
Historical Perspectives

Bertrand Russell (1872-1970)
• Philosopher, logician, mathematician, 

historian, social reformist, and pacifist

• Co-authored “Principia Mathematica” (1910)

• Axiomatized mathematics and set theory

• Co-founded analytic philosophy

• Originated Russell’s Paradox

• Activist: humanitarianism, pacifism, education,   

free trade, nuclear disarmament, birth control

gender & racial equality, gay rights

• Profoundly transformed math & philosophy,

mentored Wittgenstein, influenced Godel

• Laid foundation for computer science theory

• Won Nobel Prize in literature (1950)























"Most people would 

sooner die than think; 

in fact, they do so." 

- Bertrand Russell 

(1872-1970) 



Russell’s paradox was invented by Russell in 1901 

to show that naïve set theory is self-contradictory:
Define: set of all sets that do not contain themselves

S = { T | T  T }

Q: does S contain itself as an element?  

S  S  S  S   contradiction!

Similar paradoxes:

• “A barber who shaves exactly those

who do not shave themselves.”

• “This sentence is false.”

• “I am lying.”

• “Is the answer to this question ‘no’?”

• “The smallest positive integer not 

describable in twenty words or less.”



Star Trek, 1967, “I, Mudd” episode

Captain James Kirk and Harry Mudd use a logical 

paradox to cause hostile android “Norman” to crash





Problem: Give as many proofs as you can for the 

Pythagorean Theorem.  i.e., a2 + b2 = c2 holds for 

any right triangle with sides a & b and hypotenuse c.



Problem: Does the Pythagorean theorem generalize to

arbitrary figures on the sides of a right triangle?



Problem: compute 1111111112 in your head.



Problem: What is the approximate value of:

(1+9^(-(4^(7*6))))^(3^(2^85)) ≈ ?



Problem: Does every closed simple curve contain

the vertices of an equilateral triangle?

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations



A Simple Closed Curve!



A Simple Closed Curve!



A Simple Closed Curve!



A Simple Closed Curve!



Traveling Salesperson Art

• Compute TSP Tour

• Optimal is NP-complete

So use heuristics

• Convert image to B&W

• Sample image density 

to obtain a pointset

• Run TSP heuristics

• Can use minimum spanning 

trees (easy to compute)

• Can also use minimum

matchings (easy to compute)

• What about colors?



Historical Perspectives

Godfrey Hardy (1877-1947)
• Mathematician: contributed to analysis, 

number theory, physics, and genetics 

• Wrote “A Mathematician’s Apology”

which popularized mathematics

• Discovered & mentored Ramanujan



Historical Perspectives
Srinivasa Ramanujan (1887-1920)
• Mathematician: contributed to number theory,

analysis, infinite series & continued fractions

• Studied math on his own in isolation

• Proved 3,900 theorems!

• Influenced many other fields, including physics

• Inspired generations of mathematicians

• Entire mathematical societies and

journals are devoted to his work!





G. H. Hardy on Ramanujan:

“I remember once going to see him 

when he was ill at Putney. I had ridden 

in taxi cab number 1729 and remarked 

that the number seemed to me rather a 

dull one, and that I hoped it was not an 

unfavorable omen. ‘No,’ he replied, ‘it 

is a very interesting number; it is the 

smallest number expressible as the sum 

of two cubes in two different ways.’ ”

A Fermat “near-miss”:

1729 = 93 + 103 = 123 + 13

“The

Hardy-Ramanujan 

Number”



“My greatest contribution to mathematics was discovering 

Ramanujan.” - G. H. Hardy

“Ramanujan's theorems must be true, because, if they were 

not true, no one would have the imagination to invent them.”

- G. H. Hardy, upon first seeing Ramanujan’s results







Historical Perspectives

Frank Ramsey (1903-1930)
• Contributed to mathematics, decision theory, 

game theory, logic, philosophy, economics

• Pioneered Ramsey theory

• Was Wittgenstein’s Ph.D. advisor

• Influenced Church, von Neumann, Keynes

• Died at age 26



Pigeon-Hole Principle

• J. Dirichlet (1834)

• “Drawer principle”

• “Shelf Principle”

• “Box principle”

Theorem (pigeon-hole): There is no injective (1-to-1) function 

from a finite set (domain) to a smaller finite set (range).

Generalization:
N objects placed in M containers; then:

• at least 1 container must hold

• at least 1 container must hold
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Problem: Show that any group of six people contains 

either 3 mutual friends or 3 mutual strangers.

A more elegant approach is needed!

Q: Is this true for N=5? Brute force approach?

78 possible friends-strangers 

graphs with 6 nodes

No mono-chromatic triangles



Problem: Show that any group of six people contains 

either 3 mutual friends or 3 mutual strangers.

6 is said to be the “Ramsey number” R(3,3).

Theorem: any group of 18 people contains either 4

mutual friends or 4 mutual strangers.  R(4,4)=18

Pigeon-hole 

principle!



• R(3,3)=6 is the tip of a deep mathematical theory.

Theorem [Ramsey]: For any pair of positive integers 

b and r, there exists a least positive integer R(b,r) 

such that any complete graph over R(b,r) vertices, 

where each edge is colored either blue or red, 

contains a monochromatic clique of size b or r.

• Ramsey theory seeks “order” among “chaos”:

i.e., even “random” graphs / configurations still 

contain regular and predictable sub-structures.

• Pigeon-hole principle is a special case!

Ramsey Theory



Other known Ramsey numbers (and bounds):

“Imagine an alien force, vastly more powerful than us, landing on Earth and 

demanding the value of R(5,5) or they will destroy our planet. In that case, we 

should marshal all our computers and all our mathematicians and attempt to find 

the value. But suppose, instead, that they ask for R(6,6). In that case, we should 

attempt to destroy the aliens.” – Paul Erdös (1913-1996)



Generalizations of Ramsey numbers  
• Multi-colors: only known non-trivial exact value is R(3,3,3)=17

E.g.: 16-node graph containing no mono-chromatic triangles:

• Hypergraphs (where “edges” can be vertex subsets of size > 2)

• Infinite graphs (which imply the finite cases as a corollary)

“Complete disorder is impossible.” 

– T. S. Motzkin (1908-1970)

Extra credit: 

prove that 

R(3,3,3)=17



Historical Perspectives

David Hilbert (1862-1943)
• One of the most influential mathematicians

• Developed invariant theory, Hilbert spaces

• Axiomatized geometry, “Hilbert’s axioms”

• Co-founded proof theory, mathematical 

logic, meta-mathematics, & formalist school

• Created famous list of 23 open problems

that greatly impacted mathematics research 

• Defended Cantor’s transfinite numbers

• Contributed to relativity theory & physics

• Hilbert’s students included Courant, Hecke, 

Lasker, Weyl, Ackermann, and Zarmelo

• Influenced Russell, Gödel, Church, & Turing

John von Neumann was Hilbert’s assistant!





Hilbert curve:

• Hilbert's axioms 

• Hilbert class field 

• Hilbert C*-module 

• Hilbert cube 

• Hilbert symbol 

• Hilbert function 

• Hilbert inequality

• Hilbert matrix 

• Hilbert metric 

• Hilbert number 

• Hilbert polynomial 

• Hilbert's problems 

• Hilbert's program 

• Hilbert–Poincaré series 

• Hilbert space 

• Hilbert spectrum 

• Hilbert transform 

• Hilbert's Arithmetic of Ends 

• Hilbert’s constants 

• Hilbert's irreducibility theorem 

• Hilbert's Nullstellensatz 

• Hilbert's hotel paradox

• Hilbert's theorem

• Hilbert's syzygy theorem 

• Hilbert-style deduction system 

• Hilbert–Pólya conjecture 

• Hilbert–Schmidt operator 

• Hilbert–Smith conjecture 

• Hilbert–Speiser theorem 

• Einstein–Hilbert action 

• Hilbert curve

Hilbert’s Impact



Hilbert’s Problems
International Congress of Mathematics, Paris, 1900

• David Hilbert proposed 23 open problems

• Most successful open problems compilation ever

• Set the direction for 20th century mathematics

• Hilbert’s problems received much attention to date

• Several have been resolved (e.g., Continuum hypothesis)

• Others still open (e.g., Riemann hypothesis)

• Catalyzed other open problems lists:
– Clay Institute’s Millennium Prize problems

– DARPA Mathematical Challenges, 2009



Introduction from Hilbert’s Lecture
“Who of us would not be glad to lift the veil behind which the future lies hidden; to cast a glance at the next 

advances of our science and at the secrets of its development during future centuries? What particular goals 

will there be toward which the leading mathematical spirits of coming generations will strive? What new 

methods and new facts in the wide and rich field of mathematical thought will the new centuries disclose?

History teaches the continuity of the development of science. We know that every age has its own problems, which 

the following age either solves or casts aside as profitless and replaces by new ones. If we would obtain an 

idea of the probable development of mathematical knowledge in the immediate future, we must let the 

unsettled questions pass before our minds and look over the problems which the science of today sets and 

whose solution we expect from the future. To such a review of problems the present day, lying at the meeting 

of the centuries, seems to me well adapted. For the close of a great epoch not only invites us to look back into 

the past but also directs our thoughts to the unknown future.

The deep significance of certain problems for the advance of mathematical science in general and the important role 

which they play in the work of the individual investigator are not to be denied. As long as a branch of science 

offers an abundance of problems, so long is it alive; a lack of problems foreshadows extinction or the cessation 

of independent development. Just as every human undertaking pursues certain objects, so also mathematical 

research requires its problems. It is by the solution of problems that the investigator tests the temper of his 

steel; he finds new methods and new outlooks, and gains a wider and freer horizon.

It is difficult and often impossible to judge the value of a problem correctly in advance; for the final award depends 

upon the gain which science obtains from the problem. Nevertheless we can ask whether there are general 

criteria which mark a good mathematical problem. An old French mathematician said: "A mathematical theory 

is not to be considered complete until you have made it so clear that you can explain it to the first man whom 

you meet on the street." This clearness and ease of comprehension, here insisted on for a mathematical theory, 

I should still more demand for a mathematical problem if it is to be perfect; for what is clear and easily 

comprehended attracts, the complicated repels us.

Moreover a mathematical problem should be difficult in order to entice us, yet not completely inaccessible, lest it 

mock at our efforts. It should be to us a guide post on the mazy paths to hidden truths, and ultimately a 

reminder of our pleasure in the successful solution.”

Occam’s 

Razor!



Hilbert’s Problems
Problem 1: The continuum hypothesis (conjectured by 

Georg Cantor: there is no set whose cardinality is 
strictly between those of the integers and the reals) 

Status: The continuum hypothesis was proven by Gödel 
(1939) and Cohen (1963) to be independent of (i.e., 
impossible to prove or disprove) Zermelo–Frankel set 
theory.  Related open questions remain (e.g., regarding 
the generalized continuum hypothesis), and there is still 
much active research in this area.

Problem 2: Prove the axioms of arithmetic are consistent. 

Status: Gödel (1931) proved that the consistency of Peano 
arithmetic can not be proven within Peano arithmetic 
itself.  Gödel also proved that every consistent formal 
axiomatic system is incomplete.  Gentzen (1936) 
proved the consistency Peano arithmetic within a 
different system (that is weaker than set theory).



Hilbert’s Problems
Problem 3: Given any two polyhedra of equal volume, is it 

always possible to cut the first into finitely many 
polyhedral pieces which can be reassembled to yield the 
second? 

Status: Proved via counter-example to be impossible by 
Hilbert’s student Dehn (1901). The Wallace-Bolyai–
Gerwien theorem (1807): in 2D this is always possible 
for polygons of equal areas.

Problem 4: Construct all metrics where lines are geodesics.

Status: Too vague for a definite answer.

Problem 5: Are continuous groups automatically 
differential groups?

Status: Resolved in the negative by von Neumann (1929), 

Pontryagin (1934), Gleason-Montgomery-Zippin

(1950’s), and Yamabe (1953).



Wallace-Bolyai–Gerwien 

Dissections



Wallace-Bolyai–Gerwien 

Dissections



Hilbert’s Problems
Problem 6: Axiomatize all of physics. 

Status: Since Hilbert stated this problem in 1900, relativity
theory was developed by Einstein (1905 and 1915), as 
was quantum mechanics by Dirac (1920’s), followed by 
other more modern approaches, e.g. quantum field 
theory, the standard model, quantum gravity, and string 
theory. Hilbert himself made significant contributions to 
relativity and physics, but his original problem/goal of 
axiomatizing all of physics remains mostly open.

Problem 7: Is ab transcendental, for algebraic a ≠ 0,1 and 
irrational algebraic b ?

Status: Shown to be true by Gelfond and Schneider (1934), 
even for complex a and b.  This proves that, e.g.,       

ep ii

are all transcendental.  But many similar problems 
remain open, such as the trancendance (or even the 
irrationality) of pe, 2e, or even p + e and p / e.
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Hilbert’s Problems
Problem 8: The Riemann hypothesis (the real part of any 

non-trivial zero of the Riemann zeta function is ½) and 
Goldbach's conjecture (every even number > 2 can be 
written as the sum of two primes). 

Status: Both the Reimann hypothesis (1859) and 
Goldbach’s conjecture (1742) remain open to this day.  
The Reimann hypothesis has many far-reaching 
implications in mathematics, logic, and computer 
science.  It was numerically verified for the first ten 
trillion zeroes, and appears on the Millennium Prize list 
($1M bounty) as well as the ARPA Mathematical 
Challenges List.  The Goldbach conjecture was verified 
for the first 1018 values.

Problem 9: Find most general law of the reciprocity
theorem in any algebraic number field.

Status: Partially solved by Artin (1924), Takagi & Hasse, 
and Shafarevich (1948); still some open issues.
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Theorem (Jingrun, 1973): Every sufficiently 
large even number can be written as either 
the sum of two primes, or the sum of a prime 
and a product of two primes.

Theorem (Ramaré, 1995): Every even 
number >2 is the sum of at most six primes.

Evidence for Goldbach’s conjecture: the number of distinct 
ways to write an even number as the sum of two primes 
(computational data for 4 < n < 1,000,000):









Problem 10: Find an algorithm that determines 

whether a given Diophantine (i.e., multi-variable 

polynomial) equation has any integer solutions.

Ex: x2+y2=z2 has many integer solutions

(Pythagorean theorem, e.g., x=3, y=4, z=5)

x9+y9=z9 has no integer solutions (corollary of Fermat’s 

Last Theorem, conjectured in 1637, proved in 1995 

by Andrew Wiles)
Many attempts at solution & partial results: Emil Post (1944), 

Martin Davis (1949), Julia Robinson (1950), Hilary Putnam (1959) 

Hilbert’s Problems



Hilbert’s Tenth Problem
Solving even simple Diophantine equations is hard:

Q: $ an integer solution for x3 + y3 + z3 = 29 ?

A: Yes: x=3, y=1, z=1

Q: $ an integer solution for x3 + y3 + z3 = 30 ?

A: Yes: x = 2220422932, y = -2218888517, z = -283059965

Q: $ an integer solution for x3 + y3 + z3 = 33 ?

A: still unknown!

Q: Is {x3 + y3 + z3 | x, y, z  ℤ} = ℤ ?

A: still unknown!

Q: Is {x3 + y3 + z3 | x, y, z  ℤ} Turing-decidable?

A: still unknown!

Theorem [Lagrange]: {w2 + x2 + y2 + z2 | w, x, y, z  ℤ} = ℤ





Hilbert’s Tenth Problem

Theorem [Matiyasevich, 1970]: Every 

Turing-enumerable set is Diophantine

(i.e., the solutions of some polynomial)

Ex: the set of primes coincides exactly with the
positive values of this 26-variable polynomial:

(k + 2)(1 − [wz + h + j − q]2 − [(gk + 2g + k + 1)(h + j) + h − z]2

− [16(k + 1)3(k + 2)(n + 1)2 + 1 − f2]2 − [2n + p + q + z − e]2

− [e3(e + 2)(a + 1)2 + 1 − o2]2 − [(a2 − 1)y2 + 1 − x2]2 

− [16r2y4(a2 − 1) + 1 − u2]2 − [n + l + v − y]2 − [(a2 − 1)l2 + 1 − m2]2

− [ai + k + 1 − l − i]2 − [((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1 

− (x + cu)2]2 − [p + l(a − n − 1) + b(2an + 2a − n2 − 2n − 2) − m]2

− [q + y(a − p − 1) + s(2ap + 2a − p2 − 2p − 2) − x]2

− [z + pl(a − p) + t(2ap − p2 − 1) − pm]2)

as a, b, c, … , z range over the nonnegative integers!



Corollary [Matiyasevich, 1970]: There is  

a fixed “universal” polynomial P such that 

for any Turing-enumerable set S there 

exists an integer n0 such that: 

S = {w | $ x1, x2, …, xk ' P(n0,w,x1, x2, …, xk)=0 

i.e., there is a fixed polynomial that can “output”

any computable set, depending on one parameter.

This is an analogue of a universal Turing machine!

Hilbert’s Tenth Problem



Q: What is the minimum Diophantine degree and 
dimension (i.e., number of variables) of a given
Turing-enumerable set?

Theorem [Skolem]: degree 4 suffices.

Theorem [Matiyasevich]: dimension 9 suffices.

But there is a dramatic tradeoff between the degree
and the number of variables.

This is analogous to finding small universal TMs
(where there is a tradeoff between the alphabet size 
and the number of states).

Hilbert’s Tenth Problem

(k + 2)(1 − [wz + h + j − q]2 − [(gk + 2g + k + 1)(h + j) + h − z]2

− [16(k + 1)3(k + 2)(n + 1)2 + 1 − f2]2 − [2n + p + q + z − e]2

− [e3(e + 2)(a + 1)2 + 1 − o2]2 − [(a2 − 1)y2 + 1 − x2]2 

− [16r2y4(a2 − 1) + 1 − u2]2 − [n + l + v − y]2 − [(a2 − 1)l2 + 1 − m2]2

− [ai + k + 1 − l − i]2 − [((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1 

− (x + cu)2]2 − [p + l(a − n − 1) + b(2an + 2a − n2 − 2n − 2) − m]2

− [q + y(a − p − 1) + s(2ap + 2a − p2 − 2p − 2) − x]2

− [z + pl(a − p) + t(2ap − p2 − 1) − pm]2)



From “Undecidable Diophantine Equations” by James P. Jones, 
Bulletin of the American Mathematical Society, vol 2, No 3, 
1980, pp. 859-862.

Tradeoff between degree and the
number of variables in universal
polynomials:

Examples:
58 variables & degree       4 suffice
28 variables & degree     20 suffice
19 variables & degree 2668 suffice
14 variables & degree ~105 suffice
13 variables & degree ~1043 suffice
9 variables & degree ~1045 suffice

Corollary: 100 additions and/or
multiplications suffice to “prove”
any provable proposition.

Catch: using very large integers!



Hilbert’s Tenth Problem

Q: Find an algorithm that determines whether 

a given Diophantine (i.e., multi-variable 

polynomial) equation has any integer solutions.

A: Still open!

rational





Hilbert’s Problems
Problem 11: Solving quadratic forms with algebraic 

numerical coefficients. 

Status: Partially solved by Hasse (1923).

Problem 12: Extend the Kronecker–Weber theorem on 
abelian extensions of the rational numbers to any base 
number field. 

Status: Still unsolved. 

Problem 13: Solve all 7-th degree equations using 
functions of two parameters. 

Status: Partially solved by Kolmogorov (1956), Arnold 
(1957), and Shimura (1976).

Problem 14: Proof of the finiteness of certain complete 
systems of functions. 

Status: Counter-examples found by Nagata (1959).



Hilbert’s Problems
Problem 15: Find a rigorous foundation for Schubert's 

enumerative calculus.

Status: Partially resolved.

Problem 16: Topology of algebraic curves and surfaces.

Status: Open-ended: some results, but unresolved.

Problem 17: Expression of definite rational function as 
quotient of sums of squares

Status: Resolved in the affirmative by Artin (1927) and 
Delzel (1984).



Hilbert’s Problems
Problem 18: Is there a non-regular, space-filling 

polyhedron? What is the densest sphere packing?

Status: Anisohedral tilings were found in 3D by Reinhardt 
(1928), and for 2D by Heesch (1935).  

Sphere packing in 3D (Kepler’s problem, 1611) was 
solved by Toth (1953) and Hale (1998).  Regular sphere 
packing in 24 dimensions was solved by Cohn and 
Kumar (2004), where the “kissing number” is 196,560.   

Many related open problems remain, including non-
regular, non-uniform, and ellipsoid packings.



Aperiodic Tilings
Goal: tile the entire plane without overlaps, non-periodically

• Non-periodic tiling is not equal to a translation of itself

• Aperiodic tile set admits only non-periodic tilings

“Kites and Darts” 2-tile aperiodic set, Roger Penrose, 1974

Open question: 

$ a single-tile 2D
aperiodic tiling?



Aperiodic Tilings
Penrose tilings in architecture and design:



Pinwheel 
fractal

Aperiodic Tilings
“Pinwheel tiling”, John Conway and Charles Radin, 1992

• Tiles occur in infinitely many orientations,

with uniform distribution!

• Despite irrational edge lengths and incommensurable

angles, all vertices of tiles have rational coordinates!



Aperiodic Tilings

Federation Square

Melbourne, Australia

“Pinwheel tiling”, John Conway and Charles Radin, 1992



3D Aperiodic Tilings
Goal: tile all of 3D space non-periodically

“Quaquaversal” non-periodic tiling of 3D space, 

John Conway and Charles Radin, 1998

• Generalization of 2D Pinwheel tiling

Q: $ a single-tile aperiodic 3D tiling?

(i.e., that does not admit any periodic tiling?)

A: Yes!  (yet this is still open for 2D)



Aperiodic 3D Tiling

The Schmitt-Conway 
“biprism” tiles 3D 
space aperiodically
using 1 convex tile!

This is more than 
Hilbert asked for, 
since the biprism 
tiling is also 
anisohedral, and 
with an infinite
number of tile 
orientations!

Note slight 
irrational

skew!



Undecidability of Tiling Problem
Q [Wang, 1961]: Is there an algorithm for determining whether a given 

set of tiles can tile the entire plane? (Tiles can not be rotated)

Wang gave a decision algorithm for periodic tilings (and falsely 

assumed that non-periodic tilings do not exist).

Theorem [Berger, 1966]: Tiling is undecidable.

Proof idea: A tiling can “simulate” an arbitrary Turing computation.

Berger discovered a set of 20,426 Wang tiles that can tile the plane only 

aperiodically, and conjectured that smaller sets exist.

Theorem [Culik, 1996]: The following 13 tiles is an aperiodic tiling set. 



Single tile

Periodic tiling

Aperiodic tiling
Wang tiles

Aperiodic Tiling for Texure Generation





3D “Wang Cubes”
Generalizations to higher dimensions: “Wang cubes”

16 Wang cubes and a partial aperiodic 3D tiling:

Applications in graphics:

• Texture generation

• Volume rendering

• Video synthesis

• Geometry placement

• Self assembly





Aperiodic Tilings

“Kites and Darts”

Roger Penrose, 1974



Aperiodic Tilings

“Pentagon, Boat, and Star”
Roger Penrose, 1974



Aperiodic Tilings

“Penrose 
Rhombuses”

Roger Penrose, 1974



Aperiodic Tilings

“Ammann A3”
Robert Ammann, 

1977



Aperiodic Tilings

“Ammann A4”
Robert Ammann, 

1977



Aperiodic Tilings

“Ammann Chair”
Robert Ammann, 

1977



Aperiodic Tilings

“Ammann 
Beekner”

Robert Ammann, 
1977



Aperiodic Tilings

“Ammann Beekner 
Rhomb triangle”

Robert Ammann, 
1977



Aperiodic Tilings

“Binary”

F. Lançon, 1988



Aperiodic Tilings

“Colored Golden 
Triangle”

Ludwig Danzer 
and G. van 

Ophuysen



Aperiodic Tilings

“Conch”
G. Rauzy, 1982



Aperiodic Tilings

“Cubic Pinwheel”
E. Harriss



Aperiodic Tilings

“Cyclotomic  
rhombs 7-fold”

Ludwig Danzer   
and D. Frettlöh 



Aperiodic Tilings

“Danzer 7-fold”

K.-P. Nischke and 
Ludwig Danzer, 
1996



Aperiodic Tilings

“Golden Pinwheel”

D. Frettlöh

Tiles occur in infinitely 

many orientations!



Aperiodic Tilings

“Goodman-Strauss 
7-fold rhomb”

C. Goodman-
Strauss 



Aperiodic Tilings

“Harriss’s 9-fold 
rhomb”

E. Harriss 



Aperiodic Tilings

“Kenyon (1,2,1) 
Polygon”

R. Kenyon 



Aperiodic Tilings

“Kenyon 2 
Polygonal”

R. Kenyon 



Aperiodic Tilings

“Kenyon non FLC”

R. Kenyon 



Aperiodic Tilings

“Kite-Domino”

D. Frettlöh and  
M. Baake,  
1994 



Aperiodic Tilings

“Lord”

E. Lord 



Aperiodic Tilings

“Maloney’s 7-fold”

G. Maloney 



Aperiodic Tilings

“Nautilus”

P. Arnoux, 

M. Furukado, 

E. Harriss, 

and S. Ito 



Aperiodic Tilings

“Nautilus (volume 
hierarchic”

P. Arnoux, 

M. Furukado, 

E. Harriss, 

and S. Ito 



Aperiodic Tilings

“Pinwheel”

John Conway 

and C. Radin

Tiles occur in infinitely 

many orientations!

Despite irrational edge 

lengths and 

incommensurable 

angles, all vertices of 

tiles have rational 

coordinates!



Aperiodic Tilings

“Pinwheel-3-1”

L. Sadun, 1998



Aperiodic Tilings

“Quartic Pinwheel”

L. Sadun, 1998

Tiles occur in infinitely 

many orientations!



Aperiodic Tilings

“Pythagoras-3-1”

J. Pieniak 



Aperiodic Tilings

“Pythagoras-3-1”

J. Pieniak 



Aperiodic Tilings

“Pythia-3-1”

D. Frettlöh 

Tiles occur in infinitely 

many orientations with 

statistical 

equidistribution !



Aperiodic Tilings

“Watanabe Ito 
Soma 12-fold”

Y. Watanabe, 

T. Soma and 

M. Ito, 1995



Aperiodic Tilings

“Watanabe Ito 
Soma 12-fold 
(variant)”

Y. Watanabe, 

T. Soma and 

M. Ito, 1995



Aperiodic Tilings

“Viper”



Aperiodic Tilings

“Tuebingen 
Triangle”

R. Lück, M. Baake, 
M. Schlottmann, 
1990



Aperiodic Tilings

“Rorschach”

B. Sing, 2007 



Aperiodic Tilings

“Shield”

F. Gähler, 1988 



Aperiodic Tilings

“Smallest Pisot 
(dual)”

E. Harriss 



Aperiodic Tilings

“Socolar”

J. E. S. Cocolar, 
1989 



Aperiodic Tilings

“Sphinx”

J.-Y. Lee, and 

R. V. Moody



Aperiodic Tilings

“Sqrt6 Triangles”

D. Walton

Tiles occur in infinitely 

many orientations with 

statistical 

equidistribution !



Aperiodic Tilings

“Square-triangle”

M. Schlottmann



Aperiodic Tilings

“Squeeze”

C. Goodmann-
Straus



Aperiodic Tilings

“Tipi-3-1”

D. Frettlöh 



Aperiodic Tilings

“Triangle Due”

L. Danzer and  

C. Goodman-
Strauss 

Tiles occur in infinitely 

many orientations!



Aperiodic Tilings

“Triangle Due 
(single mirror)”



Aperiodic Tilings

“Triangle Due 
(twin mirror)”



Aperiodic Tilings

“Tribonacci Dual”

G. Rauzy 



Aperiodic Tilings

“Penrose triangle”

Roger Penrose

“Limhex”

J. Socolar



Aperiodic Tilings

“Pentomino”

J. Pieniak 

“Pinwheel variant”

I. Suschko



Aperiodic Tilings

“Pinwheel variant

(13 tiles)”

I. Suschko

“Pinwheel-1-2”

I. Suschko



Aperiodic Tilings

“Pinwheel-2-1”

I. Suschko

“Plate Tiling”

H. U. Nissen



Aperiodic Tilings

“Psychedelic Penrose 
variant I”

I. Suschko 

“Rhomb square 
oktagon”

I. Suschko



Aperiodic Tilings

“Tangram”

I. Suschko 

“Tetris”

I. Suschko



Aperiodic Tilings

“Trihex”

Folklore

“Wheel Tiling”

H.U. Nissen 



Hilbert’s Problems
Problem 19: Are solutions of Lagrangians always analytic?

Status: Resolved in the affirmative by Bernstein (1904).

Problem 20: Do all variational problems with certain 
boundary conditions have solutions? 

Status: Resolved in the affirmative.

Problem 21: Proof of the existence of linear differential 
equations having a prescribed monodromic group

Status: Resolved by Plemelj (1908), Schlesinger (1964), 
Dekkers (1978), and Bolibrukh (1989).

Problem 22: Uniformization of analytic relations by means 
of automorphic functions

Status: Resolved.

Problem 23: Further development in calculus of variations 

Status: Unresolved.





“DARPA-hard” problems!

http://www.gogeometry.com/mindmap/darpa_mathematical_challenges_elearning.html

http://www.mathisfunforum.com/viewtopic.php?id=10753

DARPA’s Mathematical Challenges



1:  The Mathematics of the Brain: Develop a mathematical theory to build a functional 

model of the brain that is mathematically consistent and predictive rather than merely 

biologically inspired.

2:  The Dynamics of Networks: Develop the high-dimensional mathematics needed to accurately 

model and predict behavior in large-scale distributed networks that evolve over time occurring in 

communication, biology and the social sciences.

3:  Capture and Harness Stochasticity in Nature: Address Mumford’s call for new mathematics 

for the 21st century. Develop methods that capture persistence in stochastic environments.

4:  21st Century Fluids: Classical fluid dynamics and the Navier-Stokes Equation were 

extraordinarily successful in obtaining quantitative understanding of shock waves, turbulence and 

solitons, but new methods are needed to tackle complex fluids such as foams, suspensions, gels 

and liquid crystals.

5:  Biological Quantum Field Theory: Quantum and statistical methods have had great success 

modeling virus evolution. Can such techniques be used to model more complex systems such as 

bacteria? Can these techniques be used to control pathogen evolution?

6:  Computational Duality: Duality in mathematics has been a profound tool for theoretical 

understanding. Can it be extended to develop principled computational techniques where duality 

and geometry are the basis for novel algorithms?

DARPA’s Mathematical Challenges



7:  Occam’s Razor in Many Dimensions: As data collection increases can we “do more 

with less” by finding lower bounds for sensing complexity in systems? This is related to 

questions about entropy maximization algorithms.

8:  Beyond Convex Optimization: Can linear algebra be replaced by algebraic geometry in a 

systematic way?

9:  What are the Physical Consequences of Perelman’s Proof of Thurston’s Geometrization

Theorem? Can profound theoretical advances in understanding three dimensions be applied to 

construct and manipulate structures across scales to fabricate novel materials?

10:  Algorithmic Origami and Biology: Build a stronger mathematical theory for isometric and 

rigid embedding that can give insight into protein folding.

11:  Optimal Nanostructures: Develop new mathematics for constructing optimal globally 

symmetric structures by following simple local rules via the process of nanoscale self-assembly.

12:  The Mathematics of Quantum Computing, Algorithms, and Entanglement: In the last century 

we learned how quantum phenomena shape our world. In the coming century we need to develop 

the mathematics required to control the quantum world.

13:  Creating a Game Theory that Scales: What new scalable mathematics is needed to replace 

the traditional Partial Differential Equations (PDE) approach to differential games?

DARPA’s Mathematical Challenges



14:  An Information Theory for Virus Evolution: Can Shannon’s theory shed light 

on this fundamental area of biology?

15:  The Geometry of Genome Space: What notion of distance is needed to incorporate biological 

utility?

16:  What are the Symmetries and Action Principles for Biology? Extend our understanding of 

symmetries and action principles in biology along the lines of classical thermodynamics, to 

include important biological concepts such as robustness, modularity, evolvability and variability.

17:  Geometric Langlands and Quantum Physics: How does the Langlands program, which 

originated in number theory and representation theory, explain the fundamental symmetries of 

physics? And vice versa?

18:  Arithmetic Langlands, Topology, and Geometry: What is the role of homotopy theory in the 

classical, geometric, and quantum Langlands programs?

19:  Settle the Riemann Hypothesis:  The Holy Grail of number theory.

20:  Computation at Scale: How can we develop asymptotics for a world with massively many 

degrees of freedom?

21:  Settle the Hodge Conjecture: This conjecture in algebraic geometry is a metaphor for 

transforming transcendental computations into algebraic ones.

DARPA’s Mathematical Challenges



22: Settle the Smooth Poincare Conjecture in Dimension 4: What are the implications 

for space-time and cosmology? And might the answer unlock the secret of “dark energy”?

23:  What are the Fundamental Laws of Biology? This question will remain front and center for 

the next 100 years. DARPA places this challenge last as finding these laws will undoubtedly 

require the mathematics developed in answering several of the questions listed above.

DARPA’s Mathematical Challenges


