
CS6160 Theory of Computation
Problem Set 2

Department of Computer Science, University of Virginia

Gabriel Robins

Please start solving these problems immediately, and work in study groups. Please prove all your
answers; informal arguments are acceptable, but please make them precise / detailed / convincing enough
so that they can be easily made rigorous.

Important note: this is not a “due homework”, but rather a “pool of problems” meant to calibrate the
scope and depth of the knowledge & skills in CS theory that you (eventually) need to have for exams,
PhD quals, becoming a better problem-solver, thinking more abstractly and generally, performing more
effective research, etc. You don’t necessarily have to completely solve every last question in this problem
set (although it would be great if you did!). Rather, please solve as many of these problems as you can,
and use this problem list as a resource to improve your problem-solving skills, abstract thinking, and to find
out what topics you need to further focus/improve on. Recall that most (and perhaps even all) of the
midterm and final exam questions in this course will come from these problem sets, so your best strategy of
studying for the exams in this course is to solve (in study groups) as many of these problems as possible,
and the sooner the better!

Advice: Please try to solve the easier problems first (where the meta-problem here is to figure out which
are the easier ones.) Please don’t spend too long on any single problem without also attempting (in
parallel) to solve other problems as well; this way, the easiest problems (at least to you) will reveal
themselves much sooner (think about this as a “hedging strategy”).

1. The following problems are from [Sipser, Second Edition]:

Page 27: 0.10, 0.12

Pages 83-92: 1.6, 1.7, 1.11, 1.18, 1.20, 1.21, 1.45, 1.46, 1.48, 1.58, 1.63

Pages 128-132: 2.4, 2.5, 2.9, 2.16, 2.17, 2.21, 2.22, 2.24, 2.27, 2.32,

2.33, 2.36, 2.37, 2.40, 2.41, 2.42, 2.43, 2.44, 2.45

Pages 159-162: 3.7, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.22

Pages 182-184: 4.2, 4.3, 4.4, 4.6, 4.7, 4.10, 4.12, 4.15, 4.17, 4.18, 4.19, 4.24, 4.26, 4.27, 4.28

Pages 211-214: 5.2, 5.4, 5.9, 5.12, 5.13, 5.14, 5.15, 5.16, 5.20, 5.26, 5.27, 5.28, 5.29, 5.33, 5.35

Pages 242-243: 6.1, 6.2, 6.4, 6.6, 6.14, 6.15, 6.16, 6.17, 6.18, 6.20, 6.21, 6.22, 6.23, 6.24

2. Prove or disprove: a countable set of parabolas (arbitrarily oriented and placed) can completely cover
(every point in) the unit square in the plane (i.e., the interior and boundary of a square of side 1)

3. Prove or disprove: an uncountable set of pairwise-disjoint line segments can completely cover (every

point in) the unit disk in the plane (i.e., the interior and boundary of a circle of diameter 1). What if the
segments could intersect each other, but must all have unique slopes?

4. What is the cardinality of the set of all finite-sized matrices with rational entries?

5. What is the cardinality of the set of all infinite matrices with Boolean entries?

6. Determine as precisely as possible when is the following true: L+ = L* - {ε}

7. Describe exactly what happens if we apply the “powerset construction” to an automaton that is already

deterministic?

8. Define the set of all prefixes of L as PREFIX(L) = {w | wy∈L for some w,y∈∑*}. Does PREFIX

preserve regularity? Context-freeness? Decidability? Turing-recognizability?

9. Define the set of all suffixes of L as SUFFIX(L) = {w | yw∈L for some y,w∈∑*}. Does SUFFIX
preserve regularity? Context-freeness? Decidability? Turing-recognizability?

10. Define the set of all subsequences of L as SUBSEQ(L) = {w1w2w3…wk | ∃ k∈ℕ, ∃ wi∈∑* for

1≤i≤k, and ∃ xj∈∑* for 0≤j≤k such that x0w1x1w2x2w3x3…wkxk∈L}. Does SUBSEQ preserve
regularity? Context-freeness? Decidability? Turing-recognizability?

11. Define the set of all supersequences of L as SUPERSEQ(L) = { x0w1x1w2x2w3x3…wkxk | ∃ k∈ℕ,

∃ wi∈∑* for 1≤i≤k, and ∃ xj∈∑* for 0≤j≤k such that w1w2w3…wk∈L}. Does SUPERSEQ
preserve regularity? Context-freeness? Decidability? Turing-recognizability?

12. A language L is said to be “definite” if there exists some fixed integer k such that for any string w,

whether w∈L depends only on the last k (or less) symbols of w. (a) State this definition more formally.
(b) Is a definite language necessarily regular? (c) Is the set of definite languages closed under union?
Intersection? Complementation? Concatenation? Kleene closure?

13. Does every regular language have a proper regular subset?

Does every regular language have a proper regular superset?

14. Is every subset of a regular language necessarily regular?
Is every superset of a regular language necessarily non-regular?

15. Does every contex-free language have a proper contex-free subset?

Does every contex-free language have a proper contex-free superset?

16. Is every subset of a contex-free language necessarily contex-free?
Is every superset of a contex-free language necessarily non-contex-free?

17. Are the regular languages closed under infinite union? Infinite intersection?

Are the context-free languages closed under infinite union? Infinite intersection?
Are the decidable languages closed under infinite union? Infinite intersection?

18. Is a countable union of regular languages necessarily context-free? Decidable?
Is a countable union of decidable languages necessarily Turing-recognizable?

19. What is the infinite union of all context-sensitive languages? Decidable languages?

What is the infinite intersection of all context-sensitive languages? Decidable languages?

20. Are the decidable languages closed Kleene closure? Concatenation? Union? Complementation?
Are the non-decidable languages closed Kleene closure? Concatenation? Union?

21. Are the non-finitely-describable languages closed under concatenation? Kleene closure?

Complementation? Union?

22. Can a uncomputable number be rational? Must an irrational number be non-computable?

23. Is the set of non-finitely-describable real numbers closed under addition? Squaring?

24. Let YESNO(L)={xy | x∈L and y∉L, x,y∈∑*}. Does YESNO preserve regularity? Context-

freeness? Decidability? Turing-recognizability?

25. Let PALI(L)={w | x∈L and xR∈L}. Does PALI preserve regularity? Context-freeness? Decidability?
Turing-recognizability?

26. Define the density of a language to be the function DL(n) = | {w | w∈L and |w|≤n} |. What is the

density of (a+b)* ? What is the density of a*b* ? Show that the density of a regular language is either
bounded from above by a polynomial, or bounded from below by an exponential (i.e., a function of the
form 2cn for some constant c). In other words, densities of regular languages can not be functions of
intermediate growth such as nlog n.

27. True or false: the densities of the decidable languages can be any computable function.

28. Define the “Busy Beaver” function BB:ℕ→ℕ as follows: BB(n) is the maximum number of 1’s printed

on the tape of any Turing machine with n states which halts when running on the blank tape (i.e., with
no input). Is BB finitely describable? Is BB computable? How fast does BB grow asymptotically?

29. If we had free access to an oracle that computes the Busy Beaver function for us in constant time,

prove either that all functions (mapping naturals to naturals) are computable relative to such an oracle,
or else give a counter-example. (Please don’t do both.)

30. A string w is square-free if it can not be written in the form w=xy2z for some x,z∈∑* and y∈∑+. Are

there arbitrarily long square-free strings on a two-letter alphabet? How about a three-letter alphabet?

31. A string w is cube-free if it can not be written in the form w=xy3z for some x,z∈∑* and y∈∑+. Are
there arbitrarily long cube-free strings on a two-letter alphabet?

32. True or false: if |∑|=1 then the set of all cube-free strings in ∑* is regular.

True or false: if |∑|=2 then the set of all square-free strings in ∑* is regular.
True or false: if |∑|>2 then the set of all square-free strings in ∑* is not regular.

33. Describe an algorithm that determines for a given pair of regular expressions whether they denote the

same language. What is the time complexity of your algorithm?

34. True or false: for any given regular language, there exists a linear-time algorithm for testing whether an
arbitrary input string is a member of that language.

35. Given the alphabet ∑={a,b,(,),+,*,Ø, ε} construct a context-free grammar that generates all strings in

∑* that correspond to regular expressions over {a,b}.

36. Construct the smallest possible (in terms of the number of non-terminals and/or production rules)
context-free grammar that generates all well-formed parenthesis.

37. Construct a (small) context-free grammar that generates all well-formed nestings of parenthesis () and

brackets [].

38. Characterize as precisely as you can the class of languages accepted by deterministic push-down
automata with two stacks.

39. Characterize as precisely as you can the class of languages accepted by deterministic push-down
automata with a single “counter” (i.e., stack with only a single-letter stack alphabet).

40. Characterize as precisely as you can the class of languages accepted by deterministic push-down

automata with two “counters” (i.e., two stacks with only a single-letter stack alphabet).

41. Construct a context-sensitive grammar that generate {anbncn | 1≤n }. Make your grammar as “small”
as possible in terms of the number of non-terminals and productions in it.

42. Construct a context-sensitive grammar that generate {a(n^n) | 1≤n }. Make your grammar as “small” as

possible in terms of the number of non-terminals and productions in it.

43. What is the smallest language, closed under concatenation, containing the languages L1 and L2?

44. Give a sufficient condition (but as general as possible) for L1* + L2* = (L1 + L2)* to hold.

45. Given two arbitrary languages S and T, find a new language R (in term of S and T) so that the equation
R = SR + T holds.

46. Define a new operation ♣ on languages as follows: ♣(L) = {w | ∃ w ∈ ∑*, wwR ∈ L}, where wR

denotes the "reverse" of the string w. Does ♣ preserve regularity?

47. Let L={0n1n | n≥0}. Is

L (i.e. the complement of L) a regular language? Is

L context-free?

48. Let L= {0i1j | i ≠j}. Is L a context-free language? Is L regular?

49. Does there exist a context-free grammar for {0i1j | 1 ≤ i ≤ j ≤ 2i}?

50. Are there two non-regular languages whose concatenation is regular? Are there a countably infinite

number of such examples? Are there an uncountable number of such examples?

51. Show that the intersection of two sets of languages can be empty, finite (of arbitrarily large cardinality),

countably infinite, or uncountably infinite.

52. Is {w∈{a,b}* | w contains an equal number of a's and b's} a context-free language?

53. Define a new operation ♦ on languages as follows: ♦(L) = {w | ∃ z∈∑* ∋ |w|=|z| ∧ wz ∈ L}. Does
the operation ♦ preserve regularity?

54. Define an "infinite automata" similarly to finite automata, but where the state set Q is no longer

restricted to be finite. Characterize precisely the class of languages accepted by deterministic infinite
automata. Is the characterization any different for non-deterministic infinite automata? Do oracles
increase the power of infinite automata?

55. We define the SHUFFLE of two strings v,w ∈ ∑* as:

 SHUFFLE(v,w) = {v1w1v2w2...vkwk | v=v1v2...vk, w=w1w2...wk,

 and for some k ≥ 1, vi,wi ∈ ∑*, 1 ≤ i ≤ k}
 For example, 212ab1baa2b22 ∈ SHUFFLE(abbaab,2121222)

 Extend the definition of SHUFFLE to two languages L1,L2 ⊆ ∑* as follows:

 SHUFFLE(L1,L2) = {w | w1∈L1, w2∈L2, w∈SHUFFLE(w1,w2) }

 a) Is the SHUFFLE of two regular languages necessarily regular?

 b) Is the SHUFFLE of two context-free languages necessarily context-free?

c) Is the SHUFFLE of a context-free language with a regular language necessarily context-free?

d) Is the SHUFFLE of two decidable languages necessarily decidable?

e) Is the SHUFFLE of two Turing-recognizable languages necessarily Turing-recognizable?

56. Which of the following modifications / restrictions to finite automata would change the class of

languages accepted relative to "normal" finite automata?

 a) The ability to move the read head backwards (as well as forwards) on the input.
 b) The ability to write on (as well as read from) the input tape.
 c) Both a) and b) simultaneously.
 d) Having 2 read-heads moving (independently, left-to-right) over the input.
 e) Having one billion or less different states.

57. Which of the following modifications / restrictions to PDA’s would change the class of languages

accepted, relative to “normal” PDA’s?

 a) The ability to move the read head backwards (as well as forwards) on the input.
 b) The ability to write on (as well as read from) the input tape.
 c) Having 2 read-heads moving (independently, left-to-right) over the input.
 d) Having three stacks instead of one.
 e) Having a stack alphabet of at most two symbols.
 f) Having a stack alphabet of one symbol.
 g) Having a FIFO queue instead of a stack (i.e., write-only at the top of the queue,

and read-only at the bottom of the queue).

58. Is {v$w | v,w ∈ {a,b}*, v≠w} a context-free language?

59. Is {vw | v,w ∈ {a,b}*, v≠w} a context-free language?

60. Is {vw | v,w ∈ {a,b}*, v≠w, |v|=|w|} a context-free language?

61. Determine whether each of the following is regular, context-free, or both.

 a) {ananan | n>0}
 b) {www | w ∈ {x,y,z}*, |w| < 10100}
 c) {vw | v,w ∈ {a,b}*}
 d) {ww | w ∈ {a}*}

62. Given an arbitrary alphabet ∑ ={a1,a2,...,an}, we can impose a total ordering on it in the sense that we

can define < so that a1 < a2 < ... <an. We now proceed to define a new operation called the SORT of

a string w = w1w2...wk ∈ ∑* (where wi ∈ ∑ and k = |w|) as:

 SORT(w) = wσ(1)wσ(2)...wσ(k) so that wσ(i) < wσ(i+1) for 1 ≤ i ≤ k-1
 and σ is a permutation (i.e., a 1-to-1 onto
 mapping σ:[1..k]→[1..k])

 For example, SORT(11210010120)=00001111122. Now extend the definition of SORT to
 languages, so that SORT(L) = {SORT(w) | w∈L}. For each one of the following statements, state

whether it is true or false and explain:

 a) SORT(∑*) is regular.
 b) SORT(L) ⊆ L
 c) SORT(SORT(L))=SORT(L)
 d) SHUFFLE(L1,L2)=SHUFFLE(L2,L1)
 e) SORT(SHUFFLE(L1,L2)) = SORT(L1L2)

 f) ∃ L such that SORT(L)=SHUFFLE(L,L)=L
 g) SORT preserves regularity.
 h) SORT preserves context-freeness.
 i) SORT preserves decidability
 j) SORT preserves Turing-recognizability
 k) SORT preserves non-decidability
 l) SORT preserves non-finite-describability

 (The definition of SHUFFLE operator is the same as above.)

63. Define a DIVISION operator on languages as follows:

L1
L2

 = {w | w ∈ ∑* and ∃ v ∈ L2 ∋ wv ∈ L1}

 Does DIVISION preserve regularity? Decidability? What if L1 is regular and L2 is arbitrary?

64. Give decision procedures (i.e., a well-defined, deterministic, always-terminating algorithm) to determine

whether for a given finite automaton M, L(M) is:
 a) empty
 b) ∑*

 c) finite
 d) infinite
 e) co-finite (i.e., with a finite complement)
 f) regular
 g) context-free
 h) also accepted by a smaller FA (i.e., with fewer states)

65. Give algorithms to determine whether for a given pair of finite automata:

 a) they both accept the same language
 b) the intersection of their languages is empty
 c) the intersection of their languages is ∑*
 d) the intersection of their languages is finite
 e) the difference of their languages is finite

66. Give (and prove) several example non-Turing-recognizable languages.

67. Describe a Turing machine that prints out its own description (regardless of its input).

68. Prove whether given a TM M and string w, each of the following is decidable,

Turing-recognizable, or not Turing-recognizable:

 a) w causes M to enter state 3.
 b) there exists some string that causes M to enter state 3.
 c) w causes M to enter each and every one of its states.
 d) w causes M to move its head to the left at least once when M runs on w.
 e) M accepts a finite language.
 f) M accepts a regular language.
 g) M accepts a decidable language.
 h) M accepts a Turing-recognizable language.
 i) M never writes a nonblank symbol on its tape when it runs on w.
 j) M never overwrites a nonblank symbol when it runs on w.
 k) M never overwrites a nonblank symbol when it runs on any string.
 l) M is a universal Turing machine.

69. Let L={0k | k is a Fibonacci number}. Describe a Turing machine that accepts L.

Give a (context-sensitive) grammar that generates L.

70. Describe a two-tape Turing machine that prints out on its second tape only prime numbers (in

either binary or unary, separated by commas), such that every prime number will eventually be
printed there.

71. Describe a two-tape Turing machine that prints out on its second tape valid encodings of all

Turing machines (separated by commas), such that every Turing machine (including itself!) will
eventually be printed there.

72. Is it decidable whether given a one-state PDA accepts all input strings? How about a three-

state PDA?

