Formal Languages

- **Alphabet**: a finite set of symbols
 \[\Sigma = \{a, b\} \]

- **String**: a finite sequence of symbols
 \[\text{ababbaa} \]

- **Language**: a (possibly \(\infty\)) set of strings
 \[\text{L} = \{a, aa, aaa, \ldots\} \]

- **String length**: number of symbols in it
 \[|aba| = 3 \]

- **Empty string**: \(\varepsilon\) or \(\uparrow\) (\(|\varepsilon| = 0\))
 \[\forall w \quad w\varepsilon = \varepsilon w = w \]

- **String concatenation**: \(w_1w_2\)
 \[\text{ab} \cdot \text{ba} = \text{abba} \]

- **Language concatenation**: \(L_1L_2 = \{w_1w_2 \mid w_1 \in L_1, w_2 \in L_2\}\)
 \[\{1, 2\} \cdot \{a, b, \ldots\} = \{1a, 2a, 1b, 2b, \ldots\} \]

- **String exponentiation**: \(w^k = ww \ldots w\) (k times)
 \[a^3 = \text{aaa} \]

- **Language exponentiation**: \(L^k = LL \ldots L\) (k times)
 \[\{0, 1\}^{32} \]

- \(LL = L^2\)
- \(L^k = LL^{k-1}\)
- \(L^0 = \{\varepsilon\}\)
Formal Languages

• String reversal: w^R

• Language reversal: $L^R = \{w^R | w \in L\}$

• Language union:
 \[L_1 \cup L_2 = \{w | w \in L_1 \text{ or } w \in L_2\} \]

• Language intersection:
 \[L_1 \cap L_2 = \{w | w \in L_1 \text{ and } w \in L_2\} \]

• Language difference:
 \[L_1 - L_2 = \{w | w \in L_1 \text{ and } w \notin L_2\} \]

• Kleene closure:
 \[L^* = L^0 \cup L^1 \cup L^2 \cup ... \]
 \[L^+ = L^1 \cup L^2 \cup L^3 \cup ... \]

• All finite strings (over Σ): $\Sigma^* \subseteq \Sigma^* \forall L$

Theorem: Σ^* contains no ∞ strings. only finite strings in Σ^i
Formal Languages

Language complementation: \(L' = \Sigma^* - L \)

Theorem: \((L^*)^* = L^*\)

Theorem: \(L^+ = LL^* \)

• “Trivial” language: \(\{\varepsilon\} \)

• Empty language: \(\emptyset \)

Theorem: \(\Sigma^* \) is countable, \(|\Sigma^*| = |\mathbb{N}|\)

Theorem: \(2^{\Sigma^*} \) is uncountable

“negation” w.r.t. \(\Sigma^* \)

\(L^* \subseteq (L^*)^* \) & \((L^*)^* \subseteq L^* \)

\(\{\varepsilon\} \cdot L = L \cdot \{\varepsilon\} = L \)

\(\emptyset^* = \{\varepsilon\} \)

dovetailing diagonalization
Finite Automata

Basic idea: a **FA** is a “**machine**” that changes states while processing symbols, one at a time.

- **Finite** set of states: \(Q = \{ q_0, q_1, q_3, \ldots, q_k \} \)
- **Transition** function: \(\delta: Q \times \Sigma \rightarrow Q \)
- **Initial** state: \(q_0 \in Q \)
- **Final** states: \(F \subseteq Q \)
- **Finite automaton** is \(M=(Q, \Sigma, \delta, q_0, F) \)

Ex: an FA that accepts all odd-length strings of zeros:

\[
M=(\{q_0,q_1\}, \{0\}, \{(q_0,0),q_1\}, \{(q_1,0),q_0\}, q_0, \{q_1\})
\]
Finite Automata

FA operation: consume a string \(w \in \Sigma^* \) one symbol at a time while changing states

Acceptance: end up in a **final state**

Rejection: anything else (including hang-up / crash)

Ex: FA that accepts all strings of form abababab... = (ab)*

\[
M = (\{q_0, q_1\}, \{a, b\}, \{((q_0, a), q_1), ((q_1, b), q_0)\}, q_0, \{q_0\})
\]

But \(M \) “crashes” on input string “abba”!

Solution: add dead-end state to fully specify \(M \)

\[
M' = (\{q_0, q_1, q_2\}, \{a, b\}, \{((q_0, a), q_1), ((q_1, b), q_0), ((q_0, b), q_2), ((q_1, a), q_2), ((q_2, a), q_2), ((q_2, b), q_2)\}, q_0, \{q_0\})
\]
Finite Automata

Transition function δ extends from symbols to strings:

$$\delta: Q \times \Sigma^* \rightarrow Q \quad \delta(q_0, wx) = \delta(\delta(q_0, w), x)$$

where $\delta(q_i, \varepsilon) = q_i$

Language of M is $L(M) = \{ w \in \Sigma^* | \delta(q_0, w) \in F \}$

Definition: language is regular iff it is accepted by some FA.

Theorem: Complementation preserves regularity.

Proof: Invert final and non-final states in fully specified FA.

$$L = L(M) = (ab)^*$$

$$L' = L(M') = b(a+b)^* + (a+b)^*a + (a+b)^*(aa+bb)(a+b)^*$$

M' “simulates” M and does the opposite!
Problem: design a DFA that accepts all strings over \{a,b\} where any a’s precede any b’s.

Idea: skip over any contiguous a’s, then skip over any b’s, and then accept iff the end is reached.

\[L = a^*b^* \]

Q: What is the complement of L?
Problem: what is the complement of $L = a^*b^*$?

Idea: write a regular expression and then simplify.

$L' = (a+b)^*b^+(a+b)^*a^+(a+b)^*$
$= (a+b)^*b(a+b)^*a(a+b)^*$
$= (a+b)^*b^+a(a+b)^*$
$= (a+b)^*ba(a+b)^*$
$= a^*b^+a(a+b)^*$
JFLAP

HOME

What is JFLAP

JFLAP Tutorial
(partially updated for JFLAP 7.0)

Instructor Use

World Usage to June 2008

World Usage to June 2006

JFLAP book

books using JFLAP

Sample files

JFLAP wiki

NEW JFLAP items

Get JFLAP

History of JFLAP

Workshops

JFLAP papers

JFLAP talks

Slides (2006)

JFLAP

JFLAP is software for experimenting with formal languages topics including nondeterministic finite automata, nondeterministic pushdown automata, multi-tape Turing machines, several types of grammars, parsing, and L systems. In addition to constructing and testing examples for these, JFLAP allows one to experiment with construction proofs from one form to another, such as converting a DFA to a DPA to a minimal state DFA to a regular expression or regular grammar. Click here for more information on what one can do with JFLAP.

JFLAP News

- *** September 28, 2009 ***
 Note to Mac users. Macs default to Java 1.5 and JFLAP now requires Java 1.6.
- *** August 28, 2009 *** - JFLAP 7.0 released. See below for more details on changes. Get JFLAP

- December 2008 - JFLAP CD by Linz and Rodger with JFLAP exercises that goes along with the Linz book is now available. Click here for info and see the Supplement.

Note, we have worked closely with Linz over the past several years so JFLAP fits nicely with the Linz book. Eventually we hope to publish a textbook with JFLAP integrated in...

- July 2008 - JFLAP now has a wiki where users can discuss the use or modifications of JFLAP, see jflap.wikia.com

- July 2008 - JFLAP now has two listservs. To join, go to lists.duke.edu
 You do not need to be a member of Duke to join the listserv.
 o jflap-announce@duke.edu - for announcements on new releases of JFLAP or new info on the JFLAP web page

please use this tool!
(to implement some nontrivial FAs, TMAs, PDAs, grammars, etc.)

http://www.jflap.org
We begin with an overview of those areas in the theory of computation that we present in this course. Following that, you'll have a chance to learn and/or review some mathematical concepts that you will need later.

0.1 AUTOMATA, COMPUTABILITY, AND COMPLEXITY

This book focuses on three traditionally central areas of the theory of computation: automata, computability, and complexity. They are linked by the question:

What are the fundamental capabilities and limitations of computers?

This question goes back to the 1930s when mathematical logicians first began to explore the meaning of computation. Technological advances since that time have greatly increased our ability to compute and have brought this question out of the realm of theory into the world of practical concern.

In each of the three areas—automata, computability, and complexity—this question is interpreted differently, and the answers vary according to the interpretation. Following this introductory chapter, we explore each area in a separate part of this book. Here, we introduce these parts in reverse order because starting from the end you can better understand the reason for the beginning.

The theory of computation begins with a question: What is a computer? It is perhaps a silly question, as everyone knows that this thing I type on is a computer. But these real computers are quite complicated—too much so to allow us to set up a manageable mathematical theory of them directly. Instead we use an idealized computer called a computational model. As with any model in science, a computational model may be accurate in some ways but perhaps not in others. Thus we will use several different computational models, depending on the features we want to focus on. We begin with the simplest model, called the finite state machine or finite automaton.

1.1 FINITE AUTOMATA

Finite automata are good models for computers with an extremely limited amount of memory. What can a computer do with such a small memory? Many useful things! In fact, we interact with such computers all the time, as they lie at the heart of various electromechanical devices.

The controller for an automatic door is one example of such a device. Often found at supermarket entrances and exits, automatic doors swing open when sensing that a person is approaching. An automatic door has a pad in front to
Finite Automata

Theorem: Intersection preserves regularity.

Proof: (“parallel” simulation):

- Construct all super-states, one per each state pair.
- New super-transition function jumps among super-states, simulating both old transition functions.
- Initial super state contains both old initial states.
- Final super states contains pairs of old final states.
- Resulting DFA accepts \cap of languages of original 2 DFAs (but new size can be the product of their sizes).

Given $M_1=(Q_1, \Sigma, \delta_1, q', F_1)$ and $M_2=(Q_2, \Sigma, \delta_2, q'', F_2)$, construct $M=(Q, \Sigma, \delta, q, F)$ where $Q = Q_1 \times Q_2$

$F = F_1 \times F_2$ \hspace{1cm} $q = (q', q'')$

$\delta : Q \times \Sigma \rightarrow Q$ \hspace{1cm} $\delta((q_i, q_j), x) = (\delta_1(q_i, x), \delta_2(q_j, x))$
Finite Automata

Theorem: Union preserves regularity.
Proof: De Morgan's law: \(L_1 \cup L_2 = \overline{L_1 \cap \overline{L_2}} \)
Or cross-product construction, i.e.,
parallel simulation with \(F = (F_1 \times Q_2) \cup (Q_1 \times F_2) \)

Theorem: Set difference preserves regularity.
Proof: Set identity \(L_1 - L_2 = L_1 \cap \overline{L_2} \)
Or cross-product construction, i.e.,
parallel simulation with \(F = (F_1 \times (Q_2 - F_2)) \)

Theorem: XOR preserves regularity.
Proof: Set identity \(L_1 \oplus L_2 = (L_1 \cup L_2) - (L_1 \cap L_2) \)
Or cross-product construction, i.e.,
parallel simulation with \(F = (F_1 \times (Q_2 - F_2)) \cup ((Q_1 - F_1) \times F_2) \)

Meta-Theorem: Identity-based proofs are easier!
Finite Automata

Non-determinism: generalizes determinism, where many “next moves” are allowed at each step:

Old $\delta: Q \times \Sigma \rightarrow Q$

New $\delta: 2^Q \times \Sigma \rightarrow 2^Q$

Computation becomes a “tree”.

Acceptance: \exists a path from root (start state) to some leaf (a final state)

Ex: non-deterministically accept all strings where the 7th symbol before the end is a “b”:

Input: a b a b b a a a \Rightarrow Accept!
Finite Automata

Theorem: Non-determinism in FAs doesn’t increase power.

Proof: by simulation:

- Construct all **super-states**, one per each state subset.
- New **super-transition function** jumps among **super-states**, simulating old transition function.
- **Initial super state** are those containing old initial state.
- **Final super states** are those containing old final states.
- Resulting DFA accepts the same language as original NFA, but can have **exponentially more states**.

Q: Why doesn’t this work for PDAs or TMs?
Finite Automata

Note: Powerset construction generalizes the cross-product construction. More general constructions are possible.

EC: Let \(\text{HALF}(L) = \{v \mid \exists v,w \in \Sigma^* \exists \ |v| = |w| \text{ and } vw \in L \} \)

Show that \(\text{HALF} \) preserves regularity.

A two way FA can move its head backwards on the input: \(\delta: Q \times \Sigma \rightarrow Q \times \{\text{left, right}\} \)

EC: Show that two-way FA are not more powerful than ordinary one-way FA.

\(\varepsilon \)-transitions: \(q_i \xrightarrow{\varepsilon} q_j \)

Theorem: \(\varepsilon \)-transitions don’t increase FA recognition power.

Proof: Simulate \(\varepsilon \)-transitions FA without using \(\varepsilon \)-transitions. i.e., consider \(\varepsilon \)-transitions to be a form of non-determinism.
The movie “Next” (2007) Based on the science fiction story “The Golden Man” by Philip Dick

Premise: a man with the super power of non-determinism!

At any given moment his reality branches into multiple directions, and he can choose the branch that he prefers!

Extra credit!
Top-10 Reasons to Study Non-determinism

1. Helps us understand the ubiquitous concept of parallelism / concurrency;

2. Illuminates the structure of problems;

3. Can help save time & effort by solving intractable problems more efficiently;

4. Enables vast, deep, and general studies of “completeness” theories;

5. Helps explain why verifying proofs & solutions seems to be easier than constructing them;
Why Study Non-determinism?

6. Gave rise to new and novel **mathematical** approaches, proofs, and analyses;

7. Robustly **decouples** / abstracts complexity from underlying computational **models**;

8. Gives disciplined techniques for identifying “hardest” problems / languages;

9. Forged new **unifications** between computer science, math & logic;

10. Non-determinism is interesting **fun**, and **cool**!
This concludes the construction of the finite automaton M that recognizes the union of A_1 and A_2. This construction is fairly simple, and thus its correctness is evident from the strategy described in the proof idea. More complicated constructions require additional discussion to prove correctness. A formal correctness proof for a construction of this type usually proceeds by induction. For an example of a construction proved correct, see the proof of Theorem 1.54. Most of the constructions that you will encounter in this course are fairly simple and so do not require a formal correctness proof.

We have just shown that the union of two regular languages is regular, thereby proving that the class of regular languages is closed under the union operation. We now turn to the concatenation operation and attempt to show that the class of regular languages is closed under that operation, too.

Theorem 1.26

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

To prove this theorem let's try something along the lines of the proof of the union case. As before, we can start with finite automata M_1 and M_2 recognizing the regular languages A_1 and A_2. But now, instead of constructing automaton M to accept its input if either M_1 or M_2 accept, it must accept if its input can be broken into two pieces, where M_1 accepts the first piece and M_2 accepts the second piece. The problem is that M doesn't know where to break its input (i.e., where the first part ends and the second begins). To solve this problem we introduce a new technique called nondeterminism.

1.2 NONDETERMINISM

Nondeterminism is a useful concept that has had great impact on the theory of computation. So far in our discussion, every step of a computation follows in a unique way from the preceding step. When the machine is in a given state and reads the next input symbol, we know what the next state will be—it is determined. We call this **deterministic** computation. In a **nondeterministic** machine, several choices may exist for the next state at any point.

Nondeterminism is a generalization of determinism, so every deterministic finite automaton is automatically a nondeterministic finite automaton. As Figure 1.27 shows, nondeterministic finite automata may have additional features.

Figure 1.28

Deterministic and nondeterministic computations with an accepting branch

Let's consider some sample runs of the NFA N_1 shown in Figure 1.27. The computation of N_1 on input 010110 is depicted in the following figure.

Figure 1.29

The computation of N_1 on input 010110
Regular Expressions

Regular expressions are defined recursively as follows:

- \(\emptyset \) (empty set)
- \(\{ \varepsilon \} \) (trivial language)
- \(\{ x \} \) (singleton language, \(\forall x \in \Sigma \))

Inductively, if \(R \) and \(S \) are regular expressions, then so are:

- \((R+S) \) (union)
- \(RS \) (concatenation)
- \(R^* \) (Kleene closure)

Examples:
- \(aa(a+b)^*bb \)
- \((a+b)^*b(a+b)^*a(a+b)^* \)

Theorem: Any regular expression is accepted by some FA.
Regular Expressions

A FA for a regular expressions can be built by composition:

Ex: all strings over $S=\{a, b\}$ where \exists a “b” preceding an “a”

$$(a+b)^*b(a+b)^*a(a+b)^*$$

Why?

Remove previous start/final states
FA Minimization

Idea: “Equivalent” states can be merged:

16 states!

3 states!
FA Minimization

Theorem [Hopcroft 1971]: the number N of states in a FA can be minimized within time $O(N \log N)$. Based on earlier work [Huffman 1954] & [Moore 1956].

Conjecture: Minimizing the number of states in a nondeterministic FA can not be done in polynomial time.

Theorem: Minimizing the number of states in a pushdown automaton (or TM) is undecidable.

Idea: implement a finite automaton minimization tool

- Try to design it to run reasonably **efficiently**
- Consider also including:
 - A regular-expression-to-FA transformer
 - A non-deterministic-to-deterministic FA converter
FAs and Regular Expressions

Theorem: Any FA accepts a language denoted by some RE.

Proof: Use “generalized finite automata” where a transition can be a regular expression (not just a symbol), and:

Only 1 **super start state** and 1 (separate) **super final state**.

Each state has transitions to all other states (including itself), except the **super start state**, with no incoming transitions, and the **super final state**, which has no outgoing transitions.

![Original FA M](image1)

![Generalized FA (GFA) M’](image2)
FAs and Regular Expressions

Now reduce the size of the GFA by one state at each step. A transformation step is as follows:

Such a transformation step is always possible, until the GFA has only two states, the super-start and super-final states:

Corollary: FAs and REs denote the same class of languages.
Regular Expressions Identities

- \(R+S = S+R \)
- \(R(ST) = (RS)T \)
- \(R(S+T) = RS+RT \)
- \((R+S)T = RT+ST \)
- \(\emptyset^* = \varepsilon^* = \varepsilon \)
- \(R+\emptyset = \emptyset+R = R \)
- \(R\varepsilon = \varepsilon R = R \quad R+\varepsilon \neq R \)
- \((R^*)^* = R^* \quad R\emptyset \neq R \)
- \((\varepsilon + R)^* = R^* \)
- \((R^*S^*)^* = (R+S)^* \)
Decidable Finite Automata Problems

Def: A problem is decidable if \(\exists \) an algorithm which can determine (in finite time) the correct answer for any instance.

Given a finite automata \(M_1 \) and \(M_2 \):

- **Q₁:** Is \(L(M_1) = \emptyset \) ?
 Hint: graph reachability

- **Q₂:** Is \(L(M_2) \) infinite ?
 Hint: cycle detection

- **Q₃:** Is \(L(M_1) = L(M_2) \) ?
 Hint: consider \(L_1 - L_2 \) and \(L_2 - L_1 \)
Regular Expression Minimization

Problem: find smallest equivalent regular expression

- Decidable (why?)
- Hard: PSPACE-complete

Turing Machine Minimization

Problem: find smallest equivalent Turing machine

- Not decidable (why?)
- Not even recognizable (why?)
Context-Free Grammars

Basic idea: set of production rules induces a language

• Finite set of variables: \(V = \{V_1, V_2, \ldots, V_k\} \)
• Finite set of terminals: \(T = \{t_1, t_2, \ldots, t_j\} \)
• Finite set of productions: \(P \)
• Start symbol: \(S \)
• Productions: \(V_i \rightarrow \Delta \) where \(V_i \in V \) and \(\Delta \in (V \cup T)^* \)

Applying \(V_i \rightarrow \Delta \) to \(\alpha V_i \beta \) yields: \(\alpha \Delta \beta \)

Note: productions do not depend on “context”
- hence the name “context free”!
Context-Free Grammars

Def: A language is context-free if it is accepted by some context-free grammar.

Theorem: All regular languages are context-free.

Theorem: Some context-free languages are not regular.

Ex: \(\{0^n 1^n | n > 0\} \)

Proof by “pumping” argument: long strings in a regular language contain a pumpable substring.

\[\exists N \in \mathbb{N} \ni \forall z \in L, |z| \geq N \exists u,v,w \in \Sigma^* \ni z = uvw, |uv| \leq N, |v| \geq 1, uv^i w \in L \ \forall \ i \geq 0. \]

Theorem: Some languages are not context-free.

Ex: \(\{0^n 1^n 2^n | n > 0\} \)

Proof by “pumping” argument for CFL’s.
Ambiguity

Def: A grammar is **ambiguous** if some string in its language has two non-isomorphic derivations.

Theorem: Some context-free grammars are **ambiguous**.

Ex: \(G_1: \quad S \rightarrow SS \mid a \mid \varepsilon \)

Derivation 1: \(S \rightarrow SS \rightarrow aa \)

Derivation 2: \(S \rightarrow SS \rightarrow SSS \rightarrow aa \)

Def: A context-free language is **inherently ambiguous** if every context-free grammar for it is **ambiguous**.

Theorem: Some context-free languages are **inherently ambiguous** (i.e., no non-ambiguous CFG exists).

Ex: \(\{a^n b^m c^m d^m \mid m>0, n>0\} \cup \{a^n b^m c^n d^m \mid m>0, n>0\} \)
Example: design a context-free grammar for strings representing all well-balanced parenthesis.

\[G_1: S \rightarrow SS \mid (S) \mid \varepsilon \]

Ex: \[S \rightarrow SS \rightarrow (S)(S) \rightarrow ()() \]
\[S \rightarrow (S) \rightarrow ((S)) \rightarrow (()()) \]
\[S \rightarrow (S) \rightarrow (SS) \rightarrow \ldots \rightarrow (()()(())()) \]

Q: Is \(G_1 \) ambiguous?

Another grammar:

\[G_2: S \rightarrow (S)S \mid \varepsilon \]

Q: Is \(L(G_1) = L(G_2) \)?

Q: Is \(G_2 \) ambiguous?
Example: design a context-free grammar that generates all valid regular expressions.

Idea: embedd the RE rules in a grammar.

\[
G: \quad S \rightarrow a \text{ for each } a \in \Sigma_L \\
S \rightarrow (S) | SS | S^* | S+S \\
S \rightarrow S^* \rightarrow (S)^* \rightarrow (S+S)^* \rightarrow (a+b)^* \\
S \rightarrow SS \rightarrow SSSS \rightarrow abS^*b \rightarrow aba^*a
\]

Q: Is G ambiguous?
Pushdown Automata

Basic idea: a pushdown automaton is a finite automaton that can optionally write to an unbounded stack.

- **Finite set of states:** \(Q = \{ q_0, q_1, q_3, \ldots, q_k \} \)
- **Input alphabet:** \(\Sigma \)
- **Stack alphabet:** \(\Gamma \)
- **Transition function:** \(\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^*} \)
- **Initial state:** \(q_0 \in Q \)
- **Final states:** \(F \subseteq Q \)

Pushdown automaton is \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \)

Note: pushdown automata are non-deterministic!
A pushdown automaton can use its stack as an unbounded but access-controlled (last-in/first-out or LIFO) storage.

- A PDA accesses its stack using “push” and “pop”
- Stack & input alphabets may differ.
- Input read head only goes 1-way.
- Acceptance can be by final state or by empty-stack.

Note: a PDA can be made deterministic by restricting its transition function to unique next moves:

\[\delta: Q \times (\Sigma \cup \{ \varepsilon \}) \times \Gamma \rightarrow Q \times \Gamma^* \]
Pushdown Automata

Theorem: If a language is accepted by some context-free grammar, then it is also accepted by some PDA.

Theorem: If a language is accepted by some PDA, then it is also accepted by some context-free grammar.

Corollary: A language is context-free iff it is also accepted by some pushdown automaton.

I.E., context-free grammars and PDAs have equivalent “computation power” or “expressiveness” capability.

Finite set of variables: \(\mathbb{V} = \{V_1, V_2, \ldots, V_k\} \)

Finite set of terminals: \(\mathbb{T} = \{t_1, t_2, \ldots, t_j\} \)

Finite set of productions: \(\mathbb{P} \)

Start symbol: \(S \)

Productions: \(V_i \rightarrow \Delta \) where \(V_i \in \mathbb{V} \) and \(\Delta \in (\mathbb{V} \cup \mathbb{T})^* \)

Applying \(V_i \rightarrow \Delta \) to \(\alpha \mathbb{V} \mathbb{P} \)

yields: \(\alpha \mathbb{A} \mathbb{P} \)
Closure Properties of CFLs

Theorem: The context-free languages are **closed** under union.

 Hint: Derive a new grammar for the union.

Theorem: The CFLs are **closed** under Kleene closure.

 Hint: Derive a new grammar for the Kleene closure.

Theorem: The CFLs are **closed** under \cap with regular langs.

 Hint: Simulate PDA and FA in parallel.

Theorem: The CFLs are **not closed** under intersection.

 Hint: Find a counter example.

Theorem: The CFLs are **not closed** under complementation.

 Hint: Use De Morgan’s law.
Decidable PDA / CFG Problems

Given an arbitrary pushdown automata M (or CFG G) the following problems are decidable (i.e., have algorithms):

- **Q_1:** Is $L(M) = \emptyset$?
- **Q_5:** Is $L(G) = \emptyset$?
- **Q_2:** Is $L(M)$ finite?
- **Q_6:** Is $L(G)$ finite?
- **Q_3:** Is $L(M)$ infinite?
- **Q_7:** Is $L(G)$ infinite?
- **Q_4:** Is $w \in L(M)$?
- **Q_8:** Is $w \in L(G)$?

Extra-credit: Prove each!
Theorem: the following are undecidable (i.e., there exist no algorithms to answer these questions):

Q: Is PDA M minimal?
Q: Are PDAs M_1 and M_2 equivalent?
Q: Is CFG G minimal?
Q: Is CFG G ambiguous?
Q: Is $L(G_1) = L(G_2)$?
Q: Is $L(G_1) \cap L(G_2) = \emptyset$?
Q: Is CFL L inherently ambiguous?
PDA Enhancements

Theorem: 2-way PDAs are more powerful than 1-way PDAs.

Hint: Find an example non-CFL accepted by a 2-way PDA.

Theorem: 2-stack PDAs are more powerful than 1-stack PDAs.

Hint: Find an example non-CFL accepted by a 2-stack PDA.

Theorem: 1-queue PDAs are more powerful than 1-stack PDAs.

Hint: Find an example non-CFL accepted by a 1-queue PDA.

Theorem: 2-head PDAs are more powerful than 1-head PDAs.

Hint: Find an example non-CFL accepted by a 2-head PDA.

Theorem: Non-determinism increases the power of PDAs.

Hint: Find a CFL not accepted by any deterministic PDA.
Turing Machines

Basic idea: a Turing machine is a finite automaton that can optionally write to an unbounded tape.

- **Finite set of states:** $Q = \{q_0, q_1, q_3, \ldots, q_k\}$
- **Tape alphabet:** Γ
- **Blank symbol:** $\beta \in \Gamma$
- **Input alphabet:** $\Sigma \subseteq \Gamma \setminus \{\beta\}$
- **Transition function:** $\delta: (Q \setminus F) \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$
- **Initial state:** $q_0 \in Q$
- **Final states:** $F \subseteq Q$

Turing machine is $M= (Q, \Gamma, \beta, \Sigma, \delta, q_0, F)$
A Turing machine can use its tape as an unbounded storage but reads / writes only at head position.

- Initially the entire tape is blank, except the input portion
- Read / write head goes left / right with each transition
- Input string acceptance is by final state(s)
- A Turing machine is usually deterministic
Larger alphabet:

old: $\Sigma = \{0,1\} \quad$ new: $\Sigma' = \{a,b,c,d\}$

Idea: Encode larger alphabet using smaller one.

Encoding example: $a=00$, $b=01$, $c=10$, $d=11$
Turing Machine “Enhancements”

Double-sided infinite tape:

1 0 1 1 0 0 1

Idea: Fold into a normal single-sided infinite tape

1 0 1 1 0 0 1

old: δ

new: δ'

Dovetailing!
Turing Machine “Enhancements”

Multiple heads:

Idea: Mark heads locations on tape and simulate

Modified δ' processes each “virtual” head independently:

- Each move of δ is simulated by a long scan & update
- δ' updates & marks all “virtual” head positions
Turing Machine “Enhancements”

Multiple tapes:

![Tape Diagram](image)

Idea: **Interlace** multiple tapes into a single tape

Modified δ' processes each “virtual” tape independently:
- Each move of δ is simulated by a long scan & update
- δ' updates R/W head positions on all “virtual tapes”
Turing Machine “Enhancements”

Two-dimensional tape:

```
1 1 0 1 0 1
0 1 1 0 1
1 0 1 1 0 0
```

Idea: Flatten 2-D tape into a 1-D tape

Modified 1-D δ' simulates the original 2-D δ:

- Left/right δ moves: δ' moves horizontally
- Up/down δ moves: δ' jumps between tape sections

This is how compilers implement 2D arrays!
Turing Machine “Enhancements”

Non-determinism:

Idea: Parallel-simulate non-deterministic threads

Modified deterministic δ' simulates the original ND δ:

- Each ND move by δ spawns another independent “thread”
- All current threads are simulated “in parallel”
Turing Machine “Enhancements”

Combinations:

Idea: “Enhancements” are independent (and commutative with respect to preserving the language recognized).

Theorem: Combinations of “enhancements” do not increase the power of Turing machines.
Turing -Recognizable vs. -Decidable

- **Input** w ➔
- **Accept** & halt
- **Reject** & halt
- **Never runs forever**

Def: A language is Turing-decidable iff it is exactly the set of strings accepted by some always-halting TM.

$w \in \Sigma^*$:

| a | b | aa | ab | ba | bb | aaa | aab | aba | abb | baa | bab | bba | bbb | baaa | ... |
|---|---|----|----|----|----|------|------|------|------|------|------|------|------|-------|
| ✓ | × | ✓ | × | × | × | ✓ | × | × | × | × | × | × | × | ... |

$L(M) = \{ a, \text{ aa, } \text{ aaa, } \text{ aaaa ...} \}$

Note: M must always halt on every input.
Turing -Recognizable vs. -Decidable

\[w \rightarrow \sqrt{\text{Accept}} \quad \times \quad \equiv \quad \infty \quad \sqrt{\text{Reject}} \quad \& \quad \text{halt} \quad \& \quad \text{halt} \quad \text{Run} \quad \text{forever} \]

Def: A language is Turing-recognizable iff it is exactly the set of strings accepted by some Turing machine.

\[w \in \Sigma^* = \{a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, baaa, \ldots\} \]

\[M(w) \Rightarrow \sqrt{a} \quad \times \quad \sqrt{aa} \quad \infty \quad \times \quad \infty \quad \sqrt{aaa} \quad \infty \quad \infty \quad \times \quad \times \quad \times \quad \infty \quad \times \quad \infty \quad \times \quad \sqrt{aaaa} \quad \ldots \]

\[L(M) = \{a, aa, \ldots, aaa, \ldots, aaaa \ldots\} \]

Note: M can run forever on an input, which is implicitly a reject (since it is not an accept).
Recognition vs. Enumeration

Def: “Decidable” means “Turing-decidable”
“Recognizable” means “Turing-recognizable”

Theorem: Every decidable language is also recognizable.

Theorem: Some recognizable languages are not decidable.

Ex: The halting problem is recognizable but not decidable.

Note: Decidability is a special case of recognizability.

Note: It is easier to recognize than to decide.
Famous Deciders

“I'm the decider, and I decide what is best.”

“A wrong decision is better than indecision.”
Famous Deciders
Recognition and Enumeration

Def: An “enumerator” Turing machine for a language L prints out precisely all strings of L on its output tape.

Note: The order of enumeration may be arbitrary.

Theorem: If a language is decidable, it can be enumerated in lexicographic order by some Turing machine.

Theorem: If a language can be enumerated in lexicographic order by some TM, it is decidable.
Recognition and Enumeration

Def: An “enumerator” Turing machine for a language L prints out precisely all strings of L on its output tape.

Theorem: If a language is recognizable, then it can be enumerated by some Turing machine.

Note: The order of enumeration may be arbitrary.

Theorem: If a language can be enumerated by some TM, then it is recognizable.
The Alphabet
In Alphabetical Order

<table>
<thead>
<tr>
<th>Aitch</th>
<th>Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are</td>
<td>Eye</td>
</tr>
<tr>
<td>Ay</td>
<td>Gee</td>
</tr>
<tr>
<td>Bee</td>
<td>Jay</td>
</tr>
<tr>
<td>Cue</td>
<td>Kay</td>
</tr>
<tr>
<td>Dee</td>
<td>Oh</td>
</tr>
<tr>
<td>Double U</td>
<td>Pea</td>
</tr>
<tr>
<td>Ee</td>
<td>See</td>
</tr>
<tr>
<td>Ef</td>
<td>Tee</td>
</tr>
<tr>
<td>El</td>
<td>Vee</td>
</tr>
<tr>
<td>Em</td>
<td>Wy</td>
</tr>
<tr>
<td>En</td>
<td>Yu</td>
</tr>
<tr>
<td>Ess</td>
<td>Zee</td>
</tr>
</tbody>
</table>
Decidability

Def: A language is **Turing-decidable** iff it is exactly the set of strings accepted by some *always-halting* TM.

Theorem: The finite languages are decidable.

Theorem: The regular languages are decidable.

Theorem: The context-free languages are decidable.
A “Simple” Example

Let $S = \{ x^3 + y^3 + z^3 \mid x, y, z \in \mathbb{Z} \}$

Q: Is S infinite?
A: Yes, since S contains all cubes.

Q: Is S Turing-recognizable?
A: Yes, since dovetailing TM can enumerate S.

Q: Is S Turing-decidable?
A: Unknown!

Q: Is $29 \in S$?
A: Yes, since $3^3 + 1^3 + 1^3 = 29$

Q: Is $30 \in S$?
A: Yes, since $(2220422932)^3 + (-2218888517)^3 + (-283059965)^3 = 30$

Q: Is $33 \in S$?
A: Unknown!

Theorem [Matiyasevich, 1970]: Hilbert’s 10th problem (1900), namely of determining whether a given Diophantine (i.e., multi-variable polynomial) equation has any integer solutions, is not decidable.
Closure Properties of Decidable Languages

Theorem: The decidable languages are **closed** under **union**.

Hint: use simulation.

Theorem: The decidable languages are **closed** under **∩**.

Hint: use simulation.

Theorem: The decidable langs are **closed** under **complement**.

Hint: simulate and negate.

Theorem: The decidable langs are **closed** under **concatenation**.

Hint: guess-factor string and simulate.

Theorem: The decidable langs are **closed** under **Kleene star**.

Hint: guess-factor string and simulate.
Closure Properties of Recognizable Languages

Theorem: The recognizable languages are closed under union.
 Hint: use simulation.

Theorem: The recognizable languages are closed under intersection.
 Hint: use simulation.

Theorem: The recognizable langs are not closed under complement.
 Hint: reduction from halting problem.

Theorem: The recognizable langs are closed under concatenation.
 Hint: guess-factor string and simulate.

Theorem: The recognizable langs are closed under Kleene star.
 Hint: guess-factor string and simulate.
Reducibilities

Def: A language A is **reducible** to a language B if there exists a computable function/map $f : \sum^* \rightarrow \sum^*$ where

$$\forall w \: w \in A \iff f(w) \in B$$

Note: f is called a "reduction" of A to B

Denotation: $A \leq B$

Intuitively, A is "no harder" than $B"
Reducibilities

Def: A language A is **reducible** to a language B if

\[\exists \text{computable function/map } f: \Sigma^* \rightarrow \Sigma^* \text{ where } \forall w \in A \iff f(w) \in B \]

Theorem: If A \leq B and B is decidable then A is decidable.

Theorem: If A \leq B and A is undecidable then B is undecidable.

Note: be very careful about the mapping **direction**!
Reduction Example 1

Def: Let H_ε be the halting problem for TMs running on $w=\varepsilon$.

“Does TM M halt on ε?” $H_\varepsilon = \{ <M> \in \Sigma^* | M(\varepsilon) \text{ halts} \}$

Theorem: H_ε is not decidable.

Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M' that if it ran on input x, it would:

1. Overwrite x with the fixed w on tape;
2. Simulate M on the fixed input w;
3. Accept $\iff M$ accepts w.

Note: M' is not run!

Note: M' halts on ε (and on any $x \in \Sigma^*$) $\iff M$ halts on w.

A decider (oracle) for H_ε can thus be used to decide H!

Since H is undecidable, H_ε must be undecidable also.
Reduction Example 2

Def: Let L_\emptyset be the emptiness problem for TMs.

"Is $L(M)$ empty?" $L_\emptyset = \{ <M> \in \sum^* | L(M) = \emptyset \}$

Theorem: L_\emptyset is not decidable.

Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M' that if it ran on input x, it would:

1. Overwrite x with the fixed w on tape;
2. Simulate M on the fixed input w;
3. Accept $\iff M$ accepts w.

Note: M' is not run!

Note: M' halts on every $x \in \sum^* \iff M$ halts on w.

A decider (oracle) for L_\emptyset can thus be used to decide H!

Since H is undecidable, L_\emptyset must be undecidable also.
Reduction Example 3

Def: Let L_{reg} be the regularity problem for TMs.

"Is $L(M)$ regular?" $L_{\text{reg}} = \{ <M> \in \Sigma^* | L(M) \text{ is regular} \}$

Theorem: L_{reg} is not decidable.

Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M' that if it ran on input x, it would:

1. Accept if $x \in 0^n1^n$
2. Overwrite x with the fixed w on tape;
3. Simulate M on the fixed input w;
4. Accept $\iff M$ accepts w.

Note: M' is not run!

Note: $L(M') = \Sigma^* \iff M$ halts on w

$L(M') = 0^n1^n \iff M$ does not halt on w

A decider (oracle) for L_{reg} can thus be used to decide H!
Rice’s Theorem

Def: Let a “property” \(P \) be a set of recognizable languages.

Ex: \(P_1 = \{ L \mid L \) is a decidable language\} \\
\(P_2 = \{ L \mid L \) is a context-free language\} \\
\(P_3 = \{ L \mid L = L^* \} \) \\
\(P_4 = \{ \{ \varepsilon \} \} \) \\
\(P_5 = \emptyset \) \\
\(P_6 = \{ L \mid L \) is a recognizable language\} \)

L is said to “have property \(P \)” iff \(L \in P \)

Ex: \((a+b)^*\) has property \(P_1, P_2, P_3 \) \& \(P_6 \) but not \(P_4 \) or \(P_5 \)

\(\{ww^R\} \) has property \(P_1, P_2, \) \& \(P_6 \) but not \(P_3, P_4 \) or \(P_5 \)

Def: A property is “trivial” iff it is empty or it contains all recognizable languages.
Rice’s Theorem

Theorem: The two trivial properties are decidable.

Proof:

\[P_{\text{none}} = \emptyset \quad x \rightarrow \begin{cases} \text{Ignore } x \\ \text{Say “no”} \\ \text{Stop} \end{cases} \quad M_{\text{none}} \rightarrow \text{no} \]

\[P_{\text{all}} = \{ L \mid L \text{ is a recognizable language} \} \]

\[x \rightarrow \begin{cases} \text{Ignore } x \\ \text{Say “yes”} \\ \text{Stop} \end{cases} \quad M_{\text{all}} \rightarrow \text{yes} \]

Q: What other properties (other than \(P_{\text{none}} \) and \(P_{\text{all}} \)) are decidable?

A: None!
Rice’s Theorem

Theorem [Rice, 1951]: All non-trivial properties of the Turing-recognizable languages are not decidable.

Proof: Let P be a non-trivial property.

Without loss of generality assume $\emptyset \not\in P$, otherwise substitute P’s complement for P in the remainder of this proof.

Select $L \in P$ (note that $L \neq \emptyset$ since $\emptyset \not\in P$), and let M_L recognize L (i.e., $L(M_L) = L \neq \emptyset$).

Assume (towards contradiction) that \exists some TM M_P which decides property P:

Note: x can be e.g., a TM description.
Rice’s Theorem

Reduction strategy: use M_p to “solve” the halting problem.

Recall that $L \in \mathcal{P}$, and let M_L recognize L (i.e., $L(M_L) = L \neq \emptyset$).

Given an arbitrary TM M & string w, construct M':

What is the language of M'?
$L(M')$ is either \emptyset or $L(M_L) = L$

If M halts on w then $L(M') = L(M_L) = L$

If M does not halt on w then $L(M') = \emptyset$ since M_L never starts

$\Rightarrow M$ halts on w iff $L(M')$ has property P

“Oracle” M_p can determine if $L(M')$ has property P, and thereby “solve” the halting problem, a contradiction!
Rice’s Theorem

Corollary: The following questions are not decidable: given a TM, is its language \(L \):

- Empty?
- Finite?
- Infinite?
- Co-finite?
- Regular?
- Context-free?
- Inherently ambiguous?
- Decidable?
- \(L = \sum^* \) ?
- \(L \) contains an odd string?
- \(L \) contains a palindrome?
- \(L = \{ \text{Hello, World} \} \) ?
- \(L \) is NP-complete?
- \(L \) is in PSPACE?

Warning: Rice’s theorem applies to properties (i.e., sets of languages), not (directly to) TM’s or other object types!
Problem: design a context-sensitive grammar to accept the (non-context-free) language \(\{ 1^n$1^{2n} | n \geq 1 \} \)

Idea: generate \(n \) 1’s to the left & to the right of \(\$ \); then double \(n \) times the # of 1’s on the right.

\[
S \rightarrow 1ND1E \quad /* \text{Base case; } E \text{ marks end-of-string} */ \\
N \rightarrow 1ND | \$ \quad /* \text{Loop: } n \text{ 1’s and } n \text{ D’s; end with } \$ */ \\
D1 \rightarrow 11D \quad /* \text{Each D doubles the 1’s on right} */ \\
DE \rightarrow E \quad /* \text{The E “ cancels” out the D’s} */ \\
E \rightarrow \varepsilon \quad /* \text{Process ends when the E vanishes} */
\]
Example: Generating strings in \(\{ 1^n$1^{2n} \mid n \geq 1 \} \)

\[
\begin{align*}
S & \rightarrow 1N\text{D}1E & D1 & \rightarrow 11D \\
N & \rightarrow 1N\text{D} \mid \$ & \text{DE} & \rightarrow E
\end{align*}
\]

\[
\begin{align*}
S & \rightarrow 1\textcolor{red}{N}\text{D}1E & \rightarrow 1\textcolor{red}{111}$1\textcolor{red}{1111}$\text{D}\textcolor{red}{D1E} \\
& \rightarrow 11\text{N}\textcolor{red}{D}D1E & \rightarrow 1\textcolor{red}{111}$11\textcolor{red}{1111}$\text{D1}1DE \\
& \rightarrow 11\text{N}D11DE & \rightarrow 1\textcolor{red}{111}111111\text{D1}DE \\
& \rightarrow 111\text{N}\textcolor{red}{D}D11DE & \rightarrow 1\textcolor{red}{111}11111111\text{DDE} \\
& \rightarrow 111\textcolor{red}{N}D11D1DE & \rightarrow 1\textcolor{red}{111}11111111\text{DE} \\
& \rightarrow 111\textcolor{red}{N}11D1D1DE & \rightarrow 1\textcolor{red}{111}11111111\varepsilon \\
& \rightarrow 111\textcolor{red}{N}11D1D1E & \rightarrow 1\textcolor{red}{111}11111111\varepsilon \\
& \rightarrow 111\$11D1D1E & = 1^3$1^8 = 1^3$1^{23} \\
\end{align*}
\]
"But this is the simplified version for the general public."