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Symbolic Logic 
 

 Def:  proposition - statement 

    either true (T) or false (F) 

 
 
 Ex: 1 + 1 = 2 
 
   2 + 2 = 3 
 
   3 < 7 
 
   x + 4 = 5 
 
   “today is Monday” 
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Boolean Functions 
 

 •  “and”     ^
 

 •  “or”       
 

 •  “not”     ¬ 
 

 •  “xor”     
 

 •  “nand”     
 

 •  “nor”     
 

 •  “implication”    
 

 •  “equivalence”     
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 •  “not”     ¬ 


   “negation” 
 


 Truth table: 
 

p ¬p 

T FF  

F TT  
 
 

 Ex: let p=“today is Monday” 
 

   ¬p =“today is not Monday” 
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•  “and”      


   “conjunction” 
 


 Truth table: 
 

p q pq 

T T TT  

T F FF  

F T FF  

F F FF  
 

 Ex: x≥0  x≤10 
 

   (x≥0)  (x≤10) 
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 •  “or”       


   “disjunction” 
 
 

 Truth table: 
 

p q pq 

T T TT  

T F TT  

F T TT  

F F FF  
 

 Ex: (x≥7)  (x=3) 
 

   (x=0)  (y=0) 
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 •  “xor”      
 

   “exclusive or” 
 
 

 Truth table: 
    

p q pq 

T T FF  

T F TT  

F T TT  

F F FF  
 

 Ex: (x=0)  (y=0) 
 

  “it is midnight”  “it is sunny” 
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Logical Implication 
 

•  “implies”     
 

 

 Truth table: 
    

p q pq 

T T TT  

T F FF  

F T TT  

F F TT  
 

 

  Ex: (x≤0)  (x≥0)  (x=0) 
 

    1 < x < y  x3 < y3 

  “today is Sunday”  1+1=3 



8 

 

Other interpretations of p q: 
 

 • “p implies q” 
 

 • “if p, then q” 
 

 • “p is sufficient for q” 
 

 • “q if p” 
 

 • “q whenever p” 
 

 • “q is necessary for p” 
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 Logical Equivalence 

•  “biconditional”     


 or  “if and only if” (“iff”) 
 or   “necessary and sufficient” 

 or   “logically equivalent”  


Truth table: 

p q pq 

T T TT  

T F FF  

F T FF  

F F TT  

Ex: p p 


  [(x=0)  (y=0)]  (xy=0) 

  min(x,y)=max(x,y)  x=y 
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logically equivalent () - means “has 

same truth table” 
 

Ex: pq is equivalent to (¬p)  q 

  i.e., pq  (¬p)q 
 

p q pq ¬p ¬pq 

T T TT  F TT  

T F FF  F FF  

F T TT  T TT  

F F TT  T TT  
   

Ex: (pq)  [(pq) (qp)] 

  pq  pq qp 

(pq)  [(¬p  q)  (¬q  p)] 
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 Note: pq is not equivalent to qp 

 

Thm: (PQ) (¬Q  ¬P) 
 
Q: What is the negation of pq? 

 
A: ¬(pq)  ¬(¬pq)  p¬q 

 

p q ¬q pq ¬(pq) p¬q 

T T F T FF  FF  

T F T F TT  TT  

F T F T FF  FF  

F F T T FF  FF  
 

“Logic is in the eye of the logician.” 
      - Gloria Steinem 
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Example 

 
let p = “it is raining” 
let q = “the ground is wet” 
 
pq :   “if it is raining, 

      then the ground is wet” 
 

¬q¬p : “if the ground is not wet,  

     then it is not raining” 
 
qp :   “if the ground is wet, 

     then it is raining” 
 

¬(pq) : “it is raining, and  

     the ground is not wet” 
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Order of Operations 
 

 •  negation first 
 

 •  or/and next 
  

 •  implications last 
  

 •  parenthesis override others 
 
(similar to arithmetic) 
 

Def: converse of pq is qp 

 contrapositive of pq is ¬q¬p 

  
Prove:  pq  ¬q¬p 
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Q: How many distinct 2-variable 
Boolean functions are there? 
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 Bit Operations 
 
 

¬  

0 1 

1 0 
 

 

 0 1    0 1 

0 0 0   0 0 1 

1 0 1   1 1 1 
 
 

 0 1    0 1 

0 1 1   0 1 0 

1 0 1   1 0 1 
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Bit Strings 
 

 

Def:  bit string - sequence of bits 
 

Boolean functions extend to bit strings 
(bitwise) 

 

 Ex:  ¬ 0100 = 1011 
 

   0100  1110 = 0100 
 

   0100  1110 = 1110 
 

   0100  1110 = 1010 
 

   0100 1110 = 1111 
 

   0100 1110 = 0101 
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Proposition types 
 

Def:  tautology: always true 

   contingency: sometimes true 

   contradiction: never true 

 

  Ex:  p¬p is a tautology 
 

   p¬p is a contradiction 
 

   p¬p is a contingency 

 

p ¬p p¬p p¬p p¬p 

T F TT  FF  FF  

F T TT  FF  TT  
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Logic Laws 
 

Identity: 
 

  pT  p 

  pF  p 
 

Domination: 
 

  pT  T 

  pF  F 
 

Idempotent: 
 

  pp  p 

  pp  p 
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Logic Laws (cont.) 
 

Double Negation: 
 

  ¬(¬p)  p 

 

Commutative: 
 

  pq  qp 

  pq  qp 

 

Associative: 
 

  (pq)r  p(qr) 

  (pq)r  p(qr) 
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Logic Laws (cont.) 
 

 

Distributive: 
 

  p  (qr)  (pq)  (pr) 

  p  (qr)  (pq)  (pr) 

 

De Morgan’s: 
 

  ¬(pq)  ¬p  ¬q 

  ¬(pq)  ¬p  ¬q 
 

Misc: 
 

  p¬p  T 

  p¬p  F 

  (pq)  (¬pq) 
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 Example 
 

 

Simplify the following: 
 

  (pq)  (pq) 
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 Predicates 
 

 

Def:predicate - a function or formula 
involving some variables 

 
Ex: let P(x) = “x > 3” 
  x is the variable 
  “x>3” is the predicate 
 

  P(5) 
 

  P(1) 
 
Ex: Q(x,y,z) = “ x

2
+y

2
=z

2 
” 

 

  Q(2,3,4) 
 

  Q(3,4,5) 
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  Quantifiers 
 

•  Universal:  “for all”   

  xP(x)

  P(x1)P(x2)P(x3)

  Ex:   xx < x + 1 

     xx < x
3
 

 

•  Existential: “there exists” 

  xP(x)

  P(x1)P(x2)P(x3) ... 

  Ex:   x  xx2 

     x  x < x - 1 
 

 Combinations: 

x y  y>x 
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Examples 
 

• x y  x+y=0 
 

• y x  x+y=0 
 
• “every dog has his day”:  
  

 d y H(d,y) 
 
• Lim   ƒ(x) = L 
 

xa 

 x (0<|x-a|<|ƒ(x)-L|<) 
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Examples (cont.) 
 

• n is divisible by j (denoted n|j ): 
 

 n|j  kZ n=kj 
 

• m is prime (denoted P(m)): 
  

 P(m) iZ (m|i) imi1 
 

• “there is no largest prime” 
  

 p qZ (q>p)  P(q) 
 

 p qZ (q>p)   

[iZ q|i) iqi1
 

 p qZ (q>p)   

[iZ kZ q=ki iqi1
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Negation of Quantifiers 
 

Thm: ¬(x P(x))  x ¬P(x) 
 

Ex: ¬ “all men are mortal”

  “there is a man who is not mortal” 
               

Thm: ¬(x P(x))  x ¬P(x) 
 

Ex: ¬ “there is a planet with life on it” 

 “all planets do not contain life” 
               

Thm: ¬xy P(x,y)xy ¬P(x,y) 
 

Ex: ¬ “there is a man that exercises every day” 

 “every man does not exercise some day”
               

Thm: ¬xy P(x,y)xy ¬P(x,y) 
 

Ex: ¬ “all things come to an end” 

 “some thing does not come to any end”
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Quantification Laws 
 

Thm: x (P(x)  Q(x)) 

    (x P(x))  (x Q(x)) 
 

Thm: x (P(x)  Q(x)) 

    (x P(x)) (x Q(x)) 
               

 

Q: Are the following true? 
               

 x (P(x)Q(x)) 

  x P(x))  (x Q(x)) 
 
 

 

 x (P(x)Q(x)) 

  x P(x))  x Q(x)) 
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More Quantification Laws 
 

 

• x Q(x))  P x (Q(x) P) 
 

 

• x Q(x))  Px (Q(x)  P) 
 

 

• x Q(x))  Px (Q(x)  P) 
 

 

• x Q(x))  Px (Q(x)  P) 
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Unique Existence 
 

Def: x P(x) means there exists a 
unique x such that P(x) holds 

 

Q: Express x P(x) in terms of the 
other logic operators 

 

A: 
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Mathematical Statements 
 

  Definition 

  Lemma 

  Theorem 

  Corollary 
 

Proof Types 
 

  Construction 

  Contradiction 

  Induction 

  Counter-example 

  Existence 

  … 
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Sets 
 

Def: set - an unordered collection of 
elements 

 

   Ex: {1, 2, 3} or {hi, there} 

 
Venn Diagram: 
 

S
x

 
 

Def: two sets are equal iff they contain 
the same elements 

 

  Ex: {1, 2, 3} = {2, 3, 1} 
 

    {0}  {1} 

    {3, 5}  {3, 5, 3, 3, 5} 
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•  Set construction:  
   |  or means “such that” 
 
  Ex: {k | 0<k<4} 
 

    {k |  k is a perfect square} 
 

•  Set membership:   
 

   Ex:  7 {p | p prime} 
 

     q {0, 2, 4, 6,...} 
 
 

• Sets can contain other sets 
 

  Ex:  {2, {5}} 
 

     {{{0}}}  {0}  0 
 
     S = {1, 2, 3, {1}, {{2}}} 
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Common Sets 
 

 

Naturals:   N = {1, 2, 3, 4, ...} 
 

Integers:   Z = {..,-2, -1, 0, 1, 2,..} 
 

Rationals:  Q = { 
a
b   | a,b, b0} 

 

Reals:     = {x | x a real #} 
 

Empty set:  Ø = {} 
 

Z
+

 = non-negative integers 


-
= non-positive reals, etc. 
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Multisets 
 

Def: a set w/repeated elements allowed 
 
(i.e., each element has “multiplier”) 
 
Ex: {0, 1, 2, 2, 2, 5, 5} 
 

For multisets: {3, 5}  {3, 5, 3, 3, 5} 

 

Sequences 
 
Def: ordered list of elements 
 
Ex: (0, 1, 2, 5)  “4-tuple” 

  (1,2)  (2,1)  “2-tuple” 
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Subsets 
 

 

• Subset notation:    
 

  S T  (xS  xT) 
 

 

 

•  Proper subset:     


  S T  ((S T) ^ (ST)) 


  S=T  ((T S) ^ (S T)) 


  S  Ø S 


  S  S S 
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•  Union:      
 

  ST={x | xS  xT} 
 

 

 

 

•  Intersection:   
 

  ST={x | xS  xT} 
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• Set difference:  S - T 
 

  S - T= {x | xS  xT} 
 

S T

 

 

 

• Symmetric difference: ST 
 

  ST = {x | xS  xT} 

     = ST - ST 
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• Universal set:  U   (everything) 
           _ 

• Set complement: S’  or S 
 

  S’ = {x | xS} = U - S 
 

S

U

 

 

• Disjoint sets:  ST=Ø 
 

S T

 

 

S - T= S  T’ 
 

S - S = Ø 
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Examples 
 
 

N  Z  Q   
 

N  Z  Q   
 

x  x ≤ x2+1 
 

xyQ min(x,y)=max(x,y)  x=y 
 


+
 

-
 =  

 


+
 

-
 = {0} 
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Set Identities 
 
• Identity:   
 

  S  Ø = S 

  S  U = S 
 

• Domination:   
 

  S  U = U 

  S  Ø = Ø 
 

• Idempotent:   
 

  S  S = S 

  S  S = S 
 

• Complementation:   
 

  (S’)’ = S 
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Set Identities (Cont.) 
 

 

 • Commutative Law:  
 

  ST=TS  
 

  ST=TS 
 
 
 • Associative Law:  
 

  S(TV)= (ST)V 
 

  S(TV) = (ST)V 
 



42 

Set Identities (Cont.) 
 
 

• Distributive Law: 
 

  S(TV)=(ST)(SV) 
 

  S(TV) = (ST)(SV) 
 
 

• Absorption:    
 

S(ST)=S 
 

  S(ST)=S 
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DeMorgan's Laws 
 

  (ST)' = S'T' 
 

 

 

  (ST)' = S'T' 
 

 

 

 Boolean logic version: 
 

   (XY)'=X'Y' 

   (XY)'=X'Y'  
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Generalized  and  
 

• Si=S1S2S3Sn 

 1≤i≤n 

   ={x | i 1≤i≤n  xSi} 
 

S3

S2S1

 

• Si=S1S2S3Sn 

 1≤i≤n 

   ={x | i 1≤i≤n  xSi} 
 

S3

S2S1
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Set Representation 
 

• U  = {x1, x2, x3, x4,... , xn-1, xn } 
 

Ex: S =  {x1,   x3,      xn} 
bits:     1 0  1   0 ... 0   0  1 
 

1010000...01 encodes {x1, x3, xn} 
0111000...00 encodes {x2, x3, x4} 

 

• “or” yields union: 
 1010000...01 {x1, x3, xn} 

 0111000...00 {x2, x3, x4} 
 1111000...01 {x1, x2, x3, x4, xn} 

 

• “and” yields intersection: 
 1010000...01 {x1, x3, xn} 

 0111000...00 {x2, x3, x4} 
 0010000...00 {x3} 
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• Set closure: WRT operation  

x,yS xyS 
 

x y
x y

 

 

• Ex:  is closed under addition 

   since  x,y x+y 
 

Abbreviations 
 

• WRT  “with respect to” 
 

• WLOG  “without loss of  
      generality” 

 

"When ideas fail, words come in very handy." 
        - Goethe (1749-1832) 
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Cartesian Product 
 
• Ordered n-tuple: element sequence 
   

  Ex: (2,3,5,7) is a 4-tuple
   

•  Tuple equality:  
   

  (a,b)=(x,y)  (a=x)  (b=y) 

  Generally: (ai)=(xi)  i  ai=xi 
   

•  Cross-product: ordered tuples 
   

  ST = {(s,t) | sS, tT} 
   

  Ex: {1, 2, 3}  {a,b}=  
{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)} 
 

  Generally,  ST ≠ TS 



48 

 

• Generalized cross-product: 
   

  S1 S2 ...  Sn

   = {(x1,...,xn) | xiSi, 1≤i≤n} 
 

  Ti = TTi-1 

  T1 = T 
 

• Euclidean plane =  = 2 
 

• Euclidean space =  = 3 

 

• Russel’s paradox: set of all sets that 
do not contain themselves: 

 

  {S | S  S } 
 

 Q: Does S contain itself?? 
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Functions 
 

 

 • Function: mapping  ƒ:ST 
  
   Domain S 
 
   Range T 
 
 

S
T

ƒ(x)
x

ƒ

 

 

  k-ary: has k “arguments” 

  Predicate: with range = {true, false} 
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Function Types 
 

 

• One-to-one function: “1-1” 

  a,bS ^ ab  ƒ(a)ƒ(b) 
 

 Ex: ƒ:, f(x)=2x is 1-1 
 

   g(x)=x2 is not 1-1 
 
 

 

• Onto function: 
 

  t T   sS  ƒ(s)=t 
 

 Ex: ƒ:, f(x)=13-x is onto 
 

   g(x)=x2 is not onto 
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1-to-1 Correspondence 
 

• 1-to-1 correspondence: ƒ:ST 


  ƒ is both 1-1 and onto 
 

S
T

t
s

ƒ

 

 

Ex: ƒ:   ƒ(x)=x (identity) 
 

  h: NZ   h(x)= 
x-1
2  , x odd, 

          
-x
2  , x even. 
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• Inverse function: 
 

 ƒ:ST  ƒ
-1

:TS 
  

 ƒ
-1

(t)=s  if  ƒ(s)=t 
  

 Ex: ƒ(x)=2x ƒ
-1

(x)=x/2 
  
• Function composition:  
 

 :ST:TV 

   ( • )(x)=((x)) 

   ( • ):SV 
 

 Ex: (x)=x+1  (x)=x
2
 

   ( • )(x)= x
2
 + 2x + 1 
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Thm: (ƒ•ƒ
-1

)(x) = (ƒ
-1

•ƒ)(x) = x 
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Set Cardinality 
 

• Cardinality: |S| = #elements in S 
 

Ex: |{a,b,c}|=3 
 

   |{p | p prime < 9}| = 4 
 

   |Ø|=0 
 

   |{{1,2,3,4,5}}| = ?  
 

 

 • Powerset: 2S = set of all subsets 
 

  2S ={T | T  S} 
 

  Ex: 2
{a,b} 

= {{},{a},{b},{a,b}} 
 

Q: What is 2
Ø  

? 
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Theorem:  |2S|=2|S| 

 

Proof: 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Sometimes when reading Goethe, I have the  

paralyzing suspicion that he is trying to be funny.” 

- Guy Davenport 
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Generalized Cardinality 
 

• S is at least as large as T:  
 

 |S||T|  ƒ:ST, ƒ onto 
 

 i.e., “S covers T” 
 

 Ex: r:Z, r(x)=round(x) 
 

    |||Z| 
 

• S and T have same cardinality:  

 |S|=|T|  |S||T| ^ |T||S| 
or 

 1-1 correspondence ST 
 

• Generalizes finite cardinality:  
  

{1, 2, 3, 4, 5}   {a, b, c} 
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Infinite Sets 
 

• Infinite set: |S| > k kZ  
or 

   1-1 corres. ƒ:ST, ST 
 

 Ex: {p | p prime},  
 

• Countable set: |S|  |N| 
 

 Ex: Ø, {p | p prime}, NZ 
 

• S is strictly smaller than T:  
 

 |S| < |T|  |S||T| ^ |S||T| 
 

• Uncountable set: |N| < |S| 

 Ex:  |N| <  

|N| < [0,1] = {x | x, x} 
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Thm:  1-1 correspondence QN 
Pf (dove-tailing): 
 

 • • • • • • 

 • • • • • • 

 • • • • • • 
 

 
1
6   

2
6   

3
6   

4
6   

5
6   

6
6  ... 

 
1
5   

2
5   

3
5   

4
5   

5
5   

6
5  ... 

 
1
4   

2
4   

3
4   

4
4   

5
4   

6
4  ... 

 
1
3   

2
3   

3
3   

4
3   

5
3   

6
3  ... 

 
1
2   

2
2   

3
2   

4
2   

5
2   

6
2  ...

 
1
1   

2
1   

3
1   

4
1   

5
1   

6
1  ... 
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Thm: ||>|N| 
 

Pf (diagonalization): 
 

 Assume  1-1 corres. ƒ:N 

 Construct x  : 

 ƒ(1)=2. 18281828...    

 ƒ(2)=1.4 4213562...    

 ƒ(3)=1.61 033989...    
 

 x = 0. ...ƒ(K) KN 
 

 ƒ not a 1-1 correspondence  
 

 contradiction  
 

  is uncountable 
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Q: Is || > |[0,1]| ? 
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Q: Is |
N
|  
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Thm: any set is "smaller" than its powerset. 
  

  |S| < |2S| 
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Infinities 

  

 • |N|  = 0 
 

 • ||  = 1 
 

 • 0 < 1 = 20 

 
 • “Continuum Hypothesis” 
 

  ?    0 <  < 1 
 

  Independent of the axioms! 
 

  [Cohen, 1963] 
 

 • Axiom of choice [Godel 1940] 
 

 

 • Parallel postulate [Beltrami 1868] 
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Infinity Hierarchy 
 

• i < i+1 = 2i
 

 

  0, 1, 2,..., k, k+1,...,0, 

 

   1, 2,..., k, k+1,...,  

 

    0
, 1

,..., k
, k+1

,... 

 
 

• First inaccessible infinity:  
 
 

For an informal account on infinities, see e.g.: 
Rucker, Infinity and the Mind, Harvester Press, 1982. 
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Thm: # algorithms is countable. 

Pf: sort programs by size: 

   "main(){}" 
   • 

   • 

   "main(){int k; k=7;}" 
   • 

   • 

   "<all of UNIX>" 
   • 

   • 

   “<Windows XP>" 
   • 

   • 

   "<intelligent program>" 
   • 

   • 

 # algorithms is countable! 
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Thm: # of functions is uncountable. 

Pf: consider 0/1-valued functions 

(i.e., functions from N to {0,1}): 


{(1,0), (2,1), (3,1), (4,0), (5,1), ...} 


 { 2, 3, 5, ...}2N 

 

So, every subset of N corresponds to a 
different  0/1-valued function 


|2N| is uncountable (why?) 
 

# functions is uncountable!
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Thm: most functions are uncomputable! 
 

Pf: # algorithms is countable 

  # functions is not countable 
 

 more functions than 

   algorithms / programs! 
 

 some functions do not have 
algorithms! 

 

                

 

 

Ex: The halting problem 
 

Given a program P and input I, 
does P halt on I? 

 

Def: H(P,I) = 1  if P halts on I 

      0  otherwise 
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The Halting Problem 
 

H: Given a program P and input I, 

does P halt on I? i.e., does P(I) 

 

Thm: H is uncomputable 

Pf: Assume subroutine S solves H. 

 

SP

I

yes

noP(I)?
 

 Construct: 

S
P

I

S'

yes

no yes



P(I)?
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 Analyze: 

S
P

I

S'

yes

no yes



P(I)?

 
 

   S'(S') S'(S')

   S'(S') S'(S')



 so, S'(S')S'(S')  

 a contradiction! 
 

S does not correctly compute H 
 

But S was an arbitrary subroutine, so 

 H is not computable! 
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Pigeon-Hole Principle 
 

 

If N+1 objects are placed into N boxes 

  a box with 2 objects. 

 
If M objects are placed into N boxes & 

M>N   box withMNobjects. 

 

  Useful in proofs & analyses 
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Relations 
 

Relation: a set of “ordered tuples” 
 

Ex:    {(a,1),(b,2), (b,3)} 
 

  “<”  {(x,y) | x,yZ, x<y} 
 

 Reflexive: xx x 
 

 Symmetric: xy  yx 
 

 Transitive:  xy ^ yz  xz 
 

 Antisymmetric: xy  ¬(yx) 
 

 Ex:     is reflexive 
      transitive 

not symmetric
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Equivalence Relations
 

 
Def: reflexive, symmetric, & transitive 

 
 Ex: standard equality “=” 
     x=x 

     x=y  y=x 

     x=y ^ y=z  x=z 
 
 
Partition - disjoint equivalence classes: 
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Closures 
 

• Transitive closure of  TC


 smallest superset of satisfying 


xy ^ yz  xz 
 

 

 Ex“predecessor”  

   {(x-1,x) | xZ} 


 TC(predecessor) is “<” relation


 

• Symmetric closure of 


 smallest superset of satisfying 


xy  yx 
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 Graphs 
 

 

 A special kind of relation 
 

Graphs can model: 
 • Common relationships 
 • Communication networks 
 • Dependency constraints 
 • Reachability information 
 

+ many more practical applications! 
 
Graph G=(V,E): set of vertices V,  

and a set of edges E  VV 
 

Pictorially: nodes & lines 
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 Undirected Graphs 
 
Def: edges have no direction 
 

  Example of undirected graph: 
 

 

 
V={a,b,c,d,e} 
E={(c,a),(c,b),(c,d),(c,e), 
  (a,b),(b,d),(d,e)} 
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Directed Graphs 
 
Def: edges have direction 
 

  Example of directed graph: 

 

V={a,b,c,d,e} 
E={(a,b),(a,c),(b,c),(b,d), 
  (d,c),(d,e),(c,e)} 
 



77 

Graph Terminology 
 

Graph G=(V,E), E  VV 
 

  node  vertex 

  edge  arc 
 

f

a

b

c e

d

 

 

Vertices u,vV are neighbors in G iff 
(u,v) or (v,u) is an edge of G 
 

Ex: a & b are neighbors 
  a & e are not neighbors 
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Undirected Node Degree 
 
Degree in undirected graphs: 
 
Degree(v) = # of adjacent (incident) 
     edges to vertex v in G 
 
Ex: deg(c)=4  deg(f)=0 
 

f

a

b

c e

d
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Directed Node Degree 
 
Degree in directed graphs: 
 

In-degree(v) = # of incoming edges 
Out-degree(v) = # of outgoing edges 
 
Ex: in-deg(c)=3  out-deg(c)=1 

in-deg(f)=0  out-deg(f)=0 
 

a

b

c e

d

f

 



80 

Q: Show that at any party there is an 
even number of people who shook 
hands an odd number of times. 
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Complete graph Kn contains all edges  

i.e., E = {{u,v}VV | uv} 

a

b

c e

d

 
 

Q: How many edges are there in Kn? 
 
Subgraph of G is G’=(V’,E’) 

where V’V and E’E 

 
 
Q: Give a (non-trivial) lower bound on 
the number of graphs over n vertices. 
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Paths in Graphs 
 
Undirected path in a graph: 

a

b

c e

d

 
 

 
A graph is connected iff there is a path 
between any pair of nodes: 
 

a

b

c e

d
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Directed path in a graph: 

 

a

b

c e

d

 

 
Graph is strongly connected iff there is 
a directed path between any node pair: 

 
Ex: connected but not strongly: 

 

a

b

c e

d
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A cycle in a graph: 
b

c e

d

a

 
 
 

 
A tree is an acyclic graph. 

 

 

Tree T=(V’,E’) spans G=(V,E) if T is a 
connected subgraph with V’=V 
 
 

a

b

c e

d

 
 


