
NP Completeness

• Tractability

• Polynomial time

• Computation vs. verification

• Power of non-determinism

• Encodings

• Transformations & reducibilities

• P vs. NP

• “Completeness”

Stephen Cook Leonid Levin Richard Karp

NP Completeness Benefits

1. Saves time & effort of trying to solve intractable

problems efficiently;

2. Saves money by not separately working to

efficiently solve different problems;

3. Helps systematically build on & leverage the

work (or lack of progress) of others;

4. Transformations can be used to solve new

problems by reducing them to known ones;

5. Illuminates the structure & complexity of

seemingly unrelated problems;

NP Completeness Benefits

6. Informs as to when we should use approximate

solutions vs. exact ones;

7. Helps understand the ubiquitous concept of

parallelism (via non-determinism);

8. Enabled vast, deep, and general studies of other

“completeness” theories;

9. Helps explain why verifying proofs seems to be

easier than constructing them;

10. Illuminates the fundamental nature of algorithms

and computation;

NP Completeness Benefits

11. Gave rise to new and novel mathematical

approaches, proofs, and analyses;

12. Helps us to more easily reason about and

manipulate large classes of problems;

13. Robustly decouples / abstracts complexity from

underlying computational models;

14. Gives disciplined techniques for identifying

“hardest” problems / languages;

15. Forged new unifications between computer

science, mathematics, and logic;

16. NP-Completeness is interesting and fun!

Intuitively, A is “no harder” than B (modulo P)

Denotation: A P B

Note: ƒ is a polynomial-time “reduction” of A to B

Def: A language A is polynomial-time reducible to a

language B if $ polynomial-time computable

function ƒ:** where wA  ƒ(w)B "w

Reducibilities Reloaded

Def: A language A is polynomial-time reducible to a

language B if $ polynomial-time computable

function ƒ:** where wA ƒ(w)B "w

Note: ƒ is a polynomial-time “reduction” of A to B

Denotation: A P B

 A
ƒ

ƒ(w) w

B





Intuitively, A is “no harder” than B (modulo P)

P

Def: A language A is polynomial-time reducible to a

language B if $ polynomial-time computable

function ƒ:** where wA  ƒ(w)B "w

Reducibilities Reloaded

Def: A language A is polynomial-time reducible to a

language B if $ polynomial-time computable

function ƒ:** where wA  ƒ(w)B "w

 A
ƒ

ƒ(w) w

B





P

Theorem: If A P B and B is decidable within polynomial

time then A is decidable within polynomial time.

Theorem: If A P B and A is not decidable within polynomial

time then B is not decidable within polynomial time.

Note: be very

careful about

the reduction

direction!

Problem Transformations
Idea: To solve a problem, efficiently transform to another

problem, and then use a solver for the other problem:

(x+y)(x'+y')

Colorability

solver

SAT solution

x=1, y=0

Satisfiability

Colorability

NP Hardness & Completeness

Def: A problem L’ is NP-hard if:

(1) Every L in NP reduces to L’ in polynomial time.

Def: A problem L’ is NP-complete if:

(1) L is NP-hard; and (2) L is in NP.

One NPC problem is in P P=NP

Open: is P=NP ?

Open: is NP=co-NP ?

Theorem: P = co-P

PNP

NP-complete SAT

co-NP-complete TAUT

co-NP
P-complete LP

Boolean Satisfiability Problem (SAT)

Def: CNF (Conjunctive Normal Form) formula

is in a product-of-sums format.

Ex: (x1+x4+x5+x7+x'8)(x'1+x3+x'4+x'5)

Def: A formula is satisfiable if it can be made true

by some assignment of all of its variables.

Problem (SAT): given an n-variable Boolean

formula (in CNF), is it satisfiable?

Ex: (x+y)(x'+z') is satisfiable (e.g., let x=1 & Z=0)

(x+z)(x')(z') is not satisfiable (why?)

Stephen Cook

Leonid Levin

The Cook/Levin Theorem

Theorem [Cook/Levin, 1971]: SAT is NP-complete.

Proof idea: given a non-deterministic polynomial

time TM M and input w, construct a CNF

formula that is satisfiable iff M accepts w.

Create boolean variables:

q[i,k]  at step i, M is in state k

h[i,k]  at step i, M’s RW head scans tape cell k

s[i,j,k]  at step i, M’s tape cell j contains symbol Sk

M halts in polynomial time p(n)

 total # of variables is polynomial in p(n)

Qk

Stephen Cook

Leonid Levin

Add clauses to the formula to enforce necessary

restrictions on how M operates / runs:

• At each time i:

M is in exactly 1 state

r/w head scans exactly 1 cell

All cells contain exactly 1 symbol

• At time 0  M is in its initial state

• At time P(n)  M is in a final state

• Transitions from step i to i+1

all obey M's transition function

Resulting formula is satisfiable iff M accepts w!

Qk

The Cook/Levin Theorem

Historical Note
The Cook/Levin theorem was independently proved

by Stephen Cook and Leonid Levin

• Denied tenure at Berkeley (1970)

• Invented NP completeness (1971)

• Won Turing Award (1982)

• Student of Andrei Kolmogorov

• Seminal paper obscured by

Russian, style, and Cold War

“Guess and Verify” Approach
Note: SAT  NP.

Idea: Nondeterministically “guess” each Boolean

variable value, and then verify the guessed solution.

 polynomial-time nondeterministic algorithm  NP

This “guess & verify” approach is general.

Idea: “Guessing” is usually trivially fast ( NP)

 NP can be characterized by the “verify” property:

NP  set of problems for which proposed

solutions can be quickly verified

 set of languages for which string

membership can be quickly tested.

An NP-Complete Encyclopedia

Classic book: Garey & Johnson, 1979

• Definitive guide to NP-completeness

• Lists hundreds of NP-complete problems

• Gives reduction types and refs

Michael Garey David Johnson

Robustness of P and NP

Compositions of polynomials yields polynomials

Computation models’ efficiencies are all polynomially

related (i.e., can efficiently simulate one another).

Defs of P and NP is computation model-independent!

μ
λ

x3 + y3 + z3 = 33

Perelman

2006

??

B

Reduction Types

Many-one reduction: converts an instance of one

problem to a single instance of another problem.

 A
ƒ

ƒ(w) w

B




Turing reduction: solves a problem A by multiple calls

to an “oracle” for problem B.

A M B

A T BA

Stephen Cook

Richard Karp

BA

Polynomial-Time Reduction Types

Polynomial-time many-one reduction: transforms in

polynomial time an instance of problem A to an

instance of problem B.

“Karp” reduction (transformation)

 A
ƒ

ƒ(w) w

B




Polynomial-time Turing reduction: solves problem

A by polynomially-many calls to “oracle” for B.

“Cook” reduction

Open: do polynomial-time-bounded many-one and

Turing reductions yield the same complexity classes?

(NP, co-NP, NP-complete, co-NP-complete, etc.)

Boolean 3-Satisfiability (3-SAT)

Def: 3-CNF: each sum term has exactly 3 literals.

Ex: (x1+x5+x7)(x3+x'4+x'5)

Def: 3-SAT: given an n-variable boolean formula

(in CNF), is it satisfiable?

Theorem: 3-SAT is NP-complete.

Proof: convert each long clause of the given formula

into an equivalent set of 3-CNF clauses:

Ex: (x+y+z+u+v+w)

(x+y+a)(a'+z+b)(b'+u+c)(c'+v+w)

Resulting formula is satisfiable iff original formula is.

1-SAT and 2-SAT

Idea: Determine the “boundary of intractability” by

varying / trivializing some of the parameters.

Q: Is 1-SAT NP-complete?

A: No (look for a variable & its negation)

Q: Is 2-SAT NP-complete?

A: No (cycles in the implication graph)

Richard Karp

Classic NP Complete Problems

Clique: given a graph and integer k, is there a

subgraph that is a complete graph of size k?

Classic NP Complete Problems

Set Cover: given a universe U, a collection of subsets Si

and an integer k, can k of these subsets cover U?

U
S2

S3

S1

S4

S5

Classic NP Complete Problems

Hamiltonian cycle: Given an undirected graph, is there

a closed path that visits every vertex exactly once?

Classic NP Complete Problems

Graph coloring: given an integer k and a graph, is it

k-colorable? (adjacent nodes get different colors)

Classic NP Complete Problems

Partition: Given a set of integers, is there a way to

partition is into two subsets each with the same sum?

Classic NP Complete Problems

Knapsack: maximize the total value of a set of items

without exceeding an overall weight constraint.

NP Complete Problems
Bin packing: minimize the number of same-size bins

necessary to hold a set of items of various sizes.

2

Other Classic NP Complete Problems
Steiner Tree: span a given node subset in a weighted

graph using a minimum-cost tree.

Other Classic NP Complete Problems
Traveling salesperson: given a set of points, find the

shortest tour that visits every point exactly once.

Graph Colorability

Problem: given a graph G and an integer k,

is G k-colorable?

Note: adjacent nodes must have different colors



from “Complexity of Computer Computations”, pp. 85–103, 1972.

PSPACE-complete

P [2004]

Problem Transformations
Idea: To solve a problem, efficiently transform to another

problem, and then use a solver for the other problem:

(x+y)(x'+y')

Colorability

solver

SAT solution

x=1, y=0

Satisfiability

Colorability

Decision vs. Optimization Problems

Decision problem: “yes” or “no” membership answer.

Ex: Given a Boolean formula, is it satisfiable?

Ex: Given a graph, is it 3-colorable?

Ex: Given a graph & k, does it contain a k-clique?

Optimization problem: find a (minimal) solution.

Ex: Given a formula, find a satisfying assignment.

Ex: Given a graph, find a 3-coloring.

Ex: Given a graph & k, find a k-qlique.

Theorem: Solving a decision problem is not harder
than solving its optimization version.

Theorem: Solving an optimization problem is not (more than
polynomially) harder than solving its decision version.

(x+y+z)
^(x'+y'+z)
^(x'+y+z')

Decision vs. Optimization Problems
Corollary: A decision problem is in P if and only if its

optimization version is in P.

Corollary: A decision problem is in NP if and only if its
optimization version is in NP.

Building an optimizer from a decider:

Ex: what is a satisfying assignemnt

of P=(x+y+z)(x'+y'+z)(x'+y+z') ?

Idea: Ask the decider 2 related yes/no questions:

P^x

P^x'

Satisfiability
Decider

yes

no

Satisfiability
Decider

yes

no

Satisfiability
Decider

yes

no

x is true

x is “don’t care”

P is not satisfiable

x is false
Iterate!

Satisfiability
Optimizer

P

Graph Cliques
Graph clique problem: given a graph and an integer k, is

there a subgraph in G that is a complete graph of size k?

Theorem: The clique problem is NP-complete.

Proof: Reduction from 3-SAT:
Literals become nodes; k clauses induce node groups;
Connect all inter-group compatible nodes / literals.

Example: (x+y+z)(x'+y'+z)(x'+y+z')

Z

Y

X

Z'

Y

X'

ZY'X'

k-clique corresponds
to 3-SAT solution:
x = true, y = false, z = false

Clique is in NP  clique is NP-complete.

Graph clique
solver

Independent Sets
Independent set problem: given a graph and an integer k,

is there a pairwise non-adjacent node subset of size k?

Theorem: The independent set problem is NP-complete.

Proof: Reduction from graph clique:
Idea: independent set is an “anti-clique” (i.e., negated clique)
finding a clique reduces to finding an independent set

in the complement graph:

Graph clique
solver

Independent
set solverIndependent set NP

 NP-complete.

Graph Colorability

Problem: is a given graph G 3-colorable?

Theorem: Graph 3-colorability is NP-complete.

Proof: Reduction from 3-SAT.

Idea: construct a colorability “OR gate” “gadget”:



F

T

(x+y+z)

Property: gadget is 3-colorable iff
(x+y+z) is true

x'

x

"x
x

y T

z

Example: (x+y+z)(x'+y'+z)(x'+y+z')

F

x'

y'
T

x

z

y

z'

F

T

x'

x

"x

x

y T

z

x+y+z x'+y'+z x'+y+z'

F

Example: (x+y+z)(x'+y'+z)(x'+y+z')

F

x'

y'
T

x

z

y

z'

3-satisfiability

Solution:

x = true

y = false

z = false

3-colorability

Solution:

What Makes Colorability Difficult?

Q: Are high node degrees the reason that graph
colorability is computationally difficult?

A: No!

Graph colorability is easy for max-degree-0 graphs

Graph colorability is easy for max-degree-1 graphs

Graph colorability is easy for max-degree-2 graphs

Theorem: Graph colorability is NP-complete for
max-degree-4 graphs.

Gadget properties:

a) Gadget has max-degree of 4

b) Gadget is 3-colorable but not 2-colorable

c) In any 3-coloring all corners get the same color

Restricted Graph Colorability

Theorem: Graph 3-colorability is NP-complete for
max-degree-4 graphs.

Proof: Use “degree reduction” gadgets:
3-colorability

constraint propagation:

Restricted Graph Colorability

Idea: combine gadgets into “super nodes”!

Properties (inherited from simple gadget):

a) Super-node has max-degree of 4

b) Super-node is 3-colorable but not 2-colorable

c) In any 3-coloring all “corners” get the same color

Idea: Use “super nodes” as “fan out” components
to reduce all node degrees to 4 or less

Local node

replacement:

High
degree

Max
degree 4

Restricted Graph Colorability

Example: convert high-degree to max-degree-4 graph

Conclusion: Solving max-degree-4 graph colorability
is as difficult as solving general graph colorability!

Max degree 4Max degree 6
Max-degree-4
colorability

solver

Gadget properties:

a) Gadget is planar and 3-colorable

b) In any 3-coloring opposite corners get same color

c) Pairs of opposite corners are “independent”

Restricted Graph Colorability

Theorem: Planar graph 3-colorability is NP-complete.
Proof: Use “planarity preserving” gadgets:

3-colorability
constraint propagation

Restricted Graph Colorability

Idea: use gadgets to eliminate edge intersections!

Local replacement:

Conclusion: Solving planar graph colorability
is as difficult as solving general graph colorability!

Planar graph is 3-colorable
IFF original graph was

Planar graph
colorability

solver

Restricted Graph Colorability

Theorem: Graph colorability is NP-complete for
planar graphs with max degree 4.

Proof: Compose max-degree-4 transformation with
planarity preserving transformation:

Local

intersection

replacement

Resulting planar max-deg-4 graph is 3-colorable IFF original graph is!

Degree

reduction

replacement

More degree reduction

replacements needed here

Planar Graph Colorability
Theorem: Planar graph 1-colorability is trivial. DTIME(n)

Theorem: Planar graph 2-colorability is easy. DTIME(n)

Theorem: Planar graph 3-colorability is NP-complete.

Theorem: Planar graph 4-colorability is trivial. DTIME(1)

Theorem: All planar graphs have 4-colorings.
Open since 1852; solved by Appel & Haken in 1976 using

long computer-assisted proof based on 1936 special cases!

Planar Graph Colorability

Theorem: Finding planar graph 4-coloring is in DTIME(n2).

Theorem: Finding planar graph 5-coloring is in DTIME(n).

Theorem: Graph planarity testing is in DTIME(n).

Theorem: 4-coloring a 3-colorable graph is NP-hard.

Theorem: 7 colors are necessary and sufficient on a torus.

Theorem: For a surface of genus G, the number of colors
that are both necessary and sufficient is 







 

2

4817 G

Genus: 0 1 2 3 4 5 6 7 8

colors: 4 7 8 9 10 11 12 12 13

Time 1

Time 2

Time 3

Applications of Graph Coloring

Job scheduling:

• Need to assign jobs to time slots;

• Some jobs conflict (e.g., use shared resource);

• Model jobs as nodes and conflicts as edges;

• Chromatic number is “minimum makespan”

(optimal time to finish all jobs without conflict)

1 2

5

3

4

1 2

5

3

4

1

25

3

4

Jobs & conflicts Coloring Schedule

Applications of Graph Coloring

CPU Register allocation:

• Compiler optimizes assignment of variables to registers;

• Interference graph: model registers as nodes, and edges

represent variables needed simultaneously;

• Chromatic number corresponds to minimum # of CPU

registers needed to accommodate all the variables.

Register 1
Register 2

Register 3

1 2

5

3

4

1 2

5

3

4

1 2

5

3

4

Variables
& simultaneity

Graph
coloring

Register
allocation

…
………
…

…
………
…

P
S

P
A

C
E

-c
o
m

p
le

te
 Q

B
F

The Extended Chomsky Hierarchy Reloaded

Context-free wwR

P anbncn

NP

R
ec

o
g

n
iz

ab
le

N
o
t

R
ec

o
g
n
iz

ab
le

HH

Decidable Presburger arithmetic

N
P

-c
o
m

p
le

te
S

A
T

N
o

t
fi

n
it

el
y

 d
es

cr
ib

ab
le

 ?

2S*

EXPTIME

E
X

P
T

IM
E

-c
o
m

p
le

te

G

o

E
X

P
S

P
A

C
E

-c
o
m

p
le

te

=
R

E


Context sensitive LBA

EXPSPACE

PSPACE

Dense infinite time & space complexity hierarchies
…
………
…

…
………
…

…
………
…

…
………
…

…
………
…

…
………
…

…
………
…

…
………
…Regular a*

…… … ……

…… … ……
…
………
…

Turing
degrees

Other infinite complexity & descriptive hierarchies

…
………
…Det. CF anbn

…
………
…Finite {a,b}

…

………

…PH BPP

Solution

exact approximate

fa
st

sl
o

w

S
p
ee

d “Short & sweet” “Quick & dirty”

“Slowly but surely” “Too little, too late”

Algorithms

Tradeoff: Execution speed vs. solution quality

Computational Complexity

Problem: Avoid getting trapped in local minima

Global optimum

Approximation Algorithms

Idea: Some intractable problems can be efficiently

approximated within close to optimal!

Fast:

• Simple heuristics (e.g., greed)

• Provably-good approximations

Slower:

• Branch-and-bound approaches

• Integer Linear Programming relaxation

Approximation Algorithms

Wishful:

• Simulated annealing

• Genetic algorithms

Minimum Vertex Cover

Minimum vertex cover problem: Given a graph, find

a minimum set of vertices such that each edge is

incident to at least one of these vertices.

Example:

Applications: bioinformtics, communications,
civil engineering, electrical engineering, etc.

• One of Karp’s original NP-complete problems

Input graph Heuristic solution Optimal solution

Richard Karp

Minimum Vertex Cover Examples

Approximate Vertex Cover

Theorem: The minimum vertex cover problem is NP-

complete (even in planar graphs of max degree 3).

Theorem: The minimum vertex cover problem can be

solved exactly within exponential time nO(1)2O(n).

Theorem: The minimum vertex cover problem can not

be approximated within  1.36*OPT unless P=NP.

Theorem: The minimum vertex cover problem can be

approximated (in linear time) within 2*OPT.

Idea: pick an edge, add its endpoints, and repeat.

Approximate Vertex Cover

Algorithm [Gavril, 1974]: Linear time 2*OPT

approximation for minimum vertex cover:

– Pick random edge (x,y)

– Add {x,y} to the heuristic solution

– Eliminate x and y from graph

– Repeat until graph is empty

Idea: one of {x,y} must be in any optimal solution.

 Heuristic solution is no worse than 2*OPT.

x

y

Maximum Cut

Maximum cut problem: Given a graph, find a partition
of the vertices maximizing the # of crossing edges.

Example:

Applications: VLSI circuit design, statistical
physics, communication networks.

• One of Karp’s original NP-complete problems.

A B

CD

E

A B

C
D

E

Input graph Heuristic solution Optimal solution

A B

CD

E

cut size = 2 cut size = 4 cut size = 5

Richard Karp

Maximum Cut

Theorem [Karp, 1972]: The minimum vertex cover
problem is NP-complete.

Theorem: The maximum cut problem can be solved
in polynomial time for planar graphs.

Theorem: The maximum cut problem can not
be approximated within  17/16*OPT unless P=NP.

Theorem: The maximum cut problem can be
approximated in polynomial time within 2*OPT.

Theorem: The maximum cut problem can be
approximated in polynomial time within 1.14*OPT.

=1.0625*OPT

Maximum Cut
Algorithm: 2*OPT approximation for maximum cut:

Start with an arbitrary node partition

– If moving an arbitrary node across the partition
will improve the cut, then do so

– Repeat until no further improvement is possible

Idea: final cut must contain at least half of all edges.
 Heuristic solution is no worse than 2*OPT.

A B

C
D

E

Input graph Heuristic solution Optimal solution

cut size = 2 cut size = 3

A B

C
D

E

A B

CD

E

cut size = 5

Approximate Traveling Salesperson

Analysis:

Traveling salesperson problem: given a pointset, find

shortest tour that visits every point exactly once.

2*OPT metric TSP heuristic:

– Compute MST

– T = Traverse MST

– S = shortcut tour

– Output S

triangle
inequality!

TSP minus an edge is
a spanning tree

S < T = MST < OPT TSP2*2*

T covers minimum
spanning tree twice

Non-Approximability

• NP transformations typically do not preserve the
approximability of the problem!

• Some NP-complete problems can be approximated
arbitrarily close to optimal in polynomial time.

Theorem [Arora, 1996] Geometric TSP approximation

in polynomial time within (1+e)*OPT for any e>0.

• Other NP-complete problems can not be approximated

within any constant in polynomial time (unless P=NP).

Theorem: General graph TSP can not be approximated

efficiently within K*OPT for any K>0 (unless P=NP).

Graph Isomorphism
Definition: two graphs G1=(V1,E1) and G2=(V2,E2) are

isomorphic iff $ bijection ƒ:V1V2 such that

"vi,vjV1 (vi,vj)E1  (ƒ(vi),ƒ(vj))E2

Isomorphism  edge-preserving vertex permutation

Problem: are two given graphs isomorphic?

≈

Note: Graph isomorphism NP, but not known to be in P

≈

Graph Isomorphism

≈ ≈

≈ ≈

≈ ≈

Zero-Knowledge Proofs
Idea: proving graph isomorphism without disclosing it!

Premise: Everyone knows G1 and G2 but not ≈

≈ must remain secret!

Create random G ≈ G1

Note: ≈ is ≈(≈)

Broadcast G

Verifier asks for ≈ or ≈

Broadcast ≈ or ≈

Verifier checks G≈G1 or G≈G2

Repeat k times

 Probability of cheating: 2-k

G1
G2≈

G

≈

Zero-Knowledge Proofs
Idea: prove graph 3-colorable without disclosing how!

Premise: Everyone knows G1 but not its 3-coloring χ
which must remain secret!

Create random G2 ≈ G1

Note: 3-coloring χ'(G2) is ≈(χ(G1))

Broadcast G2

Verifier asks for ≈ or χ'

Broadcast ≈ or χ'

Verifier checks G1≈G2 or χ'(G2)

Repeat k times

 Probability of cheating: 2-k

G1

G2χ

χ

χ'

Zero-Knowledge Caveats
• Requires a good random number generator

• Should not use the same graph twice

• Graphs must be large and complex enough

χ

Applications:

• Identification friend-or-foe (IFF)

• Cryptography

• Business transactions

Zero-Knowledge Proofs

Idea: prove that a Boolean formula P is satisfiable

without disclosing a satisfying assignment!

Premise: Everyone knows P but not its secret

satisfying assignment V !

Convert P into a graph 3-colorability

instance G =ƒ(P)

Publically broadcast ƒ and G

Use zero-knowledge protocol
to show that G is 3-colorable

 P is satisfiable iff G is 3-colorable

 P is satisfiable with probability 1-2-k

P = (x+y+z)(x'+y'+z)(x'+y+z')

ƒ

G =

Interactive Proof Systems
• Prover has unbounded power and may be malicious

• Verifier is honest and has limited power

Completeness: If a statement is true, an honest verifier will
be convinced (with high probability) by an honest prover.

Soundness: If a statement is false, even an omnipotent
malicious prover can not convince an honest verifier that
the statement is true (except with a very low probability).

• The induced complexity class depends on the verifier’s
abilities and computational resources:

Theorem: For a deterministic P-time verifier, class is NP.

Def: For a probabilistic P-time verifier, induced class is IP.

Theorem [Shamir, 1992]: IP = PSPACE

1. 2-SAT

2. 2-Way automata

3. 3-colorability

4. 3-SAT

5. Abstract complexity

6. Acceptance

7. Ada Lovelace

8. Algebraic numbers

9. Algorithms

10. Algorithms as strings

11. Alice in Wonderland

12. Alphabets

13. Alternation

14. Ambiguity

15. Ambiguous grammars

16. Analog computing

17. Anisohedral tilings

18. Aperiodic tilings

19. Approximate min cut

20. Approximate TSP

Concepts, Techniques, Idea & Proofs
21. Approximate vertex cover

22. Approximations

23. Artificial intelligence

24. Asimov’s laws of robotics

25. Asymptotics

26. Automatic theorem proving

27. Autonomous vehicles

28. Axiom of choice

29. Axiomatic method

30. Axiomatic system

31. Babbage’s analytical engine

32. Babbage’s difference engine

33. Bin packing

34. Binary vs. unary

35. Bletchley Park

36. Bloom axioms

37. Boolean algebra

38. Boolean functions

39. Bridges of Konigsberg

40. Brute force

41. Busy beaver problem

42. C programs

43. Canonical order

44. Cantor dust

45. Cantor set

46. Cantor’s paradox

47. CAPCHA

48. Cardinality arguments

49. Cartesian coordinates

50. Cellular automata

51. Chaos

52. Chatterbots

53. Chess-playing programs

54. Chinese room

55. Chomsky hierarchy

56. Chomsky normal form

57. Chomskyan linguistics

58. Christofides’ heuristic

59. Church-Turing thesis

60. Clay Mathematics Institute

Concepts, Techniques, Ideas & Proofs
81. Computer viruses

82. Concatenation

83. Co-NP

84. Consciousness and sentience

85. Consistency of axioms

86. Constructions

87. Context free grammars

88. Context free languages

89. Context sensitive grammars

90. Context sensitive languages

91. Continuity

92. Continuum hypothesis

93. Contradiction

94. Contrapositive

95. Cook’s theorem

96. Countability

97. Counter automata

98. Counter example

99. Cross- product

100. Crossing sequences

101. Cross-product construction

102. Cryptography

103. DARPA Grand Challenge

104. DARPA Math Challenges

105. De Morgan’s law

106. Decidability

107. Deciders vs. recognizers

108. Decimal number system

109. Decision vs. optimization

110. Dedekind cut

111. Denseness of hierarchies

112. Derivations

113. Descriptive complexity

114. Diagonalization

115. Digital circuits

116. Diophantine equations

117. Disorder

118. DNA computing

119. Domains and ranges

120. Dovetailing

61. Clique problem

62. Cloaking devices

63. Closure properties

64. Cogito ergo sum

65. Colorings

66. Commutativity

67. Complementation

68. Completeness

69. Complexity classes

70. Complexity gaps

71. Complexity Zoo

72. Compositions

73. Compound pendulums

74. Compressibility

75. Computable functions

76. Computable numbers

77. Computation and physics

78. Computation models

79. Computational complexity

80. Computational universality

121. DSPACE

122. DTIME

123. EDVAC

124. Elegance in proof

125. Encodings

126. Enigma cipher

127. Entropy

128. Enumeration

129. Epsilon transitions

130. Equivalence relation

131. Euclid’s “Elements”

132. Euclid’s axioms

133. Euclidean geometry

134. Euler’s formula

135. Euler’s identity

136. Eulerian tour

137. Existence proofs

138. Exoskeletons

139. Exponential growth

140. Exponentiation

Concepts, Techniques, Ideas & Proofs
141. EXPSPACE

142. EXPSPACE complete

143. EXPTIME

144. EXPTIME complete

145. Extended Chomsky hierarchy

146. Fermat’s last theorem

147. Fibonacci numbers

148. Final states

149. Finite automata

150. Finite automata minimization

151. Fixed-point theorem

152. Formal languages

153. Formalizations

154. Four color problem

155. Fractal art

156. Fractals

157. Functional programming

158. Fundamental thm of Algebra

159. Fundamental thm of Arithmetic

160. Gadget-based proofs

161. Game of life

162. Game theory

163. Game trees

164. Gap theorems

165. Garey & Johnson

166. General grammars

167. Generalized colorability

168. Generalized finite automata

169. Generalized numbers

170. Generalized venn diagrams

171. Generative grammars

172. Genetic algorithms

173. Geometric / picture proofs

174. Godel numbering

175. Godel’s theorem

176. Goldbach’s conjecture

177. Golden ratio

178. Grammar equivalence

179. Grammars

180. Grammars as computers

181. Graph cliques

182. Graph colorability

183. Graph isomorphism

184. Graph theory

185. Graphs

186. Graphs as relations

187. Gravitational systems

188. Greibach normal form

189. “Grey goo”

190. Guess-and-verify

191. Halting problem

192. Hamiltonian cycle

193. Hardness

194. Heuristics

195. Hierarchy theorems

196. Hilbert’s 23 problems

197. Hilbert’s program

198. Hilbert’s tenth problem

199. Historical perspectives

200. Historical computers

Concepts, Techniques, Ideas & Proofs
201. Household robots

202. Hung state

203. Hydraulic computers

204. Hyper computation

205. Hyperbolic geometry

206. Hypernumbers

207. Identities

208. Immerman’s Theorem

209. Incompleteness

210. Incompressibility

211. Independence of axioms

212. Independent set problem

213. Induction & its drawbacks

214. Infinite hotels & applications

215. Infinite automata

216. Infinite loops

217. Infinity hierarchy

218. Information theory

219. Inherent ambiguity

220. Initial state

221. Intelligence and mind

222. Interactive proofs

223. Intractability

224. Irrational numbers

225. JFLAP

226. Karp’s paper

227. Kissing number

228. Kleene closure

229. Knapsack problem

230. Lambda calculus

231. Language equivalence

232. Law of accelerating returns

233. Law of the excluded middle

234. Lego computers

235. Lexicographic order

236. Linear-bounded automata

237. Local minima

238. LOGSPACE

239. Low-deg graph colorability

240. Machine enhancements

241. Machine equivalence

242. Mandelbrot set

243. Manhattan project

244. Many-one reduction

245. Matiyasevich’s theorem

246. Mechanical calculator

247. Mechanical computers

248. Memes

249. Mental poker

250. Meta-mathematics

251. Millennium Prize

252. Minimal grammars

253. Minimum cut

254. Modeling

255. Multiple heads

256. Multiple tapes

257. Mu-recursive functions

258. MAD policy

259. Nanotechnology

260. Natural languages

Concepts, Techniques, Ideas & Proofs
261. Navier-Stokes equations

262. Neural networks

263. Newtonian mechanics

264. NLOGSPACE

265. Non-approximability

266. Non-closures

267. Non-determinism

268. Non-Euclidean geometry

269. Non-existence proofs

270. NP

271. NP completeness

272. NP-hard

273. NSPACE

274. NTIME

275. Occam’s razor

276. Octonions

277. One-to-one correspondence

278. Open problems

279. Oracles

280. P completeness

281. P vs. NP

282. Parallel postulate

283. Parallel simulation

284. Dovetailing simulation

285. Parallelism

286. Parity

287. Parsing

288. Partition problem

289. Paths in graphs

290. Peano arithmetic

291. Penrose tilings

292. Physics analogies

293. Pi formulas

294. Pigeon-hole principle

295. Pilotless planes

296. Pinwheel tilings

297. Planar graph colorability

298. Planarity testing

299. Polya’s “How to Solve It”

300. Polyhedral dissections

301. Polynomial hierarchy

302. Polynomial-time

303. P-time reductions

304. Positional # system

305. Power sets

306. Powerset construction

307. Predicate calculus

308. Predicate logic

309. Prime numbers

310. Principia Mathematica

311. Probabilistic TMs

312. Proof theory

313. Propositional logic

314. PSPACE

315. PSPACE completeness

316. Public-key cryptography

317. Pumping theorems

318. Pushdown automata

319. Puzzle solvers

320. Pythagorean theorem

Concepts, Techniques, Ideas & Proofs
321. Quantifiers

322. Quantum computing

323. Quantum mechanics

324. Quaternions

325. Queue automata

326. Quine

327. Ramanujan identities

328. Ramsey theory

329. Randomness

330. Rational numbers

331. Real numbers

332. Reality surpassing Sci-Fi

333. Recognition and enumeration

334. Recursion theorem

335. Recursive function theory

336. Recursive functions

337. Reducibilities

338. Reductions

339. Regular expressions

340. Regular languages

341. Rejection

342. Relations

343. Relativity theory

344. Relativization

345. Resource-bounded comput.

346. Respect for the definitions

347. Reusability of space

348. Reversal

349. Reverse Turing test

350. Rice’s Theorem

351. Riemann hypothesis

352. Riemann’s zeta function

353. Robots in fiction

354. Robustness of P and NP

355. Russell’s paradox

356. Satisfiability

357. Savitch’s theorem

358. Schmitt-Conway biprism

359. Scientific method

360. Sedenions

361. Self compilation

362. Self reproduction

363. Set cover problem

364. Set difference

365. Set identities

366. Set theory

367. Shannon limit

368. Sieve of Eratosthenes

369. Simulated annealing

370. Simulation

371. Skepticism

372. Soundness

373. Space filling polyhedra

374. Space hierarchy

375. Spanning trees

376. Speedup theorems

377. Sphere packing

378. Spherical geometry

379. Standard model

380. State minimization

Concepts, Techniques, Ideas & Proofs
381. Steiner tree

382. Stirling’s formula

383. Stored progam

384. String theory

385. Strings

386. Strong AI hypothesis

387. Superposition

388. Super-states

389. Surcomplex numbers

390. Surreal numbers

391. Symbolic logic

392. Symmetric closure

393. Symmetric venn diagrams

394. Technological singularity

395. Theory-reality chasms

396. Thermodynamics

397. Time hierarchy

398. Time/space tradeoff

399. Tinker Toy computers

400. Tractability

401. Tradeoffs

402. Transcendental numbers

403. Transfinite arithmetic

404. Transformations

405. Transition function

406. Transitive closure

407. Transitivity

408. Traveling salesperson

409. Triangle inequality

410. Turbulence

411. Turing complete

412. Turing degrees

413. Turing jump

414. Turing machines

415. Turing recognizable

416. Turing reduction

417. Turing test

418. Two-way automata

419. Type errors

420. Uncomputability

421. Uncomputable functions

422. Uncomputable numbers

423. Uncountability

424. Undecidability

425. Universal Turing machine

426. Venn diagrams

427. Vertex cover

428. Von Neumann architecture

429. Von Neumann bottleneck

430. Wang tiles & cubes

431. Zero-knowledge protocols

.

.

.

.

Concepts, Techniques, Ideas & Proofs

“Make everything as simple

as possible, but not simpler.”

- Albert Einstein (1879-1955)

Occam’s razor!

…
………
…

…
………
…

P
S

P
A

C
E

-c
o
m

p
le

te
 Q

B
F

The Extended Chomsky Hierarchy Reloaded

Context-free wwR

P anbncn

NP

R
ec

o
g

n
iz

ab
le

N
o
t

R
ec

o
g
n
iz

ab
le

HH

Decidable Presburger arithmetic

N
P

-c
o
m

p
le

te
S

A
T

N
o

t
fi

n
it

el
y

 d
es

cr
ib

ab
le

 ?

2S*

EXPTIME

E
X

P
T

IM
E

-c
o
m

p
le

te

G

o

E
X

P
S

P
A

C
E

-c
o
m

p
le

te

=
R

E


Context sensitive LBA

EXPSPACE

PSPACE

Dense infinite time & space complexity hierarchies
…
………
…

…
………
…

…
………
…

…
………
…

…
………
…

…
………
…

…
………
…

…
………
…Regular a*

…… … ……

…… … ……
…
………
…

Turing
degrees

Other infinite complexity & descriptive hierarchies

…
………
…Det. CF anbn

…
………
…Finite {a,b}

…

………

…PH BPP

Science, Mathematics and Money

• The people and ideas depicted on currency

reflect national and cultural priorities.

• Many foreign countries feature scientists,

mathematicians, engineers, and philosophers

on their bills, including formulas & instruments!

• Some countries depict only

politicians on money.

Q: Why does this matter?

Carl

Friedrich

Gauss

German

Marks

Leonhard

Euler

Swiss

Francs

Lord Kelvin

British

Pounds

Michael

Faraday

British

Pounds

Sir Isaac

Newton

British

Pound

Albert

Einstein

Israeli

Liras

Galileo

Galilei

Italian

Lires

Guglielmo

Marconi

Italian

Lire

Democritus

of Abdera

Greek

Drachma

Alessandro

Volta

Italian

Lire

Nicolas

Copernicus

Polish

Zloty

Marie

Curie

Polish

Zloty

Frederic

Chopin

Polish

Zloty

Marie and

Pierre Curie

French

Francs

Blaise Pascal

French

Francs

Rene

Descartes

French

Francs

Louie

Pasteur

French

Francs

Voltaire

French

Francs

Erwin

Schrodinger

Austrian

Schillings

Lord Earnest

Rutherford

New Zealand

Dollars

Nicola

Tesla

Serbian

Dinars

Nicola

Tesla

Yugoslavian

Dinars

1010!

Nicola

Tesla

Yugoslavian

Dinars

Niels

Bohr

Danish

Kroner

Sigmund

Freud

Austrian

Schillings

Abu Ali

al-Hasan

Iraqi

Dinars

Richard Dawkins

Charles Darwin
British Pounds

