
1

Symbolic Logic

 Def: proposition - statement

 either true (T) or false (F)

 Ex: 1 + 1 = 2

 2 + 2 = 3

 3 < 7

 x + 4 = 5

 “today is Monday”

2

Boolean Functions

 • “and” ^

 • “or”

 • “not” ¬

 • “xor”

 • “nand”

 • “nor”

 • “implication”

 • “equivalence”

3

 • “not” ¬

 “negation”

 Truth table:

p ¬p

T FF

F TT

 Ex: let p=“today is Monday”

 ¬p =“today is not Monday”

4

• “and”

 “conjunction”

 Truth table:

p q pq

T T TT

T F FF

F T FF

F F FF

 Ex: x≥0 x≤10

 (x≥0) (x≤10)

5

 • “or”

 “disjunction”

 Truth table:

p q pq

T T TT

T F TT

F T TT

F F FF

 Ex: (x≥7) (x=3)

 (x=0) (y=0)

6

 • “xor”

 “exclusive or”

 Truth table:

p q pq

T T FF

T F TT

F T TT

F F FF

 Ex: (x=0) (y=0)

 “it is midnight” “it is sunny”

7

Logical Implication

• “implies”

 Truth table:

p q pq

T T TT

T F FF

F T TT

F F TT

 Ex: (x≤0) (x≥0) (x=0)

 1 < x < y x3 < y3

 “today is Sunday” 1+1=3

8

Other interpretations of p q:

 • “p implies q”

 • “if p, then q”

 • “p is sufficient for q”

 • “q if p”

 • “q whenever p”

 • “q is necessary for p”

9

 Logical Equivalence

• “biconditional”

 or “if and only if” (“iff”)
 or “necessary and sufficient”

 or “logically equivalent”

Truth table:

p q pq

T T TT

T F FF

F T FF

F F TT

Ex: p p

 [(x=0) (y=0)] (xy=0)

 min(x,y)=max(x,y) x=y

10

logically equivalent () - means “has

same truth table”

Ex: pq is equivalent to (¬p) q

 i.e., pq (¬p)q

p q pq ¬p ¬pq

T T TT F TT

T F FF F FF

F T TT T TT

F F TT T TT

Ex: (pq) [(pq) (qp)]

 pq pq qp

(pq) [(¬p q) (¬q p)]

11

 Note: pq is not equivalent to qp

Thm: (PQ) (¬Q ¬P)

Q: What is the negation of pq?

A: ¬(pq) ¬(¬pq) p¬q

p q ¬q pq ¬(pq) p¬q

T T F T FF FF

T F T F TT TT

F T F T FF FF

F F T T FF FF

“Logic is in the eye of the logician.”
 - Gloria Steinem

12

Example

let p = “it is raining”
let q = “the ground is wet”

pq : “if it is raining,

 then the ground is wet”

¬q¬p : “if the ground is not wet,

 then it is not raining”

qp : “if the ground is wet,

 then it is raining”

¬(pq) : “it is raining, and

 the ground is not wet”

13

Order of Operations

 • negation first

 • or/and next

 • implications last

 • parenthesis override others

(similar to arithmetic)

Def: converse of pq is qp

 contrapositive of pq is ¬q¬p

Prove: pq ¬q¬p

14

Q: How many distinct 2-variable
Boolean functions are there?

15

 Bit Operations

¬

0 1

1 0

 0 1 0 1

0 0 0 0 0 1

1 0 1 1 1 1

 0 1 0 1

0 1 1 0 1 0

1 0 1 1 0 1

16

Bit Strings

Def: bit string - sequence of bits

Boolean functions extend to bit strings
(bitwise)

 Ex: ¬ 0100 = 1011

 0100 1110 = 0100

 0100 1110 = 1110

 0100 1110 = 1010

 0100 1110 = 1111

 0100 1110 = 0101

17

Proposition types

Def: tautology: always true

 contingency: sometimes true

 contradiction: never true

 Ex: p¬p is a tautology

 p¬p is a contradiction

 p¬p is a contingency

p ¬p p¬p p¬p p¬p

T F TT FF FF

F T TT FF TT

18

Logic Laws

Identity:

 pT p

 pF p

Domination:

 pT T

 pF F

Idempotent:

 pp p

 pp p

19

Logic Laws (cont.)

Double Negation:

 ¬(¬p) p

Commutative:

 pq qp

 pq qp

Associative:

 (pq)r p(qr)

 (pq)r p(qr)

20

Logic Laws (cont.)

Distributive:

 p (qr) (pq) (pr)

 p (qr) (pq) (pr)

De Morgan’s:

 ¬(pq) ¬p ¬q

 ¬(pq) ¬p ¬q

Misc:

 p¬p T

 p¬p F

 (pq) (¬pq)

21

 Example

Simplify the following:

 (pq) (pq)

22

 Predicates

Def:predicate - a function or formula
involving some variables

Ex: let P(x) = “x > 3”
 x is the variable
 “x>3” is the predicate

 P(5)

 P(1)

Ex: Q(x,y,z) = “ x

2
+y

2
=z

2
”

 Q(2,3,4)

 Q(3,4,5)

23

 Quantifiers

• Universal: “for all”

 xP(x)

 P(x1)P(x2)P(x3)

 Ex: xx < x + 1

 xx < x
3

• Existential: “there exists”

 xP(x)

 P(x1)P(x2)P(x3) ...

 Ex: x xx2

 x x < x - 1

 Combinations:

x y y>x

24

Examples

• x y x+y=0

• y x x+y=0

• “every dog has his day”:

 d y H(d,y)

• Lim ƒ(x) = L

xa

 x (0<|x-a|<|ƒ(x)-L|<)

25

Examples (cont.)

• n is divisible by j (denoted n|j):

 n|j kZ n=kj

• m is prime (denoted P(m)):

 P(m) iZ (m|i) imi1

• “there is no largest prime”

 p qZ (q>p) P(q)

 p qZ (q>p)

[iZ q|i) iqi1

 p qZ (q>p)

[iZ kZ q=ki iqi1

26

Negation of Quantifiers

Thm: ¬(x P(x)) x ¬P(x)

Ex: ¬ “all men are mortal”

 “there is a man who is not mortal”

Thm: ¬(x P(x)) x ¬P(x)

Ex: ¬ “there is a planet with life on it”

 “all planets do not contain life”

Thm: ¬xy P(x,y)xy ¬P(x,y)

Ex: ¬ “there is a man that exercises every day”

 “every man does not exercise some day”

Thm: ¬xy P(x,y)xy ¬P(x,y)

Ex: ¬ “all things come to an end”

 “some thing does not come to any end”

27

Quantification Laws

Thm: x (P(x) Q(x))

 (x P(x)) (x Q(x))

Thm: x (P(x) Q(x))

 (x P(x)) (x Q(x))

Q: Are the following true?

 x (P(x)Q(x))

 x P(x)) (x Q(x))

 x (P(x)Q(x))

 x P(x)) x Q(x))

28

More Quantification Laws

• x Q(x)) P x (Q(x) P)

• x Q(x)) Px (Q(x) P)

• x Q(x)) Px (Q(x) P)

• x Q(x)) Px (Q(x) P)

29

Unique Existence

Def: x P(x) means there exists a
unique x such that P(x) holds

Q: Express x P(x) in terms of the
other logic operators

A:

30

Mathematical Statements

 Definition

 Lemma

 Theorem

 Corollary

Proof Types

 Construction

 Contradiction

 Induction

 Counter-example

 Existence

 …

31

Sets

Def: set - an unordered collection of
elements

 Ex: {1, 2, 3} or {hi, there}

Venn Diagram:

S
x

Def: two sets are equal iff they contain
the same elements

 Ex: {1, 2, 3} = {2, 3, 1}

 {0} {1}

 {3, 5} {3, 5, 3, 3, 5}

32

• Set construction:
 | or means “such that”

 Ex: {k | 0<k<4}

 {k | k is a perfect square}

• Set membership:

 Ex: 7 {p | p prime}

 q {0, 2, 4, 6,...}

• Sets can contain other sets

 Ex: {2, {5}}

 {{{0}}} {0} 0

 S = {1, 2, 3, {1}, {{2}}}

33

Common Sets

Naturals: N = {1, 2, 3, 4, ...}

Integers: Z = {..,-2, -1, 0, 1, 2,..}

Rationals: Q = {
a
b | a,b, b0}

Reals: = {x | x a real #}

Empty set: Ø = {}

Z
+

 = non-negative integers

-
= non-positive reals, etc.

34

Multisets

Def: a set w/repeated elements allowed

(i.e., each element has “multiplier”)

Ex: {0, 1, 2, 2, 2, 5, 5}

For multisets: {3, 5} {3, 5, 3, 3, 5}

Sequences

Def: ordered list of elements

Ex: (0, 1, 2, 5) “4-tuple”

 (1,2) (2,1) “2-tuple”

35

Subsets

• Subset notation:

 S T (xS xT)

• Proper subset:

 S T ((S T) ^ (ST))

 S=T ((T S) ^ (S T))

 S Ø S

 S S S

36

• Union:

 ST={x | xS xT}

• Intersection:

 ST={x | xS xT}

37

• Set difference: S - T

 S - T= {x | xS xT}

S T

• Symmetric difference: ST

 ST = {x | xS xT}

 = ST - ST

38

• Universal set: U (everything)
 _

• Set complement: S’ or S

 S’ = {x | xS} = U - S

S

U

• Disjoint sets: ST=Ø

S T

S - T= S T’

S - S = Ø

39

Examples

N Z Q

N Z Q

x x ≤ x2+1

xyQ min(x,y)=max(x,y) x=y

+

-
 =

+

-
 = {0}

40

Set Identities

• Identity:

 S Ø = S

 S U = S

• Domination:

 S U = U

 S Ø = Ø

• Idempotent:

 S S = S

 S S = S

• Complementation:

 (S’)’ = S

41

Set Identities (Cont.)

 • Commutative Law:

 ST=TS

 ST=TS

 • Associative Law:

 S(TV)= (ST)V

 S(TV) = (ST)V

42

Set Identities (Cont.)

• Distributive Law:

 S(TV)=(ST)(SV)

 S(TV) = (ST)(SV)

• Absorption:

S(ST)=S

 S(ST)=S

43

DeMorgan's Laws

 (ST)' = S'T'

 (ST)' = S'T'

 Boolean logic version:

 (XY)'=X'Y'

 (XY)'=X'Y'

44

Generalized and

• Si=S1S2S3Sn

 1≤i≤n

 ={x | i 1≤i≤n xSi}

S3

S2S1

• Si=S1S2S3Sn

 1≤i≤n

 ={x | i 1≤i≤n xSi}

S3

S2S1

45

Set Representation

• U = {x1, x2, x3, x4,... , xn-1, xn }

Ex: S = {x1, x3, xn}
bits: 1 0 1 0 ... 0 0 1

1010000...01 encodes {x1, x3, xn}
0111000...00 encodes {x2, x3, x4}

• “or” yields union:
 1010000...01 {x1, x3, xn}

 0111000...00 {x2, x3, x4}
 1111000...01 {x1, x2, x3, x4, xn}

• “and” yields intersection:
 1010000...01 {x1, x3, xn}

 0111000...00 {x2, x3, x4}
 0010000...00 {x3}

46

• Set closure: WRT operation

x,yS xyS

x y
x y

• Ex: is closed under addition

 since x,y x+y

Abbreviations

• WRT “with respect to”

• WLOG “without loss of
 generality”

"When ideas fail, words come in very handy."
 - Goethe (1749-1832)

47

Cartesian Product

• Ordered n-tuple: element sequence

 Ex: (2,3,5,7) is a 4-tuple

• Tuple equality:

 (a,b)=(x,y) (a=x) (b=y)

 Generally: (ai)=(xi) i ai=xi

• Cross-product: ordered tuples

 ST = {(s,t) | sS, tT}

 Ex: {1, 2, 3} {a,b}=
{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

 Generally, ST ≠ TS

48

• Generalized cross-product:

 S1 S2 ... Sn

 = {(x1,...,xn) | xiSi, 1≤i≤n}

 Ti = TTi-1

 T1 = T

• Euclidean plane = = 2

• Euclidean space = = 3

• Russel’s paradox: set of all sets that
do not contain themselves:

 {S | S S }

 Q: Does S contain itself??

49

Functions

 • Function: mapping ƒ:ST

 Domain S

 Range T

S
T

ƒ(x)
x

ƒ

 k-ary: has k “arguments”

 Predicate: with range = {true, false}

50

Function Types

• One-to-one function: “1-1”

 a,bS ^ ab ƒ(a)ƒ(b)

 Ex: ƒ:, f(x)=2x is 1-1

 g(x)=x2 is not 1-1

• Onto function:

 t T sS ƒ(s)=t

 Ex: ƒ:, f(x)=13-x is onto

 g(x)=x2 is not onto

51

1-to-1 Correspondence

• 1-to-1 correspondence: ƒ:ST

 ƒ is both 1-1 and onto

S
T

t
s

ƒ

Ex: ƒ: ƒ(x)=x (identity)

 h: NZ h(x)=
x-1
2 , x odd,

-x
2 , x even.

52

• Inverse function:

 ƒ:ST ƒ
-1

:TS

 ƒ
-1

(t)=s if ƒ(s)=t

 Ex: ƒ(x)=2x ƒ
-1

(x)=x/2

• Function composition:

 :ST:TV

 (•)(x)=((x))

 (•):SV

 Ex: (x)=x+1 (x)=x
2

 (•)(x)= x
2
 + 2x + 1

53

Thm: (ƒ•ƒ
-1

)(x) = (ƒ
-1

•ƒ)(x) = x

54

Set Cardinality

• Cardinality: |S| = #elements in S

Ex: |{a,b,c}|=3

 |{p | p prime < 9}| = 4

 |Ø|=0

 |{{1,2,3,4,5}}| = ?

 • Powerset: 2S = set of all subsets

 2S ={T | T S}

 Ex: 2
{a,b}

= {{},{a},{b},{a,b}}

Q: What is 2
Ø

?

55

Theorem: |2S|=2|S|

Proof:

“Sometimes when reading Goethe, I have the

paralyzing suspicion that he is trying to be funny.”

- Guy Davenport

56

Generalized Cardinality

• S is at least as large as T:

 |S||T| ƒ:ST, ƒ onto

 i.e., “S covers T”

 Ex: r:Z, r(x)=round(x)

 |||Z|

• S and T have same cardinality:

 |S|=|T| |S||T| ^ |T||S|
or

 1-1 correspondence ST

• Generalizes finite cardinality:

{1, 2, 3, 4, 5} {a, b, c}

57

Infinite Sets

• Infinite set: |S| > k kZ
or

 1-1 corres. ƒ:ST, ST

 Ex: {p | p prime},

• Countable set: |S| |N|

 Ex: Ø, {p | p prime}, NZ

• S is strictly smaller than T:

 |S| < |T| |S||T| ^ |S||T|

• Uncountable set: |N| < |S|

 Ex: |N| <

|N| < [0,1] = {x | x, x}

58

Thm: 1-1 correspondence QN
Pf (dove-tailing):

 • • • • • •

 • • • • • •

 • • • • • •

1
6

2
6

3
6

4
6

5
6

6
6 ...

1
5

2
5

3
5

4
5

5
5

6
5 ...

1
4

2
4

3
4

4
4

5
4

6
4 ...

1
3

2
3

3
3

4
3

5
3

6
3 ...

1
2

2
2

3
2

4
2

5
2

6
2 ...

1
1

2
1

3
1

4
1

5
1

6
1 ...

59

Thm: ||>|N|

Pf (diagonalization):

 Assume 1-1 corres. ƒ:N

 Construct x :

 ƒ(1)=2. 18281828...

 ƒ(2)=1.4 4213562...

 ƒ(3)=1.61 033989...

 x = 0. ...ƒ(K) KN

 ƒ not a 1-1 correspondence

 contradiction

 is uncountable

60

Q: Is || > |[0,1]| ?

61

Q: Is |
N
|

62

Thm: any set is "smaller" than its powerset.

 |S| < |2S|

63

Infinities

 • |N| = 0

 • || = 1

 • 0 < 1 = 20

 • “Continuum Hypothesis”

 ? 0 < < 1

 Independent of the axioms!

 [Cohen, 1963]

 • Axiom of choice [Godel 1940]

 • Parallel postulate [Beltrami 1868]

64

Infinity Hierarchy

• i < i+1 = 2i

 0, 1, 2,..., k, k+1,...,0,

 1, 2,..., k, k+1,...,

 0
, 1

,..., k
, k+1

,...

• First inaccessible infinity:

For an informal account on infinities, see e.g.:
Rucker, Infinity and the Mind, Harvester Press, 1982.

65

Thm: # algorithms is countable.

Pf: sort programs by size:

 "main(){}"
 •

 •

 "main(){int k; k=7;}"
 •

 •

 "<all of UNIX>"
 •

 •

 “<Windows XP>"
 •

 •

 "<intelligent program>"
 •

 •

 # algorithms is countable!

66

Thm: # of functions is uncountable.

Pf: consider 0/1-valued functions

(i.e., functions from N to {0,1}):

{(1,0), (2,1), (3,1), (4,0), (5,1), ...}

 { 2, 3, 5, ...}2N

So, every subset of N corresponds to a
different 0/1-valued function

|2N| is uncountable (why?)

functions is uncountable!

67

Thm: most functions are uncomputable!

Pf: # algorithms is countable

 # functions is not countable

 more functions than

 algorithms / programs!

 some functions do not have
algorithms!

Ex: The halting problem

Given a program P and input I,
does P halt on I?

Def: H(P,I) = 1 if P halts on I

 0 otherwise

68

The Halting Problem

H: Given a program P and input I,

does P halt on I? i.e., does P(I)

Thm: H is uncomputable

Pf: Assume subroutine S solves H.

SP

I

yes

noP(I)?

 Construct:

S
P

I

S'

yes

no yes

P(I)?

69

 Analyze:

S
P

I

S'

yes

no yes

P(I)?

 S'(S') S'(S')

 S'(S') S'(S')

 so, S'(S')S'(S')

 a contradiction!

S does not correctly compute H

But S was an arbitrary subroutine, so

 H is not computable!

70

Pigeon-Hole Principle

If N+1 objects are placed into N boxes

 a box with 2 objects.

If M objects are placed into N boxes &

M>N box withMNobjects.

 Useful in proofs & analyses

71

Relations

Relation: a set of “ordered tuples”

Ex: {(a,1),(b,2), (b,3)}

 “<” {(x,y) | x,yZ, x<y}

 Reflexive: xx x

 Symmetric: xy yx

 Transitive: xy ^ yz xz

 Antisymmetric: xy ¬(yx)

 Ex: is reflexive
 transitive

not symmetric

72

Equivalence Relations

Def: reflexive, symmetric, & transitive

 Ex: standard equality “=”
 x=x

 x=y y=x

 x=y ^ y=z x=z

Partition - disjoint equivalence classes:

73

Closures

• Transitive closure of TC

 smallest superset of satisfying

xy ^ yz xz

 Ex“predecessor”

 {(x-1,x) | xZ}

 TC(predecessor) is “<” relation

• Symmetric closure of

 smallest superset of satisfying

xy yx

74

 Graphs

 A special kind of relation

Graphs can model:
 • Common relationships
 • Communication networks
 • Dependency constraints
 • Reachability information

+ many more practical applications!

Graph G=(V,E): set of vertices V,

and a set of edges E VV

Pictorially: nodes & lines

75

 Undirected Graphs

Def: edges have no direction

 Example of undirected graph:

V={a,b,c,d,e}
E={(c,a),(c,b),(c,d),(c,e),
 (a,b),(b,d),(d,e)}

76

Directed Graphs

Def: edges have direction

 Example of directed graph:

V={a,b,c,d,e}
E={(a,b),(a,c),(b,c),(b,d),
 (d,c),(d,e),(c,e)}

77

Graph Terminology

Graph G=(V,E), E VV

 node vertex

 edge arc

f

a

b

c e

d

Vertices u,vV are neighbors in G iff
(u,v) or (v,u) is an edge of G

Ex: a & b are neighbors
 a & e are not neighbors

78

Undirected Node Degree

Degree in undirected graphs:

Degree(v) = # of adjacent (incident)
 edges to vertex v in G

Ex: deg(c)=4 deg(f)=0

f

a

b

c e

d

79

Directed Node Degree

Degree in directed graphs:

In-degree(v) = # of incoming edges
Out-degree(v) = # of outgoing edges

Ex: in-deg(c)=3 out-deg(c)=1

in-deg(f)=0 out-deg(f)=0

a

b

c e

d

f

80

Q: Show that at any party there is an
even number of people who shook
hands an odd number of times.

81

Complete graph Kn contains all edges

i.e., E = {{u,v}VV | uv}

a

b

c e

d

Q: How many edges are there in Kn?

Subgraph of G is G’=(V’,E’)

where V’V and E’E

Q: Give a (non-trivial) lower bound on
the number of graphs over n vertices.

82

Paths in Graphs

Undirected path in a graph:

a

b

c e

d

A graph is connected iff there is a path
between any pair of nodes:

a

b

c e

d

83

Directed path in a graph:

a

b

c e

d

Graph is strongly connected iff there is
a directed path between any node pair:

Ex: connected but not strongly:

a

b

c e

d

84

A cycle in a graph:
b

c e

d

a

A tree is an acyclic graph.

Tree T=(V’,E’) spans G=(V,E) if T is a
connected subgraph with V’=V

a

b

c e

d

