Symbolic Logic

Def: *proposition* - statement either true (T) or false (F)

Ex: 1 + 1 = 22 + 2 = 33 < 7x + 4 = 5

"today is Monday"

Boolean Functions

- "<u>and</u>" ^
- "<u>or</u>" ∨
- "<u>not</u>" ¬
- "<u>nand</u>"
- "<u>nor</u>"
- "implication" \Rightarrow
- "<u>equivalence</u>" ⇔

"negation"

Truth table:

Ex: let p="today is Monday"

¬p ="today is not Monday"

• "<u>and</u>"

"conjunction"

Truth table:

p	q	p∧q
T	Т	Τ
T	F	\mathbf{F}
F	Τ	\mathbf{F}
F	F	F

 \wedge

Ex: $x \ge 0 \land x \le 10$ ($x \ge 0$) \land ($x \le 10$)

"disjunction"

Truth table:

p	q	p∨q
T	Т	Τ
T	F	Τ
F	Τ	Τ
F	F	\mathbf{F}

Truth table:

Ex: $(x=0) \oplus (y=0)$

"it is midnight" \oplus "it is sunny"

Logical Implication

• "<u>implies</u>"

Truth table:

Ex: $(x \le 0) \land (x \ge 0) \Rightarrow (x=0)$ $1 < x < y \Rightarrow x^3 < y^3$ "today is Sunday" $\Rightarrow 1+1=3$

Other interpretations of $p \Rightarrow q$:

- "p implies q"
- "if p, then q"
- "p is sufficient for q"
- "q if p"
- "q whenever p"
- "q is necessary for p"

Logical Equivalence

"biconditional"

- or "if and only if" ("iff")
- or "necessary and sufficient"
- or "logically equivalent" \equiv

Truth table:

p	q	p⇔q
Т	T	Τ
Т	F	F
F	Τ	F
F	F	Τ

Ex: $p \Leftrightarrow p$

 $[(x=0) \lor (y=0)] \Leftrightarrow (xy=0)$ $\min(x,y)=\max(x,y) \Leftrightarrow x=y$

logically equivalent (\Leftrightarrow) - means "has same truth table"

Ex: $p \Rightarrow q$ is equivalent to $(\neg p) \lor q$

i.e., $p \Rightarrow q \Leftrightarrow (\neg p) \lor q$

p	q	p⇒q	¬ p	¬p∨q
T	Т	Τ	F	Τ
T	F	\mathbf{F}	F	F
F	Т	Τ	Т	T
F	F	Τ	Τ	Τ

Ex: $(p \Leftrightarrow q) \equiv [(p \Rightarrow q) \land (q \Rightarrow p)]$ $p \Leftrightarrow q \equiv p \Rightarrow q \land q \Rightarrow p$ $(p \Leftrightarrow q) \equiv [(\neg p \lor q) \land (\neg q \lor p)]$ Note: $p \Rightarrow q$ is <u>not</u> equivalent to $q \Rightarrow p$ Thm: $(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$ Q: What is the negation of $p \Rightarrow q$? A: $\neg(p \Rightarrow q) \equiv \neg(\neg p \lor q) \equiv p \land \neg q$

p	q	q	p⇒q	¬(p⇒q)	$p \land \neg q$
T	T	F	Т	F	\mathbf{F}
Τ	F	T	F	Τ	Τ
F	Τ	F	Т	F	F
F	F	Τ	Т	F	F

"Logic is in the eye of the logician." - Gloria Steinem

Example

- let p = "it is raining"
 let q = "the ground is wet"
- $p \Rightarrow q$: "if it is raining, then the ground is wet"
- $\neg q \Rightarrow \neg p$: "if the ground is not wet, then it is not raining"
- $q \Rightarrow p$: "if the ground is wet, then it is raining"

 $\neg(p \Rightarrow q)$: "it is raining, and the ground is not wet"

Order of Operations

- negation first
- or/and next
- implications last
- parenthesis override others

(similar to arithmetic)

Def: *converse* of $p \Rightarrow q$ is $q \Rightarrow p$ *contrapositive* of $p \Rightarrow q$ is $\neg q \Rightarrow \neg p$

Prove: $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$

Q: How many distinct 2-variable Boolean functions are there?

Bit Operations

Bit Strings

Def: bit string - sequence of bits

Boolean functions extend to bit strings (bitwise)

Ex: $\neg 0100 = 1011$ $0100 \land 1110 = 0100$ $0100 \lor 1110 = 1110$ $0100 \oplus 1110 = 1010$ $0100 \Rightarrow 1110 = 1111$ $0100 \Leftrightarrow 1110 = 0101$

Proposition types

Def: *tautology:* <u>always</u> true *contingency:* <u>sometimes</u> true *contradiction:* <u>never</u> true

Ex: $p \lor \neg p$ is a tautology $p \land \neg p$ is a contradiction $p \Rightarrow \neg p$ is a contingency

p	¬p	p∨¬p	р∧¬р	p⇒¬p
T	F	Т	F	F
F	Τ	Τ	F	Τ

Logic Laws

Identity:

 $p \wedge T \Leftrightarrow p$ $p \vee F \Leftrightarrow p$

Domination:

 $p \lor T \Leftrightarrow T$ $p \land F \Leftrightarrow F$

Idempotent:

 $p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$

Logic Laws (cont.)

Double Negation:

$\neg(\neg p) \Leftrightarrow p$

Commutative:

 $p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$

Associative:

 $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

Logic Laws (cont.)

Distributive:

 $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

De Morgan's:

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$ $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

Misc:

 $p \lor \neg p \Leftrightarrow T$ $p \land \neg p \Leftrightarrow F$ $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$

Example

Simplify the following: $(p \land q) \Rightarrow (p \lor q)$

Predicates

Def:*predicate* - a function or formula involving some variables

Ex: let P(x) = "x > 3" x is the variable "x>3" is the predicate

> P(5) P(1)

Ex: $Q(x,y,z) = "x^2+y^2=z^2"$ Q(2,3,4)Q(3,4,5)

Quantifiers

Universal: "for all" \forall $\forall x P(x)$ $\Leftrightarrow P(x_1) \land P(x_2) \land P(x_3) \land ...$ Ex: $\forall x \quad x < x + 1$ $\forall x \quad x < x^3$

Existential: "there exists" $\exists \exists x P(x) \\ \Leftrightarrow P(x_1) \lor P(x_2) \lor P(x_3) \lor ... \\ Ex: \exists x \quad x = x^2 \\ \exists x \quad x < x - 1 \end{cases}$

Combinations:

$$\forall x \exists y \quad y > x$$

Examples

- $\forall x \exists y x+y=0$
- $\exists y \forall x x+y=0$
- "every dog has his day":
 ∀d ∃y H(d,y)
- $\lim_{x \to a} f(x) = L$

 $\forall \varepsilon \exists \delta \forall x \ (0 \le |x - a| \le \delta \Longrightarrow |f(x) - L| \le \varepsilon)$

Examples (cont.)

- n is divisible by j (denoted n|j): $n|j \Leftrightarrow \exists k \in \mathbb{Z} \ n=kj$
- m is prime (denoted P(m)): P(m) $\Leftrightarrow [\forall i \in Z (m|i) \Rightarrow (i=m) \lor (i=1)]$
- "there is no largest prime"
 - $\forall p \exists q \in \mathsf{Z} (q \geq p) \land P(q)$
 - $\forall p \exists q \in Z (q > p) \land [\forall i \in Z (q | i) \Rightarrow (i = q) \lor (i = 1)]$

 $\forall p \exists q \in Z (q > p) \land$ $[\forall i \in Z \{ \exists k \in Z q = ki \} \Longrightarrow (i = q) \lor (i = 1)]$

Negation of Quantifiers

Thm: $\neg(\forall x P(x)) \Leftrightarrow \exists x \neg P(x)$

Ex: ¬ "all men are mortal" ⇔ "there is a man who is not mortal"

Thm: $\neg(\exists x P(x)) \Leftrightarrow \forall x \neg P(x)$

Ex: ¬ "there is a planet with life on it" ⇔ "all planets do not contain life"

Thm: $\neg \exists x \forall y P(x,y) \Leftrightarrow \forall x \exists y \neg P(x,y)$

Ex: ¬ "there is a man that exercises every day" ⇔"every man does not exercise some day"

Thm: $\neg \forall x \exists y P(x,y) \Leftrightarrow \exists x \forall y \neg P(x,y)$

Ex: \neg "all things come to an end"

⇔"some thing does not come to any end"

Quantification Laws

Thm: $\forall x (P(x) \land Q(x))$ $\Leftrightarrow (\forall x P(x)) \land (\forall x Q(x))$ Thm: $\exists x (P(x) \lor Q(x))$ $\Leftrightarrow (\exists x P(x)) \lor (\exists x Q(x))$

Q: Are the following true?

$\exists x (P(x) \land Q(x)) \\ \Leftrightarrow (\exists x P(x)) \land (\exists x Q(x))$

$\forall x (P(x) \lor Q(x))$ $\Leftrightarrow (\forall x P(x)) \lor (\forall x Q(x))$

More Quantification Laws

- $(\forall x Q(x)) \land P \Leftrightarrow \forall x (Q(x) \land P)$
- $(\exists x Q(x)) \land P \Leftrightarrow \exists x (Q(x) \land P)$
- $(\forall x Q(x)) \lor P \Leftrightarrow \forall x (Q(x) \lor P)$
- $(\exists x Q(x)) \lor P \Leftrightarrow \exists x (Q(x) \lor P)$

Unique Existence

Def: $\exists !x P(x)$ means there exists a <u>unique</u> x such that P(x) holds

Q: Express $\exists !x P(x)$ in terms of the other logic operators

A:

Mathematical Statements

- Definition
- Lemma
- Theorem
- Corollary

Proof Types

- Construction
- Contradiction
- Induction
- Counter-example
- Existence

<u>Sets</u>

Def: *set* - an <u>unordered collection</u> of elements

Ex: $\{1, 2, 3\}$ or $\{hi, there\}$

Venn Diagram:

Def: two sets are *equal* iff they contain the <u>same</u> elements

Ex:
$$\{1, 2, 3\} = \{2, 3, 1\}$$

 $\{0\} \neq \{1\}$
 $\{3, 5\} = \{3, 5, 3, 3, 5\}$

Set <u>construction</u>: | or э means "such that"

Ex: $\{k \mid 0 \le k \le 4\}$ $\{k \mid k \text{ is a perfect square}\}$

- Set <u>membership</u>: $\in \notin$
- Ex: $7 \in \{p \mid p \text{ prime}\}$ $q \notin \{0, 2, 4, 6, ...\}$
- Sets can contain other sets
 - Ex: $\{2, \{5\}\}$
 - $\{\{\{0\}\}\} \neq \{0\} \neq 0$ $S = \{1, 2, 3, \{1\}, \{\{2\}\}\}$

Common Sets

- <u>Naturals</u>: $N = \{1, 2, 3, 4, ...\}$
- <u>Integers</u>: $Z = \{..., -2, -1, 0, 1, 2, ...\}$
- <u>Rationals</u>: $Q = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}$
- <u>Reals</u>: $\Re = \{x \mid x \text{ a real } \#\}$
- $\underline{\text{Empty set}}: \quad \emptyset = \{\}$
- Z^+ = non-negative integers \Re^- = non-positive reals, etc.

<u>Multisets</u>

Def: a *set* w/repeated elements allowed(i.e., each element has "multiplier")Ex: {0, 1, 2, 2, 2, 5, 5}

For multisets: $\{3, 5\} \neq \{3, 5, 3, 3, 5\}$

<u>Sequences</u>

Def: ordered list of elements

Ex: (0, 1, 2, 5) "4-tuple" $(1,2) \neq (2,1)$ "2-tuple"

<u>Subsets</u>

• <u>Subset</u> notation: \subseteq

 $S \subseteq T \Leftrightarrow (x \in S \Longrightarrow x \in T)$

Proper subset: \subset $S \subset T \Leftrightarrow ((S \subseteq T) \land (S \neq T))$ $S=T \Leftrightarrow ((T \subseteq S) \land (S \subseteq T))$ $\forall S \ \emptyset \subseteq S$ $\forall S \ S \subseteq S$

Intersection: \cap

$S \cap T = \{x \mid x \in S \land x \in T\}$

• Set <u>difference</u>: S - T

 $S - T = \{x \mid x \in S \land x \notin T\}$

• <u>Symmetric difference</u>: S⊕T

$S \oplus T = \{ x \mid x \in S \oplus x \in T \}$ $= S \cup T - S \cap T$

- Universal set: U (everything)
- Set <u>complement</u>: S' or S

$S' = \{x \mid x \notin S\} = U - S$

• <u>Disjoint</u> sets: $S \cap T = \emptyset$

S - T= S \cap T'

 $S - S = \emptyset$

Examples

$\mathsf{N} \cup \mathsf{Z} \cup \mathsf{Q} \cup \mathfrak{R} = \mathfrak{R}$ $\mathsf{N} \subset \mathsf{Z} \subset \mathsf{Q} \subset \mathfrak{R}$ $\forall \mathbf{x} \in \Re \ \mathbf{x} < \mathbf{x}^2 + 1$ $\forall x, y \in Q \min(x, y) = \max(x, y) \Leftrightarrow x = y$ $\mathfrak{R}^+ \cup \mathfrak{R}^- = \mathfrak{R}$ $\mathfrak{R}^+ \cap \mathfrak{R}^- = \{0\}$

Set Identities

- <u>Identity</u>: $S \cup \emptyset = S$ $S \cap U = S$
- <u>Domination</u>: $S \cup U = U$ $S \cap \emptyset = \emptyset$
- <u>Idempotent</u>:

$$S \cup S = S$$
$$S \cap S = S$$

• <u>Complementation</u>: (S')' = S

Set Identities (Cont.)

- <u>Commutative Law:</u>
 - $S \cup T = T \cup S$

$S \cap T = T \cap S$

• Associative Law:

$S \cup (T \cup V) = (S \cup T) \cup V$ $S \cap (T \cap V) = (S \cap T) \cap V$

Set Identities (Cont.)

• <u>Distributive Law:</u>

 $S \cup (T \cap V) = (S \cup T) \cap (S \cup V)$ $S \cap (T \cup V) = (S \cap T) \cup (S \cap V)$

• Absorption:

 $S \cup (S \cap T) = S$

 $S \cap (S \cup T) = S$

DeMorgan's Laws

$(S \cup T)' = S' \cap T'$

 $(S \cap T)' = S' \cup T'$

Boolean logic version:

 $(X \land Y)' = X' \lor Y'$ $(X \lor Y)' = X' \land Y'$

$\underline{Generalized} \cup and \cap$

• $\bigcup_{1 \le i \le n} S_i = S_1 \cup S_2 \cup S_3 \cup \ldots \cup S_n$

 $= \{ x \mid \exists i \ 1 \leq i \leq n \ \ni x \in S_i \}$

 $\bigcap S_i = S_1 \cap S_2 \cap S_3 \cap \ldots \cap S_n$ 1≤i≤n

 $= \{ x \mid \forall i \ 1 \leq i \leq n \Rightarrow x \in S_i \}$

Set Representation

• U = { $x_1, x_2, x_3, x_4, ..., x_{n-1}, x_n$ }

Ex: $S = \{x_1, x_3, x_n\}$ bits: 1 0 1 0 ... 0 0 1

1010000...01 encodes $\{x_1, x_3, x_n\}$ 0111000...00 encodes $\{x_2, x_3, x_4\}$

- "or" yields union: $1010000...01 \{x_1, x_3, x_n\}$
- "and" yields intersection: $1010000...01 \quad \{x_1, x_3, x_n\}$ $\land \underline{0111000...00} \quad \{x_2, x_3, x_4\}$ $0010000...00 \quad \{x_3\}$

• Ex: \Re is closed under addition since $x,y \in \Re \Rightarrow x+y \in \Re$

Abbreviations

- WRT "with respect to"
- WLOG "without loss of generality"

"When ideas fail, words come in very handy." - Goethe (1749-1832)

Cartesian Product

- <u>Ordered n-tuple</u>: element sequence Ex: (2,3,5,7) is a 4-tuple
 - <u>Tuple equality:</u>

 $\begin{array}{l} (a,b)=(x,y) \Leftrightarrow (a=x) \land (b=y) \\ \text{Generally:} (a_i)=(x_i) \Leftrightarrow \forall i \ a_i=x_i \end{array}$

Cross-product: ordered tuples

 $S \times T = \{(s,t) \mid s \in S, t \in T\}$

Ex: $\{1, 2, 3\} \times \{a, b\} =$ $\{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$

Generally, $S \times T \neq T \times S$

• Generalized <u>cross-product</u>:

$$\begin{split} S_1 &\times S_2 \times \ldots \times S_n \\ &= \{(x_1, \ldots, x_n) \mid x_i \!\in\! S_i, \ 1 \!\leq\! i \!\leq\! n\} \\ T^i &= T \!\times\! T^{i-1} \\ T^1 &= T \end{split}$$

- Euclidean plane = $\Re \times \Re = \Re^2$
- Euclidean space = $\Re \times \Re \times \Re = \Re^3$
- <u>Russel's paradox</u>: set of all sets that do not contain themselves:

 $\{S \mid S \notin S \}$

Q: Does S contain itself??

Functions

• <u>Function</u>: mapping $f:S \rightarrow T$

Domain S

Range T

- k-ary: has k "arguments"
- Predicate: with range = {true, false}

Function Types

- <u>One-to-one</u> function: "1-1" $a,b \in S \land a \neq b \Rightarrow f(a) \neq f(b)$
 - Ex: $f: \mathfrak{R} \rightarrow \mathfrak{R}, f(x)=2x$ is 1-1 g(x)=x² is not 1-1

- <u>Onto</u> function:
 - $\forall t \in T \exists s \in S \ni f(s)=t$ Ex: $f: Z \rightarrow Z, f(x)=13-x$ is onto $g(x)=x^2$ is not onto

1-to-1 Correspondence

• <u>1-to-1 correspondence</u>: $f:S \leftrightarrow T$

f is <u>both</u> 1-1 and onto

Ex: $f: \mathfrak{R} \leftrightarrow \mathfrak{R} \rightarrow f(\mathbf{x})=\mathbf{x}$ (identity)

h:
$$N \leftrightarrow Z \rightarrow h(x) = \frac{x-1}{2}$$
, x odd,
 $\frac{-x}{2}$, x even.

• <u>Inverse function</u>:

 $f:S \rightarrow T \qquad f^{-1}:T \rightarrow S$ $f^{-1}(t)=s \quad \text{if } f(s)=t$ $Ex: f(x)=2x \quad f^{-1}(x)=x/2$

• <u>Function composition</u>:

$$\beta:S \to T, \alpha:T \to V$$

$$\Rightarrow (\alpha \bullet \beta)(x) = \alpha(\beta(x))$$

$$(\alpha \bullet \beta):S \to V$$

Ex:
$$\beta(x)=x+1$$
 $\alpha(x)=x^2$
 $(\alpha \cdot \beta)(x)=x^2+2x+1$

Thm: $(f \bullet f^{-1})(\mathbf{x}) = (f^{-1} \bullet f)(\mathbf{x}) = \mathbf{x}$

Set Cardinality

- <u>Cardinality</u>: |S| = #elements in S
 - Ex: $|\{a,b,c\}|=3$ $|\{p \mid p \text{ prime } < 9\}| = 4$ $|\emptyset|=0$ $|\{\{1,2,3,4,5\}\}| = ?$
- <u>Powerset</u>: 2^{S} = set of all subsets

$$2^{S} = \{T \mid T \subseteq S\}$$

Ex: $2^{\{a,b\}} = \{\{\},\{a\},\{b\},\{a,b\}\}$
Q: What is 2^{\emptyset} ?

Theorem: $|2^{S}|=2^{|S|}$

Proof:

"Sometimes when reading Goethe, I have the paralyzing suspicion that he is trying to be funny." - Guy Davenport

Generalized Cardinality

- S is <u>at least as large</u> as T: $|S| \ge |T| \Rightarrow \exists f: S \rightarrow T, f \text{ onto}$ i.e., "S covers T"
 - Ex: $r: \mathfrak{R} \rightarrow Z, r(x) = round(x)$ $\Rightarrow |\mathfrak{R}| \ge |Z|$
- S and T have <u>same cardinality</u>: $|S|=|T| \Rightarrow |S| \ge |T| \land |T| \ge |S|$ or $\exists 1-1 \text{ correspondence } S \leftrightarrow T$
- Generalizes finite cardinality:

 $\{1, 2, 3, 4, 5\} \geq \{a, b, c\}$

Infinite Sets

- Infinite set: |S| > k ∀k∈Z or ∃ 1-1 corres. *f*:S↔T, S⊂T Ex: {p | p prime}, ℜ
 Countable set: |S| ≤ |N| Ex: Ø, {p | p prime}, N, Z
- S is <u>strictly smaller</u> than T: $|S| < |T| \implies |S| \le |T| \land |S| \ne |T|$
- <u>Uncountable set</u>: |N| < |S|Ex: $|N| < \Re$ $|N| < [0,1] = \{x \mid x \in \Re, 0 \le x \le 1\}$

<u>Thm</u>: \exists 1-1 correspondence $Q \leftrightarrow N$ <u>Pf (dove-tailing)</u>:

	• •	• • •	• •	• •	• •	• •	
6	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	$\frac{5}{6}$	$\frac{6}{6}$	•••
5	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{5}{5}$	$\frac{6}{5}$	• • •
Ą	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{3}{4}$	$\frac{4}{4}$	$\frac{5}{4}$	$\frac{6}{4}$	•••
3	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{3}$	$\frac{4}{3}$	$\frac{5}{3}$	$\frac{6}{3}$	• • •
2	$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{2}$	$\frac{5}{2}$	$\frac{6}{2}$	• • •
]	$\frac{1}{1}$	$\frac{2}{1}$	$\frac{3}{1}$	$\frac{4}{1}$	$\frac{5}{1}$	$\frac{6}{1}$	• • •
]]	2	3		5	6	

<u>Thm</u>: |ℜ|>|N| <u>Pf (diagonalization)</u>:

Assume $\exists 1 \text{-} 1 \text{ corres}$. $f: \mathfrak{R} \leftrightarrow \mathbb{N}$ Construct $X \in \mathfrak{R}$:

f (1)=2. 7 18281828	\rightarrow \otimes
f(2)=1.4 1 4213562	$\rightarrow 2$
f (3)=1.61 $^{\odot}$ 033989	$\rightarrow 9$

- $\mathbf{X} = 0.829... \neq f(\mathbf{K}) \quad \forall \mathbf{K} \in \mathbf{N}$
- \Rightarrow *f* not a 1-1 correspondence
- \Rightarrow contradiction
- $\Rightarrow \Re$ is uncountable

Q: Is $|\Re| > |[0,1]|$?

Q: Is $|2^{N}| = |\Re|$?

<u>Thm</u>: any set is "smaller" than its powerset. $|S| < |2^{S}|$

Infinities

- $|\mathsf{N}| = \aleph_0$
- $|\Re| = \aleph_1$
- $\aleph_0 < \aleph_1 = 2^{\aleph_0}$
- "Continuum Hypothesis"

$$\exists ? \omega \ni \aleph_0 < \omega < \aleph_1$$

Independent of the axioms! [Cohen, 1963]

- <u>Axiom of choice</u> [Godel 1940]
- <u>Parallel postulate</u> [Beltrami 1868]

Infinity Hierarchy

• $\aleph_i < \aleph_{i+1} = 2^{\aleph_i}$ 0, 1, 2,..., k, k+1,..., \aleph_0 , $\aleph_1, \aleph_2, ..., \aleph_k, \aleph_{k+1}, ...,$ $\aleph_{\aleph_0}, \aleph_{\aleph_1}, ..., \aleph_{\aleph_k}, \aleph_{\aleph_{k+1}}, ...$

• First inaccessible infinity: ω...

For an informal account on infinities, see e.g.: Rucker, <u>Infinity and the Mind</u>, Harvester Press, 1982.

```
<u>Thm</u>: # algorithms is countable.
<u>Pf</u>: sort programs by size:
        "main(){}"
        "main(){int k; k=7;}"
        "<all of UNIX>"
        "<Windows XP>"
        "<intelligent program>"
\Rightarrow # algorithms is countable!
```

<u>Thm</u>: # of functions is uncountable. <u>Pf</u>: Consider 0/1-valued functions (i.e., functions from N to $\{0,1\}$): $\{(1,0), (2,1), (3,1), (4,0), (5,1), ...\}$ $\Rightarrow \{2, 3, 5, ...\} \in 2^{N}$

So, every subset of N corresponds to a different 0/1-valued function

 $|2^{N}| \text{ is uncountable (why?)} \\ \implies \# \text{ functions is uncountable!}$

Thm: most functions are uncomputable!

- <u>Pf</u>: # algorithms is countable # functions is <u>not</u> countable
- $\Rightarrow \exists \underline{\text{more}} \text{ functions than} \\ algorithms / programs!$
- \Rightarrow some functions <u>do not</u> have algorithms!

Ex: The <u>halting problem</u>

Given a program P and input I, does P halt on I?

Def: H(P,I) = 1 if P halts on I 0 otherwise

The Halting Problem

H: Given a program P and input I, does P halt on I? i.e., does $P(I)\downarrow$?

<u>Thm</u>: H is uncomputable <u>Pf</u>: Assume subroutine S solves H.

Construct:

 $S'(S') \downarrow \Longrightarrow S'(S') \uparrow$ $S'(S')^{\uparrow} \Rightarrow S'(S')^{\downarrow}$

so, $S'(S')\uparrow \Leftrightarrow S'(S')\downarrow$ a contradiction!

⇒ S does not correctly compute H
But S was an arbitrary subroutine, so
⇒H is not computable!

Pigeon-Hole Principle

If N+1 objects are placed into N boxes $\Rightarrow \exists$ a box with 2 objects.

If M objects are placed into N boxes & $M \ge N \Longrightarrow \exists$ box with $\left(\frac{M}{N} \right)$ objects.

• Useful in proofs & analyses

Relations

Relation: a set of "ordered tuples" $\{(a,1),(b,2),(b,3)\}$ Ex: "<" $\{(x,y) | x,y \in \mathbb{Z}, x < y\}$ Reflexive: $x \forall x \forall x$ <u>Symmetric</u>: $x \forall y \Rightarrow y \forall x$ Transitive: $x \forall y \land y \forall z \Rightarrow x \forall z$ <u>Antisymmetric</u>: $x \forall y \Rightarrow \neg(y \forall x)$ Ex: \leq is reflexive transitive not symmetric

Equivalence Relations

Def: reflexive, symmetric, & transitive

Ex: standard equality "=" x=x $x=y \Rightarrow y=x$ $x=y \wedge y=z \Rightarrow x=z$

Partition - disjoint equivalence classes:

<u>Closures</u>

• <u>Transitive closure</u> of \checkmark : TC smallest superset of \checkmark satisfying $x \checkmark y \land y \checkmark z \Rightarrow x \checkmark z$

Ex: "predecessor" $\{(x-1,x) \mid x \in Z\}$ TC(predecessor) is "<" relation

Symmetric closure of ♥:
 smallest superset of ♥ satisfying

 $\mathbf{x} \mathbf{\forall} \mathbf{y} \Longrightarrow \mathbf{y} \mathbf{\forall} \mathbf{x}$

Graphs

• <u>A special kind of relation</u>

Graphs can model:

- Common relationships
- Communication networks
- Dependency constraints
- Reachability information

+ <u>many more</u> practical applications!

<u>Graph</u> G=(V,E): set of vertices V, and a set of edges $E \subseteq V \times V$

Pictorially: nodes & lines

Undirected Graphs

Def: edges have <u>no</u> direction

• Example of undirected graph:

$$V=\{a,b,c,d,e\} \\ E=\{(c,a),(c,b),(c,d),(c,e), \\ (a,b),(b,d),(d,e)\}$$

Directed Graphs

Def: edges have direction

• Example of directed graph:

$$V=\{a,b,c,d,e\} \\ E=\{(a,b),(a,c),(b,c),(b,d), \\ (d,c),(d,e),(c,e)\}$$

Graph Terminology

Graph G=(V,E), $E \subseteq V \times V$

- node \equiv vertex
- edge \equiv arc

Vertices $u,v \in V$ are <u>neighbors</u> in G iff (u,v) or (v,u) is an edge of G

Ex: a & b are neighbors a & e are <u>not</u> neighbors

Undirected Node Degree

Degree in <u>undirected</u> graphs:

$\underline{\text{Degree}(v)} = \# \text{ of } \underline{\text{adjacent}} (\underline{\text{incident}})$ edges to vertex v in G

Directed Node Degree

Degree in <u>directed</u> graphs:

 $\underline{\text{In-degree}(v)} = \# \text{ of } \underline{\text{incoming edges}}$ $\underline{\text{Out-degree}(v)} = \# \text{ of } \underline{\text{outgoing edges}}$

Ex: in-deg(c)=3 out-deg(c)=1in-deg(f)=0 out-deg(f)=0

Q: Show that at any party there is an even number of people who shook hands an odd number of times.

Q: How many edges are there in K_n?

Q: Give a (non-trivial) lower bound on the number of graphs over n vertices.

Paths in Graphs

A graph is <u>connected</u> iff there is a path between any pair of nodes:

Directed path in a graph:

Graph is <u>strongly connected</u> iff there is a directed path between <u>any</u> node pair:

Ex: connected but not strongly:

A <u>cycle</u> in a graph: a b d c e

A tree is an acyclic graph.

Tree T=(V',E') <u>spans</u> G=(V,E) if T is a connected subgraph with V'=V

