Symbolic Logic

Def: proposition - statement either true (T) or false (F)

Ex: $1+1=2$

$$
2+2=3
$$

$$
3<7
$$

$$
x+4=5
$$

"today is Monday"

$$
\begin{align*}
& \text { • "and" } \\
& \text { • "or" } \\
& \text { • "not" } \\
& \text { • "xor" }
\end{align*}
$$

$$
\wedge
$$

$$
\vee
$$

"nand"

"nor"
"implication"
\Rightarrow
"equivalence"

"not"

"negation"

Truth table:

p	p
T	F
F	T

Ex: let $\mathrm{p}=$ "today is Monday"

$$
\neg \mathrm{p}=" \text { today is not Monday" }
$$

"and"
 "conjunction"

Truth table:

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Ex: $x \geq 0 \wedge x \leq 10$
$(x \geq 0) \wedge(x \leq 10)$

"or" "disjunction"

Truth table:

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Ex: $(x \geq 7) \vee(x=3)$

$$
(x=0) \vee(y=0)
$$

$$
\begin{aligned}
& \text { "xor" } \\
& \text { "exclusive or" }
\end{aligned}
$$

Truth table:

p	q	$\mathrm{p} \oplus \mathrm{q}$
T	T	F
T	F	T
F	T	T
F	F	F

Ex: $\quad(\mathrm{x}=0) \oplus(\mathrm{y}=0)$
"it is midnight" \oplus "it is sunny"

Logical Implication

"implies"

Truth table:

p	q	$p \Rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Ex: $(x \leq 0) \wedge(x \geq 0) \Rightarrow(x=0)$

$$
1<x<y \Rightarrow x^{3}<y^{3}
$$

"today is Sunday" $\Rightarrow 1+1=3$

Other interpretations of $\mathrm{p} \Rightarrow \mathrm{q}$:

- "p implies q"
- "if p, then q"
- "p is sufficient for q "
- "q if p"
- "q whenever p"
- "q is necessary for p "

Logical Equivalence

- "biconditional"

or "if and only if" ("iff")
or "necessary and sufficient"
or "logically equivalent" \equiv
Truth table:

p	q	$p \Leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Ex: $p \Leftrightarrow p$

$$
\begin{aligned}
& {[(x=0) \vee(y=0)] \Leftrightarrow(x y=0)} \\
& \min (x, y)=\max (x, y) \Leftrightarrow x=y
\end{aligned}
$$

logically equivalent (\Leftrightarrow) - means "has same truth table"

Ex: $p \Rightarrow q$ is equivalent to $(\neg p) \vee q$

$$
\text { i.e., } p \Rightarrow q \Leftrightarrow(\neg p) \vee q
$$

p	q	$\mathrm{p} \Rightarrow \mathrm{q}$	$\neg \mathrm{p}$	$\neg \mathrm{p} \vee \mathrm{q}$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Ex: $\quad(p \Leftrightarrow q) \equiv[(p \Rightarrow q) \wedge(q \Rightarrow p)]$
$\mathrm{p} \Leftrightarrow \mathrm{q} \equiv \mathrm{p} \Rightarrow \mathrm{q} \wedge \mathrm{q} \Rightarrow \mathrm{p}$
$(\mathrm{p} \Leftrightarrow \mathrm{q}) \equiv[(\neg \mathrm{p} \vee \mathrm{q}) \wedge(\neg \mathrm{q} \vee \mathrm{p})]$

Note: $\mathrm{p} \Rightarrow \mathrm{q}$ is not equivalent to $\mathrm{q} \Rightarrow \mathrm{p}$
Thm: $(\mathrm{P} \Rightarrow \mathrm{Q}) \equiv(\neg \mathrm{Q} \Rightarrow \neg \mathrm{P})$
$Q:$ What is the negation of $p \Rightarrow q$?
A: $\neg(\mathrm{p} \Rightarrow \mathrm{q}) \equiv \neg(\neg \mathrm{p} \vee \mathrm{q}) \equiv \mathrm{p} \wedge \neg \mathrm{q}$

p	q	$\neg \mathrm{q}$	$\mathrm{p} \Rightarrow \mathrm{q}$	$\neg(\mathrm{p} \Rightarrow \mathrm{q})$	$\mathrm{p} \wedge \neg \mathrm{q}$
T	T	F	T	F	F
T	F	T	F	T	T
F	T	F	T	F	F
F	F	T	T	F	F

"Logic is in the eye of the logician."

- Gloria Steinem

Example

$$
\begin{aligned}
& \text { let } \mathrm{p}=\text { "it is raining" } \\
& \text { let } \mathrm{q}=\text { "the ground is wet" }
\end{aligned}
$$

$$
p \Rightarrow q: \quad \text { "if it is raining, }
$$

then the ground is wet"

$$
\neg \mathrm{q} \Rightarrow \neg \mathrm{p}: \text { "if the ground is not wet, }
$$ then it is not raining"

$$
\begin{gathered}
\mathrm{q} \Rightarrow \mathrm{p}: \quad \text { "if the ground is wet, } \\
\text { then it is raining" }
\end{gathered}
$$

$\neg(p \Rightarrow q)$: "it is raining, and the ground is not wet"

Order of Operations

negation first
or/and next
implications last
parenthesis override others
(similar to arithmetic)
Def: converse of $p \Rightarrow q$ is $q \Rightarrow p$ contrapositive of $\mathrm{p} \Rightarrow \mathrm{q}$ is $\neg \mathrm{q} \Rightarrow \neg \mathrm{p}$

Prove:

$$
\mathrm{p} \Rightarrow \mathrm{q} \equiv \neg \mathrm{q} \Rightarrow \neg \mathrm{p}
$$

Q: How many distinct 2-variable Boolean functions are there?

Bit Operations

$\underline{\text { Bit Strings }}$

Def: bit string - sequence of bits
Boolean functions extend to bit strings (bitwise)

Ex: $\neg 0100=1011$
$0100 \wedge 1110=0100$
$0100 \vee 1110=1110$
$0100 \oplus 1110=1010$
$0100 \Rightarrow 1110=1111$
$0100 \Leftrightarrow 1110=0101$

Proposition types

Def: tautology: always true contingency: sometimes true contradiction: never true

Ex: $\mathrm{p} \vee \neg \mathrm{p}$ is a tautology
$\mathrm{p} \wedge \neg \mathrm{p}$ is a contradiction

$$
\mathrm{p} \Rightarrow \neg \mathrm{p} \text { is a contingency }
$$

p	$\neg \mathrm{p}$	$\mathrm{p} \vee \neg \mathrm{p}$	$\mathrm{p} \wedge \neg \mathrm{p}$	$\mathrm{p} \Rightarrow \neg \mathrm{p}$
T	F	T	F	F
F	T	T	F	T

Logic Laws

Identity:

$\mathrm{p} \wedge \mathrm{T} \Leftrightarrow \mathrm{p}$
$\mathrm{p} \vee \mathrm{F} \Leftrightarrow \mathrm{p}$

Domination:

$\mathrm{p} \vee \mathrm{T} \Leftrightarrow \mathrm{T}$
$\mathrm{p} \wedge \mathrm{F} \Leftrightarrow \mathrm{F}$
Idempotent:
$\mathrm{p} \vee \mathrm{p} \Leftrightarrow \mathrm{p}$
$\mathrm{p} \wedge \mathrm{p} \Leftrightarrow \mathrm{p}$

Logic Laws (cont.)

Double Negation:

$$
\neg(\neg \mathrm{p}) \Leftrightarrow \mathrm{p}
$$

Commutative:

$$
\begin{aligned}
& \mathrm{p} \vee \mathrm{q} \Leftrightarrow \mathrm{q} \vee \mathrm{p} \\
& \mathrm{p} \wedge \mathrm{q} \Leftrightarrow \mathrm{q} \wedge \mathrm{p}
\end{aligned}
$$

Associative:

$(p \vee q) \vee r \Leftrightarrow p \vee(q \vee r)$
$(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r} \Leftrightarrow \mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r})$

Logic Laws (cont.)

Distributive:

$$
\begin{aligned}
& p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r) \\
& p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

De Morgan's:

$$
\begin{aligned}
& \neg(\mathrm{p} \vee \mathrm{q}) \Leftrightarrow \neg \mathrm{p} \wedge \neg \mathrm{q} \\
& \neg(\mathrm{p} \wedge \mathrm{q}) \Leftrightarrow \neg \mathrm{p} \vee \neg \mathrm{q}
\end{aligned}
$$

Misc:
$\mathrm{p} \vee \neg \mathrm{p} \Leftrightarrow \mathrm{T}$
$\mathrm{p} \wedge \neg \mathrm{p} \Leftrightarrow \mathrm{F}$
$(p \Rightarrow q) \Leftrightarrow(\neg p \vee q)$

Example

Simplify the following:

$$
(p \wedge q) \Rightarrow(p \vee q)
$$

Predicates

Def:predicate - a function or formula involving some variables

Ex: let $\mathrm{P}(\mathrm{x})=$ " $\mathrm{x}>3$ "
x is the variable
" $x>3$ " is the predicate
P(5)
P(1)
Ex: $\mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})=" \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{z}^{2}$ "
$\mathrm{Q}(2,3,4)$
Q $(3,4,5)$

Quantifiers

$$
\left.\begin{array}{l}
\text { Universal: "for all" " } \\
\forall \mathrm{xP}(\mathrm{x}) \\
\Leftrightarrow \mathrm{P}\left(\mathrm{x}_{1}\right) \wedge \mathrm{P}\left(\mathrm{x}_{2}\right) \wedge \mathrm{P}\left(\mathrm{x}_{3}\right) \wedge \ldots \\
\text { Ex: } \quad \forall \mathrm{x} \quad \mathrm{x}<\mathrm{x}+1 \\
\quad \forall \mathrm{x} \quad \mathrm{x}<\mathrm{x}^{3}
\end{array}\right] \begin{aligned}
& \text { Existential: "there exists" } \exists \\
& \exists \mathrm{x}(\mathrm{P}(\mathrm{x}) \\
& \Leftrightarrow \mathrm{P}\left(\mathrm{x}_{1}\right) \vee \mathrm{P}\left(\mathrm{x}_{2}\right) \vee \mathrm{P}\left(\mathrm{x}_{3}\right) \vee \ldots \\
& \text { Ex: } \quad \exists \mathrm{x} \quad \mathrm{x}=\mathrm{x}^{2} \\
& \quad \quad \exists \mathrm{x} \mathrm{x}<\mathrm{x}-1
\end{aligned}
$$

Combinations:

$$
\forall x \exists y \quad y>x
$$

Examples

$$
\begin{aligned}
& \forall x \exists y \quad x+y=0 \\
& \exists y \forall x \quad x+y=0 \\
& \text { "every dog has his day": }
\end{aligned}
$$

$$
\forall \mathrm{d} \exists \mathrm{y} H(\mathrm{~d}, \mathrm{y})
$$

- $\operatorname{Lim}_{x \rightarrow a} f(x)=L$

$$
\forall \varepsilon \exists \delta \forall \mathrm{x}(0<|\mathrm{x}-\mathrm{a}|<\delta \Rightarrow|f(\mathrm{x})-\mathrm{L}|<\varepsilon)
$$

Examples (cont.)

- n is divisible by $\mathrm{j}($ denoted $\mathrm{n} \mid \mathrm{j})$:
$\mathrm{n} \mid \mathrm{j} \Leftrightarrow \exists \mathrm{k} \in \mathrm{Z} \mathrm{n}=\mathrm{kj}$
- m is prime (denoted $\mathrm{P}(\mathrm{m})$):
$\mathrm{P}(\mathrm{m}) \Leftrightarrow[\forall \mathrm{i} \in \mathrm{Z}(\mathrm{m} \mid \mathrm{i}) \Rightarrow(\mathrm{i}=\mathrm{m}) \vee(\mathrm{i}=1)]$
- "there is no largest prime"
$\forall \mathrm{p} \exists \mathrm{q} \in \mathrm{Z}(\mathrm{q}>\mathrm{p}) \wedge \mathrm{P}(\mathrm{q})$
$\forall \mathrm{p} \exists \mathrm{q} \in \mathrm{Z}(\mathrm{q}>\mathrm{p}) \wedge$
$[\forall \mathrm{i} \in \mathrm{Z}(\mathrm{q} \mid \mathrm{i}) \Rightarrow(\mathrm{i}=\mathrm{q}) \vee(\mathrm{i}=1)]$
$\forall \mathrm{p} \exists \mathrm{q} \in \mathrm{Z}(\mathrm{q}>\mathrm{p}) \wedge$
$[\forall \mathrm{i} \in \mathrm{Z}\{\exists \mathrm{k} \in \mathrm{Z} \mathrm{q}=\mathrm{ki}\} \Rightarrow(\mathrm{i}=\mathrm{q}) \vee(\mathrm{i}=1)]$

Negation of Quantifiers

Thm: $\neg(\forall \mathrm{x} P(\mathrm{x})) \Leftrightarrow \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
Ex: \neg "all men are mortal"
\Leftrightarrow "there is a man who is not mortal"
Thm: $\neg(\exists \mathrm{x} \mathrm{P}(\mathrm{x})) \Leftrightarrow \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
Ex: \neg "there is a planet with life on it" \Leftrightarrow "all planets do not contain life"

Thm: $\neg \exists \mathrm{x} \forall \mathrm{y} \mathrm{P}(\mathrm{x}, \mathrm{y}) \Leftrightarrow \forall \mathrm{x} \exists \mathrm{y} \neg \mathrm{P}(\mathrm{x}, \mathrm{y})$
Ex: \neg "there is a man that exercises every day" \Leftrightarrow "every man does not exercise some day"

Thm: $\neg \forall \mathrm{x} \exists \mathrm{y} \mathrm{P}(\mathrm{x}, \mathrm{y}) \Leftrightarrow \exists \mathrm{x} \forall \mathrm{y} \neg \mathrm{P}(\mathrm{x}, \mathrm{y})$
Ex: \neg "all things come to an end"
$\Leftrightarrow "$ some thing does not come to any end"

Quantification Laws

Thy: $\forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x}))$
$\Leftrightarrow(\forall \mathrm{x}(\mathrm{x})) \wedge(\forall \mathrm{x} Q(\mathrm{x}))$
$\begin{aligned} \text { The: } & \exists \mathrm{x}(\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})) \\ & \Leftrightarrow(\exists \mathrm{x} P(\mathrm{x})) \vee(\exists \mathrm{x} \mathrm{Q}(\mathrm{x}))\end{aligned}$
Q: Are the following true?

$$
\begin{aligned}
& \exists \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})) \\
& \quad \Leftrightarrow(\exists \mathrm{xP}(\mathrm{x})) \wedge(\exists \mathrm{x} \mathrm{Q}(\mathrm{x}))
\end{aligned}
$$

$$
\begin{aligned}
& \forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})) \\
& \quad \Leftrightarrow(\forall \mathrm{x} P(\mathrm{x})) \vee(\forall \mathrm{x} \mathrm{Q}(\mathrm{x}))
\end{aligned}
$$

- $(\forall \mathrm{x} \mathrm{Q}(\mathrm{x})) \wedge \mathrm{P} \Leftrightarrow \forall \mathrm{x}(\mathrm{Q}(\mathrm{x}) \wedge \mathrm{P})$
- $(\exists x \mathrm{Q}(\mathrm{x})) \wedge \mathrm{P} \Leftrightarrow \exists \mathrm{x}(\mathrm{Q}(\mathrm{x}) \wedge \mathrm{P})$
- $(\forall \mathrm{x} Q(\mathrm{x})) \vee \mathrm{P} \Leftrightarrow \forall \mathrm{x}(\mathrm{Q}(\mathrm{x}) \vee \mathrm{P})$

$$
(\exists x \mathrm{Q}(\mathrm{x})) \vee \mathrm{P} \Leftrightarrow \exists \mathrm{x}(\mathrm{Q}(\mathrm{x}) \vee \mathrm{P})
$$

Unique Existence

Def: \exists !x $\mathrm{P}(\mathrm{x})$ means there exists a unique x such that $\mathrm{P}(\mathrm{x})$ holds

Q: Express \exists ! $\mathrm{x} P(\mathrm{x})$ in terms of the other logic operators

A:

Mathematical Statements

- Definition
- Lemma
- Theorem
- Corollary

> Proof Types

- Construction
- Contradiction
- Induction
- Counter-example
- Existence

$\underline{\text { Sets }}$

Def: set - an unordered collection of

 elementsEx: $\{1,2,3\}$ or $\{$ hi, there $\}$
Venn Diagram:

Def: two sets are equal iff they contain the same elements

Ex: $\{1,2,3\}=\{2,3,1\}$

$$
\begin{aligned}
& \{0\} \neq\{1\} \\
& \{3,5\}=\{3,5,3,3,5\}
\end{aligned}
$$

Set construction:
or э means "such that"

Ex: $\quad\{\mathrm{k} \mid 0<\mathrm{k}<4\}$
$\{\mathrm{k} \mid \mathrm{k}$ is a perfect square $\}$
Set membership: $\in \notin$
Ex: $\quad 7 \in\{p \mid p$ prime $\}$
$q \notin\{0,2,4,6, \ldots\}$

- Sets can contain other sets

$$
\text { Ex: } \quad\{2,\{5\}\}
$$

$$
\{\{\{0\}\}\} \neq\{0\} \neq 0
$$

$$
S=\{1,2,3,\{1\},\{\{2\}\}\}
$$

Common Sets

Naturals:

$$
N=\{1,2,3,4, \ldots\}
$$

Integers:

$$
Z=\{. .,-2,-1,0,1,2, . .\}
$$

Rationals:

$$
\mathrm{Q}=\left\{\left.\frac{\mathrm{a}}{\mathrm{~b}} \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{Z}, \mathrm{~b} \neq 0\right\}
$$

Reals:
$\mathfrak{R}=\{\mathrm{x} \mid \mathrm{x}$ a real $\#\}$
Empty set: $\quad \varnothing=\{ \}$
$\mathrm{Z}^{+}=$non-negative integers
$\mathfrak{R}^{-}=$non-positive reals, etc.

Multisets

Def: a set w/repeated elements allowed
(i.e., each element has "multiplier")

Ex: $\{0,1,2,2,2,5,5\}$
For multisets: $\{3,5\} \neq\{3,5,3,3,5\}$

Sequences

Def: ordered list of elements
Ex: $(0,1,2,5)$
"4-tuple"

$$
(1,2) \neq(2,1)
$$

"2-tuple"

$\underline{\text { Subsets }}$

Subset notation:

$S \subseteq T \Leftrightarrow(x \in S \Rightarrow x \in T)$

Proper subset:

$S \subset T \Leftrightarrow\left((S \subseteq T)^{\wedge}(S \neq T)\right)$
$\mathrm{S}=\mathrm{T} \Leftrightarrow\left((\mathrm{T} \subseteq \mathrm{S})^{\wedge}(\mathrm{S} \subseteq \mathrm{T})\right)$
$\forall \mathrm{S} \quad \varnothing \subseteq \mathrm{S}$
$\forall \mathrm{S} \mathrm{S} \subseteq \mathrm{S}$

Union:

$S \cup T=\{x \mid x \in S \vee x \in T\}$

Intersection:

\cap

$$
S \cap T=\{x \mid x \in S \wedge x \in T\}
$$

- Set difference: S - T
$S-T=\{x \mid x \in S \wedge x \notin T\}$

- Symmetric difference: $\mathrm{S} \oplus \mathrm{T}$

$$
\begin{aligned}
\mathrm{S} \oplus \mathrm{~T} & =\{\mathrm{x} \mid \mathrm{x} \in \mathrm{~S} \oplus \mathrm{x} \in \mathrm{~T}\} \\
& =\mathrm{S} \cup \mathrm{~T}-\mathrm{S} \cap \mathrm{~T}
\end{aligned}
$$

- Universal set: U (everything)

Set complement: S^{\prime} or \bar{S}

$S^{\prime}=\{x \mid x \notin S\}=U-S$

- Disjoint sets: $\mathrm{S} \cap \mathrm{T}=\varnothing$

$\mathrm{S}-\mathrm{T}=\mathrm{S} \cap \mathrm{T}^{\prime}$
S - S = Ø

Examples

$\mathrm{N} \cup \mathrm{Z} \cup \mathrm{Q} \cup \mathfrak{R}=\mathfrak{R}$
$\mathrm{N} \subset \mathrm{Z} \subset \mathrm{Q} \subset \mathfrak{R}$
$\forall \mathrm{x} \in \mathfrak{R} \mathrm{x} \leq \mathrm{x}^{2+1}$
$\forall \mathrm{x}, \mathrm{y} \in \mathrm{Q} \min (\mathrm{x}, \mathrm{y})=\max (\mathrm{x}, \mathrm{y}) \Leftrightarrow \mathrm{x}=\mathrm{y}$
$\mathfrak{R}^{+} \cup \mathfrak{R}^{-}=\mathfrak{R}$
$\mathfrak{R}^{+} \cap \mathfrak{R}^{-}=\{0\}$

Set Identities

- Identity:
$S \cup \emptyset=S$
$S \cap U=S$
- Domination:
$\mathrm{S} \cup \mathrm{U}=\mathrm{U}$
$S \cap \emptyset=\varnothing$
- Idempotent:
$S \cup S=S$
$S \cap S=S$
- Complementation:

$$
\left(S^{\prime}\right)^{\prime}=S
$$

Set Identities (Cont.)

- Commutative Law:

$S \cup T=T \cup S$
$\mathrm{S} \cap \mathrm{T}=\mathrm{T} \cap \mathrm{S}$

- Associative Law:
$S \cup(T \cup V)=(S \cup T) \cup V$
$\mathrm{S} \cap(\mathrm{T} \cap \mathrm{V})=(\mathrm{S} \cap \mathrm{T}) \cap \mathrm{V}$

Set Identities (Cont.)

- Distributive Law:
$S \cup(T \cap V)=(S \cup T) \cap(S \cup V)$
$\mathrm{S} \cap(\mathrm{T} \cup \mathrm{V})=(\mathrm{S} \cap \mathrm{T}) \cup(\mathrm{S} \cap \mathrm{V})$
- Absorption:
$S \cup(S \cap T)=S$
$\mathrm{S} \cap(\mathrm{S} \cup \mathrm{T})=\mathrm{S}$

DeMorgan's Laws

$(\mathrm{S} \cup \mathrm{T})^{\prime}=\mathrm{S}^{\prime} \cap \mathrm{T}^{\prime}$

$$
(\mathrm{S} \cap \mathrm{~T})^{\prime}=\mathrm{S}^{\prime} \cup \mathrm{T}^{\prime}
$$

Boolean logic version:
$(\mathrm{X} \wedge \mathrm{Y})^{\prime}=\mathrm{X}^{\prime} \vee \mathrm{Y}^{\prime}$
$(\mathrm{X} \vee \mathrm{Y})^{\prime}=\mathrm{X}^{\prime} \wedge \mathrm{Y}^{\prime}$

$\underline{\text { Generalized } \cup \text { and } \cap}$

- $\cup \mathrm{S}_{\mathrm{i}}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \ldots \cup \mathrm{~S}_{\mathrm{n}}$ $1 \leq \mathrm{i} \leq \mathrm{n}$

$$
=\left\{\mathrm{x} \mid \exists \mathrm{i} 1 \leq \mathrm{i} \leq \mathrm{n} \text { э } \mathrm{x} \in \mathrm{~S}_{\mathrm{i}}\right\}
$$

- $\cap \mathrm{S}_{\mathrm{i}}=\mathrm{S}_{1} \cap \mathrm{~S}_{2} \cap \mathrm{~S}_{3} \cap \ldots \cap \mathrm{~S}_{\mathrm{n}}$
$1 \leq \mathrm{i} \leq \mathrm{n}$

$$
=\left\{\mathrm{x} \mid \forall \mathrm{i} 1 \leq \mathrm{i} \leq \mathrm{n} \Rightarrow \mathrm{x} \in \mathrm{~S}_{\mathrm{i}}\right\}
$$

Set Representation

- $\mathrm{U}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right\}$
Ex: $\mathrm{S}=\left\{\mathrm{x}_{1}, \quad \mathrm{X}_{3}\right.$,
$\left.\mathrm{X}_{\mathrm{n}}\right\}$
bits: $\quad 1 \quad 0 \quad 1 \quad 0 \ldots 0) 0 \quad 1$
1010000...01 encodes $\left\{\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{\mathrm{n}}\right\}$ $0111000 \ldots 00$ encodes $\left\{x_{2}, x_{3}, x_{4}\right\}$
- "or" yields union:
1010000... $01 \quad\left\{\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{\mathrm{n}}\right\}$
$\vee \underline{0111000 \ldots 00}\left\{\mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}$
$1111000 \ldots 01 \quad\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{\mathrm{n}}\right\}$
- "and" yields intersection:
1010000... $01 \quad\left\{\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{\mathrm{n}}\right\}$
$\wedge \underline{0111000 \ldots 00}\left\{x_{2}, x_{3}, x_{4}\right\}$
0010000... $00 \quad\left\{\mathrm{x}_{3}\right\}$
- Set closure: WRT operation Δ

$$
\forall x, y \in S \Rightarrow x \Delta y \in S
$$

- Ex: \mathfrak{R} is closed under addition since $\mathrm{x}, \mathrm{y} \in \mathfrak{R} \Rightarrow \mathrm{x}+\mathrm{y} \in \mathfrak{R}$

Abbreviations

- WRT "with respect to"
- WLOG

> "without loss of
> generality"
"When ideas fail, words come in very handy."

- Goethe (1749-1832)

Cartesian Product

- Ordered n-tuple: element sequence

$$
\text { Ex: }(2,3,5,7) \text { is a 4-tuple }
$$

- Tuple equality:
$(\mathrm{a}, \mathrm{b})=(\mathrm{x}, \mathrm{y}) \Leftrightarrow(\mathrm{a}=\mathrm{x}) \wedge(\mathrm{b}=\mathrm{y})$
Generally: $\left(\mathrm{a}_{\mathrm{i}}\right)=\left(\mathrm{x}_{\mathrm{i}}\right) \Leftrightarrow \forall \mathrm{i} \quad \mathrm{a}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}$

Cross-product: ordered tuples

$\mathrm{S} \times \mathrm{T}=\{(\mathrm{s}, \mathrm{t}) \mid \mathrm{s} \in \mathrm{S}, \mathrm{t} \in \mathrm{T}\}$
Ex: $\{1,2,3\} \times\{\mathrm{a}, \mathrm{b}\}=$

$$
\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}
$$

Generally, $\mathrm{S} \times \mathrm{T} \neq \mathrm{T} \times \mathrm{S}$

- Generalized cross-product:

$$
\begin{aligned}
\mathrm{S}_{1} \times & \times \mathrm{S}_{2} \times \ldots \times \mathrm{S}_{\mathrm{n}} \\
& =\left\{\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mid \mathrm{x}_{\mathrm{i}} \in \mathrm{~S}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \\
\mathrm{T}^{\mathrm{i}} & =\mathrm{T} \times \mathrm{T}^{\mathrm{i}-1} \\
\mathrm{~T}^{\mathrm{1}} & =\mathrm{T}
\end{aligned}
$$

- Euclidean plane $=\mathfrak{R} \times \mathfrak{R}=\mathfrak{R}^{2}$
- Euclidean space $=\mathfrak{R} \times \mathfrak{R} \times \mathfrak{R}=\mathfrak{R}^{3}$
- Russel's paradox: set of all sets that do not contain themselves:
$\{\mathrm{S} \mid \mathrm{S} \notin \mathrm{S}\}$
Q: Does S contain itself??

Functions

- Function: mapping $f: \mathrm{S} \rightarrow \mathrm{T}$

Domain S

Range T

- k-ary: has k "arguments"
- Predicate: with range $=\{$ true, false $\}$

Function Types

One-to-one function: " $1-1$ " $\mathrm{a}, \mathrm{b} \in \mathrm{S}^{\wedge} \mathrm{a} \neq \mathrm{b} \Rightarrow f(\mathrm{a}) \neq f(\mathrm{~b})$

Ex: $f: \mathfrak{R} \rightarrow \mathfrak{R}, \mathrm{f}(\mathrm{x})=2 \mathrm{x}$ is $1-1$

$$
\mathrm{g}(\mathrm{x})=\mathrm{x}^{2} \text { is not } 1-1
$$

- Onto function:

$$
\forall \mathrm{t} \in \mathrm{~T} \exists \mathrm{~s} \in \mathrm{~S} \text { э } f(\mathrm{~s})=\mathrm{t}
$$

Ex: $f: Z \rightarrow Z, \mathrm{f}(\mathrm{x})=13-\mathrm{x}$ is onto

$$
g(x)=x^{2} \text { is not onto }
$$

1-to-1 Correspondence

- 1-to- 1 correspondence: $f: \mathrm{S} \leftrightarrow \mathrm{T}$
f is both 1-1 and onto

Ex: $f: \mathfrak{R} \leftrightarrow \mathfrak{R}$ э $f(\mathrm{x})=\mathrm{x}$ (identity)

$$
\begin{aligned}
\mathrm{h}: \mathrm{N} \leftrightarrow Z \text { э } \mathrm{h}(\mathrm{x})= & \frac{\mathrm{x}-1}{2}, \mathrm{x} \text { odd }, \\
& \frac{-\mathrm{x}}{2}, x \text { even. } .
\end{aligned}
$$

- Inverse function:
$f: \mathrm{S} \rightarrow \mathrm{T} \quad f^{-1}: \mathrm{T} \rightarrow \mathrm{S}$
$f^{-1}(\mathrm{t})=\mathrm{s} \quad$ if $f(\mathrm{~s})=\mathrm{t}$
Ex: $f(\mathrm{x})=2 \mathrm{x} \quad f^{-1}(\mathrm{x})=\mathrm{x} / 2$
- Function composition:

$$
\begin{aligned}
& \beta: S \rightarrow T, \alpha: T \rightarrow V \\
& \Rightarrow \quad \\
& \quad(\alpha \cdot \beta)(x)=\alpha(\beta(x)) \\
& \\
& \\
& (\alpha \cdot \beta): S \rightarrow V
\end{aligned}
$$

Ex: $\beta(x)=x+1 \quad \alpha(x)=x^{2}$

$$
(\alpha \cdot \beta)(x)=x^{2}+2 x+1
$$

Thm: $\quad\left(f \cdot f^{-1}\right)(\mathrm{x})=\left(f^{-1} \bullet f\right)(\mathrm{x})=\mathrm{x}$

Set Cardinality

- Cardinality: $|\mathrm{S}|=$ \#elements in S

Ex: $\quad|\{a, b, c\}|=3$

$$
\begin{aligned}
& \mid\{p \mid \text { p prime }<9\} \mid=4 \\
& |Ø|=0 \\
& |\{\{1,2,3,4,5\}\}|=?
\end{aligned}
$$

- Powerset: $2^{\mathrm{S}}=$ set of all subsets
$2^{S}=\{T \mid T \subseteq S\}$
Ex: $2^{\{\mathrm{a}, \mathrm{b}\}}=\{\{ \},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$
Q: What is 2^{\varnothing} ?

Theorem: $\left|2^{\mathrm{S}}\right|=2^{|\mathrm{S}|}$
Proof:
"Sometimes when reading Goethe, I have the paralyzing suspicion that he is trying to be funny."

- Guy Davenport

Generalized Cardinality

- S is at least as large as T :
$|\mathrm{S}| \geq|\mathrm{T}| \Rightarrow \exists f: \mathrm{S} \rightarrow \mathrm{T}, f$ onto
ie., "S covers T"
Ex: $\mathrm{r}: \mathcal{R} \rightarrow Z, r(x)=\operatorname{round}(x)$

$$
\Rightarrow|\mathfrak{R}| \geq|Z|
$$

- S and T have same cardinality:
$|S|=|T| \Rightarrow|S| \geq|T|^{\wedge}|T| \geq|S|$
or
$\exists 1-1$ correspondence $\mathrm{S} \leftrightarrow T$
- Generalizes finite cardinality:
$\{1,2,3,4,5\} \geq\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

Infinite Sets

- Infinite set: $|\mathrm{S}|>\mathrm{k} \forall \mathrm{k} \in \mathrm{Z}$

Or

$$
\exists 1-1 \text { corres. } f: \mathrm{S} \leftrightarrow \mathrm{~T}, \mathrm{~S} \subset \mathrm{~T}
$$

Ex: $\{\mathrm{p} \mid \mathrm{p}$ prime $\}, \mathfrak{R}$

- Countable set: $|\mathrm{S}| \leq|\mathrm{N}|$

Ex: $\emptyset,\{\mathrm{p} \mid \mathrm{p}$ prime $\}, \mathrm{N}, \mathrm{Z}$

- S is strictly smaller than T :
$|\mathrm{S}|<|\mathrm{T}| \Rightarrow|\mathrm{S}| \leq|\mathrm{T}|^{\wedge}|\mathrm{S}| \neq|\mathrm{T}|$
- Uncountable set: $|\mathrm{N}|<|\mathrm{S}|$

Ex: $|\mathrm{N}|<\mathfrak{R}$

$$
|\mathrm{N}|<[0,1]=\{\mathrm{x} \mid \mathrm{x} \in \mathfrak{R}, 0 \leq \mathrm{x} \leq 1\}
$$

Thm：$\exists 1-1$ correspondence $\mathrm{Q} \leftrightarrow \mathrm{N}$ Pf（dove－tailing）：

－IN	NIN	WIN	AIN	Uin	aln
－｜w	N1W	$\omega 1 \omega$	＋1w	vilu	alw
－｜ \mid	NID	w／t	$\Delta 1+$	ult	als
－iver	Nor	wiver	div	cilur	のlu
－19	N1O	い1の	－19	ula	910
：	：			：	

Thm: $\quad|\mathfrak{R}|>|\mathrm{N}|$
$\underline{\text { Pf (diagonalization): }}$
Assume \exists 1-1 corres. $f: \mathfrak{R} \leftrightarrow \mathrm{N}$ Construct $\mathrm{X} \in \mathfrak{R}$:
$f(1)=2.718281828 \ldots$
\rightarrow
$f(2)=1.424213562 \ldots$
\rightarrow
$f(3)=1.618033989 \ldots$
\rightarrow
$\mathrm{X}=0.829 . . \neq f(\mathrm{~K}) \quad \forall \mathrm{K} \in \mathrm{N}$
$\Rightarrow f$ not a 1-1 correspondence
\Rightarrow contradiction
$\Rightarrow \mathfrak{R}$ is uncountable
$\mathrm{Q}:$ Is $|\mathfrak{R}|>|[0,1]|$?

Q : Is $\left|2^{\mathrm{N}}\right|=|\mathfrak{R}|$?

Thm: any set is "smaller" than its powerset.

$$
|\mathrm{S}|<\left|2^{\mathrm{S}}\right|
$$

Infinities

- $|\mathbb{N}|=\aleph_{0}$
- $|\mathfrak{R}|=\aleph_{1}$
- $\aleph_{0}<\aleph_{1}=2^{\aleph_{0}}$
- "Continuum Hypothesis"
\exists ? ω э $\aleph_{0}<\omega<\aleph_{1}$
Independent of the axioms!
[Cohen, 1963]
- Axiom of choice [Godel 1940]
- Parallel postulate [Beltrami 1868]

Infinity Hierarchy

- $\aleph_{i}<\aleph_{i+1}=2^{\aleph_{i}}$

$$
0,1,2, \ldots, \mathrm{k}, \mathrm{k}+1, \ldots, \aleph_{0}
$$

$$
\begin{aligned}
& \aleph_{1}, \aleph_{2}, \ldots, \aleph_{\mathrm{k}}, \aleph_{\mathrm{k}+1}, \ldots \\
& \aleph_{\aleph_{0}}, \aleph_{\aleph_{1}, \ldots,}, \aleph_{\aleph_{k}, \aleph_{\aleph_{k+1}}, \ldots}
\end{aligned}
$$

- First inaccessible infinity: $\omega . .$.

For an informal account on infinities, see e.g.: Rucker, Infinity and the Mind, Harvester Press, 1982.

Thm: \# algorithms is countable. Pf: sort programs by size:

$$
\text { "main() }\} \text { " }
$$

-

"main() \{int k; k=7;\}"
-

-

$$
\text { " }<\text { Windows XP }>"
$$

-
-

"<intelligent program>"
\Rightarrow \# algorithms is countable!

Thm: \# of functions is uncountable.
Pf: Consider $0 / 1$-valued functions (i.e., functions from N to $\{0,1\}$): $\{(1,0),(2,1),(3,1),(4,0),(5,1), \ldots\}$
\Rightarrow
2,
3 ,
$5, \ldots\} \in 2^{\mathrm{N}}$

So, every subset of N corresponds to a different $0 / 1$-valued function
$\left|2^{\mathrm{N}}\right|$ is uncountable (why?)
\Rightarrow \# functions is uncountable!

Thm: most functions are uncomputable!

Pf: \# algorithms is countable \# functions is not countable
$\Rightarrow \exists$ more functions than algorithms / programs!
\Rightarrow some functions do not have algorithms!

Ex: The halting problem
Given a program P and input I, does P halt on I ?

Def: $\mathrm{H}(\mathrm{P}, \mathrm{I})=1$ if P halts on I 0 otherwise

The Halting Problem

H : Given a program P and input I , does P halt on I? i.e., does $\mathrm{P}(\mathrm{I}) \downarrow$?

Thm: H is uncomputable Pf: Assume subroutine S solves H .

$$
\begin{aligned}
& \mathrm{P} \longrightarrow \mathrm{~S} \\
& \mathrm{I} \longrightarrow \mathrm{P}(\mathrm{I}) \downarrow ? \longrightarrow \text { yes } \\
& \longrightarrow \text { no }
\end{aligned}
$$

Construct:

Analyze:

$\mathrm{S}^{\prime}\left(\mathrm{S}^{\prime}\right) \downarrow \Rightarrow \mathrm{S}^{\prime}\left(\mathrm{S}^{\prime}\right) \uparrow$
$S^{\prime}\left(\mathrm{S}^{\prime}\right) \uparrow \Rightarrow \mathrm{S}^{\prime}\left(\mathrm{S}^{\prime}\right) \downarrow$
so, $S^{\prime}\left(S^{\prime}\right) \uparrow \Leftrightarrow S^{\prime}\left(S^{\prime}\right) \downarrow$ a contradiction!
$\Rightarrow \mathrm{S}$ does not correctly compute H
But S was an arbitrary subroutine, so

$$
\Rightarrow \mathrm{H} \text { is not computable! }
$$

Pigeon-Hole Principle

If $\mathrm{N}+1$ objects are placed into N boxes $\Rightarrow \exists$ a box with 2 objects.

If M objects are placed into N boxes \& $\mathrm{M}>\mathrm{N} \Rightarrow \exists$ box with $\left(\frac{\mathrm{M}}{\mathrm{N}}\right)$ objects.

- Useful in proofs \& analyses

Relations

Relation: a set of "ordered tuples"
Ex:

$$
\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{b}, 3)\}
$$

$$
"<" \quad\{(x, y) \mid x, y \in Z, x<y\}
$$

Reflexive: $\mathrm{x} \vee \mathrm{x} \forall \mathrm{x}$
Symmetric: $x \vee y \Rightarrow y \vee x$
Transitive: $\mathrm{x} v \mathrm{y}{ }^{\wedge} \mathrm{y} v \mathrm{z} \Rightarrow \mathrm{x} v \mathrm{z}$
Antisymmetric: $x \vee y \Rightarrow \neg(y \vee x)$
Ex: \leq is reflexive transitive
not symmetric

Equivalence Relations

Def: reflexive, symmetric, \& transitive
Ex: standard equality "="

$$
\begin{aligned}
& x=x \\
& x=y \Rightarrow y=x \\
& x=y \wedge y=z \Rightarrow x=z
\end{aligned}
$$

Partition - disjoint equivalence classes:

Closures

- Transitive closure of \boldsymbol{v} : TC
smallest superset of \downarrow satisfying

$$
\mathrm{x} \vee \mathrm{y}^{\wedge} \mathrm{y} \vee \mathrm{z} \Rightarrow \mathrm{x} \mathrm{z}_{\mathrm{z}}
$$

Ex: "predecessor"

$$
\{(x-1, x) \mid x \in Z\}
$$

TC(predecessor) is " $<$ " relation

- Symmetric closure of \mathbf{v} :
smallest superset of \boldsymbol{v} satisfying

$$
\mathrm{x} \boldsymbol{y} \Rightarrow \mathrm{y} \boldsymbol{x}
$$

Graphs

- A special kind of relation

Graphs can model:

- Common relationships
- Communication networks
- Dependency constraints
- Reachability information
+ many more practical applications!
Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$: set of vertices V , and a set of edges $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$

Pictorially: nodes \& lines

Undirected Graphs

Def: edges have no direction

- Example of undirected graph:

$\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
$\mathrm{E}=\{(\mathrm{c}, \mathrm{a}),(\mathrm{c}, \mathrm{b}),(\mathrm{c}, \mathrm{d}),(\mathrm{c}, \mathrm{e})$,
(a,b),(b,d),(d,e)\}

Directed Graphs

Def: edges have direction

- Example of directed graph:

$$
\mathrm{V}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\}
$$

$\mathrm{E}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{d})$,
$(\mathrm{d}, \mathrm{c}),(\mathrm{d}, \mathrm{e}),(\mathrm{c}, \mathrm{e})\}$

Graph Terminology

Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$

- node \equiv vertex
- edge \equiv arc

Vertices $\mathrm{u}, \mathrm{v} \in \mathrm{V}$ are neighbors in G iff
(u, v) or (v, u) is an edge of G
Ex: a \& b are neighbors
a \& e are not neighbors

Undirected Node Degree

Degree in undirected graphs:
$\underline{\text { Degree }(v)=} \begin{gathered}\# \text { of adjacent } \\ \text { edges to vertex } \mathrm{v} \text { in } \mathrm{G}\end{gathered}$
Ex: $\operatorname{deg}(c)=4 \quad \operatorname{deg}(f)=0$

Directed Node Degree

Degree in directed graphs:
In-degree(v) = \# of incoming edges
Out-degree (v) = \# of outgoing edges
Ex: in- $\operatorname{deg}(\mathrm{c})=3 \quad$ out-deg $(\mathrm{c})=1$ in- $-\operatorname{deg}(f)=0 \quad$ out $-\operatorname{deg}(f)=0$

Q: Show that at any party there is an even number of people who shook hands an odd number of times.

Complete graph K_{n} contains all edges i.e., $\mathrm{E}=\{\{\mathrm{u}, \mathrm{v}\} \in \mathrm{V} \times \mathrm{V} \mid \mathrm{u} \neq \mathrm{v}\}$

Q : How many edges are there in K_{n} ?
Subgraph of G is $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$
where $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ and $\mathrm{E}^{\prime} \subseteq \mathrm{E}$

Q: Give a (non-trivial) lower bound on the number of graphs over n vertices.

Paths in Graphs

Undirected path in a graph:

A graph is connected iff there is a path between any pair of nodes:

Directed path in a graph:

Graph is strongly connected iff there is a directed path between any node pair:

Ex: connected but not strongly:

A cycle in a graph:

A tree is an acyclic graph.

Tree $T=\left(V^{\prime}, E^{\prime}\right)$ spans $G=(V, E)$ if T is a connected subgraph with $\mathrm{V}^{\prime}=\mathrm{V}$

