > Vzel, [z=2N 3 u,vweX* 3 Z=uvw,

luv|<N, |v|>1, uv'wel V i>0.

Theorem: Some languages are not context-free .
Ex: {0"1"2"| n> 0}
Proof by “pumping” argument for CFL’s.




Ambiguity

Def: A grammar I1s ambiguous If some string in its
language has two non-isomorphic derivations.

Theorem: Some context-free grammars are ambiguous.

Ex: Gy S—>SSlale Ly
Derivation 1: S —» SS — aa ffbe o

Derivation 2: S — SS — SSS —> aa iy,

Def: A context-free language Is inherently ambiguous 1f
every context-free grammar for it Is ambiguous.

Theorem: Some context-free Ianguf@ée/za&%inherently
ambiguous (1.e., no non-ambiguous C@@@gists).

Ex: {a"b" c™d™ | m>0, n>0} u {a"b™ c"d™ | m>0, f%@}'e/



Example: design a context-free grammar for strings
representing all well-balanced parenthesis.
|dea: create rules for generating nesting & juxtaposition.

G,:S—SS|(S)]e

EX:S—>SS— (5)(S) > ()
S—(5) = ((5) = (0)
S—(5) = (58) = ... > (0((0)O))

Q: Is G; ambiguous?

Another grammar:
G, S—>(S)S|e

Q:IsL(G,) =L(G,) ?

Q: Is G, ambiguous?



Example : design a context-free grammar that generates
all valid regular expressions.
: embedd the RE rules in a grammar.

G: S —a foreachaeX,
S—(S)|SS|S*|S+S

S—>S* > (5* > (S+5)* > (atb)*
S - SS —» SSSS — abS*bh — aba*a

Q: Is G ambiguous?



Pushdown Automata

Basic idea: a pushdown automaton is a finite automaton
that can optionally write to an unbounded stack.

Finite set of states: Q =4y, 9y, U3y ---» i}
Input alphabet: >

Stack alphabet: I
Transition function:  5: Qx(SU{e})xI" — 291"

Initial state: Jo € Q
Final states: FcOQ

Pushdown automaton is M=(Q, £, T, 8, qq, F)
Note: pushdown automata are non-deterministic!



Pushdown Automata

A pushdown automaton can use Its stack as an unbounded
but access-controlled (last-in/first-out or LIFO) storage.

* A PDA accesses its stack using “push” and “pop”

Stack & input alphabets may differ.

Input read head only goes 1-way.

Acceptance can be by final state
or by empty-stack.

Input

1101111101110

Note: a PDA can be made deterministic by restricting
Its transition function to unique next moves:

5: Ox(ZU{ePxI —OxI™*

-




Pushdown Automata

Theorem: If a language Is accepted by some context-free
grammar, then it is also accepted by some PDA.

Theorem: If a language Is accepted by some PDA, then it is
also accepted by some context-free grammar.

Corrolary: A language is context-free Iff it i1s also accepted by
some pushdown automaton.

|.E., context-free grammars and PDAs have equivalent
“computation power” or “expressiveness’’ capability.

Finite set of variables: V= {V,, V5, ..., Vi } A

Finite set of terminals:  T= {t,. t;. ... §;}

Finite set of productions: P

Start symbol: S
Productions: V;— A where V.eV and A e(VUT)* Input

Applying V> A to oV
yields: a AP l 0 l l 0 l 0

o oo |-

w
2}
f=*]
o
s




Closure Properties of CFLS

Theorem: The context-free languages are closed under union.
Hint: Derive a new grammar for the union.

Theorem: The CFLs are closed under Kleene closure.
Hint: Derive a new grammar for the Kleene closure.

Theorem: The CFLs are closed under m with regular langs.
Hint: Simulate PDA and FA in parallel.

Theorem: The CFLs are not closed under intersection.

Hint: Find a counter example.
Theorem: The CFLs are not closed under complementation.

Hint: Use De Morgan’s law.



Decidable PDA / CFG Problems

Given an arbitrary pushdown automata M (or CFG G)
the following problems are decidable (i.e., have algorithms):

A

Q: IsL(M)=07? é\
Qs IsL(G)=@7? %&
<.

LJOJTT{O]1)0]  smek

Q,: IsL(M) finite ? \C}.
Qs s L(G) finite ? S,
Z2ull
Qs Is L(M) infinite ? e
Qs Is L(G) infinite ? o 2N

Productions: V;,— A WE & and A e(VUT)*
¥ o

ere
Applymp Vi> A to
teld:

Qu IswelL(M)? é&z
Qg IswelL(G)? /



Undecidable PDA / CFG Problems

Theorem: the following are undecidable (i.e., there
exist no algorithms to answer these questions):

Q: Is PDA M minimal ? Q[»/
Q: Are PDAs M, and M equﬁr;\’rglent’?
Q: Is CFG G minimal ?

Q: Is CFG G ambiguous ?
Q:IsL(G,) =L(G,) ?
Q:IsL(G) NnL(G,)=07?

V/
Q: Is CFL L inherently ambiguous ?



PDA Enhancements

Theorem: 2-way PDAs are more powerful than 1-way PDAs.
Hint: Find an exampl%non-CFL accepted by a 2-way PDA.

Theorem: 2-stack PDASs a@ore powerful than 1-stack PDAs.
Hint: Find an example non- CE}‘ accepted by a 2-stack PDA.

Theorem: 1-queue PDAS are more @erful than 1-stack PDAs.
Hint: Find an example non-CFL acce@‘d by a 1-queue PDA.

Theorem: 2-head PDASs are more powerfuIL@an 1-head PDAs.
Hint: Find an example non-CFL accepted b%oz head PDA.

Theorem: Non-determinism increases the power g‘éﬁDAs
Hint: Find a CFL not accepted by any deterministic PDA.



Turing Machines

Basic idea: a Turing machine Is a finite automaton
that can optionally write to an unbounded tape.

» Finite set of states: Q =409, 91, U3y ---» Ui}

* Tape alphabet: I
« Blank symbol: Bel
« Input alphabet: > c I'{B}

 Transition function: o: (O-F)xI" > QXFX{L,R}

« Initial state: p € Q
* Final states: FcO

Turing machine is M=(Q, T, B, Z, &, 0, F)



Turing Machines

A Turing machine can use Its tape as an unbounded
storage but reads / writes only at head position.

« [Initially the entire tape Is blank, except the input portion

« Read / write head goes left / right with each transition
* Input string acceptance Is by final state(s)
* A Turing machine is usually deterministic




Turing Machine “Enhancements”

Larger alphabet:

old: 2={0,1}

new: X’ ={a,b,c,d}

Idea: Encode larger alphabet using smaller one.
Encoding example: a=00, b=01, ¢c=10, d=11

d

C

d

A4

Y "4 M

b
A\
0

a
110

0

1

1

1

0

0

0

old: o QLQ
new: &' (2L



Turing Machine “Enhancements”

Double-sided infinite tape:

€ 1

0

1

1

0

0

1

Idea: Fold Into a normal single-sided infinite tape

\
€ennnne . é@ 1111010111 | = .
e
© 1T000TL] || - -
old: o QL/—R»Q new: &' (R LR
OHRO ORS00




Turing Machine “Enhancements”

Multiple heads:

v

v

b

b

d

b

d

}
blb|a

d

ldea: Mark heads locations on tape and simulate

¥

v

v

B

A

b|b

A

Modified o' processes each “virtual” head independently:
« Each move of o 1s simulated by a long scan & update

* O'updates & marks all “virtual” head positions



Turing Machine “Enhancements”

Multiple tapes:

‘1‘10101 ...... >
011‘0‘0 ...... >
11111111010 | | | = >

ldea: Interlace multi

nle tapes into a single tape

Modified o' processes each “virtual” tape independently:
« Each move of o 1s simulated by a long scan & update

* 0' updates R/W head positions on all “virtual tapes”



Turing Machine “Enhancements”

Two-dimensional tape:

C r a s aaa This Is how
PLELE BB compilers
11110111011 | e > Implement
ol111lol1l | |- > 2D arrays!
1 O 1 1 O O ...... >
|dea: Flatten 2-D tape into a 1-D tape
$ $ | e

Modified 1-D &' simulates the original 2-D o:
 Left/right 6 moves: ' moves horizontally
« Up/down 6 moves: &' jJumps between tape sections




Turing Machine “Enhancements”
Non-determinism:

¥
/ 1:1_0‘1‘01 ...... >
\ 1‘1‘1101 ...... >

ldea: Parallel-simulate non-deterministic threads
$ $ $ ...... >

Modified deterministic o' simulates the original ND o:

v
1/111111]0]1

« Each ND move by o spawns another independent “thread”

* All current threads are simulated “in parallel”



Turing Machine “Enhancements”
Combinations:

I S ST L
%5 2| E
EingD 31 . 111411/5/9] - >
E-g-‘-!. ; :: I:IO ...... >
= Ol‘|d' ...... >

PR ]7”‘0(1'

1R I

ldea: “Enhancements” are independent (and commutative
with respect to preserving the language recognized).

Theorem: Combinations of “enhancements” do not increase
the power of Turing machines.




Turmg -Recognizable vs. -Decidable

W— - ﬁ —> \/ X Never
Input Accept Reject runs
& halt & halt forever

Def: A language Is Turing-decidable Iff it is exactly the
set of strings accepted by some always-halting TM.

WeZ*_§ a - b aa ab ba bb aaa aab aba abb baa bab bbabbbaaaa

...................................................................................................................................................................................

..........................................................................................................................................................................................

Note: M must always halt on every Input.



Turing -Recognizable vs. -Decidable

%"%=’\/ X =@

Accept Reject Run
& halt & halt forever

Def: A language Is Turing-recognizable Iff it is exactly
the set of strings accepted by some Turing machine.

WeZ*—§ a - b aa ab ba bb aaa aab aba abb baa bab bbabbbaaaa

...................................................................................................................................................................................

..........................................................................................................................................................................................

Note: M can run forever on an input, which is implicitly
a reject (since It Is not an accept).



Recognition vs. Enumeration

Def. “Decidable” means “Turing-decidable”
“Recognizable” means “Turing-recognizable”

Theorem: Every decidable language Is also recognizable.
Theorem: Some recognizable languages are not decidable.

Ex: The halting problem is recognizable but not decidable.

Note: Decidability Is a special case of recognizability.

Note: It Is easler to recognize than to decide.
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Recognition and Enumeration

Def: An “enumerator” Turing machine for a language L
prints out precisely all strings of L on its output tape.

’5_5<ﬁ=> a|$lalb/$iblbla|$| - g

Note: The order of enumeration may be arbitrary.

Theorem: If a language Is decidable, 1t can be enumerated
In lexicographic order by some Turing machine.

Theorem: If a language can be enumerated In
lexicographic order by some TM, it Is decidable.



Recognition and Enumeration

Def: An “enumerator” Turing machine for a language L
prints out precisely all strings of L on its output tape

_,_,%=> $

alb|$|blbla|$

Note: The order of enumeration may be arbitrary

Theorem: If a language Is recognizable, then it can be
enumerated by some Turing machine

Theorem: If a language can be enumerated by some TM
then it is recognizable.



THe ALPHABET

IN ALPHABETICAL ORDER
Aillch Ex
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Ee See
= Tee
El \ee
En Wy
En Yu %
Fss Zee %-
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Decidability

@ —> \/ X Never

Accept Reject runs
& halt & halt forever

Def: A language Is Turing-decidable Iff it is exactly the
set of strings accepted by some always-halting TM.

Theorem: The finite languages are decidable.
Theorem: The regular languages are decidable.

Theorem: The context-free languages are decidable.



A “Simple” Example
LetS={x3+y3+23|X,y,zeZ}

Q: Is S Infinite?
A: Yes, since S contains all cubes.

- Is S Turing-recognizable? |
Q J J 10101010110 1

A: Yes, since dovetailing TM can enumerate S. |

Hilbert’s

Q: Is S Turing-decidable?
A: Unknown! |

Q: 1s29e5?
A Yes, since 3°+1°+1°=29

Q:1s30€5?
A: Yes, since (2220422932)3+(-2218888517)3+(-283059965)3=30

Q: 15 33e5?
A: Unknown!

Theorem [Matiyasevich, 1970]: Hilbert’s 10" problem (1900), namely
of determining whether a given Diophantine (i.e., multi-variable
polynomial) equation has any integer solutions, is not decidable.




Closure Properties of Decidable Languages

Theorem: The decidable languages are closed under union.
Hint: use simulation.

Theorem: The decidable languages are closed under .
Hint: use simulation.

Theorem: The decidable langs are closed under complement.
Hint: simulate and negate.

Theorem: The decidable langs are closed under concatenation.
Hint: guess-factor string and simulate.

Theorem: The decidable langs are closed under Kleene star.
Hint: guess-factor string and simulate.



Closure Properties of Recognizable Languages

Theorem: The recognizable languages are closed under union.
Hint: use simulation.

Theorem: The recognizable languages are closed under M.
Hint: use simulation.

Theorem: The recognizable langs are not closed under compl.
Hint: reduction from halting problem.

Theorem: The recognizable langs are closed under concat.
Hint: guess-factor string and simulate.

Theorem: The recognizable langs are closed under Kleene star.
Hint: guess-factor string and simulate.



Reducibilities

Def: A language A Is reducible to a language B if
3 computable function/map f:2.*—>.* where
Vw weA< f(w)eB

Note: f 1s called a “reduction” of A to B
Denotation: A < B
Intuitively, A 1s “no harder” than B



Reducibilities

Def: A language A is reducible to a language B If
3 computable function/map f:2.*—>.* where
Vw weA< f(w)eB

Theorem: If A < B and B is decidable then A is decidable.

Theorem: If A< B and A i1s undecidable then B 1s undecidable.

Note: be very careful about the mapping direction!



Reduction Example 1
Def: Let H_be the halting problem for TMs running on w=e.
“Does TM M halt on €?” H, = { <M>e2.*| M(¢) halts }
Theorem: H_ Is not decidable.
Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M’
that If It ran on input x, itwould: x—.[. ghorex M’

1. Overwrite x with the fixed w on tape; | >'mulate Monw

_ _ _ If M(w) halts then——halt
2. Simulate M on the fixed input w;
3. Accept < M accepts w. Note: M’ 1s not run!

Note: M’ halts on € (and on any xe2>.*) << M halts on w.
A decider (oracle) for H_ can thus be used to decide H!
Since H is undecidable, H_ must be undecidable also. |l



Reduction Example 2
Def: Let L, be the emptyness problem for TMs.
“Is L(M) empty?” L,={ <M>eX*| L(M)=@ }
Theorem: L, IS not decidable.
Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M’
that If It ran on input x, itwould: x—.[. ghorex M’

1. Overwrite x with the fixed w on tape; | >'mulate Monw

_ _ _ If M(w) halts then——halt
2. Simulate M on the fixed input w;
3. Accept < M accepts w. Note: M’ 1s not run!

Note: M’ halts on every xe2>.* < M halts on w.
A decider (oracle) for L, can thus be used to decide H!
Since H is undecidable, L, must be undecidable also. B



Reduction Example 3
Def: Let L, be the regularity problem for TMs.
“Is L(M) regular?” L, ={ <M>e2.*| L(M) is regular }
Theorem: L, IS not decidable.
Proof: Reduction from the Halting Problem H:
Given an arbitrary TM M and input w, construct new TM M’

that IT It ran on input x, it would: x .\ co; it xcomr

1.  Acceptif xeQnl1n »Ignorex M’
2. Overwrite x with the fixed w on tape; ‘fS'mU'aLe :V' Or? Y1 hatt
3. Simulate M on the fixed input w; [T M(w) halts then

4. Accept < M accepts w. Note: M’ is not run!
Note: L(M")=2* < M halts on w

L(M*)=0"1" < M does not halt on w
A decider (oracle) for L, can thus be used to decide H!




Rice’s Theorem
Def: Let a “property” P be a set of recognizable languages.

Ex: P,={L | L is a decidable language}
P,={L | L is a context-free language}
P={L[L=L"}
—{{8}}

o .
P.=0 THe 3 f“eé
bl

Pe={L | Lisa @@@}gﬁ le language}
L is said to “have property P 1ff LeP
Ex: (atb)” has property Py, P,, P; & P but not P, or P
{ww~R} has property Py, P,, & Pg but not P4, P, or P
Def: A property is “trivial” iff it is empty or
It contains all recognizable languages.




Rice’s Theorem
Theorem: The two trivial properties are decidable.

Proof:

Pnone - @ X—

e lgnore X
e Say “no”

«Stop M

none

— NO

M, ... decides P .

P.,={L | L Is a recognizable language}

X—>

 lgnore X
° Say “yeS”
« Stop

M

all

— V€S

M., decides P,

Q: What other properties (other than P, and P_;)

are decidable?
A: Nonel



Rice’s Theorem

Theorem [Rice, 1951]: All non-trivial properties of the
Turing-recognizable languages are not decidable.

Proof: Let P be a non-trivial property.

Without loss of generality assume @ ¢ P, otherwise substitute
P’s complement for P in the remainder of this proof.

Select LeP (note that L # @ since @¢P),
and let M, recognize L (i.e., L(M,)=L = Q).

Assume (towards contradiction) that 3 some TM M,
which decides property P:

X—| Does the language  |— yes

Note: X can be e.g.,/ denoted by <x> Y
a TM description. have property P? IVlp = N0




Rice’s Theorem

Reduction strategy: use M, to “solve” the halting problem.
Recall that LeP, and let M, recognize L (i.e., L(M,)=L = @).
Given an arbitrary TM M & string w, construct M’:

f Ma }V*Ote. ]\|1, . \
W—| M start_ IS npt Funt
halt M. |ves n.
X— | M - Y€S
_\ Y
What is the language of M’? \
Does the language —YES

L(M’) is either @ or L(M, )=L denoted by <x>

If M halts on w then L(M*)=L(M, )= L | have property P2 Mp[—no

If VI does not halt on w then L(M’)= @ since M, never starts
=> M halts on w iff L(M’) has property P

“Oracle” M; can determine if L(M’) has property P,

and thereby “solve” the halting problem, a contradiction! M




given a TM, Is Its language L.

Rice’s Theorem
Corollary: The following questions are not decidable:

Empty?

Finite?

Infinite?

Co-finite?

Regular?
Context-free?
Inherently ambiguous?

Declidable?

| =2 %7

| contains an odd string?
| contains a palindrome?
_ = {Hello, World} ?

_ IS NP-complete?

_ 1S In PSPACE?

Warning: Rice’s theorem applies to properties (i.e., sets of
languages), not (directly to) TM’s or other object types!




Context-Sensitive Grammars

Problem: design a context-sensitive grammar to
accept the (non-context-free) language {1"$12" | n>1}

ldea: generate n 1’s to the left & to the right of $;
then double n times the # of 1’s on the right.

S — IND1E  /* Base case; E marks end-of-string */
N—1IND|$ /*Loop:n1’sandnD’s; end with $ */
D1 — 11D /[* Each D doubles the 1’s on right */
DE —- E [* The E “cancels” out the D’s */

E—=¢ [* Process ends when the E vanishes */



Example: Generating strings in {1"$12" | n=1}

S — INDI1E D1 — 11D E— ¢
N— 1IND|$ DE - E

S — INDI1E — 111$1111DD1E
— 11INDD1E — 111$1111D11DE
— 11ND11DE — 111$111111D1DE
— 11INDDI11DE — 111$11111111DDE
— 111IND11D1DE — 111$11111111DE
— 111IN11D1D1DE — 111911111111E
— 111IN11D1D1E — 1113$11111111¢

—, 111$11D1D1E = 13¢18 = 13¢12°



“But this is the simplified version for the general public.”



