Historical Perspectives

Kurt Godel (1906-1978)

« Logician, mathematician, and philosopher

* Proved completeness of predicate logic
and Godel’s incompleteness theorem

* Proved consistency of axiom of choice

and the continuum hypothesis

* Invented “Godel numbering”

and “Godel fuzzy logic”

* Developed “Godel metric” and
paradoxical relativity solutions:
“G0del spacetime / universe”

» Made enormous impact on logic,
mathematics, and science

Continuum Hypothesis

The Consistency
of the

Kurt Godel
e ON FORMALLY
A UNDECIDABLE
Ay PROPOSITIONS
A OF PRINCIPIA
o MATHEMATICA
4 AND RELATED
e / SYSTEMS

by Kurt Gidel

]
»)] =

THERE S
WO, PROOF oF P

DLKVWT gt;d&(

\

e GODEL Mes Reflections on \

KurtGodel | gl | EINSTEIN Kurt Gadel
: COLLECTED | cort Godel TTYSE ' & | Hao Wang

WORKS Unpublished !

Philosophical Essays

>

Ve I

Publications 1929-1936 -
Francisco A. Rodriguez-Consuegra
oo

SOLOMON FEFERMAN
JOHN W DAWSON, JR. + STEPHEN C. KLEENI 3 ‘ g o e
GREGORY H. MOORE - ROBERT M. SOLOVAY B |

JEAN VAN HEIJENOORT : REBECCA W |

: \ GOLDSTEIN A LIFE OF 1LOGIC
Birkhauser L=

Thinking on _the

C

[a philosophy of faith]

JHE FORGOTTEN LEGACY OF L

GODEL anp EINSTEIN With'a Foreword by
Paul Davies

PALLE YOURGRAU

[
The Godel Programy

LECTURE NOTES IN LOGIC Karl Sigmund

John Dawson
Kurt Miihiberger

HAO WANG

GODEL 96

e 2| Kurt Gode

Das Album
The Album

A LOGICAL JOURNEY

From Gadel to Philosoplry

Patricia Hill
John Lioyd

Palle
Yourgrau GODEL'S INCOMPLETENESS = Ve Gédel, Putnam, and

TRECSEMS .w;; ;f:dstw =d g G O D E L,S Functionalism
Kurt G
ettt THEOREM A Y
NVl

' — ~ | SIMPLIFIED k‘k"ﬂo
o e A £H5
L]

Freundschaft

T 4 ; : ‘ 1EFF BUETHNER
’ 5 1 Harry). Gensler
ERNEST NAGEL AND s A | : S ngs SRA BRR nﬂ:
| JAMES R. NEWMAN CH.Beck » : i
8

CAMBRIDGE INTRODUGTIONS.TOPHILOSOPHY

Logical Dilemmas 112 MERCER STREET

forever i THE LIFE An Introduction to

AND WORK OF A ’,
H [\| DGE C|0[G)o E D - b ptoat Godel’s Theorems

Lo EINSTEIN, RUSSELL, GODEL, PAULI,

and the End of Innocence in Science

TO IS USE AND ABUSE JOHN W, DAWSON, JR.
P

~ = TORKEL FRANZEN

BURTON FELDMAN

AUTHOR OF THE NOBEL PRIZE

R Frege and Godel

2 Fundamental Texts in Mathematical Logic

f uosmeq M uyor

HIOM PUN USGEY IPRD NN

TEU) X1
TEUSNER-TEXT

TEUBNER-TRXT
TEUBNER-7EXT

STEUBNER-TRXT

Jean van Heijenoort, Ed.

TEURNER-TERT

Godel’s Incompleteness Theorem

Frege & Russell:
« Mechanically verifying proofs
« Automatic theorem proving

A set of axioms Is: ~
« Sound: Iff only true statements can be proved
« Complete: Iff any statement or its negation can be proved

« Consistent: iff no statement and Its negation can be proved

Hilbert’s program: find an axiom set for all of mathematics
l.e., find a axiom set that Is consistent and complete

GOdel: any consistent axiomatic system Is incomplete!
(as long as It subsume elementary arithmetic)

l.e., any consistent axiomatic system must contain true but
unprovable statements

Mathematical surprise: truth and provability are not the same!

4o

Godel’s Incompleteness Theorem

That some axiomatic systems are incomplete

IS not surprising, since an important axiom may
be missing (e.g., Euclidean geometry without
the parallel postulate)

However, that every consistent axiomatic system must be
Incomplete was an unexpected shock to mathematics!

This undermined not only a particular system (e.g., logic),
but axiomatic reasoning and human thinking itself!

Truth = Provability
Justice # Legality

Godel’s Incompleteness Theorem
GOdel: consistency or completeness - pick one! :

Which is more important?

Incomplete: not all true statements can be proved.
But if useful theorems arise, the system is still useful.

Inconsistent: some false statement can be proved.
This can be catastrophic to the theory:

ds

E.g., supposed in an axiomatic system we proved that “1=2".
Then we can use this to prove that, e.g., all things are equal!
Consider the set: {Bush, Pope}

| {Bush, Pope} | =2

— | {Bush, Pope} | =1 (since 1=2)

— Bush =Pope QED
— All things become true: system is “complete” but useless!

Godel’s Incompleteness Theoremﬁ‘

L ——

Moral: it Is better to be consistent than complete,
If you can not be both.

“It 1s better to be feared than loved, if you cannot be both.” ds
- Niccolo Machiavelli (1469-1527), “The Prince”

“You can have it good, cheap, or fast — pick any two.”
- Popular business adage

Thm: any consistent axiomatic system is incomplete!
Proof idea:

Godel’s Incompleteness Theoremﬁ

\.
Every formula is encoded uniquely as an\%@,téﬁ%r
Extend “Godel numbering” to fom%@g“equences gpté)‘f)fs’)

Construct a “proof checking” formula P(n,m)-@g‘é%'that
P(n,m) iff n encodes a proof of the formul@%@f’ncoded by m

Construct a se&kﬁ,@ferential formula that asserts its own
non-prov(ag@ilﬁ’ty: “I am not provable”

Shog@ﬁ?s formula is neither provable eSS
ndPdisprovable o Jaasdel
UNDECIDABLE

George Boolos (1989) gave shorter proof B S =

MATHEMATICA

based on formalizing BCI’I'y’S paradox AND RELATED |

The set of true statements i1s not R.E.!

SYSTEMS

i A
(Hemony Scioor)

——

"“YOU SIMPLY ASSOCIATE EACH NUMBER WITH A
WorRD, SUCA AS 'TABLE AND 3,476,019, "

Godel’s Incompleteness Theorem

Systems known to be complete and consistent:
 Propositional logic (Boolean algebra)

Predicate calculus (first-order logic) [Godel, 1930]
Sentential calculus [Bernays,1918; Post, 1921]) ;
Presburger arithmetic (also decidable) o

Systems known to be either inconsistent or incomplete:
« Peano arithmetic

 Primitive recursive arithmetic

« Zermelo—Frankel set theory

» Second-order logic

Q: Is our mathematics both consistent and complete?
A: No [GOdel, 1931]

Q: Is our mathematics at least consistent?
A:We don’t know! But we sure hope so.

Godel’s “Ontological Proof” that God exists!
Formalized Saint Anselm's ontological
argument using modal logic:

Ax. 1. Plp)AUOVz[p(z) — ¢ (z)] — P(v)

Ax. 2. P(-yp) « —=P(yp)

Th. 1. P(p) — ¢z [p(z)] ok

Df. 1. G(z) «= Vyp[P(p) — p(z)] —

Ax. 3. P(G)

Th. 2. ¢ 3z G(z) ,

Df. 2. pessz <= p(z) AV{¥(z) — OVzlp(z) — ()]} \

Ax. 4. P(p) — 0O P(p)

Th. 3. G(z) — Gessx | &

Df. 3. E(a) < Vylpessa — O3z p(z)] \i;—'l ‘

Ax. 5. P(E) | (/\ 3\\

Th. 4. O3z G(z)

_ ¥
For more details, see: -
.y = . .y = . GQODELS GONE WILD" WAS

http://en.wikipedia.org/wiki/Godel _ontological proof e

N
£
7 %
k3 3
5

9002-906 -

THERE
IS MO PROOF

OF P

=lox
Fle Edt Yew Hstory Bookmarks Iooks Help

@ - o | O [rtipeihas.oic.at - |G| cougte F:
[2] Most visited 4 Getting Started Latest Headines | | Custorize Links | | Fres Hotmall | | hetp:fjvwm.scientific-. | | Suggested Stes || Web Slice Gallery || Windows Marketplace | | Windows Media | | Windows

Google | godel socisty 7| |G search - @ o - DM - ¥F Bookmarkss 7239 -y aukolink | autoril (e Sendtor A [El godel [E] society (D settings-

Wolfram # -

.Welcome
.News and Activities

Lecture Series

R]

Welcome

The Kurt Gédel Society was founded in 1987 and is chartered in Vienna. It is an international

s organization for the promotion of research in the areas of Logic, Philosophy, History of
Publications Mathematics, above all in connection with the biography of Kurt Gédel, and in other areas to which
B e Godel made contributions, especially mathematics, physics, theology, philosophy and Leibniz
L studies.
.Organlzatlon
Our presidents Top News

.Useful links
.Membership

Application Form

09-06-08 12:00

Fourth Vienna Tbilisi Summer School in Logic and Language
For the third time students and teachers meet in Thilisi, Georgia, for a summer school. Please see

B Grants the conference page http://www.logic.at/tbilisi08/ fo... [more...]
.Gc'idel Fellowship
) 05-12-07 23:22
B kurt Godel . : .
Collegium Logicum Lecture Series
.Contact

6 December 2007, 16:00 Peter Schuster (LMU Miinchen) - Finite methods in commutative algebra
[more...]

15-11-07 12:27

Workshop Two and beyond
The KGS is organizing a workshop on truth-functional logics. [more...]

© 2004 Kurt Godel Society, Arnold Beckmann, Norbert Preining

X Find: Mext Previous & Highlight all [~ Match case

Done

¥JHorizons of Truth Goedel Centenary 2006 - Mozilla Firefox

Fle Edt ¥isw History Bookmarks Tools Help

=101x]

P—

‘"“"”"7’" C' X 72t ‘http:waw.\og\c.atﬂgoede\zﬂosﬂ

ﬁ M I" Google

2] ost visited % Getting Started . Latest Headlines | | Customize Links | | Free Hotmail | | httpijfwesy.scientific-.. | | Suggested Sites | | Web Slice Gallery | | Windows Marketplace | | Windows Media | | Windows

Google |

=] Glsearch - & b - M - §% Boskmarkss TR -y autolink] AutcRil [s Sendter

() Settings~

Wolfram |2 -

IEEEETE:

Horizons of Truth

Godel (eydendary 2006

Horizons of Truth
Logics, Foundations of Mathematics, and the Quest for Understanding the Nature of Knowledge

Godel Centenary 2006
An International Symposium Celebrating the 100th Birthday of Kurt Godel

27.-29. April 2006
Festsaal of the University of Vienna

Organized by:

The Kurt Gadel Society

Co-organized by:

University of Vienna, Institute for
Experimental Physics, Kurt Godel
Research Center, Institute Vienna Circle,
Vienna University of Technology,
Sponsored by:

The John Templeton Foundation

The Federation of Austrian Industry
The Federal Ministery of Infrastructure
The Federal Ministery of Education,
Sdence and Culture

The Government of the Ciry of Vienna
The Austrian Mathematical Society
Microsoft Corporation

DPrint this page

Horizons of Truth
Logics, Foundations of Mathematics, and the Quest for Understanding the Nature of Knowledge
Godel Centenary 2006
An International Symposium Celebrating the 100th Birthday of Kurt Godel

27.-29. April 2006
Festsaal of the University of Vienna

Organized by the Kurt Godel Society with the support of the John Templeton Foundation. Co-organized by the University of e
Vienna, the Institute for Experimental Physics, the Kurt Gédel Research Center, the Institute Vienna Circle, and the Vienna
University of Technology.

The purpose of the Symposium is to commemorate the life, work, and foundational views of Kurt Gédel, perhaps the greatest
logician of the twentieth century. In the spirit of Gédel's work, the Symposium will also explore current research advances and
ideas for future possibilities in the fields of the foundations of mathematics and logic. The symposium intends to put Gédel's ideas
and works into a more general context in the light of current understanding and perception. The symposium will also present
various implications of his work for other areas of intellectual endeavor such as artificial intelligence, cosmology, philosophy, and
theology.

The Symposium will take place 27-29 April in the Celebration Hall of the University of Vienna, famous for its architectural beauty
and the murals of Klimt. More than 20 lectures by eminent scientists in the fields of logics, mathematics, philosophy, physics, and
theology will provide new insights into the life and work of Kurt Gddel and their implications for future generations.

Contributions
The program will contain

Talks by the invited speakers

... P o - B R R RE R EE Ere d e f

© 2005 KGS

Opening
Ceremony

Home Program Godel Registration Exhibition Venue

| bone

Historical Perspectives .
Alonzo Church (1903-1995) &

 Founder of theoretical computer science

» Made major contributions to logic

e Invented Lambda-calculus, Church-Turing Thesis

* Originated Church-Frege Ontology, Church’s the
Church encoding, Church-Kleene ordinal,

e Inspired LISP and functional programming imnoues

* Was Turing’s Ph.D. advisor! Other students:
Davis, Kleene, Rabin, Rogers, Scott, Smullyan

 Founded / edited Journal of Symbolic Logic

e Taught at UCLA until 1990; published “A Theory
of the Meaning of Names™ in 1995, at age 92!

Introduction to
Mathematical
Logic

Adam Olszewski
Jan Wolenski
Robert Janusz (Eds.)

Church's Thesis
After 70 Years

ontos mathematical logic
Ediled by

Wolltzm Pohlets Thomes Scanion Erest Schimmerling Ralf Schincler Haimut Schwichienberg

ontos
U verlag

LAST NIGHT I DRIFTED OFF AT ONCE, JUST LIKE THEY SAID, T FELTA || TRULY, THIS WAS
WHILE READING A LisP Book. [l | GREAT ENUGHTENMENT. T SAW THE NAKED || THE LANGUAGE
4 STRUCTURE orUsP CODE UNFOLD &ron:m.

T MEAN, OSTENSIBLY, YES.
HONESTLY, WE HACKED MOsT
OF IT TOGETHER WITH PERL.

SUDDENLY I wAS BATHED SYNTAY FADED, AND I SWAM IN THE mmwor
IN A SUFFUSION OF BLUE. : :

http://fp.bakarika.net/

LISP 15 QVER HALT A
CENTURY QLD AND IT
STILL HAS THIS PERFECT,

IMELESS AIR ABOUT IT.

=]

T WONDER IF THE CYCLES THESE ARE YOUR
WILL CONTINUE FOREVER. FATHER'S PARENTHESES

Nttt I BRECTN
— l o
> 0

ELEGANT

-
-
e

—
=
=
—
=
—
=
—
—
-

—
—
—J

)

A FEW CODERS FROM EACH WEAPONS
NEW GENERATION RE-
DISCOVERING THE. LISP ARTS. FOR A MORE... CIVIUZED AGE.

A GODS LAMENT

SOME SAID THE \WORLD SHOULD BE IN PERL;

SOME SAID IN LISP

NOW, HAVING GIVEN BCTH A WHIRL,

I HELD WITH THOSE WHO FAVORED PERL.

BUT T FEAR WE pf@ﬁwm MEN

A DISAPPOINTING FOUNDING MYTH v :

. ' | AS oL KNOW, WEIRE [N 3o
Q%DSSS%D&}EHWTE IT ALL AGAIN, THE CIGHTH YEAR OF _ f‘f“\
A CLOSE -PAREN. OUR NORTHERN WARS RePUBLIC

: Bl AGAINGT THE HASKE(LERS |\ OF HASKELL
THERE ARE RUMORS THAT

MORE OF OUR TROOPS 1|
ARE DEFECTING TO THE) |

OTHER SIDC EVERY
DAY...

e

Historical Perspectives
Alan Turing (1912-1954)

» Mathematician, logician, cryptanalyst,
and founder of computer science
* First to formally define computation / algorithm
* Invented the Turing machine model
- theoretical basis of all modern computers
* Investigated computational “universality”
e Introduced “definable” real numbers
 Proved undecidability of halting problem
 Originated oracles and the “Turing test”
* Pioneered artificial intelligence
 Anticipated neural networks
» Designed the Manchester Mark 1 (1948)
» Helped break the German Enigma cypher
 Turing Award was created in his honor

1912-1954 ﬂ&;
Founder of computer science

and cryptographer, whoge work
L waskey to breaking the

-
3
2
2
2
a

b
<
<

~

8

&
e
3
g
2
&
&
3
a
Q

e
: B e (RO
e
/
—

Bletchley Park (“Staton X”), Bletchley, Buckinghamshire, England

England’s code-breaking and cryptanalysis center during WWI|I

iz

i)

> D
C =
= !
=L
(&)
Mm
(q0)

- D
< 'E
30
(@
S &
c £
2 o
)

EG
S D
Hm
= N
5 ©
=
E 5
S
Ct
c N
S ®
(=

S 3
hl
O O
et
2 e
Sl
=
)

(@ (o
v um
o =
_r
£
(@b

S 2
=t
o
TR D)

m Enigma - E User Manual

1918 First Enigma Patent

The official history of the Enigma starts in 1918, when the German Arthur Scherbius filed his first patent
for the Enigma coding machine. It is listed as patent number 416219 in the archives of the German Reicks-
patentamt (patent office). Please note the time at which the Enigma was invented: 1918, just after the First
World War, more then 20 years before WWII! The image below clearly shows the coding wheels (rotors) in
the centre part of the drawing. Below it is the keyboard and to the right is the lamp panel. At the top left is
a counter, used to count the number of letters entered on the keyboard. This counter can still be found on
certain Enigma models.

Arthur Scherbius' company Securitas was based in Berlin (Germany) and had an office in Amsterdam (The
Netherlands). As he wanted to protect his invention outside Germany, he also registered his patent in the
USA (1922), Great Britain (1923) and France {1923)

b
=T

1=

i
| SPECIAL EDITION

DOUGRAY KATE JEREMY SAFFRON
SCOTT WINSLET NORTHAM BURROWS

S

q

Y
(O0000000)
00000000

This irage is taken from patent number 193,035 that was registered in Great Britain in 1923, long before
WWIL It was also registered in a number of other countries, such as France and the USA.

During the 1920s the Enigma was available as a commercial device, available for use by companies and
embassies for their confidential messages. Remernber that in those days, most companies had to use
morse code and radio links for long distance communication. The devices were advertised having over
200.000 possibilities.

In the following years, additional patents
with improvemnents of the coding machine
were applied. E.g. in GB Patent 267,482,
dated 17 Jan 1927, the Umkehrwalze was
added and a later patent of 14 Nov 1929
[GB 343,146) claims the addition of the
Ringstellung, multiple notches, etc. One of
the drawings of that patent shows a coding
device, that we now know as The Enigma,
in great detail.

I3

(S T RO
23 30 SR D

Irereetel KARI@ O

52 httpefwww xat nlfenigma-e/ Ropger then

hwall sz 4 i
x rivebing, fefelipent;

Provocatice plax

THE CODE &

by hugh whitemore

based on the book
Alan Turing, The Enigma

1~ «| The Garden Suburb Theatre

A~ www.gardensuburbtheatre.org.uk
C; L 17 Upstairs at the Gatehouse A
Sz HEbEwe Villago N0 4BD AR

www upstal rasitbhegutehouse com oo s - 44 e bus Lt

—

4-7 Decembs};&zoos

by andrew hodges
..
directed by
phil rayner
e
\ - .‘. y
29w

it's not breaking the code
that matters - it's vhere
you g0 frum there

\

© 2002 hitp:/’mww.jinwicked.com -

JMANCHESTER UNIVERSITY COMPUTING MACHINE LABORATORY |

/ } ‘ L34 | [| : J’ro&nmn!\o Sheet 2} (b) !a-lw' | b 1
[3 Vo || B adlPSEN B ERovAU
1“‘,”?"{ f}é‘_)r.‘ ._;Y; : :‘;“qu‘;‘,’,,g{:lu‘ \:;Pk/.' ke &y
N e B e A 7 - 72272 o 2 I R e
DL T e s e
0 Y o O S50 1 P71 4 I
Lol tael L L]]] Ivieiylelals s i&ls]
! | f : !? i D 5] L:,f‘v.fﬂ AS&JT;“
¥ B N) A O A 38 °2 2 4 51 O3 2 i
L Pl lgst Ll L] L viklwinlsivitlsle
| I A O D O 2 6 oL AR
0 L [1 [Ju] | VK 2.8 l."i‘;“ﬁk’ﬂ
ST T E S R R
M B | I { I D 1 v. 7/ L olDlg T Vs
I R) P] | /s enlRluik T R |
L | BIK I U 9 e &z lmf)|Gik T A |
’ ' | | [N y Dis T T NGk/l.‘ {
| } e “e wnlFliL sy |
‘_ ‘ | | cl | | i smlclge el edsr
I S 0 0 G 4| B RN LY s = sand K2 2RV
T K I . “i.uic TEe 9 2h v
‘Z I A ¢ ! 3 Lo alZlanN T s
: I S [P L el e s fLfge TR
| | WH/‘/ : | IXINL . TW| v e &lo
| || [H[E=Pwlo I AR] RN
| I | |Y|£E 7P| /N /T | @AY V< @ B
; ' P By :::‘wv‘a, @-P on ‘V;/
(] |« e /T | EmnmmR Qv T A
‘ | | |oer|vn I K v nPlolg a 7|7 |
B / 5 Ble|cle =zl | | Bt o ‘
| G Kol Gxi/ 3-:‘7 G@ 2./ |G|lv MT|Z
€ DI T e B O e e Il
"““‘?7’" [| Mk’!b!/? L2 WM:F//
/'\..‘,{!_“ “ | Xleis s e Dwnvs WTI Xlgw 7 s
)+ [| V:iR wig el |VElT ey
ag e || | £l | "¢ voolczlelg T,

Program for ACE computer
hand-written by Alan Turing

-
f’\

CHARLES PETZOLD

ol

THE ANNOTATED

3

a ; *
c223% 6
TURING Exuns
R
A Guided Tour through-Alan Turing's | “l' Gl' tl' A

Historic Paper on Comptiability
and the Turing Maghine

ste =@ ® ‘")‘0 s.l'.'u
tans

s
oo
(]

ke A
¢ 2= EDITED BY = |
Al e e s

o

THE ESSENTIAL

TURING

A MADMAN DREAMS OF
Turing Machines

Christof Teuscher (€d.)

Alan Turing:
Life and Legacy
of a Great Thinker

6 Speinger - Janna Levin

DAVID

LEAVITT

o
N O
— =
- 2 = E5 L . Alan Turing and
the Invention
. l"lll'l' of the Computer
- >]
2 “"Jl‘ .
B =
L LN Z THE MAN WHO KNEW T0O MUCH
= I :
4 :,‘:’" : _
4 5
A.K.DEWDNEY e

‘ WUNIVERSAL .
1 l-COMPUTER

LU

Alan Turing

ALAN TURING’S
AUTOMATIC COMPUTING ENGINE

*« ONI¥NL O1L ZINSI3M HO¥d AVOY I HIL

: e OXFORD.
MARTIN DAVIS
5
RS OF MODER
A A
The Turing Test
and the R
-
Frame Problem omp W
anda a odebDreake f
Al's Mistaken Understanding
of Intelligence o -
3
TURING ?
Andrew Hodges
i .
(A Novel about Computation) Larry J. Crockett . /
Christos H. Papadimitrion) :
o A)
o\ ¥
\ WV £ B
BUR DIA o B

Turing and the
Universal Machine

Jon Agar

v Ry K P33

Asnins Aimuad-JjeH v

auIYERN Bunny [esIaAIUn YL
~

Springer-verlag

Wien New York The Making of the. Madern Computer

ST. VINCENT
& THE GRENADINES 20¢

AUANIMATHISONTURINGI1 9123195418

PM apologizes for treatment of gay code-breaker - CNN.com - Mozill (0] x|

Ble Edt Wew Hagtory Bookmarks ook Help

@ - H Icm‘httD1J'/www‘:nn‘cumJ'ZUUQ#WORLD/EWUDE/UB/1l/alarv‘turlng‘DEtltmn.apu\ugyflndex‘htm\ - I“_'"GDUQ\E 5
5] Mast wisted P Getting Started 5| Latest Headlines | | USurges cautionon ... | | Customize Links | | Free Hotmail | | hita:/fumws.scientific-... | | Suggested Sites |] Web Slice Gallery | | Windows Marketplace | | Windows Media |] Windows
Coogle [peHaviland & ~| Gl search - <\w‘.j G - M - ¥ Bockmarkss PR -y arolink T Autoril (e Sendter & [E] De [E] Havilend (Bl 5 & () settings-
Wolfram|# - H LR
| on British PM apologizes for treatment ... | = -
=
@\WN.com /euro pe Googl [searcr
HOME QRylei{iel US. POLITICS CRIME ENTERTAINMENT HEALTH TECH TRAVEL LIVING BUSINESS SPORTS TIME.COM =1 VIDEO IREPORT & IMPACT
Hot Topics » Barack Obama - Afghanistan - The Beatles + U.S. Open tennis - Connect The World « more topics » Weather Forecast International Edition

Live Now p BTN Blogger Bunch have today’s showbiz buzz; Join the chat!
" ||

Watch Now:

sssmy

D MI1He SHARE EMAIL SAVE PRINT

_gm = STORY HIGHLIGHTS
BrltISh PM ap0| oglzes for Online petition calling for apology for Alan Turing elicits response from UK PM i

L]
t t t f d b k e Gordon Brown issues statement apologizing for his "appalling” treatment
rea men 0 gay co e- rea er ¢ Turing committed suicide two years after undergoing chemical castration
* Best known for decoding messages from German Enigma machines in WWII
updated 6:17 a.m. EDT, Fri September 11,]2009 Next Article in World »

By Hilary Whitsman
CHNM

LONDON, England (CNN) -- British Prime Minister Gordon
"appalling” treatment of Alan Turing, the British code-breaker

own has issued a posthumous apology for the
o was chemically castrated for being gay.

Turing was just 41 years old when he committed 082 e it i
suicide, two years after urdergoing a court- New development builds
ordered chemical castratiom\He had been found ripped muscles legally

guilty of gross indecency for Hving a homosexual
relationship. The punishment in was either a
prison sentence or chemical castration. Turing
chose the latter.

In a statement on the British Government Web

£ portrait of Aan Turing is currently on display at the National site, Prime Minister Gordon Brown acknowledged
Portrait Gallery's "Gay lcons" exhibition Turing's "outstanding” contribution during World
War Il
1of3 L b HGH trumns adina brocess |
X Find: | ext A Previous &0 Hohigheal [Match case

Done 4

) British PM apologizes for treatment of gay code-breaker - CNM.com - Mozilla Firefox

=1D1x|

Eile Edit Yiew Higtory Bookmarks Tools Help

@ N (s | on | http:umy. e, com{ 2008/ ORLD europei08/1 1 /alan.turing. petition. apologyfindes: At v - I-'_I"Gougle P

£ Most Yisited ’ Getting Started . Latest Headlines J S urges cautionon ... J Customnize Links I_] Free Hotmail J hikkp:f fvmsw, scientific- . ,J Suggested Sites J ‘\Web Slice Gallery ,_] Windows Marketplace ,J Windows Media ,J Windows

Google [peravilends =] |G search - & G + [- £% Bookmarkss Pk -y auotink] uioril (@ Sendtor A4 [, pe (2 Haviland (2 8 & () settings-

Wolfram % - H B4 @ & 3

J o# British PM apologizes for treatment ... m F
=l

"He truly was one of those individuals we can point to whose unique contribution helped to turn
the tide of war," he wrote, adding, "The debt of gratitude he is owed makes it all the more
horrifying, therefore, that he was treated so inhumanely."

Turing is considered one of Britain's greatest mathematicians, a genius who is credited with
inventing the Bombe, a code-breaking machine that deciphered messages encoded by German
Enigma machines during World War Il.

He went on to develop the Turing machine, a theory that automatic computation cannot solve all
mathematical problems, which is considered the basis of modern computing.

Don't Miss Last month, the curious lack of public recognition for Turing's

. Petition seeks apology for contribution to the war effort and computing in general
Enigma code-breaker motivated computer programmer John Graham-Cumming to
Turing campaign on his behalf.

. Leaders mark 70th
anniversary of WWII The author of the "Geek Atlas," a travel guide for technology

enthusiasts, started an online petition, and soon attracted
high-profile signatories including scientist Richard Dawkins, actor Stephen Fry, author lan
McEwan and philosopher A.C. Grayling.

"| was surprised by both the number of people who signed and the fast response from the
government,” Graham-Cumming told CNN. He said the Prime Minister had called him personally
to relay news of the apology.

Stories about calls for a British apology were carried in newspapers in France, Switzerland,
Spain, Austria, Portugal Poland and the Czech Republic. Supporters set up an international

petition which attracted more than 10,000 signatures. E-mailtoafriend '~# | {] Mixxit | Share
Ads by Google

% Find: | Hext W Previous & Hahlght [Matgh case

Another famous belated apology

) For The First Time (or the last time): 1992: Catholic Church apologizes to Galileo, who died in 1642 - Mozilla

Flle Edit Wew History EBookmarks Took Help

File Edit Wiew Higtory Bookmarks Tools Help

¥2)For The First Time {or the last time): 1992: Catholic Church apologizes to Galileo, who died in 1642 - Mozilla

=101 x|

i . - N y i . " ¥ o 8. ["a] - —
c x L IB ‘ it f4thiefirsttime. blogspot. comf 2007 j05/1952-catholic-church-apolagizes-to.t B 7 I ' |Gnngla Ed - c x TR IB ‘ http:/f4thefirsttime. blogspot. com/2007/09/1992-catholic-church-apologizes-ta.h [3 T I"."| Google >
Most Wisited Getting Started 5 | Latest Headl us ti o Cuskf Links. Free Hotmail http:, B tific-... B
(0 e € i it W Lo |nes| Ij traes ceution an Ij stz I Ij ree Hetmal ﬁ Bl sontic @ Mozt Yisited ’ zetting Starked |5 | Latest Headlines |j US urges caution on .. \j Customize Links \j Free Hotmail |j hikkp:f e, scientific-. .. »
(;DOSIE catholic church apology ¢ 7| |G Search + 4 52 l& - [- $% Bookmarkss TRk oo nkolink ‘U AutoEl 2 @ Settings™
= GO(JSIE I(athulit church apology ¢ 'l C search ~ <|' @ E? A IR * Bookmarks~ E’Lﬂ': - % Autolink ﬁ Autofil G Send tor > @ Settings~
Wolfram)|£ - H| [~ WO IR 4 o=
- 6o it
J BFur The First Time {or the last time); ...| = F Wo].frarn|$ ||| # & o . ﬁ
:l J B For The First Time {or the last time): | - F
Monday, September 10, 2007 2l

1992: Catholic Church apologizes to Galileo, who
died in 1642

1
X

In 1610, Century Italian
astronomer/mathematician
/inventor Galileo Galilei used

a a telescope he built to

observe the solar system, and —
deduced that the planets

orbit the sun, not the earth.

This contradicted Church
teachings, and some of the
clergy accused Galileo of
heresy. One friar went to the
Inquisition, the Church court
that investigated charges of
heresy, and formally accused
Galileo. (In 1600, a man
named Giordano Bruno was
convicted of being a heretic for believing that the earth moved around
the Sun, and that there were many planets throughout the universe
where life existed.[Bruno was burnt to death.)

Galileo moved on to other projects. He started writing about ocean
tides, but instead of writing a scientific paper, he found it much more
interesting to have an imaginary conversation among three fictional
characters. One character, who would support Galileo's side of the
argument, was brilliant. Another character would be open to either side
of the argument. The final character, named Simplicio, was dogmatic
and foolish, representing all of Galileo's enemies who ignored an
evidence that Galileo was right. Soon, Galileo wrote up a si
dialogue called "Dialogue on the Two Great Systems of the
This book talked about the Copernican system.

Find: & net @ Previous s Highlisht sl [Mstchcase @) Phrase not found

‘ Done A

"Dialogue" was an immediate hit with the public, but not, of course,
with the Church. The pope suspected that he was the model for
Simplicio. He ordered the book banned, and also ordered Galileo to
appear before the Inquisition in Rome for the crime of teaching the
Copernican theory after being ordered not to do so.

Galileo was 68 years old and sick. Threatened with torture, he publicly
confessed that he had been wrong to have said that the Earth moves
around the Sun. Legend then has it that after his confession, Galileo
quietly whispered "And yet, it moves."

Unlike many less famous prisoners, Galileo was allowed to live under
house arrest. Until his death in 1642, he continued to investigate
science, and even published a book on force and motion after he had
become blind.

The Church eventually lifted the ban on Galileo's Dialogue in 1822,
when it was common knowledge that the Earth was not the center of
the Universe. Still later, there were statements by the Vatican Council

in the early 1960's and in 1979 that implied that Galileo was pardoned,

and that he had suffered at the hands of the Church. Finally, in 1992,
three years after Galileo Galilei's namesake spacecraft had been
launched on its way to Jupiter, the Vatican formally and publicly
cleared Galileo of any wrongdoing.

X Find: & next @ Previous & Highlight all [~ Match case) Phrase not found

| Done

Turing’s Seminal Paper

“On Computable Numbers, with an Application to the
Entscheidungsproblem”, Proceedings of the London
Mathematical Society, 1937, pp. 230-265.

 One of the most influential & significant papers ever!

P
2,

* First formal model of “computation”

* First ever definition of “algorithm?

 Invented “Turing machines”

* Introduced “computational universality”
1.e., “programmable’!

 Proved the undecidability of halting problem
 Explicates the Church-Turing Thesis

230 A. M. Torive [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. Turixsc.

1936.] ON COMPUTABLE NUMBERS. 231

have valuable applications. In particular, it is shown (§11) that the
Hilbertian Entscheidungsproblem can have no solution.

In a recent paper Alonzo Churcht has introduced an idea of *effective
calculability ”, which is equivalent to my ‘computability ", but is very
differently defined. Church also reaches similar conclusions about the
Entscheidungsproblem}. The proof of equivalence between *“computa-
bility ” and ‘“‘effective calculability * is outlined in an appendix to the
present paper.

[Received 28 May, 1936.—Read 12 November, 1936.]

The “computable’” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.

Although the subject of this paper is ostensibly the computable numbers,
it is almost equally easy to define and investigate computable functions
of an integral vaviable or a real or computable variable, computahle
predicates, and so ferth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will in¢lude a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§9. 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally he
regarded as computable. In particular, I show that certain large classes

of numbers are computable. They include, for instance, the real parts ot
all algebmic numbers, the real parts of the zeros of the Bessel functions.

/" the numbers w, ¢, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which s not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.

_ In § 8 I examine certain arguments which would seem to prove the contrary.

»

=p-| 1. Computing machines.

We have said that the computable numbers are those whose decimals
are calculable by finite means. This requires rather more explicit
definition. No real attempt will be made to justify the definitions given
until we reach §9. For the present I shall only say that the justification

lies in the fact that the human memory is necessarily Limited.

f We may compare a man in the process of computing a real number to N

machine which is only capable of a finite number of conditions ¢,, ¢, g,
which will be called ““m-configurations”. The machine is supplied with
“tape” (the analogue of paper) running through it, and divided into
sections (called ‘““squares’) each capable of bearing a “symbol”. At
any moment there is just one square, say the r-th, bearing the symbol &(»)

which is “in the machine”. We may call this square the “scanned
square’”. The symbol on the scanned square may be called the * scanned
symbol”. The ““scanned symbol” is the only one of which the machine
is, so to speak, “directly aware”. However, by altering its m-configu-

ration the machine can effectively remember some of the symbols which
it has ‘““seen’ (scanned) previously. The possible behaviour of the
machine at any mement is determined by the m-configuration ¢, and the
scanned symbol &(r). This pair ¢,, €(r) will be called the ** configuration ’ :

Qhus the configuration determines the possible behaviour of the machine—J

By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godelf. These results

In some of the configurations in which the scanned square 1s blank (i.e.
bears no symbol) the machine writes down a new symbol on the scanned
square: in other configurations it erases the scanned symbol. The
machine may also change the square which is being scanned, but only by
shifting it cne place to right or left. In addition to any of these operations
the m-configuration may be changed. Some of the symbols written down

t Gadel, “Uber formal unentscheidbare Sitze der Principia Mathematica und ver-
wandter Systeme, 17, Monetshefte Math. Phys., 38 (1931), 173-193.

t Alonzo Church, *“ An unsolvable problem of elementary number theory ™, American
J. of Math., 58 (1936), 345-363.

{ Alonzo Church, “ A note on the Entscheidungsproblem™, J. of Symbolic Logic, 1
(1936}, 40-41.

232 A. M. Torive [Nov. 12,
will form the sequence of figures which is the decimal of the real number
which is being computed. The others are just rough notes to ““assist the
memory . It will only be these rough notes which will be liable to erasure.

It is my contention that these operations include all those which are used
in the computation of a number. The defence of this contention will be
easier when the theory of the machines is familiar to the reader. In the
next section I therefore proceed with the development of the theory and
assume that it is understood what is meant by “machine”, *tape”,
“seanned ”’, ete.

2. Definitions.

Turing
_Autemmtic machines.

If at each stage the moticn of a machine (in the sense of §1)is completely
determined by the configuration, we shall call the machine an ““auto-
matic machine” (or g-maching).

For some purposes we might use machines {choice machines or
¢-machines) whose motion is only partially determined by the configuration
(hence the use of the word “possible”” in §1). When such a machine
reaches one of these ambiguous configurations, it cannot go on until some
arbitrary choice has been made by an external operator. This would be the
case if we were using machines to deal with axiomatic systems. In this
paper I deal only with autematic machines, and will therefore often omit
the prefix a-,

Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind
(called figures) consists entirely of 0 and 1 (the others being called symbols of
the second kind), then the machine will be called a computing machine.
If the machine is supplied with a blank tape and set in motion, starting
from the correct initial m-configuration, the subsequence of the symbols
printed by it which are of the first kind will be called the sequence computed
by the machine. The real number whose expression as a binary decimal is
obtained by prefacing this sequence by a dectmal point is called the
number computed by the machine.

At any stage of the motion of the machine, the number of the scanned
square, the complete sequence of all symbols on the tape, and the
m-configuration will be said to describe the complete configuration at that
stage. The changes of the machine and tape between successive complete
configurations will be called the moves of the machine.

1936.] ON COMPUTABLE NUMBERS. 233

Circular and circle-free machines.

If a computing machine never writes down more than a finite number
of symbols of the first kind, it will be called circular. Otherwise it is said to
be circle-free.

A machine will be cireular if it reaches a configuration from which there
is no possible move, or if it goes on moving, and possibly printing symbols
of the second kind, but cannot print any more symbols of the first kind.
The significance of the term “circular™ will be explained in §8.

Compultable sequences and numbers.

A sequence is said to be computable if it can be computed by a circle-free
machine. A number is computable if it differs by an integer from the
number computed by a circle-free machine.

We shall avoid confusion by speaking more often of computable
sequences than of computable numbers.

3. Kxamples of computing machines.

I. A machine can be constructed to compute the sequence 010101
The machine is to have the four m-configurations <57, «¢”, <%, =¢?
and is capable of printing 0" and <“1”. The behaviour of the machine is
deseribed in the following table in which ¢ B’ means ©“ the machine moves
so that it scans the square immediately on the right of the one it was
scanning previously ”’. Similarly for = L”. “E’ means *the scanncd
symbol is erased” and “P’’ stands for “prints”. This table (and all
succeeding tables of the same kind) is to be understood to mean that for
a configuration described in the first two columns the operations in the
third column are carried out successively, and the machine then goes over
into the m-configuration described in the last column. When the sccond
column is left blank, it is understood that the behaviour of the third and
fourth columns applies for any symbol and for no symbol. The machine
starts in the m-configuration b with a blank tape.

Configuration Behaviour
wm-config. symbol operations final mi-config.
b None Po, R ¢
¢ None R ¢
¢ None Pl R £

£ None B b

234 A, M. Turing [Nov. 12,

If (contrary to the description in § 1) we allow the letters I, R to appear
more than once in the operations column we can simplify the table
considerably.

m-confiy. symbol operations final m-config.
None PO b
b 0 R, R, P1 b
1 E, Rk, PO b

I1. As a slightly more difficult example we can construct a machine to
compute the sequence 001011011101111011111.... The machine is to
be capable of five m-configurations, viz. “o”, “q%, “p”, “f”, “b” and of
printing “9”’, <, <0’ *“1”. The first three symbols on the tape will
he “990”"; the other figures follow on alternate squares. On the inter-

mediate squares we never print anything but “z”". These letters serve to
*“keen the place” for us and are erased when we have finished with them.

We also arrange that in the sequence of figures on alternate squares there
shall be no blanks.

Configuratron Behaviour
m-config. symbol operations Jinal
m-config.

b Po, R, Po, R, PO, R, R, PO, L, L 0
(1 R, Px, L L L 0
0 1 o .
Any (0orl) R R q
) {None Pl, L P
% £ R q
» { @ R f
None L, L v
Any R,R f
f { None PO, L, L 0

To illustrate the working of this machine a table is given below of the
first few complete configurations. These complete configurations are
described by writing down the sequence of symbols which are on the tape,

1936.] OX COMPUTABLE NUMBERS. 235

with the m-configuration written below the scanned symbol. The
successive complete configurations are separated by colons.

19920 0:9020 0:990 0:900 0 tea0 O 1:
b 0 q 9 q - p
990 0 1l:290 © 1:290 O 1l:980 0 1:

p » f f
220 0 l:080 0 1 o0 0 1 0

f f v
saf 0 1z0: ...
o
This table could also be written in the form
b:oao0 O:as8g0 0O: ..., (

in which a space has been made on the left of the scanued symbal and the
m-configuration written in this space. This form is less easy to follow, but
we shall make use of it later for theoretical purposes.

The convention of writing the figures only on alternate squares is very
useful : Ishall always make use of it. I shail call the one sequence of alter-
nate squares F-squares and the other sequence £-squares. The symbols on
E-squares will be liable to erasure. The symbols on F-squares form &
continuous sequence. There are no blanks until the end isreached. There
is no need to have more than one F-square between each pair of f-squares:
an apparent need of more E-squares can be satisfled by having a sufficiently
rich variety of symbols capable of being printed on F-squares. If a
symbol 8 is on an F-square 8 and a symbol a is on the E-square next on the
right of S, then S and 8 will be said to be marked with a. The
process of printing this « will be called marking 8 (or §) with a.

4. Abbreviated tubles.

There are certain types of process used by nearly all machines, and
these, in some machines, are used in many connections. These processes
include copying down sequences of symbols, comparing sequences, erasing
all symbols of a given form, ete. Where such processes are concerned we
can abbreviate the tables for the m-configurations considerably by the use
of “skeleton tables”. In skeleton tables there appear capital German
letters and small Greek letters. These are of the nature of “*variables'
By replacing each capital German letter throughout by an m-configuration

236 A. M, Turva [Nov. 12,

and each small Greek letter by a symbol, we obtain the table for an
m-configuration.

The skeleton tables are to be regarded as nothing but abbreviations :
they are not essential. So long as the reader understands how to obtain
the complete tables from the skeleton tables, there is no need to give any
exact definitions in this connection.

Let us consider an example:

If there is no «
the m-configuration be-
g comes B.

f1(C, D, a)
None R B

If we were to replace € throughout by q (say), B by r, and o by =, we
should have « complete table for the m-configuration f(q, v,). fis called
an “m-confignration function” or ¢ m-function”.

The only expressions which are admissible for substitution in an
m-tunction are the m-configurations and symbols of the machine. These
have to be enumerated more or less explicitly : they may include expressions
such as p(v, x); indeed they must if there are any m-functions used at all.
1f we did not insist on this explicit emumeration, hut simply stated that
the machine had certain m-configurations (enumerated) and all m-configu-
rations obtainable by substitution of m-configurations in certain m-func-
tions, we zhould usually get an infinity of m-configurations; e.g., we might
say that the machine was to have the m-configuration q and all m-configu-
rations obtainable by substituting an m-configuration for €in p(€). Then

it would have g, p(q), p(p(q)), p(p(p(q))),

Our interpretation rule then is this. We are given the names of the
m-configurations of the machine, mostly expressed in terms of m-functions.
\We are also given skeleton tables. All we want is the complete table for
the m-configurations of the machine. This is obtained by repeated
substitution in the skeleton tables.

becomes €.
None B (6,8, a) then

m-config. Symbol Behoviour Final
-confiy.
Ia L (€ B, a) From the m-configuration
HE,®,a) o I icwa T(ED e the machine finds the
(moto L flE3.q) symbol of form a which is far-
[a ¢ thest to the left (the ““first a”)
(G, B,) {not « R §(G 5,4 and the wm-configuration then

f2(C, 0. a) Jlnot a R

as m-configurations.

1936.] OX COMPUTABLE NUMBERS. 237

Further examples.

(In the explanations the symbol “— " is used to signify * the machine
goes into the m-configuration. . . .")

e(6,D,a) fex(€, B, a), B, a)
¢{€,®B,0) E G

From ¢(€, ¥, «) the first o is
erased and — €. If there is no

a5,

e(B, o) c(e(?B, a), B, a) From ¢(B, o) all letters a arc

erased and — 9.

The last example seems somewhat more difficult to interpret than
most. Let us suppose that in the list of sm-confignrations of some machine
there appears c{b, x) (==gq, say). The table is

c(b, z) c(c(b, x), b, 1:)
or q efq, b, 2)

Or, in greater detail:

q C(‘]: [‘: 1’)
C(\L E‘J :C) f(%("{: [’: :U): [!: :’J\)
¢ (\1: b: 1’) E q.

In this we could replace ¢y(g, b,) by o and then give the table for f (with
the right substitutions} and eventually reach a table in which no
m-functions appeared.

pe(€, B) f(pc,_(@,ﬁ), @,a) From pc (€, B) the machine

Any R R 5,(C, B) prints 8 at the end of the

pe, (€, B) { ' sequence of symbols and - €.
None Pf ¢

(&) L ¢ From §'(C. B, a) it does the

¢ (@) R G same as for f{€, B, a) but

moves to the left before — C.

(€, 3B, a) £1(€), B, a)

(€, B, a) F{r(€), B, o}

(€, B, a)
c1(€) B

f(cn(€), B, a) ¢(€, B, a). The machine
pe(G, B) writes at the end the first sym-
bol marked « and - G.

238 A. M. Turmve [Nov. 12,

The last line stands for the totality of lines obtainable from it by
replacing 8 by any symbol which may occur on the tape of the machine
eoncerned.

(€, B, a) c(c(@, B,a), B, a) ce{B, a). The machine
copies down in order at the
(B, a) € (CE(‘I‘J, a), B, a) end all symbols marked «

and erases the letters ¢ ; - B.

F(rey(€, 9, 0, 8), B, , The ma-
chlné I the first a by

0 (€,9,0.f) E,PB ¢ — B if there is no a.

w(D, a, B) s xc (3, a0, 8), ;@ ﬁ The machine re-
g lacesal lettersa by 8; —%9.

oG, B a) t{lt , o} differs from
ce ‘b a) only in that the

e, %&Qf’ re(D, 0, a), ‘1 letters a are not erased. The

m-configuration (B, a) is

taken up when no letters
“@° are on the tape.

w(C, B, a, B)

(€9 e P {pa(& %, B (Y, €, B}, a)
(8, %, B) v F (ewa(€ U,), %, B)
€
UM CCR S J’
Pl v) | not y o,

The first symbol marked « and the first marked f are compared. If
iheve is neither @ nor 8, = €. If theve are both and the symbols are alike,
— €. Otherwise — 9.

pe(G, 9, €, a, 8) e <c(c(@:, €8, Ca) ¥ Eap)
ape(€, U, €, o, B) differs from ep{Q, U, €, a, B) in that in the case when
there is similarity the first « and B are erased.

ope(Y, €, a, 8) pe (cpe(ﬁ[, e f),Y Ea B)

cpe(¥, €, a,8). The sequence of symbols marked a is compared with
the sequence marked 8. — € if they ave similar. Otherwize —+ 2. Some
of the symbols « and B are erased.

1936.] ON COMPUTABLE NUMBERS. 239
{Any R q(€) q{€, a). The machine
() finds the last symbol of
None £ %(€) form «. - €.
Any R q(€)
€
fal None €
1€ a) 9 (au(&)]
a €
g,
(&) not a L 91(C, a)
e(€, a, B) pe(pe(§, B), o) p¢o{€, &, B). The machine
prints o 8 at the end.
¢, (B, a, B) ce(cc(‘li, B, a) cey(%B, e, 8,7). The mach-
ine copies down at the end
(B, a, B, 7) ce (“2(%: B.v), ‘1) first the symbols marked a,
then those marked B, and
finally those marked y; it
erases the symbols a, B, ».
a R e (&) From ¢(€} the marks are
e(€) Noto L e(6) erased from all marked sym-
bols. — €.
fAny R, E R e, (€)
e (€)
None €

5. Enumeration of compuiable sequences.

A computable sequence y is determined by a description of a machine
which computes . Thus the sequence 001011011101111... is determined
by the table on p. 234, and, in fact, any computable sequence is capable of
being described in terms of such a table.

It will be useful to put these tables into a kind of standard form. In the
first place let us suppose that the table is given in the same form as the first
table, forexample, I on p. 233. Thatis to say, that the entry in the operations
columnisalwaysofoneoftheforms £: B, B: E, L: Pa: Po,R: Pa,L: R: L:
or no entry at all. The table can always be put into this form by intro-
ducing more m-configurations. Now let us give numbers to the m-configu-
rations, calling them ¢, ..., g, as in §1. The initial m-configuration is
always to be called q,. We also give numbers to the symbols 8,,...., 8,

240 A. M. Turmve [Nov. 12,

and, in particular, blank = 8,, 0 = §,, 1==8,. The lines of the table are
now of form

FPinal
m-config. Symbol Operations m-config.
% 8, PS8, L I (¥))
4 8, P8, B Im (V)
g 8; P8, T (N3)
Lines such as
'l S; E, B T
are to be written as
% Sy P8y, B I
and lines such as
% 8, R @
to be written as
9 SJ' P Si’ R Qm

In this way we reduce each line of the table to a line of one of the forms
(N1)3 (ATZ): (Na)

From each line of form (N,) let us form an expression ¢;8; 8, L¢,.;
from each line of form (&,) we form an expression g;8;8,Rq,;
and from each line of form (&) we form an expression ¢; 8, 8, N g,,.

Let us write down all expressions so formed from the table for the
machine and separate them by semi-colons. In this way we obtain a
complete description of the machine. In this description we shall replace
g; by the letter «<“ D’ followed by the letter “* 4 ” repeated ¢ times, and §; by
« D followed by “C" repeated j times. This new deseription of the
machine may be called the standard description (8. D). It is made up
entirely from the letters «“ A4, < C», «D”, «L” «E” <N and from

If finally we replace “4 ™ by <1, “C” by 27, “D” by “37, «“L>
by 4, “R” by “5”, “N” by “6”, and «“3” by “7” we shall have a
description of the machine in the form of an arabic numeral. The integer
represented by this numeral may be calied a description number (D.N) of
the machine., The D.N determine the 8. and the structure of the

1636.] ON COMPUTABLE NUMBERS. 241

machine uniquely. The machine whose DN is #n may be described as
M)

To each computable sequence there corresponds at least one description
number, while to no description number does there correspond more than
one computable sequence. The computable sequences and numbers are
therefore enumerable.

Let us find a description number for the machine I of §3. When we
rename the m-configurations its table becomes:

4 8, P8, R s
g, 8, P8, R s
qs S, PS,, B s
3 8, PS,, R ¢

Other tables could be obtained by adding irrelevant lines such as
q A PS, R s
Our first standard form would be
0188, Reyy 928,58, Rqs; 438,58 Rqy; 948,85, Byyse
The standard description is
DADDCRDAADAADDRDAAA;
DAAADDCCRDAAAA ;DAAAADDRDA ;
A description number is
31332531173113353111731113322531111731111335317
and so is
3133253117311335311173111332253111173111133531731323253117

A number which is a description number of a circle-free machine will be
called a satisfactory number. In §8itis shown that there can be no general
process for determining whether a given number is satisfactory or not.

| 8. The universal computing machine. |

It is possible to invent a single machine which can be used to compute
any computable sequence. If this machine 40 is supplied with a tape on

the beginning of which 1s written the S.D of some computing machine M,
8ER. 2. voL. 42. No, 2144. R

242 A. M. TvriNG [Nov. 12,
then U will compute the same sequence as AL, In this section I explain
in outline the behaviour of the machine. The next section is devoted to
giving the complete table for L.

Let us first suppose that we have a machine AL’ which will write down on
the F-squares the successive complete configurations of AL. These might
be expressed in the same form as on p. 235, using the second description,
(C), with all symbols on one line. Or, better, we could transform this
description (as in §5) by replacing each m-configuration by “.D”’ followed
by ‘4" repeated the appropriate number of times, and by replacing each
symbol by <D followed by “C’ repeated the appropriate number of
times. The numbers ofletters .47 and ¢« €'’ are to agree with the numbers
chosen in §5, so that, in particular, <0’ is replaced by “DC”, “1” by
«“DCC”, and the blanks by “D”. These substitutions are to be made
after the complete configurations have been put together, as in (C). Diffi-
culties arise if we do the substitution first. In each complete configura-
tion the blanks would all have to be replaced by *“ D , so that the complete
configuration would not be expressed as a finite sequence of symbols.

If in the description of the machine IT of § 3 we replace ““ o by “ DAA4 ”,
“9” by “DCCC”, “q” by “DAAA", then the sequence (C) becomes :

DA:DCCCDCCCDAADCDDC:DCCCDCCCDAAADCDDC ... (Cy)

{This is the sequence of symbols on F-squares.)

It is not difficult to see that if .ii. can be constructed, then so can Al.
The manner of operation of .4\’ could be made to depend on having the rules
of operation (i.e., the 8.D) of .\\. written somewhere within itself (z.e. within
AV); each step could be carried out by referring to these rules. We have
only to regard the rules as being capable of being taken out and ex-
changed for others and we have something very akin to the universal
machine.

One thing is lacking : at present the machine A\’ prints no figures. We
may cotrect this by printing between each suecessive pair of complete
cunfigurations the figures which appear in the new configuration but not
in the old. Then (C,} becomes

DDA:0:0:DCCCDCCCDAADCDDC: DCCC. ... (C,)

It is not altogether obvious that the E-squares leave enough room for
the necessary * rough work ", but this is, in fact, the case.

The sequences of letters between the colons in expressions such as
(C,) may be used as standard descriptions of the complete configurations.
‘When the letters are replaced by figures, as in §5, we shall have a numerical

1936.] ON COMPUTABLE NUMBERS. ' 243

description of the complete configuration, which may be called its descrip-
tion number.

[7. Detarled description of the wniversal machine.

A table is given below of the behaviour of this universal machine. The

m-configurations of which the machine 1s capable are all those oceurring
the first and last columns of the table, together with all those which cccur
when we write out the unabbreviated tables of those which appear in the
table in the form of m-functions. E.g., e(anf) appears in the table and is an
m-function. Its unabbreviated table is (see p. 239)

) R ¢, (anf)
¢(anf) ‘

not o L efanf)

Any R, E, R ¢, (anf)
es(anf) { None anf

Consequently e;{anf) is an m-configuration of L.

When 11 is ready to start work the tape running through it bears on it
the symbol @ on an F-square and again s on the next E-square; after this,
on F-squares only, comes the 8.D of the machine followed by a double
colon ¢::" (a single symbol, on an F-square). The S.D consists of a
number of instructions, separated by semi-colons.

Each instruction consists of five consecutive parts

(i) =D followed by a sequence of letters *A”. This describes the
relevant m-configuration,

(ii) «“D” followed by a sequence of letters “C*’. This describes the
scanned symbol,

(iiiy “D” followed by another sequence of letters «“(C’’. This
describes the symbol into which the scanned symbol is to be changed.

(iv) L7, «“R"”, or “N”, describing whether the machine is to move
to left, right, or not at all.

(v) “D” followed by a sequence of letters <A, This describes the
final m-configuration.

The machine 4l is to be capable of printing «“ 47, < C”, “D”, «“0”,
L1V g e g g oy 2 The 8.D is formed from *;”,
.uA”, (rC”, HD”, NL”, t;R!’, “N”.

R2

244 A. M. Turing [Nov. 12,

Subsidiary skeleton table.

Not4 R, R con(Q, a) con(€,). Starting from

con(€, a) { an F-square, S say, the se-
4 L Pa, B cony(€ a) quence C of symbols describ-

A R Pa,R con(C,a) ing a configuration closest on

the right of § is marked out
with letters . — €.

con, (G, a) {
D R, Pa, B cony(§, a)

C
con, (G, a)
NotC R.R ¢

R, Pa, B con,(€, a) con(€,). In the final con-
figuration the machine is
scanning the square which is
four squares to the right of the
last square of €. C is left
unmarked.

The table for 1.

b f(by, 0y, 12)
b, R, R, P:,R R, PD R R, PA anf

5. The machine prints
:D4 on the F-squares after
11— anf.

anf glanfy, 1) anf. The machine m X
the configuration i

anf, con(fom, y) complete eonﬁ%&: with
Y. %foﬁ\

; R Pz, L con(bmyp, 2) Qn he machine find (,
last semi-colon
fom ? L L Fom marked with z.
not z nor ; L fom this semi-colon wih nd

the confi 6& Sllowing
it wmh x%

Emyp cpc(c(fom, z, y), $im, 2, ¥ The machine com-

cE the sequences marked
z and y. It erases all letters
xz and y. — ¢im if they are
alike. Otherwise —Fom.

anf. Taking the long view, the last instruction relevant to the last
configuration is found. It can be recognised afterwards as the instruction

following the last semi-colon marked z. — dim.

%\Oﬂ' Nonse P: 8h

f(80,, inst, u)

1936.]
gim f'(sim,, 8imy, 2)
dim, con (simy,,)
A $img
$im,
notd R, Pu,R R, R 8imy,

not 4 L, Py efmt, z)
$im,

A L,Py,R,E,E sim,

‘mt g(mf, o)
not 4 R, R \ mi;
me, °
L4 L, L\ mé,
c S 8y L, L, L mb,

mf, ‘b mi, 0
Q R, Pz, L, L, I mt CJ

not : R, Py, L mé,

«g&% I L
eon (I([(mfa)),)

" Q&O

1y B, Pw, R mi;

ﬁbl L: L’ L sf}Z
D B, R E R 80,
8, .
net D inst
c R, R 80,
8
ba not & ingt
c R, R 8h;
8B, ,
not pes(inst, O,
C inst
865 .
not ¢ pey(inst, 1,

)

)

ON COMPUTABLE NUMBERS. 245

sim. The machine marks out
the instructions. That part of
the instruetions which refers to
operations to be carried out is
marked with %, and the final m-
configuration with y. The let-
ters z are erased.

mf. The last complete con-
figuration is marked out into
four sectio The configura-
ration i Wnmarked. The
Sy1 1§ctly preceding it is
@ with £. The remainder

the complete configuration
is divided into two parts, of
which the first is markecd with
» and the last with w. A colonis
printed after the whole. — ¢b.

8. Theinstructions (marked
») are examined. If it is found
that they involve ““Print 0™ or
“Print 17, then 0: or 1: is
printed at the end.

246 A. M. TurixNg [Nov. 12,

ingt g(I(inétl), u) ingt. The next complete
configuration is written down,

ingt, a« R E insta) carrying out the marked instruc-

inst, (L) cey (09, ¥, y, T, %, W) tions. The letters u, v, w, z, ¥
. are erased. —anf.

inst, (R) ces(00, v, T, u, Y, W)

inst, (V) ecs(on, v, 2, Y, o, W)

oo c(anf)

8. Application of the diagonal process.

It may be thought that arguments which prove that the real numbers
are not enumerable would also prove that the computable numbers and
sequences cannot be enumerable®. It might, for instance, be thought
that the limit of a sequence of computable numbers must be computable.
This is clearly only true if the sequence of computable numbers is defined
by some rule.

Or we might apply the diagonal process. ¢ If the computable sequences
are enumerable, let a, be the n-th computable sequence, and let ¢, (m) be
the m-th figure in o,. Let B be the sequence with 1—¢,(n) as its n-th
figure. Since f is computable, there exists a number K such that
l—~¢,(n)=¢y(n) all n. Putting n =K, we have 1= 2¢(K), te. 1 is
even. This is impossible. The computable sequences are therefore not
enumerable .

\ The fallacy in this argument fies in the assumption that 8is computableJ

It would be true if we could enumerate the computable sequences by finite
means, but the problem of enumerating computable sequences is equivalent
to the problem of finding out whether a given number is the D.N of a
circle-free machine, and we have no general process for doing this in a finite
number of steps. In fact, by applying the diagonal process argument
correctly, we can show that there cannot be any such general process.

The simplest and most direct proof of this is by showing that, if this
general process exists, then there is a machine which computes 8. This
proof, although perfectly sound, has the disadvantage that it may leave
the reader with a feeling that *there must be something wrong”. The
proof which I shall give has not this disadvantage, and gives a certain
insight into the significance of the idea “circle-free”’. It depends not on
constructing 8, but on constructing 8’, whose n-th figure is ¢, (n}.

* Cf. Hobson, Theory of functions of a real variable (2ud ed., 1921), 87, 88,

1936.] ON COMPUTABLE NUMBERS. 247

Let us suppose that there is such a process; that is to say, that we can
invent a machine © which, when supplied with the 8.D of any computing
machine A\ will test this S.D and if AL is circular will mark the $.D with the
symbol “u«”’ and if it is circle-free will mark it with <“s”. By combining
the machines ©. and & we could construct a machine 11 to compute the
sequence . The machine © may require a tape. We may suppose that
it uses the E-squares beyond all symhbols on F-squares, and that when it
has reached its verdict all the rough work done by . is erased.

The machine /1 has its motion divided into sections. In the first N —1
sections, among other things, the integers 1, 2, ..., N—1 have been written
down and tested by the machine ©.. A certain number, say R(N--1), of
them have been found to be the D.N’s of circle-free machines. Inthe N-th
section the machine L. tests the number N. TIf NV is satisfactory, ¢.e., if it
is the D.N of & circle-free machine, then R(N)= 1+ R{N¥N—1) and ihe first
R(N) figures of the sequence of which a TN is N are calculated. The
R(N)-th figure of this sequence is written down as one of the figures of the
sequence A’ computed by Jl. If ¥ isnot satisfactory, then B(N)= R(N-—-1)
and the machine goes on to the {¥-+1)-th section of its motion.

From the construction of JI. we can see that il i circle-free. Each
section of the motion of i comes to an end after a finite number of steps.
For, by our assumption about ©, the decision as to whether N is satisfactory
is reached in a finite number of steps. If N is not satisfactory, then the
N-th section is finished. If N issatisfactory, this means that the machine
AL(N) whose D.N is N is circle-free, and therefore its R(N)-th figure can be
caleulated in a finite number of steps. When this figure has been calculated
and written down as the R{¥)-th figure of 8, the N-th section is finished.
Hence 1l is circle-free.

Now let K be the D.N of Ji. What does il do in the K-th section of
its motion? Tt must test whether K is satisfactory, giving a verdict s’
or “u4”, Since K is the D.N of 1\ and since J. is circle-free, the verdict
cannot be “#”. On the other hand the verdict cannot be **s”. For if it
were, then in the K-th section of its motion | would be bound to compute
the first R(K—1)+1= R(K) figures of the sequence computed by the
machine with K as its)N and to write down the R(K)-th as a figure of the
sequence computed by #1. The computation of the first R(K)~—1 figures
would be carried out all right, but the instructions for calculating the
R(K)-th would amount to “calculate the first. R{K) figures computed by
H and write down the B(K)-th”. This R(K)-th figure would never be
found. I.e.,)} is circular, contrary both to what we have found in the last
paragraph and te the verdict “s’’. Thus both verdicts are impossible
and we conclude that there can be no machine 1.

248 A. M. Turixe [Nov. 12,

We can show further that there can be no machine & which, when
supplied with the 8.D of an arbilrary machine \\, will determine whether .\
ever prinis a giwen symbol (0 suy).

We will first show that, if there is a machine £, then there is a general
process for determining whether a given machine .\l prints 0 infinitely
often. Let .\l; be a machine which prints the same sequence as i, except
that in the position where the first 0 printed by .|l stands, Al, prints 0.
Alyi5 to have the first two symbols 0 replaced by 0, and so on. Thus, if . |l
were to print

ABA0144B00104B...,

then i, wonld print
AB4014A4AB00104B...
and .1, would print
ABAVIAABO0O104B....

Now let 7% be a machine which, when supplied with the 8.D of .11, will
write down suceessively the 8.1 of Ui, of .1y, of .11, ... (there is such a
machine). We combine I with { and obtain a new machine, . In the
motion of & first O is used to write down the S.I) of -, and then { tests
it.:0: iy written if it is found that . U never prints 0; then writes the S.D
of .11, and this is tested, : 0 : being printed if and only if . l; never prints 0,
and so on. Now let us test ¢, with ¢, Ifitis found that {§ never prints 0,
then .1l prints 0 infinitely often; if (; prints 0 sometimes, then .1l does not
print O infinitely often.

Similarly there is a general process for determining whet plmtq 1
infinitely often. By a combination of these processes X 2 process
for determining whether . i prints an infinity of i %e aVve a Process
for determining whether .\ is circle-free. T%an therefore be no
machine {,

uivalent to “there is a machme

The expression “there is a gener; W for determining ...” has
heen used throughout thJS 5g Xq
which will determine . Qﬁge can be justified if and only if we

can justity our defimt w computable ”. For each of these **general
process ” problems o WC\pIBSSBd as a problem concerning a general
process for dete @\hethm a given integer » has a property /(%) [e.g.
(n) mi %n iz satisfactory’’ or “= is the Godel representation of
a provdple formula], and this is equivalent to computing a number
whose n-th figure is 1 if & (n) is true and 0 if it is false.

1936.] ON COMPUTABLE NUMBERS. 249

9. The extent of the computable numbers.

No attempt has yet been made to show that the “ computable’” numbers
include all numbers which would naturally be regarded as computable. All
argnments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is “ What are the possible processes which ean he
carried out in computing a number?”’

The arguments which I shall use are of three kinds.

(@) A direct appeal to intwition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(¢) Giving examples of large classes of numbers which ave
computable.

Once it is granted that computable numbers are all *“computable ™
several other propositions of the same character follow. In particular, it
follows that, if there is a general processfor determining whether a formula
of the Hilbert function calculus is provable, then the determination can be
carried out by a machine.

I. [Type (@¢)]. This argument is only an elaboration of the ideas of § 1.

Computing is normally done by writing certain symbols on paper. e
may suppose this paper is divided into squares like a child’s arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
one-dimensional paper, ¢.e. on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extentt. The effect of this restriction of the number
of symbols is not very serious. [t is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as

t If we regard & symbol as literally printed on & square we may suppose that the square
0Lz, 0<y<1. The symbol is defined as a set of points in this square, viz. the
set occupied by printer’s ink. If these sets are restricted to be measurable, we can detine
tho “distance ' between two symbols as the cost of transforming one symbol into the
other if the cost of moving unit ares of printer’s ink unit distance is unity, and there is an
infinite supply of ink at = 2, y = 0. 'With this topology the symbols fonin a condition-
ally compact space.

250 A. M. TuriNeg [Nov. 12,

17 or 999999999999999 is normally treated as a single symbol, Similarly
in any European language words are treated as single symbols (Chinese,
however, attempts to have an enumerable infinity of symbols). The
differences from our point of view between the single and compound symbols
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is cbserving, and his “ state of mind’’ at that moment.

We may suppose that there is a hound B to the number of symbols or
squares which the computer can observe at one moment. If ke wishes to
(" observe more, he must use successive ohservations. We will also suppose
that the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be " arbitrarily elose ”’ and will be confused. Again, the restriction
is not one which seriously affects computation, since the use of more compli-

\ cated states of mind can be avoided by writing more symbols on the tape.)

Let us imagine the operations performed by the computer to be split up
into “simple operations > which are so elementary that it is not easy to
imagine them further divided. Every such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes
ean be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in
regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
“observed”” squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares
must be immediately recognisable by the computer. Ithinkitis reasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previcusly observed square.

In connection with “immediate recognisability ”’, it may be thought
that there are other kinds of square which are immediately recognisable.
In particular, squares marked by special symbols might be taken as imme-

1936.] ON COMPUTABLE NUMBERS. 251
diately recognisable. Now if these squares are marked only by single
symbols there can be only & finite number of them, and we should not upset
our theory by adjoining these marked squares to the observed squares. If,
on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers
do not go beyond (say) 1000. 1t is, thevefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we
might reach Theorem 157767733443477 ; then, further on in the paper, we
might find * ... hence (applying Theorem 157767733443477) we have ... ",
In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure, possibly ticking the figures off
in pencil to make sure of their not being counted twice. If in spite of this
it is still thought that there are other ““immediately recognisable’ squares,
it does not upset my contention so long as these squares can be found by
some process of which my type of machine is capable. This idea is
developed in III below.

[The simple operations must therefore include: \

{a} Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another squarc
within L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of
state of mind. The most general single operation must therefore be taken
to be one of the following:

(A} A possible change (a) of symbol together with a possible
change of state of mind.

(B) A possible change (b) of observed squares, together with a

possible change of state of mind.

The operation actually performed is determined, as has been suggested
on p. 250, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after the
operation is carried out.

We may now construet a machine to do the work of this computer. To
each state of mind of the computer corresponds an *“m-configuration™ of
the machine. The machine scans B squares corresponding to the B squares
observed by the computer. Inanymove the machine canchange a symbol
on a scanned square or can change any one of the scanned squares to another
square distant not more than L squares from one of the other scanned

252 A. M. TurmNG [Nov. 12.

squares. The move which is done, and the succeeding configuration, are
determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing
machines as defined in § 2, and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence,
that is to say the sequence computed by the computer.

II. [Type (b)].

If the notation of the Hilbert functional calculust is modified so as to
be systematic, and so as to involve only a finite number of symbols, it
becomes possible to construct an automaticl machine ¥, which will find
all the provable formulae of the calculus§.

Now let ¢ be a sequence, and let us denote by ,(z) the proposition
“The z-th figure of a is 1 7, so that” — (¢ {x) means *“ The z-th figure of a
is 0. Suppose further that we can find a set of properties which define
the sequence a« and which can be expressed in terms of G (x) and of the
propositional functions N{z) meaning “z is a non-negative integer” and
F(z, y) meaning “y =ax+1", When we join all these formulae together
conjunctively, we shall have a formula, ¥ say, which defines a. The terms
of % must include the necessary parts of the Peano axioms, viz.,

(5%) ¥ (u) & (2) (¥ (2) > (39) Flo, 9)) & (Flo, 9) > N (),

which we will abbreviate to P.

When we say “% defines e”’, we mean that —% is not a provable
formula, and also that, for each %, one of the following formulae (A,) or
(B,) is provable.

H]

A & F - G (wt), (A

¢ PO (= (), (B,

where F stands for F(w, ') & Flu', «'") & ... Pu®=, wt™),

1936.] ON COMPUTABLE NUMBERS. 253

I say that « is then a computable sequence: a machine I, to compute
a can be obtained by a fairly simple modification of I.

We divide the motion of 3, into sections. The n-th section is devoted
to finding the n-th figure of «. After the (n—1)-th section is finished a double
colon ::is printed after all the symbols, and the succeeding work is done
wholly on the gquares to the right of this double colon. The first step is to
write the letter *“ 4 " followed by the formula (A,) and then ©“ B* followed
by (B,). The machine ¥, then starts to do the work of J¢, but whenever
a provable formula is found, this formula is compared with {A,} and with
(B,). Ifitisthesameformulaas(A,), then the figure *“1° is printed, and
the n-th section is finished. Ifitis (B,), then *“ 0’ is printed and the section
is finished. If it is different from both, then the work of ¥ is continued
from the point at which it had been abandoned. Sooner or later one of
the formulae (A,) or (B,) is reached; this follows from our hypotheses
about @ and U, and the known nature of J¢, Hence the n-th section will
eventually be finished. 3¢, is circle-free; a is computable.

It can also be shown that the numbers a definable in this way by the use
of axioms include all the computable numbers. This is done by describing
computing machines in terms of the function calculus,

(" to the phrase < ¥ defines a”’. The computable numbers do not include all
{in the ordinary sense) definable numbers. Let § be a sequence whose
n-th figure is 1 or 0 according as # is or is not satisfactory. It is an imme-
diate consequence of the theorem of § 8 that 3 is not computable. Tt is (so
far as we know at present) possible that any assigned number of figures of 8
can be caleulated, but not by a uniform process. When sufficiently many
figures of 8 have been calculated, an essentially new method is nevessary in

t The expression *the functional caleulus’ is used throughout to mean the restricted
Hilhert functional caleulus.

3 It is most natural to construct first a choice machine (§2) to do this. But it is
then easy to construet the required automatic machine. We can suppose that the choices
are always choices between twao possibilities 0 and 1. Each proof will then be determined
by a sequence of choiees 7, 45, .., 4, ({,=00r 1, {,=0 or 1, ..., %, =0 or 1), and hence
the number 2744, 2¢-7 44, 20=24 14, completely determines the proof. The automatic
maching carries out successively proof 1, proof 2, proof 3, ...

§ The author has found & description of such a machine.

Il The negation sign is written before an expression and not over it.

% A sequence of r primes is denoted by .

\ order to obtain more figures.

It must be remembered that we have attached rather a special meaning

J

IIT. This may be regarded as a modification of I or ag a corollary of I1.

We suppose, asin I, that the computation is carried out ona tape ; but we
avoid introducing the *state of mind” by considering a more physical
and definite counterpart of it. Tt is always possible for the computer to
break off from his work, to go away and forget all about it, and later to come
back and go on with it. If he does this he must leave a note of instructions
{written in some standard form) explaining how the work is to be con-
tinued. This note is the counterpart of the ““state of mind”. We will
suppose that the computer works in such a desultory manner that he never
does more than one step at a sitting. The note of instructions must enable
him to carry out one step and write thenext note. Thus the state of progress
of the computation at any stage is completely determined by the note of

254 A, M. Turineg [Nov. 12,

instructions and the symbols on the tape. That is, the state of the system
may be described by a single expression (sequence of symbols), consisting
of the symbols on the tape followed by A (which we suppose not to appear
slsewhere) and then by the note of instructions. This expression may be
called the “state formula”, We know that the state formula at any
given stage is determined by the state formula before the last step was
made, and we assume that the relation of these two formulae is expressible
in the functional calculus. In other words, we assume that there is an
axiom 2% which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the
state formula at the preceding stage. If this is so, we can construct a
machine to write down the successive state formulae, and hence to
compute the required number.

1936.] ON COMPUTABLE NUMBERS. 255

unless v, =0 or y, =1, in either of which cases a,=0. Then, as 2
runs through the satisfactory numbers, o, runs through the computable
numberst. Now let ${n) be a computable function which can be
shown to be such that for any satisfactory argument its value is satis-
factory}. Then the function f, defined by f(a,) = oy, i3 a computable
function and all computable functions of a computable variable are
expressible in this form.

Similar definitions may be given of computable funetions of several
variables, computable-valued functions of an integral variable, ete.

I shall enunciate a number of theorems about computablhty
shall prove only (ii) and a theorem similar to (iii). %

10. Examples of large closses of numbers which are computable.

(i) A computable function of a computable functio W integral or
computable variable is computable. 6

Tt will be useful to begin with definitions of a computable function of
an integral variable and of a computable variable, etc. There are many
equivalent ways of defining a computable function of an integral
variable. The simplest is, possibly, as follows. If v is a computable
sequence in which 0 appears infinitely t often, and # is an integer, then let
us define £(y, n) to be the number of figures 1 between the n-th and the
(rn+1)-th figure 0 in . Then ¢(n
$(n) = E(y, n). An equivalent definition is this. Let H(z, y) mean
@{x)=y. Then, if we can find a contradiction-free axiom 2, such that
%, — P, and if for each integer n there exists an integer N, such that

9, & FO s H (), lét)),

) is computable if, for all n and some ¥,

and such that, if m = ¢(n), then, for some N’,
U, & F& > —H(um, u(’")),

then ¢ may be said to be a computable function.

We cannot define general computable functions of a real variable, since
there is no general method of describing a real number, but we can define
a computable function of a computable variable. If n is satisfactory,
let y, be the number computed by .1i(n), and let

Gn = tan (77(7’?;_%)):

t If Al computes v, then the problem whether .\l prints 0 infinitely often is of the
same character s the problem whether i\ is circle.free.

{ii) Any function of an integral variablg
of computable functions is computabl§__I
7 is some integer, then n(n) is computablg

70 =r,
n(n)=(n, nin—1)).

({ii) If ¢ {m, n)is a computable function of two integral variables, then
$(n, n) is a computable function of ».

(iv) If ¢(n) is & computable function whose value is always 0 or 1, then
the sequence whose n-th figure is ¢(n) is computable.

Dedekind’s theorem does not hold in the ovdinary form if we replace
“real "’ throughout by **computable”. But it holds in the following form :

(v) If G(a) is a propositional function of the computable numbers and
(0) Gla) & (~6(B)>(a<h)

and there is a general process for determining the truth value of G(a), then

@) (3a}(3)]00a) &

1t A function «, may be defined in many other ways so as to run through the
computable humbers.

i Although it is not possible to find a general process for determining whether a given
number is satisfactory, it is often possible to show that certain classes of numbers are
satisfactory.

256 A. M. Turmvg [Nov. 12,

there is a computable number ¢ such that
Gla)=>a <4,

—Fla)>a = ¢

In other words, the theorem holds for any section of the computables.

such that there is a general process for determining to which class a given
number belongs.

Owing to this restriction of Dedekind’s theorem, we cannot say that a
computable bounded increasing sequence of computable numbers has a
computable limit. This may possibly be understood by considering a
sequence such. as

1 1 1 1
—‘]; _E],:‘, T Er T 8 T I6r T ocee

On the other hand, (v) enables us to prove

(vi) If « and B are computable and ¢ < 8 and ¢(a) < ¢ << $(8), where
$(a) Is a computable increasing continuous function, then there is a unigue
computable number v, satisfying e <<y << fand ¢({y)=0.

Computable convergence.

We shall say that a sequence B, of computable numbers converges
computably if there is a computable integral valued function N(e) of the
computable variable ¢, such that we can show that, if € > 0 and n > N(¢)
and m > N(e), then [B,—B,.| < e

We can then show that

(vit) A power series whose coefficients form a computable sequence of
computable numbers is computably convergent at all computable points
in the interior of its interval of convergence.

(viii) The limit of a computably convergent sequence is computable.
And with the obvious definition of ¢ uniformly computably convergent :

(ix) The limit of a uniformly computably convergent computable
sequence of computable functions is a computable function. Hence

(x) The sum of a power series whose coefficients form a computable
sequence is a computable function in the interior of its interval of
convergence.

From (viii) and 7= 4(1—%4-%—...) we deduce that = is computable.

Frome=1+414 %Jr % +... we deduce that e is computable.

1936.] ON COMPUTABLE NUMBERS. 237

From (vi) we deduce that all real algebraic numbers are computable.
From (vi) and (x) we deduce that the real zeros of the Bessel functions
are computable.

Proof of (ii).

Let H(z, y) mean “yn{z)=y", and let K(», ¥, z) mean “d(z, y) =z".
U4 is the axiom for ¢(z, y). We take ¥, to be

W& P& (Flz,y)»Gzy) & (Gl y) & Gly,) > Gz, 2))
& (B0 H{u, u)) & { Plo, w) & H(v, z) & E(w, 2, 2) > H(w, 2))

& [.H(w, 2) & Gz,) v G(t, 2)> | —Hw, t))].

I shall not give the proof of consistency of %,. Such a proof may be
constructed by the metheds used in Hilbert and Bernays, Grundlagen der
Mathematik (Berlin, 1934), p. 209 ef seg. The consistency is also clear
from the meaning.

Suppose that, for some =, ¥, we have shown

U, & F®) o H (qln 1), qplale=-D)y
then, for some M,
Ay & FOD s I (), qo(ota1) | qylatmd)y,
U, & FOD— F (w0, 4fm) & H (=D, glde-D)y

& K (ut™, glnn=n} gylntnd}y,
and
A, & FOD > [F (=, u)) & H (u=2), yina=1))

& K (uf, a1 o)y H (gm0 glatmny],

Hence A, & FO > H (a4, o)),
Also U, & PO H(u, ut®)),
Hence for each n some formula of the form

U, & FOD > H (g, ltm))
is provable. Also, if M’ =M and M’ >=m and m £ 9(u), then

QI“ & F(M')_> G(u‘?((ﬂ)), u(m}) v G(u(m), u(’l(n)))
8ER. 2. voL, 42, No, 2145, 5

258 A. M. Turmva [Nov. 12,

and
Y, & FOO—> [{G(u(ﬂ(n))’ w™) p G (), gl)
& H (o, uoo) > (—Hum, wm) .

Hence A, & FO > (_ H (™,))

The conditions of our second definition of a computable function are
therefore satisfied. Consequently % is a computable function.

Proof of a medified form of (iii).

Suppose that we are given a machine 9\, which, starting with a tape
bearing on it oo followed by a sequence of any number of letters “F’’ on
F-squares and in the m-configuration b, will compute a sequence v,
depending on the number » of letters «“ F . If ¢, (m) is the m-th figure of
¥, then the sequence 8 whose n-th figure is ¢, (1) is computable.

We suppose that the table for 9\ has heen written out in such a way
that in each line only one operation appears in the operations column. We
also suppose that E, 0, 0, and 1 do not occur in the table, and we replace
a throughout by @, 0 by 0, and 1 by 1. Further substitutions are then

made. Any line of form
o a P B
we replace by
pi a Po we(®B, u, b, k)
and any line of the form
s a P1 B
by %A a P1 ve(8, 0,4, k)
and we add to the table the following lines:
u pe(uy, 0)
1 R, Pk, R, PO, R, PO Uy
Uiy re{us, Uy, &,)
Us pe(u,, F)
and similar lines with » for v and 1 for 0 together with the following line
¢ R, PE, R, Ph b.

We then have the table for the machine 9\" which computes 8. The
initial m-configuration is ¢, and the initial scanned symbol is the second s.

1936.]

OX COMPUTABLE NUMBERS. 259

11. Application to the Enischeidungsproblem.

The results of §8 have some important applications. In particular, they
can be used to show that the Hilbert Entscheidungsproblem can have no

solution. For the present I shall confine myself to proving this particular

theorem. For the formulation of this problem I must refer the reader to
Hilbert and Ackermann’s Grundziige der Theoretischen Logik (Berlin,
1931), chapter 3.

I propose, therefore, to show that there can be no general process for
determining whether a given formula % of the functional calculus K is
provable, ¢.e. that there can be no machine which, supplied with any one
A of these formulae, will eventually say whether U is provable.

It should perhaps be remarked that what I shall prove is quite different
from the well-known results of Godel . Godel has shown that (in the forma-
lism of Principia Mathematica) there are propositions ¥ such that neither
U nor Y ig prowfable‘ As a consequence of this, it is shown that no proof
of consistency of Principia Mathematica (or of K) can be given within that
formalism. On the other hand, I shall show that there is no general method
which tells whether a given formula ¥ is provable in K, or, what comes to
the same, whether the system consisting of K with
extra axiom is consistent.

—% adjoined as an

(" If the negation of what Gadel has shown had been proved, i.e. if, for each

A, either ¥ or — U is provable, then we should have an immediate solution
of the Entscheidungsproblem. Tor we can invent a machine ¢ which will
prove consecutively all provable formulae. Sooner or later J¢ will reach
cither % or — . If it reaches ¥, then we know that U is provable. Ifit
reaches — U, then, since K is consistent (Hilbert and Ackermann, p. 03), we

_ know that ¥ is not provable.

\

J

Owing to the absence of integers in K the proofs appear somewhat
lengthy. The underlying ideas are quite straightforward.

Corresponding to each computing machine .\l we construct a formula
Un (M) and we show that, if there is a general method for determining
whetber Un (Al) is provable, then there is a general method for deter-
mining whether Al ever prints 0.

The interpretations of the propositional functions involved are as
follows :

Ry (x, y) is to be interpreted as ““in the complete configuration x (of
M) the symbol on the square y is 8.

t Looc. cit.

260 A. M, ToriNG [Nov. 12,

Iz, y} is to be interpreted as “in the complete configuration z the
square g is scanned’.

K, (z)is to be interpreted as “in the complete configuration z the
m-configuration is g,,.

F(z,y)is to be interpreted as “*y is the immediate successor of z 7.

Inst {q, 8,8, Lq} is to be an abbreviation for

r r r -y o, r ’
(2,9, 2, y') | Bs (2 9) & Iz,) & K, (2) & Pl 2) & Py, 9)
> (16, 9) & Re (@', 1) $ K, @)

& (2) [F(y’, z)v (st(x, z)— By (@, z))]) I— .
Inst {¢, 8,8, Rq} and Inst{gS,S,.Nq}

v

are to be abbreviations for other similarly constructed expressions.

Let us put the deseription of .1l into the first standard form of §6. This
description consists of a number of expressions such as “¢; 8; S, Lg,” {or
with R or N substituted for L). Let us form ail the corresponding expres-
sions such as Inst {g;S; 8, Lg} and take their logical sum. This we call
Des (. L}.

The formula Un (1) is to be

() [N(u) & (=) (N(rc)—%(i:c’) Fz, x'))
&y, 2) [Ply,) >Ny & N@) & () B, (x, y)
& I(w, w) & Ky, (w) & Des () |
—(38) (3t) [N(s) & N(t) & Rs (s, 1)]-

[AM{u) & ... & Des (11)] may be abbreviated to A(11).

When we substitute the meanings suggested on p. 259-60 we find that
Un (-it) has the interpretation ““in some complete configuration of Al, §;
(i.e. 0) appears on the tape”. Corresponding to this I prove that

(@) If 8, appears on the tape in some complete configuration of . li, then
Un (.} is provable.

(6) If Un (.11) is provable, then S, appears on the tape in some complete
configuration of .Ii.

When this has been done, the remainder of the theorem is trivial.

1936.] ON COMPUTABLE NUMBERS. 261

Lemma 1. If 8, appears on the tape in some complete configuration of
M, then Un(Al) 43 provable.

We have to show how to prove Un (.lL). Let us suppose that in the
n-th complete configuration the sequence of symbols on the tape is
Srtr, 01 Srin, 13 1105 Oot, nys followed by nothing but blanks, and that the
gcanned symbol is the ¢{n)-th, and that the m-configuration is ¢(,;. Then
we may form the proposition

RSI{”‘O)(u("), u) & RS,(,.,,,(N("): u)&.. & RSI_("W(u(ﬂ),)
& T (um, wlo)) & K, - (ult)
b N F (g, @)V Flu, y) vE@, 3)v ...V Fu"D, g)v R, (u®,),

which we may abbreviate to CC,.

As before, F(u, w)& Flu', ') & ... & F{ur2,) is abbreviated
to FO.

I shall show that all formulae of the form A(\) & F™— CC,, (abbre-
viated to CF,) are provable. The meaning of €'F,, is ** The n-th complete
configuration of Al is so and so**, where “so and so’’ stands for the actual
n-th complete configuration of .ll. That CF, should be provable is
therefore to be expected.

CF, is certainly provable, for in the complete configuration the symbols
are all blanks, the m-configuration is g;, and the scanned square is «, .e.
00, is

(¥) Bs,(u, ¥) & I(u, u) & K ().
A(A)-> CCy is then trivial.

We next show that CF, — CF,, is provable for each n. There are
three cases to consider, according as in the move from the n-th to the
(n+1)-th configuration the machine moves to left or to right or remains
stationary. We suppose that the first case applies, ¢.e. the machine
moves to the left. A similar argument applies in the other cases. If

r(m i) =a, r(n+1itn+1)) =c, k(i(n))=b, and k(i(n+1)) =4,
then Des (Al) must include Inst {g, S, 8; L g} as one of its terms, .e.

Des (M) —Inst {g, 8, 8; Lg.}.
Hence A(A) & Fl— Tnst {g, 8,8, L g} & Fn+D,
But Inst{g, 8, 84 Lq.} & FtV»(CC, - CC,)
is provable, and sc therefore is

A(\) & FO+D 5 (0C, > OC,sy)

262 A. M. TuriNg {Nov. 12,
and (A(A) & P> 00,) > (A(M) & Fotd > 00,,,),
i.e. CF,~CF,,,.

CF, is provable for each n. Now it is the assumption of this lemma
that S, appears somewhere, in some complete configuration, in the sequence
of symbols printed by .Al; that is, for some integers N, K, CCy has
R (u™, wH) as one of its terms, and therefore OCy— Rg (a®, wlK) is
provable., We have then

CCy— Bg (u™),)
and AW & F® - CCF,
We also have
(30) () > (30) (3w ... (3u) {A () & FW),
where N’ =max (¥, K). And so
(3u) A W)= (3u) (3u') ... (3u?)) R (ut), wF),
(Fu) AN~ () (Fu) R, (uk, s8),
(Fu) A= (Fs) (3t) Ry (s, t),
¢.e. Un(1l) is provable.
This completes the proof of Lemma 1.
Levma 2. If Un(L) s provable, then S| appeais on the tape in some
complete configuration of .1\

If we substitute any propositional functions for function variables in
& provable formula, we obtain a true preoposition. In particular, if we
substitute the meanings tabulated on pp. 2569-260 in Un(.ll), we obtain a
true proposition with the meaning *“ 8, appears somewhere on the tape in
some complete configuration of .1\,

We are now in a position to show that the Entscheidungsproblem cannot
be solved. Let us suppose the contrary. Then there is a general
(mechanical) process for determining whether Un(.\l} is provable. By
Lemmas 1 and 2, this implies that there is a process for determining whether
Al ever prints 0, and this is impossible, by §8. Hence the Entscheidungs-
problem cannot be solved.

In view of the large number of particular cases of solutions of the
Entscheidungsproblem for formulae with restricted systems of quantors, it

1936.] ON COMPUTABLE NUMBERS. 263
is interesting to express Un(Al) in a form in which all quantors are at the
beginning. Un(M) is, in fact, expressible in the form

(1) (3} (w) (3%y) ... (3} B, I
where B contains no uantors, and » = 6. By unimportant modifications
we can obtain a formula, with all essential properties of Un(Al), which is of
form (I) with »=5.

Added 28 August, 1936.

APPENDIX.

Computability and effective calculability

The theorem that all effectively calculable (A-definable) sequences are
computable and its converse are proved below in outline. It is assumed

that the terms ** well-formed formula ™ (W.F.¥.) and ““conversion’’ as uscd
by Church and Kleene are understood. In the second of these proofs the
existence of several formulae is assumed without proof; these formulac
may be constructed straightforwardly with the help of, eg., the
results of Kleene in ‘A theory of positive integers in formal logic ™,
American Jouwrnal of Math., 57 (1935}, 153-173, 219-244,

The W.F.F. representing an integer # will be denoted by &¥,. 'We shall
say that a sequence y whose n-th figure is ¢ (n) is A-definable or effectively
caleulable if 14-¢,(u) is a A-definable function of n, 1.e. if there is a W.F.I.
M, such that, for all integers =,

{M‘f} (N‘ii.) conv Nqb,(nH—l’

1.e. {M } (N,) is convertible into Axy .cc(x(y)) or into Azy.2{y} according as

the n-th figure of A is 1 or 0.

To show that every A-definable sequence y is computable, we have to
show how to construct a machine to compute y. For use with machines it
is convenient to make a trivial modification in the caleulus of conversion.
This alteration consists in using =z, 2/, &'/, ... as variables instead of
a,b,¢,.... Wenow construet a machine £ which, when supplied with the
formula M, writes down the sequence v, The construction of £ is some-
what similar to that of the machine ¢ which proves all provable formulae
of the functional calculus, We first construct a choice machine £,, which,
if supplied with a W.F.F., M say, and suitably manipulated, obtains any
formula into which M is convertible. £, can then be modified so as to
yield an automatic machine £, which obtains successively all the formulae

264 A. M. TurivGg [Nov. 12,

into which M is convertible (cf. foot-note p. 252). The machine £
ineludes .f, as a part. The motion of the machine £ when supplied
with the formula M, is divided into sections of which the n-th is
devoted to finding the n-th figure of y. The first stage in this n-th section
is the formation of {M,}(¥,). This formula is then supplied to the
machine £, which converts it successively into various other formulae.
Each formula into which it is convertible eventually appears, and each, as
it is found, is compared with

pr [:}\a:’[{m} ({@}(x’)”:l, i.e. Ny,

Az [Ax' [{:u}(:c')]], v.e. N

If it is identical with the first of these, then the mashine prints the figure 1
and the n-th section is finished. If it is identical with the second, then 0
is printed and the section is finished. Ifit is different from both, then the
work of .L, is resumed. By hypothesis, {M }(N,) is convertible into one of
the formulae N, or N, ; consequently the n-th section will eventually be
finished, 7.e. the n-th figure of y will eventually be written down.

and with

To prove that every computable sequence y is A-definable, we must
show how to find a formula 3/, such that, for all integers »,

{ﬂ[y}(zvn) conv N1+¢,(n)'

Let .l be a machine which computes ¢ and let us take some description
of the comyplete configurations of .il by means of numbers, e.g. we may take
the D.N of the compiete configuration as described in §6. Let ¢(n) be
the DN of the n-th complete configuration of Al. The table for the
machine .1l gives us a relation between £(n+1) and £(n) of the form

1) =p, (£m))

where p, is a function of very restricted, although not usually very simple,
forra: itis determined by the table for .\l. p, is A-definable (I omit the proof
of this}, s.¢, there is a W.F.I. 4, such that, for all integers »,

{AV} (Nﬁ(n)) convlv&(n-)—l)'
Iet U stand for
o[{fula,)} ()],
where #=£(0); then, for all integers =,

{UV} (N,) conv N&(n)'

1936.] ON COMPUTABLE NUMBERS. 265

It may be proved that there is a formula V such that

[conv N, if in going from the n-th to the (n4-1)-th
complete configuration, the figure 0 is

inted.
VYV) i) L
conv I, if the figure 1 is printed.

conv N, otherwise.

Let W, stand for

[L () () Himde)]

g0 that, for each integer n,

{V (Vs |) cony {1 (),
and let @ be a formula such that
{ {Q} (Wy) } (Na) cony Nr(s):

where r(s) is the s-th integer g for which {W,} (V) is convertible into either
N, or N, Then, if M, stands for

xo[(W3 (1@ (Wl)],
it will have the required propertyt.
The Graduate College,

Princeton University,
New Jersey, U.S.A.

t In a complete proof of the A-definability of computable sequences it would be best to
modify this method by replacing the numerical description of the complete configurations
by a description which can be handled more easily with cur apparatus. Let us choose
certain integers to represent the symbols and the m-configurations of the machine.
Suppose that in a certain complete configuration the numbers representing the successive
symbols on the tape are §,5, ... s,, that the m-th symbo! is scanned, and that the m-configur-
ation has the number ¢; then we may represent this complete configurgtion by the formula

[[Nm N.w R] Nlm_-J» £Nb N!,u]ﬁ [Nl.u+]l ey Nt,.]]v

‘where [, b] stands for Au [{ {u}{a) } (b)],

[a, b, ¢] stands for m[{{{u} (a)}(b)}(c)],

etc.

Current Current Current
state A: state 8: state C:
TABLE Write Move Next | Write Move Next | Write Move Next
. symbol: tape: state: | symbol: tape: state: [symbol: tape: ate:
" || tape symboiis 0ff 1 R B 1 L A
L tape symbel is 1: 1 L c 1 R B 1 N HALT

il - L
M{f’,‘ il

Wizt

(e *ep)

&oTo oo olo]lo o[o]i oTeToToloo o o o oo}

=

Write 1 = PRINT= P
Write 0 = ERASE = E

Tape left one square = L
Tape right one square = R

Offset print raised for a mark”

Eraser
Offset. printing + eraser roller

eraser
electric eye looking
.attape squdre

Tractor roller

'0\0ODDOODOOOOODO} | "o Z

S — —

\—mark ontape \—b&ank square

mark in process of erasure

Turing’s insight:

scanned Correm Crren: Current
: symbol TABLE |[s#teA SaeB state G - -
P Erags JPETS) [— simple local actions
N e v i e e)]
S e e can lead to arbitrarily

A fanciful mechanical Turing machine's TAPE and HEAD. The TABLE instructions might be on another

“read only" tape, or perhaps on punch-cards. Usually a "finite state machine" is the model for the TABLE. CO m D I eX CO m p u t ati O n S !

Lego Turing Machines

See: http://www.youtube.com/watch?v=cYwZ2ewo06c4

http://www.youtube.com/watch?v=cYw2ewoO6c4

Lego Turing Machines

“Mechano” Computers

E_n '/_

1 !l\l\"‘"'; Fi’

"’@F“"‘E

Babbage’s difference engine

4 | ¥ .‘
N DS

AR VS
‘ : ¢ H490
! 'l":.&w

Al ¢
SFR 0

$2

=X/

(ie = SRR N B drdhb sy) i,
AL S = LT : ;

Tinker Toy Computers

MEMORY SPINDLE
- X ! 0

0 | BLANK | BLANK | X | BLANK | BLANK | BLANK
|

I G — e ! S P G — =] L — — — .
1 bl | i 1 A
o e : | F
2=} i 8. A == - - ! L =
) I | 1
I [
) | . s i L
ok

| BLANK | O ! x|
CORE PIECE

|

]]
| BLANK | BLANK | BLANK

T T T T T R .

‘4‘ - - - - - -~ o

9
?
7
6
4
3
2
1
?
s
7
6
4
3
3
2
1
8
7

L » e a3

Mechanical Computers

12 THE PATTERN ON THE STONE NUTS AND 30LTS 1|
——=H0 | ...
——+ (
\mrar i INFUT A

OUTPURT

—_—
inpur B
FIGURE 4
; Mechanical implementation of the OR function
INFUT

FIGURE 5

Mechanical inverter

Sclenceriasters

W. DANIEL HILLIS

\

. \aw .
N‘Ox(é‘aﬂ S NUTS AND BOLTS 13

THE SIMPLE IDEAS THAT MAKE

smar COMPUTERS WORK

FIGURE 6
An And hlock constructed by connecting an Or block te inverters e ' New Scientist

+ r Paositive

Pressure

T%@J

Megative
t Pr;gsure

\oltage source

or inductor

Resistor

2!

D

i Pressure

R
Pt

drap

Simple circuit

Hydraulic Computers

e

Diode

Collector
M
Base ¥ 1
M r
Ennitter

Current

e, /5 "\
Flowe —_—

(e
Transistor

14 THE PATTERN CN THE STONE

NPUT A
HYPRAWLIE
/ “VArvE
Hlau
PRESSURE
OlerPuT
WATEL
—

SUREPLY —]

JPRING NEEFPS vALVE
SHUT INLESS OFFNED
BY INPL PRESS K

1777 . |

FIGURE 7
An Or block built with hydraulic valves

Hydraulic Computers

* ‘

ire

Resistor E

PN -scown OX

SO+ —NO0T LN

(Wind-up motor
or similar)

Theorem: fluid-based “circuits”
are Turing-complete / universal!

Tﬁf Transistor

http://upload.wikimedia.org/wikipedia/commons/f/f2/Electrionics_Analogy_-_Pipe_(Wire).svg
http://upload.wikimedia.org/wikipedia/commons/5/5d/Electrionics_Analogy_-_Valve_(Diode,_conducting).svg
http://upload.wikimedia.org/wikipedia/commons/0/0c/Electrionics_Analogy_-_Reduced_Pipe_(Resistor).svg
http://upload.wikimedia.org/wikipedia/commons/c/cd/Electrionics_Analogy_-_Flexible_Tank_(Capacitor).svg
http://upload.wikimedia.org/wikipedia/commons/d/d3/Electrionics_Analogy_-_Pressure-activated_valve_(Transistor).svg
http://upload.wikimedia.org/wikipedia/commons/0/04/Electrionics_Analogy_-_Example_Circuit.svg
http://upload.wikimedia.org/wikipedia/commons/3/38/Electrionics_Analogy_-_Valve_(Diodes_comparison).svg

ing, at age 35, about the time
heawrote “Intelligent Machinery”

Alan Turing's

Computer Science

Well known for the machine,
test and thesis that bear his name,
the British genius also anticipated

neural-network computers
and “hypercomputation”

by B. Jack Copeland and Diane Proudfoot

Alan Turing's Forgotten Ideas in Computer Science

lan Mathison Turing conceived of the modern
computer in 1935, Today all digital comput-
ers are, in essence, “Turing machines.” The
British mathematician also pioneered the field of
arrtificial intelligence, or Al, proposing the famous
and widely debared Turing test as a way of determin-
ing whether a suitably programmed computer can
think. During World War II, Turing was instrumental
in breaking the German Enigma code in part of a
top-secret British operation that historians say short-
ened the war in Europe by two years. When he died
at the age of 41, Turing was doing the earliest work
on what would now be called artificial life, simulat-
ing the chemistry of biological growth.

Throughout his remarkable career, Turing had no
great interest in publicizing his ideas, Consequently,
important aspects of his work have been neglected or
forgotten over the years. In particular, few people—
even those knowledgeable about computer science—
are familiar with Turing’s fascinating anticipation of
connectionism, or neuronlike compuring. Also ne-
glected are his groundbreaking theoretical conceprs
in the exciting area of “hypercomputation.™ Accord-
ing to some experts, hypercomputers might one day
solve problems heretofore deemed intracrable.

The Turing Connection

igital computers are superb number crunchers.

Aslk them to predict a rocket’s trajectory or calcu-
late the financial figures for a large multinational cor-
poration, and they can churn out the answers in sec-
onds. But seemingly simple actions that people routine-
ly perform, such as recognizing a face or reading
handwriting, have been devilishy tricky to program.
Perhaps the networks of neurons that make up the
brain have a natural facility for such rasks that standard
computers lack. Scientists have thus been investigating
computers modeled more closely on the human brain.

Connectionism is the emerging science of computing
with networks of artificial neurons. Currently research-
ers usually simulate the neurons and their interconnec-
tions within an ordinary digital computer (just as engi-
neers create virtual models of aircraft wings and
skyscrapers). A training algorithm thar runs on the
computer adjusts the connections between the neurons,
honing the network into a special-purpose machine
dedicated to some particular function, such as forecast-
ing international currency markets.

Modern connectionists look back to Frank Rosen-
blatt, who published the first of many papers on the
topic in 1957, as the founder of their approach. Few re-
alize that Turing had already investigated connectionist
networks as early as 1948, in a lirtle-known paper enti-
ted “Intelligent Machinery.™

Written while Turing was working for the National
Physical Laboratory in London, the manuscript did not
meet with his employers approval. Sir Charles Darwin,
the rather headmasterly director of the laboratory and
grandson of the great English naturalist, dismissed it as
a “schoolboy essay.” In reality, this farsighted paper
was the first manifesto of the field of artificial intelli-

SCIENTIFIC AMERICAN April 1999 99

gence. In the work—which remained un-
published unil 1968, 14 years after Tur-
ing’s death—the British mathemartician
not only set out the fundamentals of con-
nectionism but also brilliantly introduced
many of the concepts that were later to
become central to Al in some cases after
reinvention by others.

In the paper, Turing invented a kind of
neural network that he called a “B-type

be accomplished by groups of NAND
neurons. Furthermore, he showed that
even the connection modifiers themselves
can be built our of NAND neurons.
Thus, Turing specified a network made
up of nothing more than NAND neu-
rons and their connecting fibers—abourt
the simplest possible model of the cortex.
In 1958 Rosenblatt defined the theo-
retical basis of connectionism in one suc-
cinct statement: “Stored

information takes the

Few realize that Turing \
had already investigated
connectionist networks
as early as 1948.)

form of new connections,
or transmission channels
in the nervous system (or
the creation of conditions
which are functionally
equivalent to new connec-
tions).” Because the de-
struction of existing con-

unorganized machine,” which consists of
artificial neurons and devices that modify
the connections between them. B-type
machines may contain any number of
neurons connected in any pattern but are
always subject to the restriction that each
NEUron-fo-Neuron Connection must pass
through a modifier device.

All connection modifiers have two
training fibers. Applying a pulse to one
of them sets the modifier to “pass
maode,” in which an input—either 0 or
1—passes through unchanged and be-
comes the output. A pulse on the other
fiber places the modifier in “interrupt
mode,” in which the outpurt is always
1, no matter what the input is. In this
state the modifier destroys all informa-
tion attempting to pass along the con-
nection to which it is attached.

Once set, a modifier will maintain its
function (either “pass™ or “interrupt”)
unless it receives a pulse on the other
training fiber. The presence of these inge-
nious connection modifiers enables the
training of a B-type unorganized ma-
chine by means of what Turing called
“appropriate interference, mimicking
education.” Actually, Turing theorized
that “the cortex of an infant is an unor-
ganized machine, which can be orga-
nized by suitable interfering training,™

Each of Turing’s model neurons has
two input fibers, and the outpur of a
neuron is a simple logical function of its
two inputs. Every neuron in the net-
work executes the same logical opera-
tion of “not and” (or NAND): the out-
put is 1 if either of the inpurts is 0. If
both inputs are 1, then the output is 0.

Turing selected NAND because every
other logical (or Boolean) operation can

100 SCIENTIFIC AMERICAN April 1999

nections can be func-
tionally equivalent to the creation of new
anes, researchers can build a nerwork
for accomplishing a specific task by tak-
ing one with an excess of connections
and selectively destroying some of them.
Both actions—destruction and creation—
are employed in the training of Turing’s
B-types.

At the outset, B-types contain random
interneural connections whose modifiers
have been set by chance to either pass or
interrupt. During training, unwanted
connections are destroyed by switching
their attached modifiers to interrupt
mode. Conversely, changing a modifier
from interrupt to pass in effect creates a
connection. This selective culling and en-
livening of connections hones the initially
random network into one organized for
agiven job.

Turing wished to investigate other
kinds of unorganized machines, and he
longed to simulate a neural network and
its training regimen using an ordinary
digital computer. He would, he said, “al-
low the whole system to run for an ap-
preciable period, and then break in as a
kind of ‘inspector of schools’ and see
whar progress had been made.” Bur his
own work on neural networks was car-
ried our shortly before the first general-
purpose ¢lectronic computers became
available. (It was not until 1954, the year
of Turing’s death, that Belmone G. Farley
and Wesley A. Clark succeeded at the
Massachusetts Institute of Technology in
running the first computer simulation of
a small neural network.)

Paper and pencil were enough, though,
for Turing to show that a sufficiently
large B-type neural network can be
configured (via its connection modifiers)

in such a way that it becomes a general-
purpose computer. This discovery illumi-
nates one of the most fundamental prob-
lems concetning human cognition.

From a top-down perspective, cogni-
tion includes complex sequential process-
es, often involving language or other
forms of symbolic representation, as in
mathematical calculation. Yet from a
bottom-up view, cognition is nothing but
the simple firings of neurons. Cognitive
scientists face the problem of how to rec-
oncile these very different perspectives.

Turing’s discovery offers a possible so-
lution: the cortex, by virtue of being a
neural network acting as a general-pur-
pose compurer, is able to carry out the se-
quential, symbol-rich processing dis-
cerned in the view from the top. In 1948
this hypothesis was well ahead of its
time, and today it remains among the
best guesses concerning one of cognitive
science’s hardest problems.

Computing the Uncomputable

In 1935 Turing thought up the ab-
stract device that has since become
known as the “universal Turing ma-
chine.” It consists of a limitless memory

Turing’s Anticipation
of Connectionism

that stores both program and data and
a scanner that moves back and forth
through the memory, symbol by sym-
bol, reading the information and writ-
ing additional symbols. Each of the ma-
chine’s basic actions is very simple—
such as “identify the symbol on which
the scanner is positioned,” “write ‘1>
and “move one position to the left.”
Complexity is achieved by chaining to-
gether large numbers of these basic ac-
tions. Despite its simplicity, a universal
Turing machine can execute any task
that can be done by the most powerful
of today’s computers. In fact, all mod-
ern digital computers are in essence
universal Turing machines [see “Turing
Machines,” by John E. Hopcroft; Sci-
ENTIFIC AMERICAN, May 1984].
Turing’s aim in 1935 was to devise a
machine—one as simple as possible—
capable of any calculation that a human
mathematician working in accordance
with some algorithmic method could
perform, given unlimited time, energy,
paper and pencils, and perfect concen-
tration. Calling a machine “universal”
merely signifies that it is capable of all
such calculations. As Turing himself
wrote, “Electronic computers are in-

tended to carry out any definite rule-of-
thumb process which could have been
done by a human operator working in a
disciplined but unintelligent manner.”

Such powerful computing devices
notwithstanding, an intriguing question
arises: Can machines be devised that are
capable of accomplishing even more?
The answer is that these “hyperma-
chines” can be described on paper, but
no one as yet knows whether it will be
possible to build one. The field of hyper-
computation is currently attracting a
growing number of scientists. Some
speculate that the human brain itself—
the most complex information proces-
sor known—is actually a naturally oc-
curring example of a hypercompurter.

Before the recent surge of interest in
hypercomputation, any information-
processing job that was known to be
too difficult for universal Turing ma-
chines was written off as “uncom-
putable.” In this sense, a hypermachine
computes the uncomputable.

Examples of such tasks can be found
in even the most straightforward areas
of mathemarics. For instance, given
arithmetical statements picked at ran-
dom, a universal Turing machine may

not always be able to tell which are the-
orems (such as “7 + 5 = 12”) and which
are nontheorems (such as “every num-
ber is the sum of two even numbers™).
Another type of uncomputable problem
comes from geometry. A set of tiles—
variously sized squares with different
colored edges—*“tiles the plane™ if the
Euclidean plane can be covered by
copies of the tiles with no gaps or over-
laps and with adjacent edges always the
same color. Logicians William Hanf and
Dale Myers of the University of Hawaii
have discovered a tile set that tiles the
plane only in patterns too complicated
for a universal Turing machine to calcu-
late. In the field of computer science, a
universal Turing machine cannot always
predict whether a given program will
terminate or continue running forever.
This is sometimes expressed by saying
that no general-purpose programming
language (Pascal, BASIC, Prolog, C and
so on) can have a foolproof crash de-
bugger: a tool that detects all bugs that
could lead to crashes, including errors
that result in infinite processing loops.
Turing himself was the first to investi-
gate the idea of machines that can per-
form mathemartical tasks too difficult

In a paper that went unpublished
until 14 years after his death (top),
Alan Turing described a network of

@ reg Taeq BE one nen &8

A typienl exermle of en unor: nlsed mephine would he sa follswa,

The meehine ls mede up from » rether lrrge n“-wb:’ N of sivilsr

orreinised ene

snother

unite, Hach #nit hes two inout terminels, efid l» 5 en outmut

(0 Lmare
terninsl wheih cen be oonnected to the innut terminels offother

unoroanised,

artificial neurons connected in a ran- wnit, e mey lmecine thet $x far ench integer v, § & ve W
dom manner. In this “B-type unorga- “aia S .
nized machine” (bottom left), each
connection passes through a modifi- &
er that is set either to allow data to e 3,
pass unchanged (green fiber) or to de- 42-—-‘_\1'\ b J ‘\\ 3\ < /,J ";—4:_1{:
stroy the transmitted information (red W J \\l’_’ J!" L
fiber). Switching the modifiers from H — e . -
one mode to the other enables the = o [
network to be trained. Note that each " I M
neuron has two inputs (bottom left, in- T >) "_'_';') P —
set) and executes the simple logical u) ~ & 2] .\/
operation of "not and,” or NAND: if i T ‘11 Y 2 P
both inputs are 1, then the outputis | 2 N\ J/;
0; otherwise the outputis 1. o o \
In Turing’s network the neurons in- it \—\—L‘ v/
terconnect freely. In contrast, modern | 2 y "
networks (bottom center) restrict the M 'ﬁ.——' ~\ ll)\lféJ
flow of information from layer to layer = e N\ L‘_) K ’@/ d
of neurons. Connectionists aim to U J i '
simulate the neural networks of the L /
brain (bottom right). l 'Y
Alan Turing’s Forgotten Ideas in Camputer Science Alan Turing'’s Forgotten Ideas in Computer Science SCIENTIFIC AMERICAN April 1999 101

HIVES, CAMERIDGE UNIVERSITY LIERARY (fopl: FETER ARNOLD, INC. boriom rgfe)

NS CoL

Tom

e 5 sxy thet 1t cammot be o mashine. With
sracle w could forz a
iaving =3 ane of 1ts Dopdam

mmber theoretic probiss, lsrse definitaly

Using an Oracle to Compute
the Uncomputable

lan Turing proved that his universal machine—and by ex-
tension, even today’s most powerful computers—could
never solve certain problems. For instance, a universal Turing
machine cannot always determine whether a given software
program will terminate or continue running forever. In some
cases, the best the universal machine can do is execute the
program and wait—maybe eternally—for it to finish. But in his
doctoral thesis (befow), Turing did imagine that a machine
equipped with a special "oracle” could perform this and other
“uncomputable” tasks. Here is one example of how, in princi-
ple, an oracle might work.
Consider a hypothetical machine for solving the formidable

EXCERPT FROM TURING'S THESIS
Lat us saprose that wo are supplisd with some wnspecifisd

mens of salving sosler theoretic probless; m kind of orecle as 11

mre. Te w1l not g amy furthar ints the setuse of t5is ormels

ths halp of the

zev kicd of anchine (eall thew o-aschines),

woixl arooeams of galving & riven

hese rmchines sre b5

PRNCETON ARCHIVES

OF PROGRAM

COMPUTER PROGRAM

“terminating program” problem (above). A computer pro-
gram can be represented as a finite string of 1s and 0s. This
sequence of digits can also be thought of as the binary rep-
resentation of an integer, just as 1011011 is the equivalent
of 91. The oracle’s job can then be restated as, “Given anin-
teger that represents a program (for any computer that can
be simulated by a universal Turing machine), output a ‘1" if
the program will terminate or a ‘0’ otherwise.”

The oracle consists of a perfect measuring device and a
store, or memory, that contains a precise value—call it T for
Turing—of some physical quantity. (The memory might, for
example, resemble a capacitor storing an exact amount of

- —moom...onnn “

BINARY REPRESENTATION

ORACLE'S MEMORY WITH t=0.00000001101...

L EQUIVALENT
4RY NUMBER

electricity.) The value of T is an irrational number; its written representation would
be an infinite string of binary digits, such as 0.00000001101...

The crucial property of 1 is that its individual digits happen to represent accu-
rately which programs terminate and which do not. So, for instance, if the integer
representing a program were 8,735,439, then the oracle could by measurement
obtain the 8,735,439th digit of © (counting from left to right after the decimal
point). If that digit were 0, the oracle would conclude that the program will process

farever.

Obviously, without T the oracle would be useless, and finding some physical vari-
ablein nature that takes this exact value might very well be impossible. Sothe search
is on for some practicable way of implementing an oracle. If such a means were found,
the impact on the field of computer science could be enormous.

ORACLE

chines “fall outside Turing’s concep-
tion” and are “computers of a type nev-
er envisioned by Turing,” as if the
British genius had not conceived of such
devices more than half a century ago.
Sadly, it appears that what has already
occurred with respect to Turing’s ideas
on connectionism is starting to happen

PROGRAM 3
— 0— WILL all over again.
NOT
TERMINATE The Final Years

—B.J.C.and D.P.

for universal Turing machines. In his
1938 doctoral thesis at Princeton Uni-
versity, he described “a new kind of ma-
chine,” the “O-machine.”

An O-machine is the result of aug-
menting a universal Turing machine
with a black box, or “oracle,” that is a
mechanism for carrying out uncom-
putable tasks. In other respects, O-ma-
chines are similar to ordinary com-
puters. A digitally encoded program is

chine—for example, “identify the sym-
bol in the scanner’—might take place.)
But notional mechanisms that fulfill the
specifications of an O-machine’s black
box are not difficult to imagine [see box
above]. In principle, even a suitable B-
type network can compute the uncom-
putable, provided the activity of the neu-
rons is desynchronized. (When a central
clock keeps the neurons in step with one
another, the functioning of the network

can be exactly simulat-

Even among experts, Turing’s

pioneering theoretical
concept of a hypermachine
has largely been forgotten.

ed by a universal Turing
machine.)

In the exotic mathe-
marical theory of hyper-
computation, tasks such
as that of distinguishing
theorems from nonthe-
orems in arithmetic are
no longer uncomput-

fed in, and the machine produces digital
output from the inpur using a step-by-
step procedure of repeated applications
of the machine’s basic operations, one
of which is to pass data to the oracle
and register its response.

Turing gave no indication of how an
oracle might work. (Neither did he ex-
plain in his earlier research how the ba-
sic actions of a universal Turing ma-

102 ScienTiFIC AMERICaN April 1999

able. Even a debugger
that can tell whether any program writ-
ten in C, for example, will enter an
infinite loop is theoretically possible.

It hypercomputers can be built—and
that is a big if —the potential for crack-
ing logical and mathematical problems
hitherto deemed intractable will be
enormous. Indeed, computer science
may be approaching one of its most sig-
nificant advances since researchers

wired together the first electronic em-
bodiment of a universal Turing machine
decades ago. On the other hand, work
on hypercomputers may simply fizzle
out for want of some way of realizing
an oracle.

The search for suitable physical,
chemical or biological phenomena is
getting under way. Perhaps the answer
will be complex molecules or other
structures thar link together in patterns
as complicated as those discovered by
Hanf and Myers. Or, as suggested by
Jon Doyle of M1 T, there may be natu-
rally occurring equilibrating systems
with discrete spectra that can be seen as
carrying out, in principle, an uncom-
putable task, producing appropriate
output (1 or 0, for example) after being
bombarded with inpur.

Outside the confines of mathematical
logic, Turing’s O-machines have largely
been forgotten, and instead a myth has
taken hold. According to this apoc-
ryphal account, Turing demonstrated in
the mid-1930s that hypermachines are
impossible. He and Alonzo Church, the
logician who was Turing’s doctoral ad-
viser at Princeton, are mistakenly credit-
ed with having enunciated a principle to
the effect thar a universal Turing ma-
chine can exactly simulate the behavior

Alan Turing’s Forgotien Ideas in Computer Science

of any other information-processing ma-
chine. This proposition, widely but in-
correctly known as the Church-Turing
thesis, implies that no machine can carry
out an information-processing task that
lies beyond the scope of a universal Tur-
ing machine. In truth, Church and Tur-
ing claimed only that a universal Turing
machine can match the behavior of any
human mathematician working with
paper and pencil in accordance with
an algorithmic method—a considerably

weaker claim that certainly does not rule
out the possibility of hypermachines.
Even among those who are pursuing
the goal of building hypercomputers,
Turing’s pioneering theoretical contribu-
tions have been overlooked. Experts
routinely talk of carrying out informa-
tion processing “beyond the Turing lim-
it” and describe themselves as attempt-
ing to “break the Turing barrier.” A re-
cent review in New Scientist of this
emerging field states that the new ma-

TOM IADORE

In the early 1950s, during the last
years of his life, Turing pioneered the
field of artificial life. He was trying to
simulate a chemical mechanism by
which the genes of a fertilized egg cell
may determine the anatomical structure
of the resulting animal or plant. He de-
scribed this research as “not altogether
unconnected” to his study of neural net-
works, because “brain structure has to
be ... achieved by the genetical embry-
ological mechanism, and this theory
that I am now working on may make
clearer what restrictions this really im-
plies.” During this period, Turing
achieved the distinction of being the first
to engage in the computer-assisted ex-
ploration of nonlinear dynamical sys-
tems. His theory used nonlinear differ-
ential equations to express the chem-
istry of growth.

But in the middle of this groundbreak-
ing investigation, Turing died from
cyanide poisoning, possibly by his own
hand. On June 8, 1954, shortly before
what would have been his 42nd birth-
day, he was found dead in his bedroom.
He had left a large pile of handwritten
notes and some computer programs.
Decades later this fascinating material is
still not fully understood,

The Authors

B. JACK COPELAND and DIANE PROUDFOOT are the di-
rectors of the Turing Project ar the Universiry of Canrterbury, New
Zealand, which aims to develop and apply Turing’s ideas using
modern rechniques. The authors are protessors in the philosophy
department at Canterbury, and Copeland is visiting professor of
computer science at the University of Portsmouth in England.
They have written numerous articles on Turing. Copeland’s Tier-
ing’s Machines and The Essential Turing are forthcoming from
Oxford University Press, and his Artificial Intelligence was pub-
lished by Blackwell in 1993, In addition to the logical study of hy-
permachines and the simulation of B-type neural networks, the
authors are investigating the computer models of biological
growth that Turing was working on at the time of his death. They
are organizing a conference in London in May 2000 to celebrate
the 50th anniversary of the pilor model of the Automaric Compur-
ing Engine, an electronic computer designed primarily by Turing.

Further Reading

X-MACHINES AND THE HALTING PROBLEM: BUILDING A SUPER-TURING
MacHiNg, Mike Stannett in Formal Aspects of Computing, Vol. 2,
pages 331-341; 1990.

INTELLIGENT MaCHINERY. Alan Turing in Collected Works of A. M.
Turing: Mechanical Intelligence. Edited by D. C. Ince. Elsevier Science
Publishers, 1992,

COMPUTATION BEYOND THE TURING LimiT. Hava T. Siegelmann in Sci-
ence, Vol. 268, pages 545-548; April 28, 1995.

ON AraN TURING'S ANTICIPATION OF CONNECTIONISM. B. Jack
Copeland and Diane Proudfoot in Synthese, Vol. 108, No. 3, pages
361-377; March 1996.

TURING'S O-MACHINES, SEARLE, PENROSE aND THE BraiN. B. Jack
Copeland in Analysis, Vol. 58, No. 2, pages 128-138; 1998.

Ture CrurcH-TuriNG Tuesis. B. Jack Copeland in The Stanford Encyclo-
pedia of Philosoplry. Edited by Edward N, Zalea. Stanford University, ISSN
1095-5054. Available at hetp-iplato.stanford.edu on the World Wide Web.

Alan Turing's Forgotten Ideas in Computer Science

SCIENTIFIC AMERICAN April 1999 103

Theorem [Turing]: the set of algorithms Is countable.
Proof: Sort algorithms = programs by length:

1 < “ma.in(){}”
@
9372 > mam%int n; n=13;}”

10100 >, Q%NIX"@;S>”

¢ h .
ofw o ooy o
¢ y _N
| [[P IS ﬂ@Al |2
°

S (9%) 4 N (=2 ~
—|=
oolte oolus ool colun ooloy ool

—|
| <
wo|= wl% Ll w)dn w
-
n N

—

b |
10999 (—aﬂ){? “<W1nd0ws@élsta>”
A : <

1010%Q—> “<super intelliggnt program>"

—> set of algorithms is countable!

Theorem [Turing]: the set of functions is not countable.
Theorem: Boolean functions {f|f:N—{0,1}} are uncountable.

Proof: Assume Boolean functions were countable; 1.e.,
J table containing all of f;’s and their corresponding values:

O 1 0 0
But /7 i1s missing from our table! /= f, ¥V keN

— table is not a 1-1 correspondence between N and f;’s

= contradiction = {f | /:N—>{0,1} } is not countable!

— There are more Boolean functions than natural numbers!

neorem: the set of algorithms is countable.
neorem: the set of functions iIs uncountable.
neorem; the Boolean functions are uncountable.

1 <« “main(){}” T,
| o ARG
0372 < “main%inl n; n=13:;}” fl
: ~.. O .
10100 & &SUNIXDS> |d 3.
SRS T
| 0999 &5 “<Windm-vs?kista?/*” s,
L <
lOlo“QQ—) “<super intelliggnt program>" f’(i): 1 0

Corollary: there are “more” functions than algorithms / programs.
Corollary: some functions are not computable by any algorithm!
Corollary: most functions are not computable by any algorithm!

Corollary: there are “more” Boolean functions than algorithms.
Corollary: some Boolean functions on N are not computable.
Corollary: most Boolean functions on N are not computable.

Theorem: most Boolean functions on N are not computable.
Q: Can we find a concrete example of an uncomputable function?
A [Turing]: Yes, for example, the Halting Problem.

Definition: The Halting problem: given a program P and mput l,
will P halt if we ran it on 1? L o w0

9372 © m-m% at n: =132
Define H:NxN—{0,1} |
H(P,1)=1 if TM P halts on input |

: b
. 10')” %%)i? \\ml %,in'
H(P,1)=0 otherwise s : B

Notes: OTUQ .
* P and | can be encoded as integers, in some canonical order.

« H Is an everywhere-defined Boolean function on natural pairs.

» Alternatively, both P and I can be encoded as strings in X*.

« We can modify H to take only a single input: H’(2P3") or H’(P$I)

T

Why 2P3! 7+ Godel numbering / encoding

What else will work?

Theorem [Turing]: the halting problem (H) is not computable.

Corollary: we can not algorithmically detect all infinite loops.

Q: Why not? E.g., do the following programs halt?
main() main() E 3
{intk=3;} { while(1) {} } Windows Vit

Halts! Runs forever! ?
main() main()
{ Find a Fermat { Find a Goldbach
triple a"+b"=c" Integer that is not a sum
with n>2 & stop} of two primes & stop}
Runs forever! ?
Open from 1637-1995! Still open since 1742!

Theorem: solving the halting problem is at least as
hard as solving arbitrary open mathematical problems!

Theorem [Turing]: the halting problem (H) is not computl

Ex: the “3X+1” problem (the Ulam conjecture):

e Start with any integer X>0

o If X Is even, then replace it with X/2

o If X Is odd then replace it with 3X+1

 Repeat until X=1 (i.e., shortcycle 4, 2,1, ...)

EX: 26 terminates after 10 steps
27 terminates after 111 steps

Termination verified for X<108

Q: Does this terminate for every X>0 ?:-

-
R4 ®
o °
&
° ° e
o % ®
i °
. = I] 4 oo:". -
I l 4 % e e
] pe n S I Ce = 150] °o°:0°'..0
A
188%2
1 5%

“Mathematics Is not yet ready for such confusing, ™
troubling, and hard problems." - Paul Erdds, who — l&smisnse s
offered a $500 bounty for a solution to this problem gtz

T 1 T I T T T T T
1,000 3,000 5,000 7,000 9,000

Observation: termination iS Number of steps to termination
In general difficult to detect! for the first 10,000 numbers

Theorem [Turing]: the halting problem (H) is not computable.
Proof: Assume Jalgorithm S that solves the halting problem
H, that always stops with the correct answer for any P & |.

MY NOSE WILL
GROW NOW!
N W
&
g

T(T) ha?lts = T(T) does not halt

~ iction!
T(T) does not halt = T(T) halts }Q &~Q = Contradiction
—> S cannot exist! (at least as an algorithm / program / TM)

nen do we want to feed a program to itself in practice?
nen we build compilers.

ny?
0 make them more efficient!
To boot-strap the coding in the compiler’s own language!

S £=

20O 2O
_|

| Executable
' code

Program

MY NOSE WILL
GROW NOW!
N\
Yy
U

¥|”'7’\

Theorem: Infinite loop

detection is not computable.

BSR4 8

READY?
READY.

’/ —
ﬁ YRy I

B— —

ROP\R

BDD
7)

Theorem: virus detection
IS not@omputable.

P‘REITY ISN'T IT¢
WHaT |s IT?

& @

N 2/

IVE GOT ABUNCH OF VIRTUAL WINDGWS
MACHINES NETWORKED TOGETHER, HOOKED UP
10 AN INCOMING PIPE FROM THE NET. THEY
EXECUTE EMAIL ATTACHMENTS SHARE FILES,
AND HAVE NO SECLRITY PRTCHES,

THERE ARE MAILTROTANS WARHOL WERMS,
AND ALLSORTS OF EXOTIC POLTCRPHICS, NORMAL PEOFLE RIASTER. ARE
A MONITORING SYSTEM ADDS AND WIPES JUST HAVE You AND

MACHNES AT RANDO. THE DISPLAY SHOKS HG”’“'R“’Ts / W32, M'ﬂ
THE VIRUSES A5 THEY MOVE THROUGH THE
/ GROWING AND

BENJEEN
— THEM THEY

HAVE PRACTICALLY

EVERY VIRUS,

YOU KNOW, GODD MORMING,

HLG'NG?

STRUGGLING.
WHO'S A GOOD VIRUS?
YDU ARE! YES, YOU ARE!

OFERATION: DUCKLING LCoP

o e 10 O s e C0OF By
= mho:mwmmrm‘msm

nd shehes turmied dry an,

& M A2 Az A3 Ag e
T i e s — [
TeXt10-5500ct) gy d

Speech Rate shower g

=S

“Kindle DX” wireless reading device
« 1/3 of an inch thin, 4GB memory
 holds 3,500 books / documents

« 532 MHz ARM-11 processor

« 9.7" e-ink auto-rotate 824x1200 display

« Full PDF and text-to-speech

« 3G wireless, < 1 min/ book

« 18.0 0z, battery life 4 days

Generalized Numbers

4 N
?(Flnltely describable numbers H
.
"Hypernumbers S
(o \\
4 © N : ﬁ
o £ é _ (Complex C 7+3|\\
3 ?| i | &|(Reals R A
E ; ._l_- é KE\/ I \
= L E& = ‘Rationals @ 2/9)
2 ;| HEERE | Tntegers Z -4°
= N p N
&2 51928 =82 | Naturals N 6
2 | x|~ ggg 5|8 Primes P 5]
clslZllelelall€ g/ Boolean B
S g % =ik ik=alE= O <_E LS)
O IEIE g BISII=IF]S I
OCl& || O M\ —F—r0—+ >
% \@% L - //j
. N)

Theorem: some real numbers are not finitely describable!
Theorem: some finitely describable real numbers are not computable!

Theorem: Some real numbers are not finitely describable.
Proof: The-humber of finite descriptions Is countable.

e number of real numbers Is not countable.
—(Mostreal numbers do not have finite descriptions.

I < “main(){}”
; O
9372 < “main%int n, n=13;}”
: ~.. O
' SRS
10100 ¢ SFUNIXDS>"
: N2

“<Windows SAista>"

<
IO‘Q “<super intelligent program>’ f’(i) = 1 0 1 0o ... f’:N—){O,l}

o _ Gd0del numbering / encoding
Theorem: Some finitely describable reals are noycomputable.

Proof: Let h=0.H,H,H;H,... where H.=1 if i=2F3! for some

Integers P&I, and TM P halts on input I, ang H.=0 otherwise.
Clearly0<h<1isareal nur&@{ﬁm"s itely describable.
If h was computa Ier, mﬂﬁ ould exploit an algorithm that

caﬁlpﬁa@cmfé olving the halting problem, a contradiction.
= not computable.

~
o

A

Qs

Theorem: all computable numbers are finitely describable.
Proof: A computable number can be outputted by a TM.

A TM is a (unique) finite description.
What the unsolvability of the Halting Problem means:

There Is no single algorithm / program / TM that correctly
solves all instances of the halting problem in finite time each.

This result does not necessarily apply if we allow:

* [ncorrectness on some instances

o Infinitely large algorithm / program

o Infinite number of finite algorithms / programs
e Some Instances to not be solved
o Infinite “running time” / steps |
 Powerful enough oracles X

Oracles

Originated in Turing’s Ph.D. thesis

Named after the “Oracle of Apollo”
at Delphi, ancient Greece
Black-box subroutine / language
Can compute arbitrary functions
Instant computations “for free” s N e, R
Can greatly increase computation power of baS|c TMSs

E.g., oracle for halting problem

The “Oracle of Omaha”

Warren
Thinks...

ABOUT THE
CREDIT CRISIS,
THE ECONOMY,
AND MORE

Now! g, My

THE BET STOCK
AND BONDS
TOBUY TODAY ‘

Bob Iger on
Where He's
Taking Disney

The “Oracle” of the Matrix

Turing Machines with Oracles

» A special case of “hyper-computation”

« Allows “what if” analysis: assumes certain
undecidable languages can be recognized

« An oracle can profoundly impact the
decidability & tractability of a language

« Any language / problem can be
“relativized” WRT an arbitrary oracle

« Undecidability / intractability exists even
for oracle machines!

Theorem [Turing]: Some problems are still not computable,
even by Turing machines with an oracle for the halting problem!

Theorem [Turing]: the halting problem™(H®) is not computable
Proof: Assume 3 algorithm S*that solves the halting problem
H*that always stops with the correct answer for any P*& 1.
Add to P an H-oracle:
@
P* is “relativized” P.
S* is “relativized” S.
& | T 1s “relativized” T.

Using S, construct a!g@rlthm [TM T o hatting pmblem for
OO% TMs with an H-oracle is

not computable by TM’s

with an H-oracle!

. © -

T(T) halts = T(T") does not halt

- o~ |
TT" does not halt = T(T7) halts Q< ~Q = Contradiction!
— S*cannot exist! (at least as an algorithm / program / TM)

. A E i -

X

. Students of
Turing Degrees

Alonzo Church:
« Turing (1937); studied by Post (1944) and Kleene (1954)

» Quantifies the non-computability (i.e., algorithmic
unsolvability) of (decision) problems and languages

» Some problems are “more unsolvable” than others!

Alan Turing
1912-1954
% | |
Ea = A
L] . =
i A — = A3
i . | % 7/
O oo [4 Vo0
. ' ' : . Emil Post
i Deflngs computation (b%) 4
. “relative” to an (@Q i ' |
-+ “Relativized compdtation” =

- an infinite hierarchy!
« A “relativity theory
. of computation”!

E\\Turing degree 2

Students of

Tu ri ng Deg Fees Alonzo Church:

Turing degree of a set X is the set of all Turing-equivalent
(i.e., mutually-reducible) sets: an equivalence class [X]
Turing degrees form a partial order / join-semilattice

Alan Turing

[0]: the unique Turing degree containing all computable sets 39151954

For set X, the “Turing jump” operator X’ Is the set of indices |
of oracle TMs which halt when using X as an oracle

[0°]: Turing degree of the halting problem H; [0”’]: Turing [
degree of the halting problem H* for TMs with oracle H. | /.

{ of 4
Emil Post
1897-1954

Stephen Kleene
1909-1994

The structure of the Turing degrees
semilattice is extremely complex!

Students of

Tu ri ng Deg Fees Alonzo Church:

There are uncountably many (2%¢) Turing degrees
A Turing degree X is strictly smaller than its Turing jump X*
Alan Turing

For a Turing degree X, the set of degrees smaller than X is 1912-1954
countable; set of degrees larger than X is uncountable (2%0) o

For every Turing degree X there is an incomparable degree
(i.e., neither X 2 Y nor Y 2 X holds). |
There are 2™ pairwise incomparable Turing degrees (E 4 Suth
For every degree X, there is a degree D strictly between X _1897-1954

Stephen Kleene
| 1909-1994

“THe BCAVTY OF THHS 1S THAT 1T 1S OALY OF
THEORETICAL IMPORTANCE, AND THERE. IS NO WAY
T CAN BE OF ANY PRACTCAL USE WHATSOEVER. *

The Extended Chomsky Hierarchy

o : N
- " (Decidable Presburger arithmetic)
1|l |[EXPSPACE A
. a ™
o (7 o EXPTII\/IE .
o '%/rin u| [PSPACE
S \degrees 7oL (Context sensitive LBA)
— PRI NP D
Sall 122 2|sm P
| g Ela 2|7, 2
S l=||2 | 3| E| 2| o |[Context-free ww
29§ L 82| [DetCRab
E/9|'E %; EJ) £ Regular a*
S\ B|2|5 2| 2| |Fnieen
Si5|e|dalsEa =)
=g 2

e 000900 o
c00 @00 o

Kurt Godel

ON FORMALLY

UNDECIDABLE
PROPOSITIONS
OF _PRINCIPIA

MATHEMATICA

AND RELATED
SYSTEMS

J‘J\JJQ J\/\/ JH, ¢

ore regory J. CHAITIN

THE
UNDECIDABLE

Basic Papers on Undecidable Propositions,
Problems and Functions

Edited b! s
Martin Davis

@ /Ze/ d /Q 71)0/

An Essay on the Sources and Meaning,
of Mathematical Unsolyability

o g))
F“ﬁ Buun) pue |9po0) mogbupiuiy |
‘ .

COMPUTABILITY
AND
UNSOLVABILITY

MARTIN DAVIS

London Mathematical Society
Lecture Note Series

RANDOMNESS &
UNDECIDABILITY
IN PHYSICS

Karl Svozil

Robert I. Soare

Sets and Degrees

A of Ci ble Functions
M%emﬂ Sets

& v

NORTH-HOLLAND

MATHEMATICS STUDIES

Degrees of
Unsolvability

JOSEPH R SHOENFIELD

>

RTH-HOLLAND/AMERICAN ELSEVIER

VI-IJ'EVR‘E:: ARE SOME ™
g ovEsTions THA

NgvA;E’EDBEY B

= ANSWER B
GOOGLE_ /|

Ideas on complexity and randomness originally
suggested by Gottfried W. Leibniz in 1686,
combined with modern information theory,

imply that there can never be a “theory of
everything” for all of mathematics

By Gregory Chaitin

> cypiaaly
$L07IILL I9IR0IROT) LB LI

b

143364293 79993 83104

The Limits of Reason

n 1956 Scientific American published an article by Ernest Nagel and James R. Newman entitled
“Godel’s Proof.” Two years later the writers published a book with the same title—a wonderful
work that is still in print. I was a child, not even a teenager, and I was obsessed by this little book.
I remember the thrill of discovering it in the New York Public Library. I used to carry it around
with me and try to explain it to other children.
It fascinated me because Kurt Godel used mathematics to show that mathematics itself
has limitations. Godel refuted the position of David Hilbert, who about a century ago
declared that there was a theory of everything for math, a finite set of principles from
which one could mindlessly deduce all mathematical truths by tediously following
the rules of symbolic logic. But Gédel demonstrated that mathematics contains
true statements that cannot be proved that way. His result is based on two self-
referential paradoxes: “This statement is false” and “This statement is un-
provable.” (For more on Gédel’s incompleteness theorem, see www.sciam.
com/ontheweb)
My attempt to understand Gédel’s proof took over my life, and
now half a century later I have published a little book of my own.
In some respects, it is my own version of Nagel and Newman’s
book, but it does not focus on Gédel’s proof. The only things
the two books have in common are their small size and
their goal of critiquing mathematical methods.
Unlike Godel’s approach, mine is based on mea-
suring information and showing that some math-
X ematical facts cannot be compressed into a the-
NN ory because they are too complicated. This
new approach suggests that what Godel

EXISTENCE OF OMEGA (Q2)—a
specific, well-defined number
that cannot be calculated by
any computer program—

smashes hopes fora
complete, all-encompassing g
mathematicsin whichevery) | ';—”:;-“::;..‘...‘“Aﬁ;’w »-:;4\.‘...._
true factis true forareason. " " TN AR catste e Tt
e
3645 1,

3708 CSTTATET YU TR TH RS SSS195200 S300 M52 DAPHETT) €22 49941309 114972 L TR

T
SBARIA SOSISAPIL I IR SE) SINTTES 1 4O
B Tttt anie

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

™ 18
196631 64834414921 130910 €09

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

sasae
3940234 4306424991 190

discovered was just the tip of the iceberg:
aninfinite number of true mathematical
theorems exist that cannot be proved
from any finite system of axioms.

Complexity and

Scientific Laws

MY STORY BEGINS in 1686 with Gott-
fried W. Leibniz’s philosophical essay
Discours de métaphysique (Discourse
on Metaphysics), in which he discusses
how one can distinguish between facts
that can be described by some law and
those thar are lawless, irregular facts.
Leibniz’s very simple and profound idea
appears in section VI of the Discours, in
which he essentially states that a theory
has to be simpler than the data it ex-
plains, otherwise it does not explain
anything. The concept of a law becomes
vacuous if arbitrarily high mathemari-
cal complexity is permitted, because
then one can always construct a law no
matter how random and patternless the
data really are. Conversely, if the only
law that describes some darta is an ex-
tremely complicated one, then the data
are actually lawless.

Today the notions of complexity and
simplicity are put in precise quantitative
terms by a modern branch of mathemat-
ics called algorithmic information the-
ory. Ordinary information theory quan-
tifies information by asking how many
bits are needed to encode the informa-
tion. For example, it takes one bit to en-
code a single yes/no answer. Algorith-
mic information, in contrast, is defined

by asking what size computer program
is necessary to generate the data. The
minimum number of bits—what size
string of zeros and ones—needed to
store the program is called the algorith-
mic information content of the darta.
Thus, the infinite sequence of numbers
1,2, 3,... has very little algorithmic in-
formation; a very short computer pro-
gram can generate all those numbers. It
does not matter how long the program
must take to do the computation or how
much memory it must use—just the

= Kurt Godel demonstrated that mathematics is necessarily incomplete,
containing true statements that cannotbe formally proved. Aremarkable
number known as omega reveals even greater incompleteness by providing
an infinite number of theorems that cannot be proved by any finite system of
axiomns. A “theory of everything” for mathematics is therefore impossible.

76 SCIENTIFIC AMERICAN

= Omega is perfectly well defined [see box on opposite page] and has a definite
value, yetitcannot be computed by any finite computer program.

= Omega’s properties suggest that mathematicians should be more willing to
postulate new axioms, similar to the way that physicistsmustevaluate
experimentalresults and assertbasic laws that cannot be proved logically.

= The resultsrelated to omega are grounded in the concept of algorithmic
information. Gottfried W. Leibniz anticipated many of the features of
algorithmic information theory more than 300 years ago.

length of the program in bits couns. (I
gloss over the question of what pro-
gramming language is used to write the
program—for a rigorous definition, the
language would have to be specified
precisely. Different programming lan-
guages would result in somewhar differ-
ent values of algorithmic information
content. |

To take another example, the num-
ber pi, 3.14159..., also has only a little
algorithmic information content, be-
cause a relatively short algorithm can be
programmed into a computer to com-
pute digit after digit. In contrast, a ran-
dom number with a mere million digits,
say 1.341285...64, has a much larger
amount of algorithmic information. Be-
cause the number lacks a defining pat-
tern, the shortest program for output-
ting it will be about as long as the num-
ber irself:

Begin
Print “1.341285...64”
End

(All the digits represented by the el-

lipsis are included in the program.) No
smaller program can calculate that se-

MARCH 2006

KENN BROWN: CONC EPT BY DUSAN PETRICIC [preceding pages): DUSAN PETRICIC (above)

quence of digits. In other words, such
digit streams are incompressible, they
have no redundancy; the best that one
can do is transmit them directly. They
are called irreducible or algorithmically
random.

How do such ideas relate to scien-
tific laws and facts? The basic insight
is a software view of science: a scien-
tific theory is like a computer program
that predicts our observations, the ex-
perimental data. Two fundamental
principles inform this viewpoint. First,
as William of Occam noted, given two
theories that explain the data, the sim-
pler theory is to be preferred (Occam’s
razor). That is, the smallest program
that calculates the observations is the
best theory. Second is Leibniz’s insight,
cast in modern terms—if a theory is the
same size in bits as the data it explains,
then it is worthless, because even the
most random of data has a theory of
that size. A useful theory is a compres-
sion of the data; comprehension is
compression. You compress things into
computer programs, into concise algo-
rithmic descriptions. The simpler the
theory, the better you understand
something.

www.sciam.com

ALGORITHMIC INFORMATION
quantifies the size of a computer
program needed to produce a
specific output. The number pi has
little algorithmic information
contentbecause a short program
can produce pi. Arandem number
has a lot of algorithmic information;
the best that can be done is toinput
the number itself. The same is true
of the numberomega.

Sufficient Reason

DESPITE LIVING 250 years before the
invention of the computer program,
Leibniz came very close to the modern
idea of algorithmic informarion. He had
all the key elements. He just never con-
nected them. He knew that everything
can be represented with binary infor-
mation, he built one of the first calculat-

ing machines, he appreciated the power
of computation, and he discussed com-
plexity and randomness.

If Leibniz had put all this together,
he might have questioned one of the key
pillars of his philosophy, namely, the
principle of sufficient reason—that ev-
erything happens for a reason. Further-
more, if something is true, it must be
true for a reason. That may be hard to
believe sometimes, in the confusion and
chaos of daily life, in the contingent ebb
and flow of human history. But even if
we cannot always see a reason (perhaps
because the chain of reasoning is long
and subtle), Leibniz asserted, God can
see the reason. It is there! In that, he
agreed with the ancient Greeks, who
originated the idea.

Mathematicians certainly believe in
reason and in Leibniz’s principle of suf-
ficient reason, because they always try
to prove everything. No martter how
much evidence there is for a theorem,
such as millions of demonstrated exam-
ples, mathematicians demand a proot of
the general case. Nothing less will sat-
isfy them.

And here is where the concept of al-
gorithmic informarion can make its sur-
prising contribution to the philosophi-
cal discussion of the origins and limits
of knowledge. It reveals that certain
mathematical facts are true for no rea-

How Omega Is Defined

To see how the value of the number omega is defined, look at a simplified example.
Suppose that the computer we are dealing with has only three programs that halt, and
they are the bitstrings 110, 11100 and 11110. These programs are, respectively, 3, 5
and 5 bitsin size. If we are choosing programs atrandom by flipping a coin for each
bit, the probability of getting each of them by chance s precisely ¥2%, %2° and %°,
because each particular bit has probability ¥2. So the value of omega [the halting
probability] for this particular computer is given by the equation:

omega =123+ 1%° + %2° = 001 +.00001 +.00001 =.00110

This binary number is the probability of getting one of the three halting programs by
chance. Thus, itis the probability that our computer will halt. Note that because
program 110 halts we do not consider any programs thatstart with 110 and are
larger than three bits—for example, we do not consider 1100 or 1101. Thatis, we do
not add terms of .0001 to the sum for each of those programs. We regard all the
longer programs, 1100 and so on, as being included in the halting of 110. Another
way of saying this is that the programs are self-delimiting; when they halt, they

stop asking for more bits.

—G.C.

SCIENTIFIC AMERICAN 77

PHYSICS: THEOR)y—> — —> FREDICTIONTS FOR

OB JERIATION S

MATHEMATICS: AXIOMS _3’_ —= THIECOREMS

COMPUTING: PRoGRAM ~>_-a ouTPUT

PHYSICS AND MATHEMATICS are in many ways similar to the execution of a program on a computer.

son, a discovery that flies in the face of
the principle of sufficient reason.

Indeed, as [will show later, it turns
out thatan infinite number of mathemart-
ical facts are irreducible, which means
no theory explains why they are true.
These facts are not just computationally
irreducible, they are logically irreducible.
The only way to “prove” such facts is to
assume them directly as new axioms,
without using reasoning at all.

The concept of an “axiom” is closely
related to the idea of logical irreducibil-
ity. Axioms are mathemarical facts that
we take as self-evident and do not try to
prove from simpler principles. All for-
mal mathematical theories start with
axioms and then deduce the consequenc-
es of these axioms, which are called the-
orems. That is how Euclid did things in
Alexandria two millennia ago, and his
treatise on geometry is the classical
maodel for mathemarical exposition.

In ancient Greece, if you wanted to
convince your fellow citizens to vote
with you on some issue, you had to rea-
son with them—which I guess is how
the Greeks came up with the idea that
in mathematics you have to prove things
rather than just discover them experi-
mentally. In contrast, previous cultures
in Mesopotamia and Egypt apparently
relied on experiment. Using reason has
certainly been an extremely fruitful ap-
proach, leading to modern mathematics
and mathematical physics and all that

goes with them, including the technol-
ogy for building that highly logical and
mathematical machine, the computer.

So am I saying that this approach
thar science and mathemarics has been
following for more than two millennia
crashes and burns? Yes, in a sense lam.
My counterexample illustrating the lim-
ited power of logic and reason, my
source of an infinite stream of unprov-
able mathemartical facts, is the number
that [call omega.

The Number Omega
(THE FIRST STEP on the road to ome-)
ga came in a famous paper published
precisely 250 years after Leibniz’s essay.
Ina 1936 issue of the Proceedings of the
London Mathematical Society, Alan M.
Turing began the compurer age by pre-
senting a mathematical model of a sim-
ple, general-purpose, programmable
digital computer. He then asked, Can
we determine whether or not a comput-
er program will ever halt? This is Tur-

\ing’s famous halting problem. Y,
Of course, by running a program
you can eventually discover that it halts,
if it halts. The problem, and it is an ex-
tremely fundamental one, is to decide
when to give up on a program that does
nothalt. A great many special cases can
be solved, but Turing showed that a gen-
eral solution is impossible. No algo-
rithm, no mathematical theory, can ever
tell us which programs will halt and

THE AUTHOR

78 SCIENTIFIC AMERICAN

GREGORY CHAITIN is a researcheratthe IBM Thomas J. Watson Research Center. He is
also honorary professorat the University of Buenos Aires and visiting professor at the
University of Auckland. He is co-founder, with Andrei N. Kolmogorov, of the field of alga-
rithmic infarmation theory. His nine books include the nontechnical works Conversa-
tiens with a Mathematician (2002) and Meta Math! (2005).When he is notthinking about
the foundations of mathematics, he enjoys hiking and snowshoeing in the mountains.

which will not. (For a modern proof of
Turing’s thesis, see www.sciam.com/
ontheweb) By the way, when I say “pro-
gram,” in modern terms I mean the con-
catenation of the computer programand
the darta to be read in by the program.

The next step on the path to the
number omega is to consider the ensem-
ble of all possible programs. Does a pro-
gram chosen at random ever halt? The
probability of having that happen is my
omega number. First, I must specify
how to pick a program at random. A
program is simply a series of bits, so flip
a coin to determine the value of each bit.
How many bits long should the pro-
gram be? Keep flipping the coin so long
as the computer is asking for another bit
of input. Omega is just the probability
that the machine will eventually come
to a halt when supplied with a stream of
random bits in this fashion. (The precise
numerical value of omega depends on
the choice of computer programming
language, but omega’s surprising prop-
erties are not affected by this choice.
And once you have chosen a language,
omega has a definite value, just like pior
the number 3.)

Being a probability, omega has to be
greater than 0 and less than 1, because
some programs halt and some do not.
Imagine writing omega out in binary.
You would get something like
0.1110100.... These bits after the deci-
mal point form an irreducible stream of
bits. They are our irreducible mathe-
matical facts (each fact being whether
the bitisaODora 1).

Omega can be defined as an infinite
sum, and cach N-bit program that halts
contributes precisely 12" to the sum [see
box an preceding page].In other words,

MARCH 2006

. LANGE zefa/Corbis [top); DUSAN PETRICIC (bottom)

each N-bit program that halts adds a 1
to the Nth bit in the binary expansion
of omega. Add up all the bits for all pro-
grams that halt, and you would get the
precise value of omega. This description
may make it sound like you can calcu-
late omega accurately, just as if it were
the square root of 2 or the number pi.
Not so—omega is perfectly well defined
and it is a specific number, but it is im-
possible to compute in its entirety.

We can be sure that omega cannot
be computed because knowing omega
would let us solve Turing’s halting prob-
lem, but we know that this problem is
unsolvable. More specifically, knowing
the first N bits of omega would enable
you to decide whether or not each pro-
gram up to N bits in size ever halts [see
box on page 80]. From this it follows
that you need at least an N-bit program
to calculate N bits of omega.

Note that I am not saying that it is
impossible to compute some digits of
omega. For example, if we knew that
computer programs 0, 10 and 110 all
halt, then we would know thart the first
digits of omega were 0.111. The pointis
that the first N digits of omega cannot
be computed using a program signifi-
cantly shorter than N bits long.

Most important, omega supplies us
with an infinite number of these irre-
ducible bits. Given any finite program,

no matter how many billions of bits
long, we have an infinite number of bits
that the program cannot compute. Giv-
en any finite set of axioms, we have an
infinite number of truths that are un-
provable in that system.

Because omega is irreducible, we
can immediately conclude that a theory
of everything for all of mathematics
cannot exist. An infinite number of bits
of omega constitute mathematical facts
(whether each bitisa 0 or a 1) that can-
not be derived from any principles sim-
pler than the string of bits itself. Math-
ematics therefore has infinite complex-
ity, whereas any individual theory of
everything would have only finite com-
plexity and could not capture all the
richness of the full world of mathemati-
cal truch.

This conclusion does not mean that
proofs are no good, and I am certainly
not against reason. Just because some
things are irreducible does not mean we
should give up using reasoning. Irreduc-
ible principles—axioms—have always
been a part of mathematics. Omega just
shows that a lot more of them are out
there than people suspected.

So perhaps mathematicians should
not try to prove everything. Sometimes
they should just add new axioms. That
is what you have got to do if you are
faced with irreducible facts. The prob-

ASCIENTIFICTHEORY is like a computer program
that predicts our observations of the universe.

Auseful theory is a compression of the data; from

a small number of laws and equations, whole
universes of data can be computed.

www.sciam.com

GOTTFRIED W. LEIBNIZ, commemorated by
astatuein Leipzig, Germany, anticipated many
of the features of modern algorithmic
information theory more than 300 years ago.

lem is realizing that they are irreducible!
In a way, saying something is irreduc-
ible is giving up, saying that it cannot
ever be proved. Mathematicians would
rather die than do thart, in sharp con-
trast with their physicist colleagues,
who are happy to be pragmatic and to
use plausible reasoning instead of rigor-
ous proof. Physicists are willing to add
new principles, new scientific laws, to
understand new domains of experience.
(This raises what I think is an extremely)
interesting question: Is mathematics
like physics?

Mathematics and Physics
THE TRADITIONAL VIEW is that
mathematics and physics are quite dif-
ferent. Physics describes the universe
and depends on experiment and obser-
vation. The particular laws that govern
our universe—whether Newton’s laws
of motion or the Standard Model of
particle physics—must be determined
empirically and then asserted like axi-
oms that cannot be logically proved,
merely verified.

Mathematics, in contrast, is some-
how independent of the universe. Re-
sults and theorems, such as the proper-
ties of the integers and real numbers, do
not depend in any way on the particular
nature of reality in which we find our-
selves. Mathematical truths would be

true in any universe.
\Lue tnany J

SCIENTIFIC AMERICAN 79

Yet both fields are similar. In physics,
and indeed in science generally, scien-
tists compress their experimental obser-
vations into scientific laws. They then
show how their observations can be de-
duced from these laws. In mathemarics,
too, something like this happens—
mathematicians compress their compu-
tational experiments into mathematical
axioms, and they then show how to de-
duce theorems from these axioms.

If Hilbert had been right, mathemat-
ics would be a closed system, withour
room for new ideas. There would be a
static, closed theory of everything for
all of mathematics, and this would be
like a dictatorship. In fact, for mathe-
matics to progress you actually need
new ideas and plenty of room for cre-
ativity. It does not suffice to grind away,
mechanically deducing all the possible
consequences of a fixed number of basic
principles. I much prefer an open sys-
tem. I do not like rigid, authoritarian
ways of thinking.

Another person who thought math-

ematics is like physics was Imre Laka-
tos, who lett Hungary in 1956 and later
worked on philosophy of science in Eng-
land. There Lakatos came up with a
great word, “quasi-empirical,” which
means that even though there are no
true experiments that can be carried out
in mathematics, something similar does
take place. For example, the Goldbach
CO]]j(’C[U]'E states thﬂt any cven number
greater than 2 can be expressed as the
sum of two prime numbers. This con-
jecture was arrived at experimentally,
by noting empirically that it was true for
every even number that anyone cared to
examine. The conjecture has not yet
been proved, but it has been verified up
to 101,

I think that mathematics is quasi-
empirical. In other words, I fecl that
mathematics is different from physics
(which is truly empirical} but perhaps
not as different as most people think.

I have lived in the worlds of both
mathematics and physics, and I never
thought there was such a big difference

Why Is Omega Incompressible?

| wish to demonstrate thatomega isincompressible—that one
cannotuse a program substantially shorterthan N bits long to
compute the first N bits of omega. The demonstration will

between these two fields. It is a matter
of degree, of emphasis, not an absolute
difference. Afrer all, mathematics and
physics coevolved. Mathematicians
should not isolate themselves. They
should not cut themselves off from rich
sources of new ideas,

New Mathematical Axioms
THE IDEA OF CHOOSING to add
more axioms is not an alien one to
mathematics. A well-known example is
the parallel postulate in Euclidean ge-
ometry: given a line and a point not on
the line, there is exactly one line that
can be drawn through the point that
never intersects the original line. For
centuries geometers wondered whether
that result could be proved using the
rest of Euclid’s axioms. It could not. Fi-
nally, mathematicians realized that they
could substitute different axioms in
place of the Euclidean version, thereby
producing the non-Euclidean geome-
tries of curved spaces, such as the sur-
face of a sphere or of a saddle.

Omegak will be less than omega because itis based on only
asubset of all the programs that halt eventually, whereas
omega is based on all such programs.

involve a careful combination of facts about omega and the
Turing halting problem that it is so intimately related to.
Specifically, I willuse the fact that the halting problem for
programs up to length N bits cannot be solved by a program that
isitselfshorterthan N bits [see www.sciam.com/ontheweb].

My strategy for demonstrating that omegais
incompressible is to show that having the first N bits of omega
would tell me how to solve the Turing halting problem for
programs up to length N bits. It follows from that conclusion
that no program shorterthan N bits can compute the first N bits
of omega. (If such a program existed, | could use it to compute
the first N bits of omega and then use those bits tosolve
Turing's problem up to N bits—a task that isimpossible for such
ashort program.)

Now let us see how knowing N bits of omega would enable
me to solve the halting problem—to determine which programs
halt—far all programs up to N bits in size. Do this by performing
acomputationinstages. Use the integer K to label which stage
weareat:K=1,2,3,...

AtstageK, run every program up to K bits in size for K
seconds. Then compute a halting probability, which we will call
omegag, based on all the programs that halt by stage K.

80 SCIENTIFIC AMERICAN

AsKincreases, the value of omegag will getcloser and
closertothe actual value of omega. As it gets closer toomega's
actualvalue, more and more of omegag's first bits will be
correct—that is, the same as the corresponding bits of omega.

And as soon as the first Nbits are correct, you know that you
have encountered every program up to N bits in size that will
ever halt. (If there were another such N-bit program, at some
later-stage K that program would halt, whichwouldincrease the
value of omega to be greater than omega, which is impossible.]

Sowe canuse the first N bits of omega to solve the halting
problem for all programs up to N bits in size. Now suppose we
could compute the first Nbits of omega with a program
substantially shorterthan N bits long. We could then combine
that program with the one for carrying out the omegayx
algorithm, to produce a program shorter than N bits that solves
the Turing halting problem up to programs of length N bits.

But, as stated up front, we know that no such program
exists. Consequently, the first N bits of omega must require
aprogram that is almost N bits long to compute them. That is
good enough to call omega incompressible or irreducible.

(A compression from N bits to almost N bits is not significant for
large N.) —G.C.

MARCH 2006

OMEGA represents a part of mathematics
thatisin asense unknowable. Afinite
computer program can reveal only a finite
number of omega’s digits; the restremain
shrouded in obscurity.

Other examples are the law of the
excluded middle in logic and the axiom
of choice in set theory. Most mathemati-
cians are happy to make use of those
axioms in their proofs, although others
do not, exploring instead so-called intu-
itionist logic or constructivist mathe-
matics. Mathemarics is not a single
monolithic structure of absolute truth!

Another very interesting axiom may
be the “P not equal to NP conjecture.
P and NP are names for classes of prob-
lems. An NP problem is one for which
a proposed solution can be verified
quickly. For example, for the problem

“find the factors of 8,633,” one can
quickly verify the proposed solution
“97 and 89~ by multiplying those two
numbers. (There is a technical defini-
tion of “quickly,” but those details are
not important here.) AP problem is one
that can be solved quickly even without
being given the solution. The question
is—and no one knows the answer—can
every NP problem be solved quickly?
(Is there a quick way to find the factors
of 8,633?) That is, is the class P the
same as the class NP? This problem is
one of the Clay Millennium Prize Prob-
lems for which a reward of $1 million
is on offer.

(~ Computer scientists widely believe
that P is not equal to NP, but no proof is
known. One could say that a lot of quasi-
empirical evidence points to P not being
equal to NP. Should P not equal to NP
be adopted as an axiom, then? In effect,
this is what the computer science com-
munity has done. Closely related to this
issue is the security of certain crypto-
graphic systems used throughout the
world. The systems are believed to be
invulnerable to being cracked, but no

el]? can prove it. Y,

Experimental Mathematics

ANOTHER AREA ofsimilarity between
mathematics and physics is experimen-
tal mathematics: the discovery of new
mathematical results by looking at

www.sciam.com

many examples using a compurter.
Whereas this approach is not as persua-
sive as a short proof, it can be more con-
vincing than a long and extremely com-
plicated proof, and for some purposes it
is quite sufficient.

In the past, this approach was de-
fended with great vigor by both George
Pélya and Lakatos, believers in heuristic
reasoning and in the quasi-empirical
nature of mathematics. This methodol-
ogy is also practiced and justified in Ste-
phen Wolfram’s A New Kind of Science
(2002).

Extensive computer calculations can
be extremely persuasive, but do they
render proof unnecessary? Yes and no.

In fact, they provide a different kind of
evidence. In important situations, I
would argue that both kinds of evidence
are required, as proofs may be flawed,
and conversely computer searches may
have the bad luck to stop just before en-
countering a counterexample that dis-
proves the conjectured result.

from now we will know the answer. ®
(. J

All these issues are intriguing but far |
from resolved. It is now 2006, 50 years
after this magazine published its article
on Godel’s proof, and we still do not
know how serious incompleteness is. We
do not know if incompleteness is telling
us that mathematics should be done
somewhat differently. Maybe 50 years

MORE TO EXPLORE

Forachapteron Leibniz, see Men of Mathematics. E. T. Bell. Reissue. Touchstone, 1986.

For more on a quasi-empirical view of math, see New Directions in the Philosophy of
Mathematics. Edited by Thomas Tymoczko. Princeton University Press, 1998.

Godel’s Proof. Revised edition. E. Nagel, J.R. Newman and D. R. Hofstadter. New York University

Press, 2002.

Mathematics by Experiment: Plausible Reasoningin the 21st Century. J. Borwein and

D. Bailey.A. K. Peters, 2004.

For Godel as a philosopher and the Godel-Leibniz

seel I :The Proof

P

and Paradox of Kurt Godel. Rebecca Goldstein. W.W. Norton, 2005.
Meta Math!: The Quest for Omega. Gregory Chaitin. Pantheon Books, 2005.

Shortbiographies of mathematicians can be found at
www-history.mcs.st-andrews.ac.uk/Biogindex.html|

Gregory Chaitin’s home page is www.umcs.maine.edu/~chaitin/

SCIENTIFIC AMERICAN 81

Historical Perspectives

John von Neumann (1903-1957)

» Contributed to set theory, functional analysis,
guantum mechanics, ergodic theory, economics,
geometry, hydrodynamics, statistics, analysis,
measure theory, ballistics, meteorology, ...

* Invented game theory (used in Cold War)

« Re-axiomatized set theory

* Principal member of Manhattan Project

 Helped design the hydrogen / fusion bomb

* Pioneered modern computer science

* Originated the “stored program”

« “von Neumann architecture” and “bottleneck™

 Helped design & build the EDVAC computer

- Created field of cellular automata _

» Investigated self-replication

* Invented merge sort

MAGYARORSZAG

1992 ALLAMI NY. DUDAS L

"Most mathematicians
prove what they can;
von Neumann proves
what he wants."

PRINCETON LAROMARRS——{ | e
MIKLOS REDEI

IN MATHEMATICS

| INVARIANT |0
MEASURES VON NEUMANN

JOHN VON NEUMANN SELECTED LETTERS

Editor

NEUMANN

Continuous
beometry

Number 252

John von Neumann

Continuous geometries
with a transition probability

Memoirs

of the American Mathematical Society

Proceedings of Symposia in World Scientific Series in 20th Century Mathematics

PURE MATHEMATICS - The

Computer id
NEUMANN

from Pascal to

The Legacy of B von Neumann COMPENDIUM
John von Neumann H

John von Neumann

The Scientific Genius
Who Pioneered the
Modern Computer,

Game Theory,
Nuclear Deterrence,
and Much More

James Glimm
John Impagliazzo
Isadore Singer

Editors

NORMAN MACRAE

World Sclentific

5

DHN von NEUMANN

MATHEMATIGIAN

o 1
INTEHKOMPUTO
HUDAPEST 1982
;] ;E

HANG o\
T wEUNANN X

JOHN VON NEUMANN
and THE ORIGINS OF

MODERN COMPUTING
WILLIAM ASPRAY

von Neumann’s Legacy

» Re-axiomatized set theory to address Russell’s paradox

* Independently proved Godel’s second incompleteness theorem:
aximomatic systems are unable to prove their own consistency.

« Addressed Hilbert’s 6" problem: axiomatized quantum mechanics
using Hilbert spaces.

 Developed the game-theory based Mutually-Assured Destruction
(MAD) strategic equilibrium policy — still in effect today!

 von Neumann regular rings, von Neumann bicommutant theorem,
von Neumann entropy, von Neumann programming languages

PRINCETON [ANDMARKS
IN MATHEMATICS

Mathematical

LoRlel | . - Foundations of
e&pres&ﬁﬁs <:>5~7 4.5 1 O= (luantum Mechanics

=

e R arithmetic

‘V

Von Neumann Architecture

“Surely there must be a less primitive way of making big
- changes in the store than by pushing vast numbers of words

back and forth through the von Neumann bottleneck. Not
only is this tube a liter eneck for the data traffic of a

—

encouraging us to think in terms of the larger conceptual units
of the task at hand. Thus programming is basically planning
and detailing the enormous traffic of words through the Von
Neumann bottleneck, and much of that traffic concerns not
significant data itself, but where to find it.”
- John Backus, 1977 ACM Turing Award lecture

More Functional
bottlenecks

The Craft of
Functional
Programming

pisk I

Neumann Janos (1903- ‘|957‘1)

First Draft of a Report
on the EDVAC
b

John von Neumann

Contract No. W—670-0RID-4926

Between the
United States Army Ordnance Department
and the

University of Pennsylvania

Moore School of Electrical Engineering
University of Pennsylvania

June 30, 1945 ® 1024 Words (44 bItS) 5 5KB
This is an exact copy of the original typescript draft as obtained from the University of Pennsylvania * 864 m I C.rosec / add (1.157 / SeC)
Moore School Library except that a large number of typographical errors have been clorrecl;et.?l alncl ° 2900 microsec / mu Itl ply (345/sec)

the forward references that von Neumann had not filled in are provided where possible. Missing

references, mainly to unwritten Section.s after 15.0, are indicated by empty {}. All ax:ldef:l mlateriEfl. ° Magnetlc tape (no d ISk), OSCI I Ioscope

mainly forward references, is enclosed in { }. The text and figures have been reset using TEX in

order to improve readabilitv. However, the original manuscript layout has been adhered to very ° 6 OOO Vacuum tUbES
’

closely. For a more “modern” interpretation of the von Neumann design see M. D. Godfrey and D.

F. Hendry, “The C te jon N Pl d It,” TEEE Annals of the Hist f C ting,
b .:r;c;; . llggsfmpu r as von Neumann Planne nnals of the History of Computing . 56’000 WattS O_I: power
Michael D. Godfrey, Information Systems Laboratory, Electrical Engineering Department b 17 y 300 IbS (7 . 9 tonS), 490 Sqft
Stanford University, Stanford, California, November 1992
» 30 people to operate

Self-Replication

 Biology / DNA

« Nanotechnology
« Computer viruses
» Space exploration

Self-replicating &
cellular automata i i
designed by von Neumann

* Memetics / memes g ¢y b, o B
 “Gray goo”

/

a»',l!””

Problem (extra credit): write a program that
prints out its own source code (no inputs of

any kind are allowed).

nh

unﬂ

i

uﬂ

ITS NEAT HOW YOU

CONTAIN A FACTORY
FOR MAKING MORE
OF YOU.

\

US005764518A
United States Patent [y 1] Patent Number: 5,764,518
Collins 451 Date of Patent: Jun. 9, 1998
[54] | SELF REPRODUCING FUNDAMENTAL 4870592 9/1989 Lampi et al.ccociiennen. 364/468.19
FABRICATING MACHINE SYSTEM 4,964,062 10/1990 Ubhayakar et al. .oomsnecns 90139 X
5084820 1/1992 Kato 90177 X
[76] Inventor: Charles M. Collins, 10800 Oak Wilds 2{;3; ﬁ g}% ;-;l'f-:t — o 4\;‘9?}2’; §
Ct.. Burke, V. 22015 5214588 571993 Kaneko et al. oo, IONA682
[21] Appl. No.: 757,005 Primary Examiner—Joseph Ruggiero
Filed: Nov. 25. 1996 Attorney, Agerit, or Firm—Henry G. Kohlmann
(221 o% = [57] ABSTRACT

Related U.S. Application Data
[63] Continuation-in-part of Ser. No. 364,926, Dec. 28, 1994,
Pat. No. 5,659477.
[51] Int. CL¢ GOGF 19/00
[52] U.S. CL e reesiraenne 364/468.01; 364/468.24
[58] Field of Searchcceonnnn e 364/468.23, 468.22,

364/468.19. 468.01. 468.2. 468.21, 468.24,
474.21, 478.01, 478.03, 478.05, 478.06,
478.13-478.18, 424.028, 424.027, 424.07;
180/168, 8.1-8.7; 104/88.03, 88.04, 838.02;
901/6-8, 1; 318/568.12, 587, 395/80. 82.

A system of units for constructing or replicating a means
{10.10.10p) including means of diverse materials consisting
of a plurality of pieces (20.22.23. 156-165) having at least
one indicia (18) thereon for detection thereof, at least one
adjoining means functioning according to instructions of a
computer program of a processor means for adjoining in any
predetermined relation with other of the plurality of the
pieces (20. 22. 23, 156-165). and the processor means (30,
120, 166, 167) having the computer program instructions
being responsive to detection of the at least one indicia to
provide for arranging the other of the plurality of the pieces
in the predetermined relation for controlling the fabrication
means in assembling a given number of the plurality of the
pieces in the predetermined relation to comprise a produced
fabrication means (10,10.10p) are selected from a group
consisting of a puzzle piece system. a construction system.
a hot knife system. a holed piece system.

901
[561 References Cited
U.S. PATENT DOCUMENTS
4,621,410 11/1986 Williamsonce.. 364046822 X
4,669,168 6/1987 Tamura et al.ccorvirenennens 21X
= a,
L)
o
E C, JPeey [
0

Z—18 76
zsn@m <

& o

75 Claims, 30 Drawing Sheets
[-] o,
[=}
3
o, -
50 65

“In mathematics you don't
understand things. You
just get used to them.”

— John von Neumann

GOForth

Replicate

Birds do it, bees do it,

Copyright 2001 Scientific American, Inc.

but could machines do it?
New computer simulations
suggest that the answer is yes

A p p le S]Jeget a p p le S, but can machines
beget machines? Today it takes an elaborate manufacturing ap-
paratus to build even a simple machine. Could we endow an ar-
tificial device with the ability to multiply on its own? Self-repli-
cation has long been considered one of the fundamental prop-
erties separating the living from the nonliving. Historically our
limited understanding of how biological reproduction works
has given it an aura of mystery and made it seem unlikely that
itwould ever be done by a man-made object. It is reported that
when René Descartes averred to Queen Christina of Sweden
that animals were just another form of mechanical automata,
Her Majesty pointed to a clock and said, “See to it that it pro-
duces offspring.”

The problem of machine self-replication moved from phi-
losophy into the realm of science and engineering in the late
1940s with the work of eminent mathematician and physicist
John von Neumann, Some researchers have actually construct-
ed physical replicators. Forty years ago, for example, geneticist

Lionel Penrose and his son, Roger {the famous physicist), built
small assemblies of plywood that exhibited a simple form of
self-replication [see “Self-Reproducing Machines,” by Lionel

By Moshe Sipper and James A. Reggia

Penrose; SCIENTIFIC AMERICAN, June 1959]. But self-replica-
tion has proved to be so difficult that most researchers study it

with the conceptual tool that von Neumann developed: two-
dimensional cellular automata.

Implemented on a computer, cellular automata can simu-
late a huge variety of self-replicators in what amount to austere
universes with different laws of physics from our own. Such
models free researchers from having to worry about logistical
issues such as energy and physical construction so that they can
focus on the fundamental questions of information flow. How

is a living being able to replicate unaided, whereas mechanical
objects must be constructed by humans? How does replication
at the level of an organism emerge from the numerous interac-
tions in tissues, cells and molecules? How did Darwinian evo-
lution give rise to self-replicating organisms?

The emerging answers have inspired the development of self-
repairing silicon chips [see box on page 40] and autocartalyzing
maolecules [see “Synthetic Self-Replicating Molecules,” by Julius
Rebek, Jr.; SCIENTIFIC AMERICAN, July 1994]. And this may be
just the beginning. Researchers in the field of nanotechnology
have long proposed that self-replication will be crucial to manu-

=

Photoillustrations by David Emmite

www.sciam.com

SCIENTIFIC AMERICAN 35

facturing molecular-scale machines, and
proponents of space exploration sec a
macroscopic version of the process as a
way to colonize planets using in situ ma-
terials. Recent advances have given cre-
dence to these futuristic-sounding ideas.
As with other scientific disciplines, includ-
ing genetics, nuclear energy and chemistry,
those of us who study self-replication face
the twofold challenge of creating replicat-
ing machines and avoiding dystopian pre-

dictions of devices running amok. The
knowledge we gain will help us separate
good technologies from destructive ones,

Playing Life
SCIENCE-FICTION STORIES often de-
pict cybernetic self-replication as a nat-
ural development of current technology,
but they gloss over the profound problem
it poses: how to avoid an infinite regress.
(A system might try to build a clone using)
a blueprint—that is, a self-description. Yet
the self-description is part of the machine,
is it not? If so, what describes the descrip-
tion? And what describes the description
of the description? Self-replication in this
case would be like asking an architect to
make a perfect blueprint of his or her own
studio. The blueprint would have to con-
tain a miniature version of the blueprint,
which would contain a miniature version

of the blueprint and so on. Without this
information, a construction crew would
be unable to re-create the studio fully;
there would be a blank space where the
blueprint had been.

Von Neumann’s great insight was an
explanation of how to break our of the in-

scription could be used in two distinet
ways: first, as the instructions whose in-
terpretation leads to the construction of an
identical copy of the device; next, as data
to be copied, uninterpreted, and attached
to the newly created child so that it too
possesses the ability to self-replicate. With
this two-step process, the self-description
need not contain a description of itself. In
the architectural analogy, the blueprint
would include a plan for building a pho-

tocopy machine. Once the new studio
and the photocopier were built, the con-
struction crew would simply run off a
copy of the blueprint and put it into the

new studio.
p

Living cells use their self-description,)

which biologists call the genotype, in ex-
actly these two ways: transcription (DNA
is copied mostly uninterpreted to form
mRINA | and translation (mRNA is inter-
preted to build proteins). Von Neumann
made this transcription-translation dis-
tinction several years before molecular bi-
ologists did, and his work has been crucial

\hmre regress. He realized that the selh‘te—)

\in understanding self-replication in nature.)
To prove these ideas, von Neumann
and mathematician Stanislaw M. Ulam
came up with the idea of cellular au-
tomara. A cellular-automara simulation
involves a chessboardlike grid of squares,
or cells, each of which is either empty or
occupied by one of several possible com-
ponents. At discrete intervals of time,
each cell looks at itself and its neighbors
and decides whether to metamorphose
into a different component. In making this
decision, the cell follows relatively simple
rules, which are the same for all cells.
These rules constitute the basic physics of

THE AUTHORS

MOSHE SIPPER and JAMES A. REGGIA share a long-standing interest in how complex systems
can self-organize. Sipper is a senior lecturer in the department of computer science at Ben-
Gurion Universityin Israeland avisiting researcherat the Logic SystemsLaboratory of the Swiss
Federal Institute of Technology in Lausanne. He is interested mainly in bio-inspired computa-
tional paradigms such as evolutionary computation, self-replicating systems and cellularcom-
puting. Reggiais a professorof computerscience and neurology, working in the Institune for Ad-

vanced Computer Studies at the University of Maryland. In addition to studying self-replication,
he conducts research on computational models of the brain and its disorders, such as stroke.

36 SCIENTIFIC AMERICAN

the cellular-automata world. All decisions
and actions take place locally; cells do not
know directly whar is happening outside
their immediate neighborhood.

The apparent simplicity of cellular au-
tomata is deceptive; it does not imply ease
of design or poverty of behavior. The
most famous automata, John Horton
Conway’s Game of Life, produces amaz-
ingly intricate patterns. Many questions
about the dynamic behavior of cellular

automata are formally unsolvable. To see
how a pattern will unfold, you need to
simulate it fully [see Mathematical
Games, by Martin Gardner; SCIENTIFIC
AMERICAN, October 1970 and February
1971; and “The Ultimate in Anty-Parti-
cles,” by [an Stewart, July 1994]. In its
own way, a cellular-automata model can
be just as complex as the real world.

Copy Machines

WITHIN CELLULAR AUTOMATA, self-
replication occurs when a group of com-
ponents—a “machine”—goes through a
sequence of steps to construct a nearby
duplicate of itself. Von Neumann's ma-
chine was based on a universal construc-
tor, a machine that, given the appropri-
ate instructions, could create any partern,
The constructor consisted of numerous
types of components spread over tens of
thousands of cells and required a book-
length manuscript to be specified. It has
still not been simulated in its entirety, let
alone actually built, on account of its
complexity. A constructor would be even
more complicated in the Game of Life be-
cause the functions performed by single
cells in von Neumann's model—such as
transmission of signals and generation of
new components—have to be performed
by composite structures in Life.

Going to the other extreme, it is easy
to find trivial examples of self-replication.
For example, suppose a cellular automata
has only one type of component, labeled
+, and that each cell follows only a single
rule: if exactly one of the four neighboring

AUGUST 2001

cells contains a +, then the cell becomes a
+; otherwise it becomes vacant. With this
rule, a single + grows into four more +7s,
cach of which grows likewise, and so forth.

Such weedlike proliferation does not
shed much light on the principles of repli-
cation, because there is no significant ma-
chine. Of course, that invites the question
of how you would tell a “significant” ma-
chine from a trivially prolific automata.
No one has vet devised a satisfactory an-
swer. What is clear, however, is that the
replicaring structure must in some sense
be complex. For example, it must consist
of multiple, diverse components whose
interactions collectively bring about repli-
cation—the proverbial “whole must be
greater than the sum of the parts.” The
existence of multiple distinct components
permits a self-description to be stored
within the replicating structure.

In the years since von Neumann’s sem-
inal work, many researchers have probed
the domain between the complex and the
trivial, developing replicators that require
fewer components, less space or simpler
rules. A major step forward was taken in
1984 when Christopher G. Langton, then
at the University of Michigan, observed
that looplike storage devices—which had
formed modules of earlier self-replicating
machines—could be programmed to repli-
cate on their own. These devices typically
consist of two pieces: the loop itself,
which is a string of components that cir-
culate around a rectangle, and a con-
struction arm, which protrudes from a
corner of the rectangle into the surround-
ing space. The circulating components
constitute a recipe for the loop—for ex-
ample, “go three squares ahead, then turn
left.” When this recipe reaches the con-
struction arm, the automata rules make a
copy of it. One copy continues around
the loop; the other goes down the arm,
where it is interpreted as instructions,

By giving up the requirement of uni-
versal construction, which was central
to von Neumann’s approach, Langton
showed that a replicator could be con-
structed from just seven unique compo-
nents occupying only 86 cells, Even small-
er and simpler self-replicating loops have
been devised by one of us (Reggia) and
our colleagues [see box on next page). Be-

www.sciam.com

cause they have multiple interacting com-
ponents and include a self-description,
they are not trivial. Intriguingly, asym-
metry plays an unexpected role: the rules
governing replication are often simpler
when the components are not rotational-

ly symmetric than when they are.

Emergent Replication

ALL THESE SELF-REPLICATING struc-
tures have been designed through inge-
nuity and much trial and error. This pro-
cess is arduous and often frustrating; a
small change to one of the rules results in
an entirely different global behavior,
most likely the disintegration of the struc-
ture in question. But recent work has
gone beyond the direct-design approach.
Instead of tailoring the rules to suit a par-

ticular type of structure, researchers have
experimented with various sets of rules,
filled the cellular-automara grid with a
“primordial soup™ of randomly selected
components and checked whether self-
replicators emerged spontaneously.

In 1997 Hui-Hsien Chou, now at
Towa State University, and Reggia noticed
that as long as the initial density of the
free-floating components was above a cer-
tain threshold, small self-replicating loops
reliably appeared. Loops that collided un-
derwent annihilation, so there was an on-
going process of death as well as birth.
Over time, loops proliferated, grew in size
and evolved through mutations triggered
by debris from past collisions. Although
the automata rules were deterministic,
these mutations were effectively random,

SCIENTIFIC AMERICAN 37

because the system was complex and the
components started in random locations.

Such loops are intended as abstract
machines and not as simulacra of any-
thing biological, but it is interesting to
compare them with biomolecular struc-
tures. A loop loosely resembles circular
DNA in bacteria, and the construction
arm acts as the enzyme that catalyzes
DNA replication. More important, repli-
cating loops illustrate how complex glob-
al behaviors can arise from simple local in-

teractions. For example, components
move around a loop even though the rules
say nothing about movement; what is ac-
tually happening is that individual cells are
coming alive, dying or metamorphosing in
such a way that a pattern is eliminated
from one position and reconstructed else-
where—a process that we perceive as mo-
tion. In short, cellular automata acr local-
ly but appear to think globally. Much the
same is true of molecular biology.

In a recent computational experiment,

Jason Lohn, now at the NASA Ames Re-
search Center, and Reggia experimented
not with different structures but wich dif-
ferent sets of rules. Starting with an arbi-
trary block of four components, they
found they could determine a set of rules
that made the block self-replicate. They
discovered these rules via a generic algo-
rithm, an automared process that simu-
lates Darwinian evolution.

The most challenging aspect of this
work was the definition of the so-called

BUILD YOUR OWN REPLICATOR

SIMULATING A SMALL self-replicating loop using an
ordinary chess setis a good way to get an intuitive sense of
how these systems work. This particular cellular-automata
model has four different types of components: pawns,
knights, bishops and rooks. The machine initially comprises
four pawns, a knight and a bishop. It has two parts: the loop
itself, which consists of a two-by-two square, and a
construction arm, which sticks out to the right.

The knight and bishop represent the self-description: the
knight, whose orientation is significant, determines which
direction to grow, while the bishop tags along and determines
how long the side of the loop should be. The pawns are fillers
that define the rest of the shape of the loop, and the rook is a
transient signal to guide the growth of a new construction arm.

As time progresses, the knight and bishop circulate
counterclockwise around the loop. Whenever they encounter
the arm, one copy goes out the arm while the original
continues around the loop.

STAGES OF REPLICATION

1 The knight and
bishop move counter-
clockwise around

the loop. Aclone of the
knight heads out

the arm.

INITIALLY, the self-
description, or
“genome”—a knight
followed by a bishop—is
poised at the start of

the canstruction arm. the arm.

38 SCIENTIFIC AMERICAN

2 The original knight-
bishop pair continues
to circulate. The bishop
is cloned and follows
the new knight out

HOW TO PLAY: You will need two chessboards: one to
represent the current configuration, the other to show the
next configuration. For each round, look at each square of the
current configuration, consult the rules and place the
appropriate piece in the corresponding square on the other
board. Each piece metamorphoses depending on itsidentity
and that of the four squares immediately to the left, to the
right, above and below. When you have reviewed each square
and set up the next configuration, the round is over. Clear the
first board and repeat. Because the rules are complicated, it
takes abit of patience at first. You can also view the
simulation atIslwww.epfl.ch/chess

The direction in which a knight faces is significant. In the
drawings here, we use standard chess conventions to indicate
the orientation of the Knight: the horse’s muzzle points forward.
If no rule explicitly applies, the contents of the square stay
the same. Squares on the edge should be treated as if they
have adjacent empty squares off the board. —M.5. and JAR.

4The knight forges
the remaining corner of
the child loop. The loops
are connected by the
construction arm and a
knight-errant.

3 The knight triggers
the formation of two
corners of the child
loop. The bishop tags
along, completing
the gene transfer.

AUGUST 2001

fitness function—the criteria by which sets
of rules were judged, thus separating
good solutions from bad ones and driving
the evolutionary process toward rule sets
that facilitated replication. You cannot
simply assign high fitness to those sets of
rules that cause a structure to replicate,
because none of the initial rule sets is like-
ly to allow for replication. The solution
was to devise a fitness function composed
of a weighted sum of three measures: a
growth measure (the extent to which

KNIGHT
AG-8
Am-8
?
B2l
2 square empty.

PAWN

OTHERWISE, if atleast one of the
neighboring squaresis occupied,
remove the knight and leave the

each component type generates an in-
creasing supply of that component), a rel-
ative position measure (the extent to
which neighboring components stay to-
gether) and a replicant measure (a func-
tion of the number of actual replicators
present). With the right fitness function,
evolution can turn rule sets that are ster-
ile into ones that are fecund; the process
usually takes 150 or so generations.
Self-replicating structures discovered
in this fashion work in a fundamentally

BISHOP DR ROOK

IF THERE is a bishop just behind or
to the left of the knight, replace the
Knight with another bishop.

EMPTY SQUARE
&
EN-B

y 1
EmL-w|
1

IF THERE is a neighboring knight, replace the pawn with a

knight with a certain orientation, as follows:

Aam-8

i
EEL-|
x faces that pawn.

2
@@ &
?

neighboring knight.

5 The knight-errant
moves up to endow the
parent with a new arm.
Asimilar process, one
step delayed, begins
for the child loop.

www.sciam.com

IF ANEIGHBORING knightis facing
away from the pawn, the new knight
faces the opposite way.

OTHERWISE, if there is exactly one
neighboring pawn, the new Knight

BThe knight-errant,
together with the
original knight-bishop
pair, conjures up a
rook. Meanwhile the
old arm is erased.

N @

OTHERWISE the new knight faces in E
the same direction as the

? The rook Kills the
knight and generates

the new, upward arm. whale. T|
Anotherrook prepares descript
to do the same for to circul
the child.

8 At last the two
loops are separate and

different way than self-replicating loops
do. For example, they move and deposit
copies along the way—unlike replicating
loops, which are essentially static. And al-
though these newly discovered replicators
consist of multiple, locally interacting com-
ponents, they do not have an identifiable
self-description—there is no obvious ge-
nome. The ability to replicate without a
self-description may be relevant to ques-
tions about how the earliest biological

Continued on page 43

B+ [REPLACE IT withapawn.

B-&

IF THERE are two neighboring knights
and either faces the empty square, fill
the square with a rook.

IF THERE is only ene neighboring knight
and it faces the square, fill the square
with a knight rotated 90 degrees
counterclockwise.

IF THERE is a neighboring knight and its
left side faces the square, and the

other neighbors are empty, fill the square
with a pawn.

IF THERE is a neighboring rook, and the
otherneighbors are empty, fill the square
with a pawn.

IF THERE are three neighboring pawns,
fill the square with a knight facing
the fourth, empty neighbor.

9 The parent prepares
to give birth again.

he self- In the following step,
ions continue the child too will begin
ate, but to replicate.

otherwise allis calm.

SCIENTIFIC AMERICAN 39

ROBOT, HEAL THYSELF

Computers that fix themselves are the first application of artificial self-replication

LAUSANNE, SWITZERLAND—Not many researchers encourage the
wanton destruction of equipment in their labs. Daniel Mange,
however, likes it when visitors walk up to one of his inventions and
press the button markedKILL. The lights on the panel go out; a
small box full of circuitry is toast. Early in May his team unveiled
its latest contraption at a science festival here—a wall-size digital
clock whose components you can zap at will—and told the public:
Give it your best shot. See if you can crash the system.

The goal of Mange and his team is to instill electronic circuits
with the ability to take a lickin' and keep on tickin'—just like living
things. Flesh-and-blood creatures might not be so good at
calculating T to the millionth digit, but they can get through the
day without someone pressing Ctrl-Alt-Del. Combining the
precision of digital hardware with the resilience of biological
wetware is a leading challenge for modern electronics.

Electronics engineers have been working on fault-tolerant
circuits ever since there were electronics engineers [see
“Redundancy in Computers,” by William H. Pierce; SCIENTIFIC
AMERICAN, February 1964]. Computer modems would still be
dribbling data at 1200 baud if it weren't for error detection and
correction. In many applications, simple quality-control checks,
such as extra data bits, suffice. More complex systems provide
entire backup computers. The space shuttle, for example, has five
processors. Four of them perform the same calculations; the fifth
checks whether they agree and pulls the plug on any dissenter.

The problem with these systems, though, is that they rely on
centralized control. What if that control unit goes bad?

Nature has solved that problem through radical decentral-
ization. Cells in the body are all basically identical; each takeson a
specialized task, performs it autonomously and, in the event of
infection or failure, commits hara-kiri so that its tasks can be
taken up by new cells. These are the attributes that Mange, a
professor at the Swiss Federal Institute of Technology here, and
others have sought since 1993 to emulate in circuitry, as part of
the “Embryonics” (embryonic electronics) project.

One of their earlierinventions, the MICTREE (microinstruction
tree) artificial cell, consisted of a simple processor and four bits of
data storage. The cell is contained in a plastic box roughly the size of
apackof Post-its. Electrical contacts run along the sides so that
cells can be snapped together like Legos. As in cellular automata,
the models used to study the theory of self-replication, the MICTREE
cells are connected only to theirimmediate neighbors. The
communication burden on each cell is thus independent of the total
number of cells. The system, in other words, is easily scalable—
unlike many parallel-computing architectures.

Cells follow the instructions in their “genome,” a program
written in a subset of the Pascal computer language. Like their
biological antecedents, the cells all contain the exact same
genome and execute part of it based on their position within the
array, which each cell calculates relative to its neighbors. Waste-

fulthough it may seem, this redundancy allows the array to
withstand the loss of any cell. Whenever someone presses the KILL
button on a cell, that cell shuts down, and its left and right neigh-
bors become directly connected. The right neighbor recalculates
its position and starts executing the deceased's program. Its
tasks, in turn, are taken up by the next cell to the right, and so on,
until a cell designated as aspare is pressed into service.

Writing programs for any parallel processar is tricky, but the
MICTREE array requires an especially unconventional approach.
Instead of giving explicitinstructions, the programmer must devise
simple rules out of which the desired function will emerge. Being
Swiss, Mange demonstrates by building a superreliable stopwatch,
Displaying minutes and seconds requires four cells in a row, one for
each digit. The genome allows for two cell types: a counter from
zero to nine and a counter from zero to five. An oscillator feeds one
pulse per second into the rightmost cell. After 10 pulses, this cell
cycles back tozero and sends a pulse to the cell on its left, and so
on down the line. The watch takes up part of an array of 12 cells;
when you kill one, the clock transplants itself one cell over and
carries on. Obviously, though, there is a limit to its resilience: the
whole thing will fail after, at most, eight kills.

The prototype MICTREE cells are hardwired, so their pro-
cessing power cannot be tailored to a specific application. Ina
finished product, cells would instead be implemented on a field-
programmable gate array, a grid of electronic components that
can be reconfigured on the fly [see “Configurable Computing,” by
John Villasenor and William H. Mangione-Smith; SCIENTIFIC AMERICAN,
June 1997]. Mange's team is now custom-designing a gate array,

CURRENT para
GENOME REGISTER

known as MUXTREE [multiplexer tree), that is optimized for
artificial cells. In the biological metaphor, the components of this
array are the “molecules” that constitute a cell. Each consists of a
logic gate, adata bit and a string of configuration bits that
determines the function of this gate.

Building a cell out of such molecules offers not only flexibility
but also extra endurance. Each molecule contains two copies of
the gate and three of the storage bit. If the two gates ever give
different results, the molecule kills itself for the greater good of
the cell. As alast gasp, the molecule sends its data bit (preserved
by the triplicate storage] and configuration toits right neighbor,
which does the same, and the process continues until the right-
most molecule transfers its data to a spare. This second level of
fault tolerance prevents a single error from wiping out an entire cell.

Atotal of 2,000 molecules, divided into four 20-by-25 cells,
make up the BioWall—the giant digital clock that Mange's team has
just put on display. Each molecule is enclosed in asmall box and
includes a KILL button and an LED display. Some molecules are
configured to perform computations; others serve as pixels in the
clock display. Making liberal use of the KILL buttons, | did my utmost
to crash the system, something I'm usually quite good at. But the
plucky clock just wouldn't submit. The clock display did start to look
funny—numerals bent over as their pixels shifted to the right—but
atleastitwas still legible, unlike most faulty electronic signs.

That said, the system did suffer from display glitches, which
Mange attributed mainly to timing problems. Although the pro-
cessing power is decentralized, the cells still rely on a central
oscillator to coordinate their communications; sometimes they fall
out of sync. Another Embryonics team, led by Andy Tyrrell of the
University of York in England, has been studying making the cells
asynchronous, like their biological counterparts. Cells would

is a two-dimensional array of artificial
cells, each one a simple processor. In this application, four cells
work together as a stopwatch, one cell per digit. Each cell counts up
to either five or nine, depending on its coordinates within the array.
The rest of the cells in the array are spares thattake overif a cell fails
oriskilled. The Biodule 601 cells shown here are based on the
MICTREE architecture described in the text.

INSTRUCTION
generate handshaking signals to orchestrate data transfers. The

present system is also unable to catch certain types of error,
including damaged configuration strings. Tyrrell's team has
proposed adding watchdog molecules—an immune system—that
would monitor the configurations (and one another] for defects.
Although these systems demand an awful lot of overhead, so do
other fault-tolerance technologies. “While Embryonics appears to
be heavy on redundancy, it actually is not that bad when compared
to other systems,” Tyrrell argues. Moreover, MUXTREE should be
easier to scale down to the nano level; the “molecules” are simple
enoughtoreally be molecules. Says Mange, “We are preparing for
the situation where electronics will be at the same scale as biology.”
0On a philosophical level, Embryonics comes very close to the
dream of building a self-replicating machine. It may not be quite
as dramatic as a robot that can go down to Radio Shack, pull parts
off the racks, and take them home to resolder a connection or
build a loving mate. But the effectis muchthe same. Letting
machines determine their own destiny—whether reconfiguring
themselves on asilicon chip or reprogramming themselves using

POWER
INDICATOR
KILL
BUTTON

[X,Y) COORDINATES
OFCELL

CONTROL CIRCUITRY POWER SUPPLY SPARE CELL

n = = = o
[} [} [] [} L[]
TENS OF UNITS OF TENS OF UNITS OF.
u MINUTES m MINUTES = SECONDS w SECONDS L]

L I @ L LI L] aneural network or genetic algorithm—sounds scary, but perhaps
[} ° [] ° n U n O " we should be gratified that machines are becoming more like us:
el oo e o omom L imperfect, fallible but stubbomly resourceful.

—George Musser, imperfect but resourceful staff editor and writer

1999 DELPHINE AURES Eurelios

SCIENTIFIC AMERICAN 41

www.sciam.com

AUGUST 2001

40 SCIENTIFIC AMERICAN

Continued from page 39

replicators originated. In a sense, re-
searchers are seeing a continuum between
nonliving and living structures.

Many researchers have tried other
computational models besides the tradi-
tional cellular automata. In asynchronous
cellular automata, cells are not updared in
concert; in nonuniform cellular automata,
the rules can vary from cell to cell. Anoth-
er approach altogether is Core War [see
Computer Recreations, by A. K. Dewd-
ney; SCIENTIFIC AMERICAN, May 1984]
and its successors, such as ecologist
Thomas S. Ray’s Tierra system. In these

simulations the “organisms” are comput-
er programs that vie for processor time
and memory. Ray has observed the emer-
gence of “parasites” that co-opt the self-
replication code of other organisms.

Getting Real
SO WHAT GOOD are these machines?
Von Neumann’s universal constructor
can compute in addition to replicating,
but it is an impractical beast. A major ad-
vance has been the development of simple
vet useful replicators. In 1995 Gianluca
Tempesti of the Swiss Federal Institute of
Technology in Lausanne simplified the
loop self-description so it could be inter-
laced with a small program—in this case,
one that would spell the acronym of his
lab, “LSL.” His insight was to create au-
tomata rules that allow loops to replicate
in two stages. First the loop, like Langton’s
loop, makes a copy of itself. Once finished,
the daughter loop sends a signal back to
its parent, at which point the parent sends
the instructions for writing out the letrers.
Drawing letters was just a demonstra-
tion. The following year Jean-Yves Perri-
er, Jacques Zahnd and one of us (Sipper)
designed a self-replicating loop with uni-
versal computational capabilities—that is,
with the computational power of a uni-
versal Turing machine, a highly simplified
but fully capable computer. This loop has
two “tapes,” or long strings of compo-

www.sciam.com

nents, one for the program and the other
for data. The loops can execute an arbi-
trary program in addition to self-replicat-
ing. In a sense, they are as complex as the
computer that simulates them. Their main
limitation is that the program is copied un-
changed from parent to child, so that all
loops carry out the same set of instructions.

In 1998 Chou and Reggia swept away
this limiration. They showed how self-
replicating loops carrying distinct infor-
mation, rather than a cloned program, can
be used to solve a problem known as sat-
isflability. The loops can be used to deter-
mine whether the variables in a logical ex-

pression can be assigned values such that
the entire expression evaluates to “true.”
This problem is NP-complete—in other
words, it belongs to the family of nasty
puzzles, including the famous traveling-
salesman problem, for which there is no
known efficient solution. In Chou and
Reggia’s cellular-automara universe, each
replicator received a different partial solu-
tion. During replication, the solutions mu-
tated, and replicators with promising so-
lutions were allowed to proliferate while
those with failed solutions died out.
Although various teams have created
cellular automata in electronic hardware,
such systems are probably too wasteful for
prac
er really intended to be implemented di-
rectly. Their purpose is to illuminate the
underlying principles of replication and,
by doing so, inspire more concrete efforts.
The loops provide a new paradigm for de-

cal applications; automata were nev-

signing a parallel computer from either
transistors or chemicals [see “Computing
with DNA,” by Leonard M. Adleman;
SCIENTIFIC AMERICAN, August 1998].
In 1980 a NASA team led by Robert
Freitas, Jr., proposed planting a factory on
the moon that would replicate itself, using
local lunar marterials, to populate a large
area exponentially. Indeed, a similar probe
could colonize the entire galaxy, as physi-
cist Frank |. Tipler of Tulane University
has argued. In the nearer term, computer

scientists and engineers have experiment-
ed with the automared design of robots
[see “Dawn of a New Species?” by George

Musser; SCIENTIFIC AMERICAN, Novem-
ber 2000]. Although these systems are not
truly self-replicating—the offspring are
much simpler than the parent—they are a
first step toward fulfilling the queen of
Sweden’s request.

(" Should physical sclf-replicating ma-)
chines become practical, they and relat-
ed technologies will raise difficulr issues,
including the Terminator film scenario in

which artificial creatures outcompete nat-
ural ones. We prefer the more optimistic,
and more probable, scenario that replica-
tors will be harnessed to the benefit of hu-
manity [see “Will Robots Inherit the
Earth?” by Marvin Minsky; SCIENTIFIC
AMERICAN, October 1994]. The key will
be taking the advice of 14th-century Eng-
lish philosopher William of Ockham: en-
tia non sunt nultiplicanda praeter n
sitatem—entities are not to be multiplied

25

\beycmd necessity. &)

MORE TO EXPLORE

Simple Systems That Exhibit Self-Directed Replication. J. Reggia, S. Armentrout, H. Chou and Y. Peng
in Science, Vol. 259, No. 5099, pages 1282-1287; February 26, 1993.

Emergence of Self-Replicating Structures in a Cellular Automata Space. H. Chou and J. Reggia
inPhysica 0, Vol. 110, Nos. 3-4, pages 252-272; December 15, 1997,

Special Issue: Von Neumann's Legacy: On Self-Replication. Edited by M. Sipper, 6. Tempesti,
D. Mange and E. Sanchez in Artificial Life, Vol. 4, No. 3; Summer 1898,

Towards Robust Integrated Circuits: The Embryonics Approach. D. Mange, M. Sipper, A. Stauffer and
G. Tempestiin Proceedings of the IEEE, Vol. B8, No. 4, pages 516—541; April 2000.

Moshe Sipper's Web page on artificial self-replicationis at Islwww.epfl.ch/~moshes/selfrep/
Animations of self-replicating loops can be found at necsi.org/postdocs/sayama/sdsr/java/
Fer Johnvon Neurnann's universal constructor, see alife.santafe. edu/alife/topies/jvn/jvn.html

SCIENTIFIC AMERICAN 43

%) General Information about the John yon Neumann Institute for Computing - Mozilla Firefox =10/ x|

File Edit Wiew History Bookmarks Tools Help

- e X et Ig|http:,ifwww‘Fz-]uel\ch.defn\c,iA\Igemelnesp’nllgemelnes-e.html T\f - I'.-T"|Google ,'h'
Mast Visited ’ Getting Started 5 | Latest Headlines |j Customize Links \j Free Hotmail |j http: fivas, scientific- \j Suggested Sites \j Web Slice Gallery |j ‘wWindows Marketplace |j ‘Windows Media |j ‘Windows
Google John von Meumann: Sels ‘I ‘G Search '4"@ E} = M- * Bookmarks = FE@:‘ T % Autaolink ﬁ At B Send ta~ 6’ @ John @ won @ eumann @ Selected @ Letters @ @ Settings™
Wolfram/% - IEEEEEY
J gﬁeneral Information about the Jnhn...'T‘ |T
NIC) John von Neumann
e Institut fiir Computing
The NIC John von Neumann Institute for Computing (NIC)
Structure
Addresses The John von Neumann Institute for Computing (NIC) is a joint foundation of
Sites Forschungszentrum Jillich and Deutsches Elektronen-Synchrotron DESY to
I hntaniNBumann support supercomputer-aided scientific research and development. Since April

2006, the GSI Helmholtzzentrum fiir Schwerionenforschung joined NIC as a
NIC Brochure contract partner. NIC takes over the functions and tasks of the High

Supercomputers Performance Computer Centre (HLRZ) established in 1987 and continues this

centre's successful work in the field of supercomputing and its applications.

Documentation - . i . . .

o Time Pro\flsmn of supercomputer capaclty for projects in science, res&_earch .

mputing and industry in the fields of modelling and computer simulation including their
Research Groups methods.

Publications Research proposals can be submitted by German scientists and by partners

in the EU projects DEISA and I3HP.
There is also an Offer to the New Member States and candidate countries
Internals of the European Union.

The supercomputers with the required information technology infrastructure
(software, data storage, networks) are operated by the Jiilich
Supercomputing Centre (JSC) in Julich and by the Centre for Parallel
Search Computing at DESY in Zeuthen.

Supercomputer-oriented research and development in selected fields
of physics and other sciences, especially in elementary-particle physics, by
research groups for supercomputing applications.

=
;-]
H
e 1Y)
mq
1HE
HEE

B Education and training in the fields of scientific computing by

symposia, workshops. summer schools, seminars, courses, and guest
programs for scientists and students.

S.Hoefler- Thierfeldt@fz-juelich.de, 01-Jul-2008

NIC' ° URL: <http:/fwww fz-juelich.de/nic/Allgemeines/Allgemeines-e.html> o
HOME DEUTSCH

X Find: | § wext W Previous & Highlight &l 1| Match case

Dane

) 30hn von Neumann Theory Prize - INFORMS: The Institute For Operations Research and The Management Sciences - Mozilla Firefox =101 x|
Ele Edt Wiew Higtory Bookmarks ook Help

(; ~ C X 4 |ﬁ [s v infor hp?c=1028kat=loh Theory-HPrize 7 I"._’"Gum;\e JS

|2 Most visited 4 Getting Started 5\ Latest Headlines | | Customize Links | | Free Hotmal |] httpi/fumws.scientific- . | | Suggested Sites | | Weh Slice Gallery |] Windows Markstplace | | Windows Media | | windows

Coogle [edvac stamp «| |G search -4|>@ qF - [- 97 Bookmarkst TR o avolink T AvioRll [sb Sendtor 0 [edvac [G stamp & () settings~

Wolfram|# - |H - B AR -

J || John von Neumann Theory Prize - IN... |—| F

| . .

-m, Join Renew Member Searchable Site
INSTITUTE FOR OPERATIONS RESEARCH AND THE MANAGEMENT sciences INFORMS — Membership Directory Dalobases Map

» HOME

» ABOUT

» MEMBERSHIP

» PUBLICATIONS
» MEETINGS

» COMMUNITIES
» AWARDS

- INFORMS Prizes and
Awards

- INFORMS Subdivision
Prizes
- INFORMS Fellows
- INFORMS Scholarships
- Non-INFORMS Prizes
» EDUCATION
» CAREER
» VOLUNTEERS
» RESOURCES

YOU ARE HERE: AWARDS > - INFORMS Prizes and Awards > John
von Neumann Theory Prize

John von Neumann Theory Prize

A prize is awarded annually to a scholar (or scholars in the case of joint
work) who has made fundamental, sustained contributions to theory in
operations research and the management sciences. The award is given
each year at the National Meeting if there is a suitable recipient.
Although the prize is normally given to a single individual, in the case of
accumulated joint work, the recipients can be multiple individuals. The
award is $5,000, a medallion and a citation.

® Who Was John von Neumann?
Read about the life and legacy of John von Neumann

® Application Process
View information about eligibility, procedures and deadlines

® Past Winners
View information about all past winners of this prize

Most Recent Winner

2008: Frank P. Kelly

Return to the INFORMS Awards Page

Copyright © 2008, INFORMS | Institute for Operations Research and the Management Sciences

4]

ANNOUNCEMENTS

INFORMS Prizes and
Awards: 2008 Winners

Subdivision Prizes and
Awards: 2008 Winners

INFORMS Fellows: Class of
2008

Recognition of INFORMS
members: View the news

What's New: View new

information about prizes
and awards

Contact Us | Webmaster

X Find: | Hext W Previous & Hohigheal [Match case

[bane

=1o1x|
File Edt Yiew Hitory Bookmarks Tools Help
6 = @ 0 G [htpsgeemniset huneumannineumarn, head. pageodsid=210 7 - [e ¥
[2] Most visited 4 Getting Started = | Latest Headlines | | Customize Links | | Free Hotmail |] http:/fwsw.scientific- . | | Suggested Sites | | Web Slice Gallery |] windows Markstplace | | Windows Media |] Windows
Google [von Neumsnnmoon crats | |G Search « &0 of « [-+ €9 Bookmarks TR -y aurolink T Auicrl [Sendtor < [2] von (2] Heumern [Z] moon [, erater &5 (@) settings~
Wolfram|£ - H| B4 0 % oe 3%
J | '] NIs2T website IT‘ ’T
e Neumann Janos Szamitogép-tudomanyi Tarsasay
titkarsag@njszt.hu H-1054 Budapest, Bathori u. 16. Tel.: (+36-1) 472-2730 C
ECDL Iroda: 472-2710F.: 472-2728
|NJSZT in English -> Introduction
Altaléanos informaciok ||
Szakmai kéz6sségek
Tertlleti szervezetek Introducing the John von Neumann Computer Society
Szakkonyvtar
Informatikai irastudas:
ECDL
Versenyek
Kap°s°la'fai"k Ability, pride and creativity of our compatriots are for Hungary the fundament of progress and the
Re"d’ez"f"ye’k : only spring-board into the future.
CEElen e (Count Istvan Széchenyi 1842)
Archivum . .
NJSZT in English Fields of activity:
Introduction As a significant professional body and learned society in the Hungarian IT community, the
RCEAS 2007-2008 John von Neumann Computer Society (NJSZT) is dedicated to preserving values that can be
ETAPS 2008 included in today’s knowledge-based society as well as to setting new directions that meet
eVITA 2008 the requirements of the age and to actively forming the IS world of the future. The primal
John von Neumann activities of our Society are IT support, ECDL (European Computer Driving Licence) Hungary,
Hungarian Smart Card Forum, Organization of International and National Conferences.
John von Neumann Computer Society
Neumann Janos Szamitégép-tudomanyi Tarsasag
Falidjsag Address : Bathori u. 16. 1054 Budapest Hungary
Mailing address : P.O.B. 201 1364 Budapest Hungary
Telephone : (36-1) 472-2730
Fax. : (36-1) 472-2739
GO L)gle E-mail : secretariat@njszt.hu
I— WWW : www.hjszt.hu
President : Prof. Gabor PECELI
Google Search
Telephone : (36-1) 463-2057
Udvéziélap Fax.: (36-1) 463-3580
C_mail- marali@mit hma hit =

X Find: & Hext W Previous & HigHlightall | Match case

Done.

Historical Perspectives

Claude Shannon (1916-2001)

* Invented electrical digital circuits (1937)

« Founded information theory (1948)

* Introduced sampling theory, coined term “bit”

« Contributed to genetics, cryptography

« Joined Institute for Advanced Study (1940)
Influenced by Turing, von Neumann, Einstein

« Originated information entropy, Nyquist—Shannon,
sampling theorem, Shannon-Hartley theorem,
Shannon switching game, Shannon-Fano coding,
Shannon’s source coding theorem, Shannon limit,
Shannon decomposition / expansion, Shannon #

 Other hobbies & inventions: juggling, unicycling,
computer chess, rockets, motorized pogo stick,
flame-throwers, Rubik's cube solver, wearable
computer, mathematical gambling, stock markets

o “AT&T Shannon Labs” named after him

=N
THE MATHEMATICAL THEORY
OF COMMUNICATION

laude E. Shannon and Warren Weaver

fl SHANNON

Collected Papers

Edited by

Reluctant Father

e Digital

Claude Shannor
P _

“‘b%s_ INST, T‘EC‘&

DEC 20 1940
LirrspY

RELAY AVWD SVWITCHIWG CIRCUITS

oy

[Clauce Elwocd Shanncn]

B.3., University of liichigan

1935

Submittec in Partisl Fulfillment of the

Requlrements for tiae Degree of

KASTER OF S3CIENCE

from the

tlassacnusetts Institute of Technoleoyy

1940

Signsiure o Autnor

Denertment of Electricsl Engineering, August 10, 1937

ture of Professor

Charzs of Resesrch

Siznature of Casirman of Department,

Commiittee on Graduate Students ¢ .

1l

A\

TABLE OF CONTENTS
Pag
I Introduction; Typss of Problema = = = = = = - - - 1
II Serises~Parallel Two-Terminal Clrcuits - - = - = - 4

Pundamental Definitions and Postulatos = = = = = =

4
Theorems = - = = = = = ~ - - === == - - = == = 6
[analogue with tha Calculus of Propoaitiona] ----- 8

I1I ¥Multi=-Terminel snd Non-Series-Parallel Networks - - =18

Equivalencs of n-Terminel Networks

Star-Mesh and Delta-Yye Transformations - - - - - - 19

Hinderancs Function of a Non-3Ssriss-Parallsl Network E1

Simultaneous Bquations = - - - -

--------- 24
Matrix Methods - - - - - - = = = - - = = = - - - - - 25
Speciel Types of Releys and Switohes -~ - - - - - - - 28

IV |Smthesis of Networks - - - - - - - - S

Gensar2l Theorems on Networks end Punctions)- - - - 31

Duel Networks = =- = = = e e = - m e e maaa - - o= 38

synthesis of ths General Symmetric¢ Function - - - - 38

Egquations from Given Opsersting Charactaristics - - - 47

v Illustrativs Examples

--------------- -51
A Selectivae Circuit = = = = =~ = = = = = = = = = = = 52
An Blectric Combination Lock = = = = = = = = = - = 55
A Vots Counting OCircult = = = = = = = = =« = « = = 58
An Adder to the Base TWO = = = = = = = = = = = = - 59

[g Faotor Tetle Mschins } -------------- 62

Raefarences

AUTOMATA STUDIES

W. R ASHBY J. MC CARTHY
J. T. CULBERTSON M. L. MINSKY
M.D.DAVIS E.¥. MOORE
5. C. KLEENE C, E. SHANNON
K. DE LEEUW N, SHAPIRO
D. M. MAC KAY A. M. UTTLEY
J. YON NEUMANN

Edited by
C. E. Shannon and J. McCarthy

ANNALS OF MATHEMATICS STUDIES
PRINCETON UNIVERSITY PRESS

Chess champion Ed Lasker
looking at Shannon’s
chess-playing machine

Shannon’s home
study room

THE MATHEMATICAL THEORY
OF COMMUNICATION

by Claude E. Shannon and Warren Weaver

Eighth paperback printing, 1980

Originally published in a clothbound|edition, 1949.

Copyright 1949 by The Board of Trustees of the University of Illinois.
Manufactured in the United States of America.
Library of Congress Catalog Card No. 49-11922,

ISBN 0-252-72548-4

Introduction

The recent development of various methods of modulation such
as PCM and PPM which exchange bandwidth for signal-to-noise
ratio has intensified the interest in a general theory of communi-
cation. A basis for such a theory is contained in the important
papers of Nyquist! and Hartley? on this subject. In the present
paper we will extend the theory to include a number of new
factors, in particular(the effect of noise in the channel,|and the
savings possible due to the statistical structure of the original
message and due to the nature of the final destination of the
information.

The fundamental problem of communieation is that of repro-
ducing at one point either exactly or approximately a message
selected at another point. Frequently the messages have meaning;

that is they refer to or are correlated according to some system
with ecertain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering prob-
lem. The significant aspect is that the actual message is one
[selected from a set of possible messages.]The system must be
designed to operate for each possible selection, not just the one
which will actually be chosen since this is unknown at the time
of design.

* Nyquist, H., “Certain Factors Affecting Telegraph Speed,” Bell System
Technical Journal, April 1924, p. 324; “Certain Topies in Telegraph Trans-
mission Theory,” A.I.LE.E. Trans., v. 47, April 1928, p. 617.

? Hartley, R. V. L., “Transmission of Information,” Bell System Technical
Journal, July 1928, p. 535.

32 The Mathematical Theory of Communication

If the number of messages in the set is finite then this number
or any monotonic function of this number can be regarded as a
measure of the information produced when one message is chosen
from the set, all choices being equally likely. As was pointed out
by Hartley the most natural choice is the logarithmic function.
Although this definition must be generalized considerably when
we consider the influence of the statistics of the message and
when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various
reasons:

1. It is practically more useful. Parameters of engineering
importance such as time, bandwidth, number of relays, ete., tend
to vary linearly with the logarithm of the number of possibilities.
For example, adding one relay to a group doubles the number of
possible states of the relays. It adds 1 to the base 2 logarithm
of this number. Doubling the time roughly squares the number of
possible messages, or doubles the logarithm, ete.

2. It is nearer to our intuitive feeling as to the proper measure.
This is closely related to (1) since we intuitively measure
entities by linear comparison with common standards. One feels,
for example, that two punched cards should have twice the
capacity of one for information storage, and two identical chan-
nels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting
operations are simple in terms of the logarithm but would require
clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of
|a unit for measuring information.|If the base 2 is used the
resulting units may be called binary digits, or more brieﬁya
word suggested by J. W. Tukey. A device with two stable posi-
tions, such as a relay or a flip-flop circuit, can store one bit of
information. N such devices can store N bits, since the total
number of possible states is 2¥ and log, 2¥ = N. If the base 10 is
used the units may be called-decimal digits. Since

log, M = log,, M /log,, 2
= 3.32 log,c M,

Discrete Noiseless Systems

1. The Discrete Noiseless Channel

Teletype and telegraphy are two simple examples of a discrete
channel for transmitting information. Generally, a discrete chan-
nel will mean a system whereby a sequence of choices from a
finite set of elementary symbols S, - - - 8, can be transmitted
from one point to another. Each of the symbols S; is assumed to
have a certain duration in time ¢; seconds (not necessarily the
same for different S;, for example the dots and dashes in teleg-
raphy). It is not required that all possible sequences of the S; be
capable of transmission on the system; certain sequences only
may be allowed. These will be possible signals for the channel.
Thus in telegraphy suppose the symbols are: (1) A dot, consist-
ing of line closure for & unit of time and then line open for a unit
of time; (2) A dash, consisting of three time units of closure
and one unit open; (3) A letter space consisting of, say, three
units of line open; (4) A word space of six units of line open. We
might place the restriction on allowable sequences that no spaces
follow each other (for if two letter spaces are adjacent, they are
identical with a word space). The question we now consider is
how one can measure the capacity of such a channel to transmit
information.

In the teletype case where all symbols are of the same duration,
and any sequence of the 32 symbols is allowed, the answer is easy.
Each symbol represents five bits of information. If the system

Discrete Noiseless Systems 37

transmits n symbols per second it is natural to say that the
channel has a capacity of 5n bits per second. This does not mean
that the teletype channel will always be transmitting information
at this rate — this is the maximum possible rate and whether or
not the actual rate reaches this maximum depends on the source
of information which feeds the channel, as will appear later.

In the more general case with different lengths of symbols and
constraints on_the allowed sequences, we make the following
definition:(The capacity C of a discrete channel is given by

N(T)
T

C = Lim 128

Tow

where N(T') is the number of allowed signals of duration T.

It is easily seen that in the teletype case this reduces to the
previous result. It can be shown that the limit in question will
exist as a finite number in most cases of interest. Suppose all
sequences of the symbols S,, - - - , 8, are allowed and these
symbols have durations ¢, - - - , t,. What is the channel
capacity? If N (t) represents the number of sequences of duration
¢t we have

N{@)=N{it—t)+N{it—t)+ - +N{t—t).

The total number is equal to the sum of the numbers of sequences
ending in S,, 8;, - + -, S, and these are N(¢t — ¢t,), N(t — t.),

«, N(t — t,), respectively. According to a well-known result
in finite differences, N(¢) is the asymptotic for large ¢t to AX¢
where A is constant and X, is the largest real solution of the
characteristic equation:

Xt Xt - X t=1
and therefore

. log AX:
C = %iT—OgT—G = log X,.
In case there are restrictions on allowed sequences we may still
often obtain a difference equation of this type and find C from
the characteristic equation. In the telegraphy case mentioned

above
Nt)=Nt—2)+N{t—4) +N(t—5)+N{it—17)
+ N(t—8) + N(t — 10)

Introduction 33

a decimal digit is about 3% bits. A digit wheel on a desk com-
puting machine has ten stable positions and therefore has a
storage capacity of one decimal digit. In analytical work where
integration and differentiation are involved the base e is some-
times useful. The resulting units of information will be called
natural units. Change from the base a to base b merely requires
multiplication by log, a.

By a communication system we will mean a system of the
type indicated schematically in Fig. 1. It consists of essentially
five parts:

1. An information source which produces a message or sequence
of messages to be communicated to the receiving terminal. The
message may be of various types: (a) A sequence of letters as
in a telegraph or teletype system; (b) A single function of time
f(t) as in radio or telephony; (c) A function of time and other
variables as in black and white television — here the message
may be thought of as a function f (z, y, t) of two space coordi-
nates and time, the light intensity at point (z, y) and time { on a
pickup tube plate; (d) Two or more functions of time, say
f(t), g(t), h(t) — this is the case in “three~dimensional” sound
transmission or if the system is intended to service several indi-
vidual channels in multiplex; (e) Several functions of several
variables —in color television the message consists of three
functions f(z, y, t), g(z, v, t), h(z, y, t) defined in a three-
dimensional continuum — we may also think of these three func-
tions as components of a vector field defined in the region —
similarly, several black and white television sources would pro-
duce “messages” consisting of a number of functions of three
variables; (f) Various combinations also occur, for example in
television with an associated audio channel.

2. A transmatter which operates on the message in some way to
produce a signal suitable for transmission over the channel. In
telephony this operation consists merely of changing sound pres-
sure into a proportional electrical current. In telegraphy we have
an encoding operation which produces a sequence of dots, dashes
and spaces on the channel corresponding to the message. In a
multiplex PCM system the different speech functions must be
sampled, compressed, quantized and encoded, and finally inter-

34 The Mathematical Theory of Communication

(INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION

>]
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
k SOURCE J

Fig. 1. — Schematic diagram of a general communication system.

leaved properly to construct the signal. Vocoder systems, tele-
vision and frequency modulation are other examples of complex
operations applied to the message to obtain the signal.

3. The channel is merely the medium used to transmit the
signal from transmitter to receiver. It may be a pair of wires, a
coaxial cable, a band of radio frequencies, a beam of light, etec.
During transmission, or at one of the terminals, the signal may
be perturbed by noise. This is indicated schematically in Fig. 1
by the noise source acting on the transmitted signal to produce
the received signal.

4. The receiver ordinarily performs the inverse operation of
that done by the transmitter, reconstructing the message from
the signal.

5. The destination is the person (or thing) for whom the mes-
sage is intended.

We wish to consider certain general problems involving com-
munication systems. To do this it is first necessary to represent
the various elements involved as mathematical entities, suitably
idealized from their physical counterparts. We may roughly
classify communication systems into three main categories:
discrete, continuous and mixed. By a discrete system we will
mean one in which both the message and the signal are a sequence
of discrete symbols. A typical case is telegraphy where the mes-
sage is a sequence of letters and the signal a sequence of dots,
dashes and spaces. A continuous system is one in which the

Driscrete Noiseless Systems 49

Suppose we have a set of possible events whose probabilities of
occurrence are py, Pz, * * * , P». Lhese probabilities are known but
that is all we know concerning which event will occur. Can we
find a measure of how much “choice” is involved in the selection
of the event or of how uncertain we are of the outcome?

If there is such a measure, say H(py, Pz, * * * , Pa), it is reason-
able to require of it the following properties:

1. H should be continuous in the p;.

2. If all the p; are equal, p; = %, then H should be a mono-
tonic increasing function of n. With equally likely events
there is more choice, or uncertainty, when there are more
possible events.

3. If a choice be broken down into two successive choices, the
originai H should be the weighted sum of the individual
values of H. The meaning of this is illustrated in Fig. 6. At
the left we have three possibilities p, =%, p. =13, ps = %.
On the right we first choose between two possibilities each
with probability %, and if the second occurs make another
choice with probabilities %, 3. The final results have the
same probabilities as before. We require, in this special case,
that

HE L) =HGH+1HG .

The coefficient 1 is the weighting factor introduced because this
second choice only occurs half the time.

Ya " %
Y5
Yo % 4
1/6 Y
1/6

Fig. 6. — Decomposition of a choice from three possibilities.

In Appendix 2, the following result is established:

Theorem 2: The only H satisfying the three above assumptions
15 of the form:

50 The Mathematical Theory of Communication

[H = —Kgp.-logpi }

where K is a positive constant.

This theorem, and the assumptions required for its proof, are in
no way necessary for the present theory. It is given chiefly to
lend a certain plausibility to some of our later definitions. The
real justification of these definitions, however, will reside in their
implications.

Quantities,of the form H = — 3 p; log p; (the constant K
merely amounts to a choice of a unit of measure) play a central
role in information theory as measures of information, choice and
uncertainty. The form of H will be recognized as that of(entropy]

, AN

BITS '

o .1 2 3 4 5 b6 7 88 9 10
P

Fig. 7. in the case of two possibilities with probabilities p and {1—p).

as defined in certain formulations of statistical mechanics® where
p: is the probability of a system being in cell 7 of its phase space.

*See, for example, R. C. Tolman, Principles of Statistical Mechanics, Ox-
ford, Clarendon, 1938.

58 The Mathematical Theory of Communication

quence of symbols z;; and let 8 be the state of the transducer,
which produees, in its output, blocks of symbols y;. The combined
system can be represented by the “product state space” of pairs
(@, 8). Two points in the space (a;, ;) and (es, 8:), are con-
nected by a line if &y can produce an x which changes B, to 8.,
and this line is given the probability of that x in this case. The
line is labeled with the block of ¥, symbols produced by the
transducer. The entropy of the output can be calculated as the
weighted sum over the states. If we sum first on 2 each resulting
term is less than or equal to the corresponding term for «, hence
the entropy is not increased. If the transducer is non-singular
let its output be connected to the inverse transducer. If Hi, H;
and H! are the output entropies of the source, the first and
second transducers respectively, then H) > H; > Hi = H; and
therefore H, = Hj.

Suppose we have a system of constraints on possible sequences
of the type which can be represented by a linear graph as in
Fig. 2. If probabilities pi"} were assigned to the various lines
connecting state ¢ to state j this would become a source. There is
one particular assignment which maximizes the resulting entropy
(see Appendix 4).

Theorem 8: Let the system of constraints considered as a chan-
nel have a capacity C = log W. If we assign

Py = -ig:— W
where 1{) is the duration of the s symbol leading from state 1 to
state j and the B; satisfy

B; = ZBJ'W—I'[;)
8,7

then H is maximized and equal to C.

By proper assignment of the transition probabilities the
entropy of symbols on a channel can be maximized at the
channel capacity.

9.[The Fundamental Theorem for a Noiseless Channel]

We will now justify our interpretation of H as the rate of gen-

Discrete Noiseless Systems 59

erating information by proving that H determines the channel
capacity required with most efficient coding.

(" Theorem 9: Let a source have entropy H (bits per symbol))
and a channel have a capacity C (bits per second). Then it s
possible to encode the output of the source in such a way as to

transmit at the average rate % — ¢ symbols per second over the

channel where ¢ s arbitrarily small. It is not possible to transmit

at an average rate greater than Q

H

L The converse part of the theorem, that % cannot, be exceeded,)
may be proved by noting that the entropy of the channel input
per second is equal to that of the source, since the transmitter
must be non-singular, and also this entropy cannot exceed the
channel capacity. Hence H* < C and the number of symbols per
second = H'/H < C/H.

The first part of the theorem will be proved in two different
ways. The first method is to consider the set of all sequences of
N symbols produced by the source. For N large we can divide
these into two groups, one containing less than 2¢+"¥ members
and the second containing less than 28¥ members (where R is the
logarithm of the number of different symbols) and having a total
probability less than p. As N increases % and px approach zero.
The number of signals of duration T in the channel is greater
than 29T with # small when T is large. If we choose

- (o)

then there will be a sufficient number of sequences of channel
symbols for the high probability group when N and T are suffi-
ciently large (however small A) and also some additional ones.
The high probability group is coded in an arbitrary one-to-one
way into this set. The remaining sequences are represented by
larger sequences, starting and ending with one of the sequences
not used for the high probability group. This special sequence
acts as a start and stop signal for a different code. In between a
sufficient time is allowed to give enough different sequences for
all the low probability messages. This will require

Entropy and Randomness

 Entropy measures the expected “uncertainly” (or “surprise™)
assoclated with a random variable.

 Entropy quantifies the “information content” and represents
a lower bound on the best possible lossless compression.

3 74
- Ex: a random fair coin has entropy of 1 bit.
A biased coin has lower entropy than fair coin. =| S

A two-headed coin has zero entropy.

(.5
PriX (]

e The string 00000000000000... has zero entropy.
 English text has entropy rate of 0.6 to 1.5 bits per letter.

Q: How do you simulate a fair coin with a
biased coin of unknown but fixed bias?

A [von Neumann]: Look at pairs of flips. HT and TH both occur
with equal probability of p(1-p), and ignore HH and TT pairs.

Entropy and Randomness

o Information entropy is an analogue of thermodynamic
entropy in physics / statistical mechanics, and
von Neumann entropy in quantum mechanics.

» Second law of thermodynamics: entropy of an
Isolated system can not decrease over time.

 Entropy as “disorder” or “chaos”.
 Entropy as the “arrow of time”.
e “Heat death of the universe” / black holes

« Quantum computing uses a quantum information
theory to generalize classical information theory.

Theorem: String compressibility decreases as entropy Increases.
Theorem: Most strings are not (losslessly) compressible —
Corollary: Most strings are random!

“My greatest concern was what to call it. I thought of calling it ‘information’, but the word
was overly used, so I decided to call it ‘uncertainty’. When I discussed it with John von
Neumann, he had a better idea. Von Neumann told me, ‘You should call it entropy, for two
reasons. In the first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more important, nobody
knows what entropy really is, so in a debate you will always have the advantage.’”

- Claude Shannon on his conversation with John von Neumann
regarding what name to give to the “measure of uncertainty”

\s\{\ B or attenuation in phone-line signals (1949)
= ' B -

= 51 B
ety

18] Most visted P Getting Started

7(‘,0 le | claud
Wolfram -

|) Claude Shannon - Father of the Info

5\ Latest Headines | | USurges cautionon ... | | CustomizeLinks | | Free Hotmail | | http:/jwws

Unlike Anything Else
University of California Television
San Diego

SEARCH UCSD-TV

£ SHARE

of 2

PROGRAMS

Claude Shannon - Father of the Information Age
* %k ok kok

CLAUDE SHANNON

(1] Tube)

SCHEDULE

WATCH/ALISTEN

First Aired: 1/30/2002
29 minutes

Considered the founding father of
the electronic communication age,
Claude Shannon's work ushered in
the Digital Revolution. This
fascinating program explores his
life and the major influence his work
had on today's digital world through
interviews with his friends and
colleagues. (#6090)

Links / Resources
General
Claude Shannon

Teacher's P.E.T:
K-12 Educational Standards on
4

BEHIND THE SCENES

DONATE

SHOP ABOUT

MORE COMPUTER SCIENCE

JRE q“\EN*

On Beyond: Examining Art,
Preparing for The Big One

Technology Management
Program UCSB: Innovation

Technology Management
Program UCSB: Software

> MORE PROGRAMS

E BIOGRAFHIES AND

“Nukes and Genomes" with
Freeman Dyson and Bob
Kittle

Con ersations With History
Microbiologist's Intellectual
Jdye ey

Roger Revelle Centennial
Symposium: Human Capital
and the Promise of Research
Universities

> MORE PROGRAMS

Sign up for UCSD-TV's monthly e-newsletter: [SEnEll] Sign Up

CONTACT US FEEDBACK

WHERE TO WATCH

ABOUT UCSD-TV

©2009 Regents of the University of California. Terms and Conditions of Use

“) Claude E. Shannon Award — Information Theory Society - Mozilla Firefox

Fl= Edt View History Bookmarks Tools Help

=10l

CE-'H C' 0 o | it [hetpusiwm isoc crglpsapiefenards-and-honorsfclauds-. shannan-anard 77 - I?l'lGnng\a P

(2] Most visited 4 Getting Started 5| Lakest Headines | | US urges cautionon .. | | Customize Links | | Fres Hotmail | | hetp:/fwew scientific- . | | Sudgested Sites | | Wb Slics Gallery |] Windows Marketplace |] Windows Media | | Windows

Google #q search - | oBe G- (4 - 93 Bookmarkss B0 - N Autalik - | Aol - /0[5 Claude [El Ewood [E] shannen il & €, - @ Gabero..v
Wolfram|# - IEEEEYY:

| ## Claude . shannon Award —Tnforma... | = | =

IEEE Home | loin IEEE | Search IEEE Xplore QIEEE i

IEEE Information Theory Society

Publications Conferences News & Events Resources

You are here: Home :: People ;. Awards and Honors :: Claude E. Shannon Award

About the Society

Search IT Socigty Site

Site Login

Awards and Honors
] Claude E. Shannon Award

Shannon Award Nomination
Form

1993 Shannon Lecture (ps)
1993 Shannon Lecture (pdf)
1994 Shannon Lecture (ps)
1994 Shannon Lecture (pdf)

(

(

(
1995 Shannon Lecture (ps)
1995 Shannon Lecture (pdf)
1996 Shannon Lecture (pdf)
1997 Shannon Lecture (pdf)
2007 Shannon Lecture (pdf)

Aaron D. Wyner Distinguished
Service Award

Information Theory Paper
Award

ComSoc & IT Joint Paper
Award

Chapter of the Year Award
Golden Jubilee Paper Awards

Golden Jubilee Awards for
Technological Innovation

IEEE Fellows
ISIT Student Paper Award
Board of Governors

Committees

Society Chapters

loan in ta-

4

Claude E. Shannon Award

— filed under: awards

The Claude E. Shannon Award of the IT Society has been institued to honor
consistent and profound contributions to the field of information theory. Each
Shannon Award winner is expected to present a Shannon Lecture at the following
IEEE International Symposium on Information Theory. Transcripts of some of the
lectures are available on-line.

Starting for the 2010 Award, the Shannon Award Committee has decided to issue
an open call for nominations, preferably using the nomination form. Although
anyone may make a nomination, the Committee retains the responsibility of
assuring that a suitable slate of candidates is hominated, and may itself generate
nominations. Nominations and optional letters of endorsement must be
submitted by March 1 to the current President of the IEEE Information Theory
Society.

The first Shannon Lecturer was Claude Shannon himself followed by:

D NEWS

» Postdoctoral position in
computational biology

» Call For Papers: Special Issue on
Cognitive Wireless Networks

» Research Fellow Position:
Satellite Data Communications

» 2010 Claude E. Shannon Award

=

2009 IEEE Fellows

View All

) UPCOMING EVENTS

sun ITW 2009, Taormina

« David S. Slepian (1974) ot

s Robert M. Fano (1976) .
Tue . BoG Meeting, ITW

u Peter Elias (1977) Oct @ Jaormina 2009

= Mark S. Pinsker (1978) L

= |. Wolfowitz (1979) Mon . JTwelfth IMA International
Dec = Conference on

= W. Wesley Peterson (1981) 14 Cryptography and

u @¥Irving S. Reed (1982)

s »Robert Gallager (1983)

» Solomon W. Golomb (1985)
= William L. Root (1986)

= James L. Massey (1988)

Coding (IMACCC)

View All

D cs.IT updates on arXiv.org

Robust THP Transceiver Designs

[Done

Historical Perspectives
Stephen Kleene (1909-1994)

 Founded recursive function theory

 Pioneered theoretical computer science

» Student of Alonzo Church; was at the
Institute for Advanced Study (1940)

* Invented regular expressions

 Kleene star / closure, Kleene algebra,
Kleene recursion theorem, Kleene fixed
point theorem, Kleene-Rosser paradox

Regular

A
Regular
Expressions

Expressions
Cookbook

O'REILLY" & Stovon foviban O'REILLY

“Kleeneliness is
next to Godeliness”

INTRODUCTION MATHEMATICAL
TO NETA-
MATHEMATICS

Stehen Cole Kleene

ISHI PRESS
INTERNATIONAL

OH NO! THE KILLER

WHENEVER T LEARN A | | MUST HAVE ROLLOWED
NEW SKILL I mncr' HER ON VACATION !
|

ELABORATE FANTRSY
SCENARIDS WHERE (T f %

LETS ME. SWVE HE DAY. |

BUT O

THROUGH 200 MB (F EMAILS LOOKING FOR
SNTHHHTSFbRFFWEIhUKEZﬁMEﬁXEESﬁl

% ﬂ&-——— IT5 HoPELESS!

FIND THEM WED HAVE T0 SEARCH

T KNOW REGULAR,
EXPRESSIONS.

Regular Expression
O\s+\

JEverybody stand back/

I know regular expressions

/5[])/

NATIONA
REGULAR EXPRESSION DAY

a celebration of powerful string manipulation
JUNE 15T /I 2008

Historical Perspectives

Noam Chomsky (1928-)

» Linguist, philosopher, cognitive scientist,

political activist, dissident, author
e Father of modern linguistics
* Pioneered formal languages
 Developed generative grammars
Invented context-free grammars
* Defined the Chomsky hierarchy
« Influenced cognitive psychology,
ohilosophy of language and mind
Chomskyan linguistics, Chomskyan
syntax, Chomskyan models
* Critic of U.S. foreign policy
 Most widely cited living scholar
Eighth most-cited source overall!

(Y
Recognizable H)
Decidable Presburger arith

- " ~
Context sensitive abvch

(Context-free wwR
(Det. CF ab®)

Regular a*
Finite {a.b)

2

NOAM CHOMSKY

Topics in the Theory of
Generative Grammar Noam

| CHOMSKY

Noam Chomsky
Syntactic
Structures

mouton

DA AND THE

Rethinking
e Camelot
4’/ / '::\:\Hl\(\
o A a.\

~ Thought Control
in Democratic Societies

NOAM CHOMSKY
ALY CHOMSKY

LRI

The Political [conqmv of HEGEMUNY
i | OR SURVIVAL

\mNOAM CHOMSKY AMERICA'S QUEST FOR
GLOBAL DOMINANCE

Noam Chomsky

The 4 4 :
Minimalist
Program

CHOMSKY

OF HEGEMONY OR SURVIVAL

—
=)
=
=
' |
==
=)
=
[92
=
-

UNCLE SAM

THE REAL STORY SERIES

LANGUAGE

REALLY | %
WANTS |

A= PRO. OAMMSKY

PROF son',}uucuusncs MAT.

=i gt
i” il =< s
i H‘u

ANARCHISM

Ur doin it wrong

o
CHOMSKY

AMERICA S QUEST FOR
GLOBAL DUMINANC_.E

“AN IMMENSELY ACCOMPLISHED, ENTERTAINING

EXAMINATION OF THE MAN AND HIS IDEAS?

n Rea, THE PHILADELPHIA INQUIRER

’

—~

A‘E o8
ARRREN
ART\BREN

=

oW E‘\
(e (== | |
>
=

AAMEY ARKACH

“ ZEITGEIST VIDEO

i' AMNESTY "
%I\HR\\H()\\?

'b AMSTERDAM l
%D\)Ll\\l\]\mg

“Argusbly the

most important

intellectual alives 3
= T Bee Tor T i

Y
NOAM CHOMSKY

DiSTORTED
MORALITY
N

America's War on Terror?

“I's opertant Sor gow 2oys and ghes 0 haow TR w18 Sghleg eel v pod
g . Bk, uomiong if o A et 0w

Wutoner s been Rappuuag fr (he pust severst meathy aud s gueg oo wa
e Saweres you oxhande 1 Bhe 11, bate 11 or wudever
% protty chr that thare canoet 8¢ 3 war o terroc”
g Comnsty Ovparied Moy

‘...I must admit to taking a copy of

along with me on my honeymoon in

1961 ... Here was a marvelous thing: a
in

which I could use as a computer

programmer's intuition!”

- Don Knuth on Chomsky’s influence

“One of the great voices of reason
of our time.” - xew vor oany News

RN
ry AN

Noam Chomsky
Syntactic
Structures

de gruyter

4 §
5]
‘ '
LGl
A}
4
2“
|
IE
&
!’

POWER AND TERROR

_ NOAM CHOMSKY

IN OUR TIMES

Postmodern Haircut Presents... by Jeffrey Weston, www.postmodernhaircut.com

Post

modernHal

kdventures of...

OAM CHOMSK

———~__... and his dog Predicate!
Good news!

The Adventures of...

NOAM

.. and his dog Predicate!

CHO

| just got an interview on Wait? What do you
Nightline! mean, “screw it up"?

You know, by
being you!

| need a better way to
get my message out.

I'm not going to comprise my
integrity by contributing to the
numbing of society's intellect!

If you go on there you're going to
be like, “I'm Noam Chomsky the
Modern Industrial Society must...
big word here, big word there,

U.S. foreign policy this... Blah,

There is only
one option!
SELL OuUT!

all the time!

| don't know,
but it's some

To do that would be to

undermine the what's the topic sort of panel
responsibility of the going fo be? discussion,
Intellectual in our which |

society! To tell the fruth think will be
and expose the lies! If very
the ':'yi:’;;m;r:' the ‘ informative!
complicated and the
lies abstruse then I'm
going to say just that! It
is my duty!

" Uh, thank you Professor Chomsky
N/[]H] IM] for that “unique” insight into the hidden
— agendas of international frade
organizations. So now, let me pose the
same question to our other
panelist.

Ms. Spears, what is
your opinion of...
fuzzy things?

Positive spin
Noam, that's the
way to get your

message out!

Look Noam, let's be realistic.
You're a downer. People don't want
to hear about how awful things are

Yeah, market
research is saying
that The Noam
Chomsky Quote of
the Day Calendar is
giving people
head aches.

- How can you
possibly put positive | -
spin on the continuing
decay and directed
destruction of our
basic freedoms?!! "y

o

PostmodernHaircut www.PostmodernHalilrcut. c om
The Adventures of... The Adventures of...

M CHOMSK NOAM CHOMSK

.. and his dog Predicate! ByslafimyNesan' JHE Rey Noam, .. and his dog Predicate! bySetmeyWeshon
Predicate, which do If | bought 100 grams of another Oh, no. Not So basically we're making
you think would be plain salted peanuts or 100 documentary film again. a sequel to"Manufacturing
less harmful to the X, grams of plain crew is here. Consent."

progressive struggle
against the

corporate power

structure in this

_(Z\ unsalted peanuts?

| don't care N\ 4
Noam. 1=
¢ o

Well, our investors say "yes".
The university student activist
market is very
lucrative.

Can | get this

What? | Sure,we can spin off Noam
cereal? Chomsky T-Shirts, coffee
mugs, action figures, waffle

Canlgetin
on that?

/ Fine,we can do this without you.)

Here's my
investment of

to reach their parent's wallet,
but to influence them with

subversive cereal themes...

That's just disgusting.

Noam! It
comes with a

Nl

COMING SOON!
70 4 UNIVERSITY-
STUDENT-UNION-BASE-
MENT-MAKE-SHIFT-

SCREENING-ROOM NEAR
----- you!

W W w

.PostmodernHaircut.

com

www.PostmodernHailrcut. com

The Adventures of...

| can't believe

M CHOMSK

and his dog Predicate!

by Jeffrey Weston

they're going to make a
sequel to Manufacturing
Consent purely to sell
merchandise!

foss)

Come on! This Noam Chomsky
Action Figure is pretty cool! It also
corrects your grammar foo.

AR, CHOMSKY:

AV,
\ (¢
b { ¢
, , %
and his dog Predicate! By Jefrey Weston AN

So Noam, do you see that
waffle you're eating as a
representation of individual

thoughts and freedoms being

consumed by the self-serving
culture of the powerful elite?

No. it'sa
)

ik

vl"

"
&

[y

&
&
\
v

G

=)

N

EBeep. "It corrects your

grammar as well."

It's Win-Win! You get your
message out and |, er,
they get something in

OK, but | want to make sure some
conspiring corporate director
doesn't dilute my message.

Fine, we'll hire some
dorky, idealistic
University Student.

| think I'm probably
going to regret this.

Beep. "I think I will

Incase you didn’t know. ..

monomorphemic
preposition
noun

velerized

adverb /
/ !

consonant cluster

diphthong

uncountable noun

| always hear, “I can't vaccum Hey, did
now", "do your own laundry”,
“ain't is not a word". If's like
doing the
dishes is

It's not easy living with
Noam Chomsky.

you get
that?
Foreign

some policy!
sort of Ha!
foreign

policy to

Why are you interviewing my dog? This
documentary is supposed to be about ideas!

Relax, you're
guaranteed at least
2nd billing.

This is becoming a
disaster.

Because, I'm far
more entertaining.

If we don't believe
in freedom of
expression for

L people we despise,
we don't helieve in

Q@ \ : P
v | N
l itatall. = |] - Noam Chomsky

npropaganda is t; ,
democracy what the
bludgeon is to 3
totalitarian state"

“) CiE 2012 - Home page - Mozilla Firefox =10l x(
6@' C X o IniE‘http:ﬁwww cs.suan.ac.ukjcie12f 7o I?"lGnug\E r3)
(5] Most visked % Getting Started .| Latest Headines | | USurgescautionon ... | | CustomizeLinks | | Free Hotmal | | https/fwm.scientiic-... | | SuggestedSites | | Web Slice Gallery | | Windows Marketplace | | Windows Media | | Windows

Google *§ search -<‘> - &) - [F] - €9 Bookmarksw BC1 - % Autolink - -] AutoRil - 5 [E] Turing [G], Centenary [E] Celebration 7o & €+ @ GabeRo..v
Wolfram|8 - 3 % @ % & 3

J GiE CiE 2012 - Home page 'T‘ F

TURING CENTENARY CONFERENCE
CiE 2012 - How the World Computes

1 Print this page

University of Cambridge HEWS
18 June - 23 June, 2012 17.8.09

CiE 2012 is one of a series of special events, 22.7.09
running throughout the Alan Turing Year,
celebrating Turing's unique impact on 31.12.07
mathematics, computing, computer science,
informatics, morphogenesis, philosophy and the
wider scientific world. Its central theme is the
computability-theoretic concerns underlying the
broad spectrum of Turing's interests, and the
contemporary research areas founded upon and
animated by them. In this sense, CIE 2012, held in
Cambridge in the week running up to the centenary
of Turing's birthday, deals with the essential core
of what made Turing's contribution so influential
and long-lasting. CiE 2012 promises to be an
event worthy of the remarkable scientific career it
commemorates.

Scientific Arrangements

External Links

Programme Committee: S Barry Cooper (Leeds, Co-chair), Anuj Dawar
(Cambridge, Co-chair)

Organising Committee: Luca Cardelli, S Barry Cooper (Leeds), Ann
Copestake, Anuj Dawar (Chair), Martin Hyland, Andrew Pitts

The Alan Turing Memorial in Sackville F’ark
Manrhactar LI
P

Done

