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CS6160 Theory of Computation 
Problem Set 3 

Department of Computer Science, University of Virginia 
 

Gabriel Robins 
 

Please start solving these problems immediately, don’t procrastinate, and work in study groups.  

Please prove all your answers; informal arguments are acceptable, but please make them precise / detailed / 

convincing enough so that they can be easily made rigorous if necessary.  To review notation and definitions, 

please read the "Basic Concepts" summary posted on the class Web site, and also read the corresponding 

chapters from the Sipser textbook and Polya’s “How to Solve It”. 

 

Please do not simply copy answers that you do not fully understand; on homeworks and on exams we 

reserve the right to ask you to explain any of your answers verbally in person (and we have exercised this 

option in the past). Please familiarize yourself with the UVa Honor Code as well as with the course Cheating 

Policy summarized on page 3 of the Course Syllabus.  To fully understand and master the material of this 

course typically requires an average effort of at least six to ten hours per week, as well as regular meetings 

with the TAs and attendance of the weekly problem-solving sessions.   

 

This is not a “due homework”, but rather a “pool of problems” meant to calibrate the scope and depth 

of the knowledge / skills in CS theory that you (eventually) need to have for the course exams, becoming a 

better problem-solver, be able to think more abstractly, and growing into a more effective computer scientist.  

You don’t necessarily have to completely solve every last question in this problem set (although it would be 

great if you did!).  Rather, please solve as many of these problems as you can, and use this problem set as a 

resource to improve your problem-solving skills, hone your abstract thinking, and to find out what topics you 

need to further focus on and learn more deeply.  Recall that most of the midterm and final exam questions in 

this course will come from these problem sets, so your best strategy of studying for the exams in this course 

is to solve (including in study groups) as many of these problems as possible, and the sooner the better! 

 

Advice: Please try to solve the easier problems first (where the meta-problem here is to figure out 

which are the easier ones  ).  Don’t spend too long on any single problem without also attempting (in 

parallel) to solve other problems as well.  This way, solutions to the easier problems (at least easier for you) 

will reveal themselves much sooner (think about this as a “hedging strategy” or “dovetailing strategy”). 

 

 

 

 

http://www.cs.virginia.edu/~robins/cs6160/basics.pdf
http://www.cs.virginia.edu/~robins/cs6160
https://www.amazon.com/Introduction-Theory-Computation-Michael-Sipser/dp/0534950973
https://www.amazon.com/gp/product/069111966X/
https://honor.virginia.edu/
http://www.cs.virginia.edu/~robins/cs6160/slides/CS6160_Syllabus.pdf
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1. Solve the following problems from the [Sipser, Second Edition] textbook: 

 

Pages 83-93: 1.4, 1.5, 1.6, 1.7, 1.11, 1.12, 1.13, 1.16, 1.17, 1.18, 1.19, 1.20, 1.21, 1.23, 1.29, 1.30 

 

2. Prove or disprove: a countable set of parabolas (arbitrarily oriented and placed) can completely 

cover (every point inside) the unit square in the plane (i.e., the interior and boundary of a square 

of side 1) 

 

3. Prove or disprove: an uncountable set of pairwise-disjoint line segments can completely cover 

(every point in) the unit disk in the plane (i.e., the interior and boundary of a circle of diameter 

1).  What if the segments could intersect each other, but must all have unique slopes? 

 

4. What is the cardinality of the set of all finite-sized matrices with rational entries?   

 

5. What is the cardinality of the set of all infinite matrices (i.e., matrices with a countably-infinite 

number of rows and columns) with Boolean entries? 

 

6. Is every subset of a regular language necessarily regular? 

Is every superset of a regular language necessarily non-regular? 

 

7. Does every regular language have a proper regular subset? 

Does every regular language have a proper regular superset? 

 

8. Are the regular languages closed under infinite union?  Infinite intersection? 

 

9. Is a countable union of regular languages necessarily regular? 

 

10. Is a countable intersection of regular languages necessarily regular?   

 

11. Solve problems 1.6(b), 1.6(h), 1.6(i) on page 84 of [Sipser].  Use JFLAP to implement and test 

each of these deterministic finite automata on various representative input strings. 

 

12. Solve problem 1.17 on page 86 of [Sipser].  Use JFLAP to implement the NFA and DFA of this 

question, and test both of them on various representative input strings. 

https://www.amazon.com/Introduction-Theory-Computation-Michael-Sipser/dp/0534950973
http://www.jflap.org/
https://www.amazon.com/Introduction-Theory-Computation-Michael-Sipser/dp/0534950973
http://www.jflap.org/
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13. Prove or disprove: the set of all languages (i.e. 2
*
 ) is countable. 

 

14. Prove or disprove: a given regular language is a countable set. 

 

15. Prove or disprove: the set of all regular languages is a countable set. 

 

16. Determine as precisely as possible, for a language L, when is the following true: L+ = L* - {} 

 

17. What is the infinite union of all of the regular languages? 

What is the infinite intersection of all of the regular languages? 

 

18. Let YESNO(L)={xy | xL and yL, x,y*}.  Does YESNO preserve regularity? 

 

19. Let PALI(L)={w | wL and wRL}.  Does PALI preserve regularity? 

 

20. Describe an algorithm that determines for a given pair of regular expressions whether they 

denote the same language.  What is the time complexity of your algorithm? 

 

21. True or false: for any given regular language, there exists a linear-time algorithm for testing 

whether an arbitrary input string is a member of that language. 

 

22. What is the smallest language, closed under concatenation, containing the languages L1 and L2? 

 

23. Give a sufficient condition (but as general as possible) for L1
* + L2

* = (L1 + L2)* to hold. 

 

24. Given two arbitrary languages S and T, find a new language R (in term of S and T) so that the 

equation R = SR + T holds. 

 

25. Describe exactly what happens if we apply the “powerset construction” to a finite automaton 

that is already deterministic? 

 

26. Show that the intersection of two sets of languages can be empty, finite (of arbitrarily large 

cardinality), countably infinite, or uncountably infinite. 

 

 

 

 

 


