George Boole (1815-1864)

- Mathematician and philosopher
- Invented symbolic / Boolean logic
- Invented Boolean algebra, i.e. "calculus of reasoning"
- A founder of computer science
- "An Investigation into the Laws of Thought"
- Influenced De Morgan, Schröder, Shannon
- All modern computers, electronics, phones, data transmission, rely on Boolean principles

ON WHICH AND FOUNDED THE MATHEMATICAL THEORIES OF LOGIC AND PROBABILITIES.

LAWS OF THOUGHT.

AN INVESTIGATIO

GEORGE BOOLE, LL.D

LONDON: WALTON AND MABERLY, PER GOWER-STREET, AND IVY-LANE, PATERNOSTER-ROW-CAMBRIDGE: MACUILAIN AND CO. Univ Calif. DD. 1855, Do Microwood 6

Mozart writing the digital version of his symphony No. 38 in D major.

Augustus De Morgan (1806-1871)

- Mathematician and logician
- Developed logic & mathematical induction
- De Morgan's Laws in logic & set theory
- Invented relational algebra
- Corresponded extensively with Hamilton
- Influenced Russell, Whitehead, and Tarski
- Studied paradoxes

Charles Babbage (1791-1871)

- Mathematician, philosopher, inventor mechanical engineer, and economist
- The father of computing
- Built world's first mechanical computer
 - the "difference engine" (1822)
- Originated the programmable computer
 - the "analytical engine" (1837)
- Worked in cryptography
- Developed Babbage's principle of division of labor

Babbage's Difference Engine

- World's first mechanical computer
- Designed in 1822, redesigned in 1847-1849
- 25,000 parts, 15 tons, 8ft tall, 31 digits of precision
- Tabulated polynomial functions, used Newton's method
- Approximated logarithmic and polynomial functions
- Used decimal number system and hand-crank

Babbage's Difference Engine

Babbage's difference engine built from Mechano and Lego

Babbage's Analytical Engine

- World's first general-purpose computer
- Designed in 1837, redesigned throughout Babbage's life
- Turing-complete, memory: 1000x50 digits (21 kB)
- Fully programmable "CPU", used punched cards
- Featured ALU, "microcode", loops, and printer!
- Could multiply two 20-digit numbers in 3 min
- Few components built by Babbage; constructed in 1991

Charles Babbage Lucasian Professor of Mathematics in the University of Cambridge:

B/W QuickCam

Published I" May 1833 by M.Salle

a.cidadao@mail.telepac.pt

⁶ In 1435, a low-mit was earnied on at Strasburgh between John Gettenberg, a pathetimum of Means, exhibited for mechanical ingeneity, and Drizeban, a berghet of the effy, solver all burget patter in a copying methole. No this direction could area more than and method all on the har-barrow Barons of Stables and Abases I but the copying machine was the printing press, which has a charged the combined on a direction of the stables. Solve the stables of the stable of the

LONDON: M. SALMON, MECHANICS' MAGAZINE OFFICE, PUBLISHED BY NO. 6, PETERBOROUGH COURT. 1833.

VOL. XVIII.

MUSEUM, Register, Journal,

GAZETTE, OCTOBER 6, 1832-MARCH 31, 1833.

MECHANICS' MAGAZINE,

THE

Lie Eaic Alew History Rookmarks Tools	[]eb					
S 🔄 - C 🗙 🏠 🗋 http://	www.cbi.umn.edu/	Cr € Google				
🧕 Most Visited 🌻 Getting Started 🔝 Latest He	adines 🗋 Customize Links 🗋 Free Hotmail 🗋 http://www.scientific 🗋 Suggested Sites 🗋 Web Silce Gallery 🗋 Windows Marketplace 🌓 Windows Media 🗋 Wind	lows				
Google Charles Babbage	💽 🖸 Search 🔹 🖗 🖓 🏰 🕈 🕅 🕈 🏠 Bookmarks- PageRank - 🔦 AutoLink 📔 AutoFill 🍙 Send to- 🌽 🖳 Charles 🗔 Babbage					
Wolfram 🕸	☆☆◎☆ を☆					
UNIVERSITY OF MINI	NESOTA University of Minnesota Institute of	Technology University of Minnesota Libraries One Stop Directories Search U of M				
UNIVERSITY OF MINNESOTA LIBRARIES	CHARLES BABBAGE INSTITUTE	INSTITUTE OF TECHNOLOG				
Home Contact	WELCOME TO THE CHARLES BABBAGE INSTITUTE					
About CBI	The Charles Babbage Institute (CBI) is an archives and research center dedicated to preserving the history of information technology and promoting and conducting research in the field.	SPOTLIGHT				
CBI Blog Visitor Information	Primary support for CBI is provided by the University of Minnesota, through the Institute of Technology and the University Libraries, Additional support is provided by corporate donors and individuals through the Friends of CBI	 May 20th MHHC: IBM's Blue Gene New CB/ News/effer (Spring 2009, Vol. 31:1) 				
<i>CBI Newsletter</i> Become a Friend of CBI About Charles Babbage		 McDonald Named 2009-2010 Tomash Fellow 2009 Norberg Travel Award Recipients 				
COLLECTIONS						
About the Archives						
Search Collection Guides Oral History Database	THE CBI ARCHIVES THE C	BI RESEARCH PROGRAM				
NEW FEATUREIBurroughs Photographs CBI Hosted Publications Recent Print Acquisitions	The CBI Archives collects, preserves and provides access to rich archival collections and CBI's his rare publications documenting the history of technology. Detailed archival finding aids fosters n are available. Researchers can also access digitized images (Burroughs Corporation networkin Image Database) and one of the world's largest collections of research grade oral history Norberg	historical research program identifies areas in which to collect archival materials; s new understanding of developments in the history of computing, software, and rking; supports the work of scholars outside the Institute (Tomash Fellowship and rg Travel Grant); and works collaboratively with individuals and organizations				
RESEARCH PROGRAM	interviews (CBI Oral History Database) through the CBI Web site. More » throughout	ut the world. More »				
Research Projects						

Norberg Travel Fund Tomash Fellowship CBI Reprint Series CBI Staff Publication List

RELATED RESOURCES

Related Web Sites Vintage Computer Sources Computing Industry in MN

Finding Aids Imag	es Catalog
Find:	Search Finding aids are online
1	guides to the collections
Limit Search to:	the Charles Babbage
Entire Einding Aid	Institute.
Entine Finding Ald —	
Names	
Names Places	Search all finding aids fo
Names Places Subjects	Search all finding aids fo the archives & special
Names Places Subjects Collection Title	Search all finding aids for the archives & special collections at the Univers

HAVE A QUESTION?

Ask a CBI archivist your questions about collections and services through instant message during regular business hours.

IM an Archivist

CBI Archivist is offline leave a message

4

- Countess Ada Lovelace (1815-1852)
- Daughter of Lord Byron
- Tutored in math and logic by De Morgan
- Wrote the "manual" for Babbage's analytical engine, as well as programs for it
- World's first computer programmer!
- Foresaw the vast potential of computers
- Babbage: "The Enchantress of Numbers"
- DoD's Ada language "MIL-STD-1815"

The International Language for Software Engineering

A Selection from the Letters of Lord Byron Daughter and Ho Description of the First Computer

Narrated and Edited by Betty Alexandra Toole

Ada Byron, Lady Lovelace 1015-1052

TILEA SWINTON KAREN CERANCESCA BLACK FARIDANY JOHN PERRY BARLOW TIMOTHY LEARY CONCEIVING OW

A film by Eyon Hershman Leeson μ % & ε) η ει οι Α α σφοσκλ Κ

ComputerWeekl

IN THIS ISSUE

24-30 March 2009 | £3.25 | computerweekly.com

Will IBM buy Sun? If IBM buys Sun Microsystems how will the diverse product portfolios fit together? NEWS ANALYSIS 12

OGC 'secret' out The Office of Government Commerce finally publishes

two ID card Gateway reviews NEWS 8

Tech terms banned

IT professionals react with hostility to a list of words. council leaders want to ban NEWS ANALYSIS 10

Beware of SaaS risk

The cost benefits of softwareas-a-service should not blind companies to potential hazards **NEWS ANALYSIS 14**

Web past to present

We celebrate 20 years of the internet by looking back at key events in its development. THIS WEEK ON THE WEB 20

Leadership lessons

CW500 Club president shares his insights on challenges and opportunities facing IT leaders

STRATEGY 22

Computer wizard f Victorian England

"A SPLENDID AND ENTHRALLING PORTRAIT." -THE SUNDAY TIMES (LONDON)

Bride o

Science

"IT'S A THRILLER." - NEW SCIENTIST

BENJAMIN WOOLLEY

ROMANCE, **REASON**, and **BYRON'S** DAUGHTER

need

Ada Lovelace notes on "Sketch of the Analytical Engine Invented by Charles Babbage", by L. F. Menabrea, 1843

Her notes (three times longer than the paper itself!) contain the world's first computer program (for calculating Bernoulli numbers):

			Var	riables	for D	Data						Variables for Results							
ations	tions	$^{1}\mathrm{V}_{0}$	$^{1}V_{1}$	$^{1}V_{2}$	$^{1}V_{3}$	$^{1}V_{4}$	$^{1}V_{5}$	$^{0}V_{6}$	$^{0}\mathrm{V}_{7}$	$^{0}\mathrm{V_{8}}$	$^{0}\mathrm{V}_{9}$	$^{0}V_{10}$	$^{0}V_{11}$	$^{0}V_{12}$	⁰ V ₁₃	⁰ V ₁₄	⁰ V ₁₅	${}^{0}V_{16}$	
Oper	pera	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
of of	of O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
admu	ature	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	
ź	Ŋ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		m	<i>n</i>	d	m'	n'	d'										$\boxed{\frac{dn'-d'n}{mn'-m'n} = x}$	$\boxed{ \frac{d'm-dm}{mn'-m'n} = y }$	
$ 1 \\ 2 \\ 2 $	××	m 	 n		 m'	n' 	 	mn' 	m'n										
$\frac{3}{4}$	×	· · · · ·	0	a 			d'		· · · · ·	$\begin{vmatrix} dn \\ \dots \end{vmatrix}$	d'n								
5 6	××	0		0	0		0					d'm	dm'						
78	-							0	0	0	0			(mn' - m'n)	(dn' - d'n)				
9	-											0	0	(mn' - m'n)		(d'm-dm')	dn'-d'n = r		
11	÷													0		0	$\frac{mn'-m'n}{mn'-m'n} = x$	$\tfrac{d'm-dm'}{mn'-m'n}=y$	

World's first computer program (for calculating Bernoulli numbers), by Ada Lovelace, 1843:

						Data Working Variables													Result Variables			
						$^{1}V_{1}$	$^{1}V_{2}$	$^{1}V_{3}$	$^{0}V_{4}$	$^{0}V_{5}$	$^{0}V_{6}$	⁰ V7	$^{0}V_{8}$	⁰ V9	⁰ V ₁₀	⁰ V11	⁰ V ₁₂	⁰ V ₁₃	$^{1}V_{21}$	$^{1}V_{22}$	$^{1}V_{23}$	$^{0}\mathrm{V}_{24}\mathrm{\dots}$
ion	5						0	0	0	0	0		0			0	0	0	0	0		0
erat	rati			Indication of			0			0	0						Ŭ	0	Ŭ	Ŭ		0
Op	Ope	acted	Variables receiving	change in the	Statement of Results	0	0	0	0	0	0		0			0	0	0	ct : a	ct. a	gi a	0
r of	Jo	upon	results	Variable		0	0	0	0	0	0	0	0	0	0	0	0	0	dec fra	dec fra	dec fra	0
mbe	ture					1	2	4	0	0	0	0	0	0	0	0	0	0				0
ΠN	Nat					1	2	n											В1	B ₃	B ₅	B7
				$\begin{bmatrix} 1 V_0 & - & 1 V_0 \end{bmatrix}$																		
1	×	$^{1}V_{2} \times ^{1}V_{3}$	$^{1}V_{4}$, $^{1}V_{5}$, $^{1}V_{6}$	$\left\{ {}^{1}V_{3}^{2} = {}^{1}V_{3}^{2} \right\}$	=2n		2	n	2n	2n	2n											
2	_	${}^{1}V_{4} - {}^{1}V_{1}$	$^{2}V_{4}$	$\left\{ \begin{array}{ccc} {}^{1}V_{4} & = & {}^{2}V_{4} \\ {}^{1}V_{4} & = & {}^{1}V_{4} \end{array} \right\}$	= 2n - 1	1			2n - 1													
		1	2	$\begin{bmatrix} v_1 &= & v_1 \\ {}^1V_5 &= & {}^2V_5 \end{bmatrix}$																		
3	+	-v ₅ + -v ₁	-v5	$\begin{bmatrix} 1 V_1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 V_1 \\ 0 \end{bmatrix}$	= 2n + 1	1				2n + 1												
4	÷	$^{2}V_{5} \div ^{2}V_{4}$	$^{1}\mathrm{V}_{11}\ \ldots \ldots$	$\begin{bmatrix} 2V_5 &= & 0V_5 \\ 2V_4 &= & 0V_4 \end{bmatrix}$	$=\frac{2n-1}{2n+1}\dots$				0	0						$\frac{2n-1}{2n+1}$						
5	<u>.</u>	${}^{1}V_{11} \div {}^{1}V_{2}$	² V11	$\int_{1}^{1} V_{11} = {}^{2} V_{11}$	$= \frac{1}{2} \cdot \frac{2n-1}{2n-1}$		2									$\frac{1}{2} \cdot \frac{2n-1}{2n-1}$						
-	·	-112		$\begin{bmatrix} 1 V_2 & = & 1 V_2 \\ 2 V_1 & = & 0 V_1 \end{bmatrix}$	2 2n+1											2^{2n+1}						
6	-	$^{0}V_{13} - ^{2}V_{11}$	¹ V ₁₃	$\begin{bmatrix} v_{11} & = & v_{11} \\ 0 V_{13} & = & {}^{1}V_{13} \end{bmatrix}$	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} = A_0 \dots$											0		$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} = A_0$				
7	_	${}^{1}V_{3} - {}^{1}V_{1}$	${}^{1}\mathrm{V}_{10}$	$\left\{ \begin{array}{ccc} {}^{1}V_{3} & = & {}^{1}V_{3} \\ {}^{1}V_{3} & = & {}^{1}V_{3} \end{array} \right\}$	$= n - 1 (= 3) \dots$	1		n							n - 1							
		1	1	$\begin{bmatrix} -v_1 &= -v_1 \\ 1 & V_2 &= -1 & V_2 \end{bmatrix}$																		
8	+	$V_2 + V_7$	· V7	$\left\{ \begin{array}{ccc} {}^{0}\mathrm{V}_{7}^{2} & = & {}^{1}\mathrm{V}_{7}^{2} \end{array} \right\}$	$= 2 + 0 = 2 \dots$		2															
9	÷	${}^1\mathrm{V}_6^1\mathrm{V}_7$	$^{3}V_{11}$	$\begin{bmatrix} 1^{1}V_{6} &= & {}^{1}V_{6} \\ 0_{V_{11}} &= & {}^{3}V_{11} \end{bmatrix}$	$=\frac{2n}{2}=A_1\ldots\ldots$						2n	2				$\frac{2n}{2} = A_1$						
10		¹ V21 × ³ V11	¹ V ₁₂	$\begin{cases} 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1$	$= B_1 \cdot \frac{2n}{2} = B_1 A_1$											$\frac{2n}{2} = A_1$	$B_1 \cdot \frac{2n}{n} = B_1 A_1$		Bı			
			- 12	$\begin{bmatrix} {}^{3}V_{11} &= {}^{3}V_{11} \\ {}^{1}V_{12} &= {}^{0}V_{12} \end{bmatrix}$	-1 2 -1 -1											2	-1 2 -1	(-1			
11	+	$^{1}V_{12} + ^{1}V_{13}$	² V ₁₃	$\begin{bmatrix} v_{12} & - & v_{12} \\ 1 V_{13} & = & 2 V_{13} \end{bmatrix}$	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \dots$												0	$\left\{-\frac{1}{2}\cdot\frac{2n-1}{2n+1}+\mathbf{B}_1\cdot\frac{2n}{2}\right\}$				
12	_	${}^{1}V_{10} - {}^{1}V_{1}$	$^{2}V_{10}$	$\begin{cases} {}^{1}V_{10} = {}^{2}V_{10} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$	$= n - 2(= 2) \dots$	1									n-2							
		1	2	$\begin{bmatrix} v_1 & = & v_1 \\ 1 V_6 & = & 2 V_6 \end{bmatrix}$																		
13	-	$V_6 - V_1$	-V ₆	$1 V_1 = 1 V_1$	=2n-1	1					2n - 1											
14	+	${}^{1}\mathrm{V}_{1} + {}^{1}\mathrm{V}_{7}$	$^{2}\mathrm{V}_{7}$	$\left\{\begin{array}{ccc} {}^{1}V_{1} & = & {}^{1}V_{1} \\ {}^{1}V_{7} & = & {}^{2}V_{7} \end{array}\right\}$	= 2 + 1 = 3	1						3										
15		$^{2}Ve \div ^{2}Vz$	¹ V.	$\left\{ \begin{array}{l} 2 V_6 \\ 2 V_6 \end{array} \right\} = \left\{ \begin{array}{l} 2 V_6 \\ 2 \end{array} \right\}$	$=\frac{2n-1}{2}$						2n - 1	3	2n - 1									
~	.			$\begin{bmatrix} 2V_7 &= & 2V_7 \\ 1_{V_1} &= & 0_{V_2} \end{bmatrix}$	3								3									
16	. ×	${}^{1}V_{8} \times {}^{3}V_{11}$	⁴ V ₁₁	$\begin{cases} v_8 &= v_8 \\ {}^3V_{11} &= {}^4V_{11} \end{cases}$	$=\frac{2n}{2}\cdot\frac{2n-1}{3}$								0			$\frac{2n}{2} \cdot \frac{2n-1}{3}$						
17	· _	${}^{2}V_{6} - {}^{1}V_{1}$	³ V ₆	$\left\{ \begin{array}{ccc} {}^{2}V_{6} & = & {}^{3}V_{6} \\ {}^{1}V & & {}^{1}V \end{array} \right\}$	= 2n - 2	1					2n - 2											
		1	9	$\begin{bmatrix} -V_1 &= -V_1 \\ 2V_7 &= -3V_7 \end{bmatrix}$																		
18 J	+	$^{1}V_{1} + ^{*}V_{7}$	⁵ V ₇	$\left\{ \begin{array}{ccc} {}^{1}\mathrm{V}_{1} & = & {}^{1}\mathrm{V}_{1} \end{array} \right\}$	$= 3 + 1 = 4 \dots$	1						4										
19	÷	$^3\mathrm{V}_6 \div {}^3\mathrm{V}_7$	$^{1}\mathrm{V}_{9}\ \ldots \ldots$	$\left\{ \begin{array}{ccc} {}^{3}V_{6} & = & {}^{3}V_{6} \\ {}^{3}V_{7} & = & {}^{3}V_{7} \end{array} \right\}$	$=\frac{2n-2}{4}$						2n - 2	4		$\frac{2n-2}{4}$								
20	×	$^{1}V_{0} \times {}^{4}V_{11}$	⁵ V11	$\int_{1}^{1} V_{9} = {}^{0} V_{9}$	$=$ $\frac{2n}{2n}$ \cdot $\frac{2n-1}{2n-2}$ \cdot $\frac{2n-2}{2n-2}$ $=$ A ₂ \cdot									0		$\left\{ \frac{2n}{2n}, \frac{2n-1}{2n-2} \right\} = A_2$						
~ (·			$\begin{bmatrix} {}^{4}V_{11} &= {}^{5}V_{11} \\ {}^{1}V_{12} &= {}^{1}V_{12} \end{bmatrix}$	2 3 4																	
21	×	${}^{1}V_{22} \times {}^{5}V_{11}$	⁰ V ₁₂	$\begin{bmatrix} v_{22} & - & v_{22} \\ 0 V_{12} & - & 2 V_{12} \end{bmatrix}$	$= B_3 \cdot \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} = B_3 A_3$											0	B ₃ A ₃			B_3		
22	+	${}^{2}V_{12} + {}^{2}V_{13}$	³ V ₁₃	$\begin{cases} {}^{2}V_{12} = {}^{0}V_{12} \\ {}^{2}V_{12} = {}^{3}V_{12} \end{cases}$	$= A_0 + B_1 A_1 + B_3 A_3 \dots \dots$												0	$\{{\rm A}_0+{\rm B}_1{\rm A}_1+{\rm B}_3{\rm A}_3\}$				
00		217 117	317	$\begin{cases} V_{13} = V_{13} \\ V_{10} = {}^{3}V_{10} \end{cases}$																		
²³	-	$V_{10} - V_1$	V10 ·····	$\left\{ {}^{1}V_{1}^{**} = {}^{1}V_{1}^{**} \right\}$	= n - 3(= 1)										n-3							
							Here	e follows	a repeti	tion of	Operatio	ons thirt	een to ty	wenty-th	ree							
	1.	411 0-1	1	$\int 4^{4} V_{13} = 0^{0} V_{13}$										1	1	l				I		
24	+	$V_{13} + V_{24}$	- v ₂₄	$\begin{bmatrix} 0 V_{24} & = & {}^{1}V_{24} \end{bmatrix}$	= B ₇																	B_7
				$\begin{bmatrix} {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{2} = {}^{1}V_{2} \end{bmatrix}$	= n + 1 = 4 + 1 = 5																	
25	+	$^{1}V_{1} + ^{1}V_{3}$	¹ V ₃	$\int_{-5}^{+5} V_6 = {}^{0}V_6$	by a Variable-card.	1		n + 1			0	0										
				$\int {}^{5}V_{7} = {}^{0}V_{7}$	by a Variable-card.																	
L	1	L		1	1			1				I			I							

Quotes from the Ada Lovelace notes on "Sketch of the Analytical Engine Invented by Charles Babbage", 1843

"We may say most aptly, that the Analytical Engine *weaves algebraical patterns* just as the Jacquard-loom weaves flowers and leaves."

"Again, it might act upon other things besides *number*, were objects found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and which should be also susceptible of adaptations to the action of the operating notation and mechanism of the engine. Supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent."

Quotes from the Ada Lovelace notes on "Sketch of the Analytical Engine Invented by Charles Babbage", 1843

"Many persons who are not conversant with mathematical studies, imagine that because the business of the engine is to give its results in *numerical notation*, the *nature of its processes* must consequently be *arithmetical* and *numerical*, rather than *algebraical* and *analytical*. This is an error. The engine can arrange and combine its numerical quantities exactly as if they were *letters* or any other *general* symbols; and in fact it might bring out its results in algebraical *notation*, were provisions made accordingly."

"But it would be a mistake to suppose that because its *results* are given in the *notation* of a more restricted science, its *processes* are therefore restricted to those of that science. The object of the engine is in fact to give the *utmost practical efficiency* to the resources of *numerical interpretations* of the higher science of analysis, while it uses the processes and combinations of this latter."

John Venn (1834-1923)

- Logician and philosopher
- Worked in logic, probability, set theory
- Introduced the "Venn diagram" (1880)
 - Very widely used, many applications
 - Ties together fundamental concepts from logic, geometry, combinatorics, knot theory

Generalized Numbers

The Extended Chomsky Hierarchy

http://www.combinatorics.org/Surveys/ds5/VennEJC.html

Venn diagram puzzles:

Answer Panel:

A

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. ?

11. ?

12.

13.

14.

15.

16.

Circle 1:

Circle 2: Circle 3:

Circle 4: Puzzle solution: Circle 5: Hot Star Wars Chicks SG tinyurl D .com/ 6768jc Baseball The Simpsons Puzzles

Historical Perspectives

Charles Dodgson (1832-1898)

- AKA "Lewis Carroll"
- Mathematician, logician, author, photographer
- Wrote "Alice in Wonderland", "Jabberwocky", and "Through the Looking Glass"
- Popularized logic & syllogisms and made it fun!
- Invented "Scrabble" and "word ladder" games
- Profoundly influenced literature, art, and culture

CHINTS TO

White Pawn (Alice) to play, and win in eleven moves.

	PAGE	
1. Alice meets R. O	140	1. R. Q. to K. R.'s 4th
2 Alice through Q's 3rd (by railway)	147	2. W. Q. to Q. B.'s 4th (after shawl)
to O's Ath /Tweedledum		3. W. Q. to Q. B.'s 5th (becomes sheep)
and Tweedledee)	149	4. W. Q. to K. B.'s 8th (leaves egg on
3 Alice meets W. O. (with shawl)	168	shelf)
4 Alice to O's 5th (shop, river, shop) .	173	5. W. Q. to Q. B.'s 8th (flying from R.
5 Alice to O.'s 6th (Humpty Dumpty) .	179	Kt.)
6 Alice to O's 7th (forest)	200	6. R. Kt. to K.'s 2nd (ch.)
7 W Kt takes R Kt	202	7. W. Kt. to K. B.'s 5th
8 Alice to O's 8th (coronation)	213	8. R. Q. to K.'s sq. (examination)
0. Alice becomer Outen	220	9. Queens castle
0. Alice castles (featt)	223	10. W. Q. to Q. R.'s 6th (soup)
1. Alice takes R.Q. & wins	230	

PLUS A SPECIAL BONUS SHORT JAN SVANKMAJER'S DARKNESS LIGHT DARKNESS

CALLY'S KIND OF A MIXTURE of some distorted live action and animation. I can't relate it to anything because I'm not sure what to relate it to, it's kind of new territory for me..." -7.m. "Juniter

Alice and the White Knight: A Lesson in Logic, Semantics, and Pointers

`You are sad,' the Knight said in an anxious tone: `let me sing you a song to comfort you.'

`Is it very long?' Alice asked, for she had heard a good deal of poetry that day.

`It's long,' said the Knight, `but it's very, *very* beautiful. Everybody that hears me sing it -- either it brings the *tears* into their eyes, or else --'

Or else what?' said Alice, for the Knight had made a sudden pause.

`Or else it doesn't, you know. The name of the song is called "*Haddocks' Eyes*".'

`Oh, that's the name of the song, is it?' Alice said, trying to feel interested.

`No, you don't understand,' the Knight said, looking a little vexed. `That's what the name is *called*. The name really *is "The Aged Aged Man"*.' pointer dereferencing: meta-pointer resolved! `Then I ought to have said "That's what the *song* is called"?' Alice corrected herself. separation of abstractions: variable vs. pointer!

No, you oughtn't: that's quite another thing! The *song* is called "*Ways and Means*": but that's only what it's *called*, you know!'

`Well, what *is* the song, then?' said Alice, who was by this time completely bewildered.

call-by-name vs. call-by-value! `I was coming to that,' the Knight said. `The song really *is "A-sitting On a Gate"*: and the tune's my own invention.'

🕲 The Lewis Carroll Society of North America - About Us - Mozilla Firefox		>
Elle Edit View Higtory Bookmarks Tools Help		
C X 🟠 🛅 http://www.lewiscarroll.org/	☆ • Google	P
😥 Most Visked 🐢 Getting Started 🔊 Latest Headlines 🗋 Customize Links 📄 Free Hotmail 🌓 http://www.scient/fic 💧 Suggested Sites 📄 Web Sice Gallery 📄 Windows Marketplace 💧 Windows Media 💧	Windows	
Google 🛛 Ithree valued logic 🖉 🕻 Search + 🖟 🧬 💠 M + 🏠 Bookmarks- 🎦 😽 AutoLink 🖺 AutoLink 🔛 AutoLink 🔛 AutoLink 🔛 AutoLink		Settings
Wolfram 🕸 • 🛛 🖉 🕸 🕸 🖉		

Lewis Carroll Society of North America

| HOME | ABOUT US | MEMBERSHIP | NEWS | PUBLICATIONS | EDUCATION | LINKS | FAQ |

WELCOME

Welcome to The Lewis Carroll Society of North America (LCSNA) homepage. The LCSNA is a non-profit organization dedicated to furthering Carroll studies, increasing accessibility of research material, and maintaining public awareness of Carroll's contributions to society and culture. This website is one way we share information with Carroll enthusiasts around the World. If you are a Carrollian and would like to help in these endeavors, or if you simply enjoy Carroll and want to be among other people with a like interest, please consider joining the LCSNA.

For detailed information about C.L.Dodgson ("Lewis Carroll") and his creations, please access the Lewis Carroll Homepage.

Spring Meeting

The 2009 Spring meeting will be held in beautiful Sante Fe, New Mexico, on May 9. Please consult the **newly updated (as of April 24th)** meeting agenda for all of the details. See you there.

Historical Perspectives

Georg Cantor (1845-1918)

- Created modern set theory
- Invented trans-finite arithmetic (highly controvertial at the time)
- Invented diagonalization argument
- First to use 1-to-1 correspondences with sets
- Proved some infinities "bigger" than others
- Showed an infinite hierarchy of infinities
- Formulated continuum hypothesis
- Cantor's theorem, "Cantor set", Cantor dust, Cantor cube, Cantor space, Cantor's paradox
- Laid foundation for computer science theory
- Influenced Hilbert, Godel, Church, Turing

GEORG

CANTOR

CONTRIBUTIONS

Problem: How can an infinity of new guests be accommodated in a full infinite hotel?

Problem: How can an infinity of infinities of new guests be accommodated in a full infinite hotel?

Problem: Are there more integers than natural #'s?

 $\mathbb{N} \subset \mathbb{Z}$ $\mathbb{N} \neq \mathbb{Z}$ So $|\mathbb{N}| < |\mathbb{Z}|$?

- Rearrangement: Establishes 1-1 correspondence $f: \mathbb{N} \leftrightarrow \mathbb{Z}$
- $\Rightarrow |\mathbb{N}| = |\mathbb{Z}|$

Problem: Are there more rationals than natural #'s?

 $\mathbb{N} \subset \mathbb{Q}$ $\mathbb{N} \neq \mathbb{Q}$ 6 So $|\mathbb{N}| < |\mathbb{Q}|$? 5 **Dovetailing:** Establishes 1-1 4 correspondence $f: \mathbb{N} \leftrightarrow \mathbb{Q}$ 3 $\Rightarrow |\mathbb{N}| = |\mathbb{Q}|$

Problem: Are there more rationals than natural #'s?

 $\mathbb{N} \subset \mathbb{Q}$ $\mathbb{N} \neq \mathbb{Q}$ So $|\mathbb{N}| < |\mathbb{Q}|$? Dovetailing: Establishes 1-1 correspondence $f: \mathbb{N} \leftrightarrow \mathbb{Q}$ $\Rightarrow |\mathbb{N}| = |\mathbb{Q}|$

Problem: Are there more rationals than natural #'s?

 $\mathbb{N} \subset \mathbb{Q}$ $\mathbb{N} \neq \mathbb{Q}$ So $|\mathbb{N}| < |\mathbb{Q}|$? Dovetailing: Establishes 1-1 correspondence $f: \mathbb{N} \leftrightarrow \mathbb{Q}$ $\Rightarrow |\mathbb{N}| = |\mathbb{Q}|$

Problem: Why doesn't this "dovetailing" work?

 $\frac{7}{5}$ $\frac{7}{6}$ $\frac{7}{2}$ $\frac{7}{3}$ $\frac{7}{8}$... There's no "last" element $\frac{6}{2}$ $\frac{6}{1}$ $\frac{6}{3}$ <u>6</u> 4 $\frac{6}{5}$ $\frac{6}{6}$ 6 on the first line! <u>5</u> 6 $\frac{5}{2}$ $\frac{5}{3}$ $\frac{5}{4}$ $\frac{5}{5}$ $\frac{5}{7}$ <u>5</u> <u>8</u> $\frac{5}{1}$ 5 So the 2nd line $\frac{4}{3}$ $\frac{4}{5}$ is never reached! $\frac{4}{6}$ $\frac{4}{2}$ 4 $\frac{4}{4}$ \Rightarrow 1-1 function $\frac{-3}{5}$ $\frac{3}{6}$ 3 3 3 3 is not defined!

3

4

 $\frac{\pm}{5}$

5

<u>1</u> 6

6

7

8

Dovetailing Reloaded

Dovetailing: $f: \mathbb{N} \leftrightarrow \mathbb{Z}$

N 1 2 3 4 5 6 7 8 9

To show $|\mathbf{N}| = |\mathbf{Q}|$ we can construct $f: \mathbf{N} \leftrightarrow \mathbf{Q}$ by sorting \mathbf{x}/\mathbf{y} by increasing key max($|\mathbf{x}|, |\mathbf{y}|$), while avoiding duplicates: max($|\mathbf{x}|, |\mathbf{y}|$) = $\mathbf{Q} \cdot \{f\}$ max($|\mathbf{x}|, |\mathbf{y}|$) = $1:0^{11}, 1^{21}$ max($|\mathbf{x}|, |\mathbf{y}|$) = $2:1^{32}, 2^{41}$ max($|\mathbf{x}|, |\mathbf{y}|$) = $3:1^{53}, 2^{53}, 3^{71}, 3^{82}$

{finite new set at each step}

 \mathbb{Z}

- Dovetailing can have many disguises!
- So can diagonalization!

But X is missing from our table! $X \neq f(k) \forall k \in \mathbb{N}$ $\Rightarrow f$ not a 1-1 correspondence

- \Rightarrow contradiction
- $\Rightarrow \mathbb{R}$ is not countable!

There are more reals than rationals / integers!

Problem 1: Why not just insert X into the table?
Problem 2: What if X=0.999... but 1.000... is already in table?

- Table with X inserted will have X' still missing! Inserting X (or any number of X's) will not help!
- To enforce unique table values, we can avoid using 9's and 0's in X.

Non-Existence Proofs

- Must cover all possible (usually infinite) scenarios!
- Examples / counter-examples are not convincing!
- Not "symmetric" to existence proofs!

Ex: proof that you are a millionaire:

"Proof" that you are not a millionaire ?

Cantor set:

- Start with unit segment
- Remove (open) middle third
- Repeat recursively on all remaining segments
- Cantor set is all the remaining points

- Total length removed: 1/3 + 2/9 + 4/27 + 8/81 + ... = 1
- Cantor set does not contain any intervals
- Cantor set is not empty (since, e.g. interval endpoints remain)
- An uncountable number of non-endpoints remain as well (e.g., 1/4) Cantor set is totally disconnected (no nontrivial connected subsets) Cantor set is self-similar with Hausdorff dimension of $\log_3 2=1.585$ Cantor set is a closed, totally bounded, compact, complete metric space, with uncountable cardinality and lebesque measure zero

Cantor dust (2D generalization): Cantor set crossed with itself

		::: :::			:: ::		**				== ==	
				==								
		::				==						
::	==	::				::				::		
::		::				::				==		
::		::		::		==				==		
::		::				::						

Cantor cube (3D): Cantor set crossed with itself three times

Problem: Solve the following equation for X:

 $X^{X^{X^{x^{x}}}} = 2$

where the stack of exponentiated x's extends forever.

This "power tower" converges for: $0.065988 \approx e^{-e} < X < e^{1/e} \approx 1.444668$

Historical Perspectives

Bertrand Russell (1872-1970)

- Philosopher, logician, mathematician, historian, social reformist, and pacifist
- Co-authored "Principia Mathematica" (1910)
- Axiomatized mathematics and set theory
- Co-founded analytic philosophy
- Originated Russell's Paradox
- Activist: humanitarianism, pacifism, education, free trade, nuclear disarmament, birth control gender & racial equality, gay rights
- Profoundly transformed math & philosophy, mentored Wittgenstein, influenced Godel
- Laid foundation for computer science theory
- Won Nobel Prize in literature (1950)

PRINCIPIA MATHEMATICA

VOLUME THREE

Alfred North Whitehead Bertrand Russell


```
379
 SECTION A]
                                                           CARDINAL COUPLES
 *54.42. \vdash :: \alpha \in 2. \supset :. \beta \subset \alpha. \neg ! \beta. \beta \neq \alpha. \equiv . \beta \in \iota^{\prime\prime} \alpha
        Dem.
\vdash .*54.4. \quad \supset \vdash :: \alpha = \iota' x \cup \iota' y . \supset :.
                             \beta \subset \alpha . \exists ! \beta . \equiv : \beta = \Lambda . v . \beta = \iota' x . v . \beta = \iota' y . v . \beta = \alpha : \exists ! \beta :
 [*24.53.56.*51.161]
                                                       \equiv : \beta = \iota' x \cdot \mathbf{v} \cdot \beta = \iota' y \cdot \mathbf{v} \cdot \beta = \alpha
                                                                                                                                                     (1)
\vdash .*54.25. Transp. *52.22. \supset \vdash : x \neq y. \supset .\iota'x \cup \iota'y \neq \iota'x \cdot \iota'x \cup \iota'y \neq \iota'y:
[*13.12] \mathsf{D} \vdash : \alpha = \iota^{t} x \cup \iota^{t} y \cdot x \neq y \cdot \mathsf{D} \cdot \alpha \neq \iota^{t} x \cdot \alpha \neq \iota^{t} y
                                                                                                                                                      (2)
 \vdash .(1).(2). \supset \vdash :: \alpha = \iota' x \cup \iota' y . x \neq y . \supset :.
                                                                        \beta \subset \alpha \cdot \exists \beta \cdot \beta \neq \alpha \cdot \exists \beta = \iota'x \cdot v \cdot \beta = \iota'y:
[*51.235]
                                                                                                                \equiv : (\Im z) \cdot z \in \alpha \cdot \beta = \iota' z :
[*37.6]
                                                                                                                \equiv : \beta \in \iota^{\prime \prime} \alpha
                                                                                                                                                     (3)
 \vdash .(3) . *11 \cdot 11 \cdot 35 . *54 \cdot 101 . D \vdash . Prop
*54.43. \vdash :. \alpha, \beta \in 1.  \supset : \alpha \cap \beta = \Lambda := . \alpha \cup \beta \in 2
        Dem.
              \vdash .*54 \cdot 26 \cdot \mathsf{D} \vdash :. \alpha = \iota' x \cdot \beta = \iota' y \cdot \mathsf{D} : \alpha \cup \beta \in 2 \cdot \equiv . x \neq y \cdot \mathsf{D}
              [*51.231]
                                                                                                              \equiv \iota' x \cap \iota' y = \Lambda.
              [*13.12]
                                                                                                              \equiv .\alpha \cap \beta = \Lambda
                                                                                                                                                     (1)
              +.(1).*11.1.35.0
                        \vdash :. (\exists x, y) \cdot a = \iota'x \cdot \beta = \iota'y \cdot \mathsf{D} : a \cup \beta \in 2 \cdot \equiv . a \cap \beta = \Lambda
                                                                                                                                                     (2)
              F.(2).*11.54.*52.1. DF. Prop
      From this proposition it will follow, when arithmetical addition has been
defined, that 1 + 1 = 2.
*54.44. \vdash :. z, w \in \iota' x \cup \iota' y \cdot \mathsf{D}_{z,w} \cdot \phi(z,w) := \cdot \phi(x,x) \cdot \phi(x,y) \cdot \phi(y,x) \cdot \phi(y,y)
       Dem.
            \vdash .*51 \cdot 234 \cdot *11 \cdot 62 \cdot \mathsf{D} \vdash :. z, w \in \iota' x \cup \iota' y \cdot \mathsf{D}_{z,w} \cdot \phi(z,w) := :
                                                                z \in \iota' x \cup \iota' y \cdot \mathsf{D}_z \cdot \phi(z, x) \cdot \phi(z, y):
            [*51 \cdot 234 \cdot *10 \cdot 29] \equiv : \phi(x, x) \cdot \phi(x, y) \cdot \phi(y, x) \cdot \phi(y, y) :. \mathsf{D} \vdash . \mathsf{Prop}
*54.441. \vdash :: z, w \in t'x \cup t'y . z \neq w . \mathsf{D}_{z,w} . \phi(z, w) : \equiv : x = y : v : \phi(x, y) \cdot \phi(y, x)
       Dem.
\vdash . *5.6. \mathsf{D} \vdash :: z, w \in \iota' x \cup \iota' y . z \neq w . \mathsf{D}_{z, w} . \phi(z, w) := :.
                             z, w \in \iota' x \cup \iota' y \cdot \mathsf{D}_{z,w} : z = w \cdot \mathsf{v} \cdot \phi(z, w) :
[*54.44]
                             \equiv : x = x \cdot \mathbf{v} \cdot \boldsymbol{\phi}(x, x) : x = y \cdot \mathbf{v} \cdot \boldsymbol{\phi}(x, y) :
                                                                                      y = x \cdot \mathbf{v} \cdot \boldsymbol{\phi}(y, x) : y = y \cdot \mathbf{v} \cdot \boldsymbol{\phi}(y, y) :
[*13.15]
                              \equiv : x = y \cdot \mathbf{v} \cdot \boldsymbol{\phi}(x, y) : y = x \cdot \mathbf{v} \cdot \boldsymbol{\phi}(y, x) :
[*13:16.*4:41] \equiv : x = y \cdot v \cdot \phi(x, y) \cdot \phi(y, x)
      This proposition is used in *163.42, in the theory of relations of mutually
 exclusive relations.
```

86 PART III CARDINAL ARITHMETIC *110.632. $\vdash : \mu \in \mathbb{NC} : \supset : \mu + 1 = \hat{\xi} \{ (\exists y) : y \in \xi : \xi - \iota' y \in \mathrm{sm}^{\prime \prime} \mu \}$ Dem. F.*110.631.*51.211.22.⊃ $\vdash : \operatorname{Hp} \cdot \operatorname{\mathsf{D}} \cdot \mu + \iota 1 = \hat{\xi} \{ (\mathfrak{T}\gamma, y) \cdot \gamma \in \operatorname{sm}^{\prime \prime} \mu \cdot y \in \xi \cdot \gamma = \xi - \iota^{\prime} y \}$ $= \hat{\xi} \{ (\exists y) \cdot y \in \xi \cdot \xi - \iota' y \in \mathrm{sm}^{\prime \prime} \mu \} : \mathsf{D} \vdash \mathsf{Prop}$ [*13.195] *110.64. $\vdash 0 + 0 = 0$ [*110[.]62] *110.641. $\vdash .1 + 0 = 0 + 1 = 1$ [*110.51.61.*101.2] *110.642. $\vdash .2 + .0 = 0 + .2 = 2$ [*110.51.61.*101.31] *110.643. $\vdash 1 + 1 = 2$ Dem. F.*110.632.*101.21.28.⊃ $\vdash \cdot 1 + \epsilon 1 = \hat{\xi}\{(\pi y) \cdot y \in \xi \cdot \xi - \iota' y \in 1\}$ $[*54:3] = 2.0 \vdash .$ Prop The above proposition is occasionally useful. It is used at least three times, in *113.66 and *120.123.472. *110.7.71 are required for proving *110.72, and *110.72 is used in *117.3, which is a fundamental proposition in the theory of greater and less. *1107. $\vdash: \beta \subset \alpha . \supset .(\pi \mu) . \mu \in \mathrm{NC} . \mathrm{Nc}^{\prime} \alpha = \mathrm{Nc}^{\prime} \beta +_{\alpha} \mu$ Dem. $\vdash \cdot *24 \cdot 411 \cdot 21 \cdot \mathsf{D} \vdash : \mathrm{Hp} \cdot \mathsf{D} \cdot \alpha = \beta \cup (\alpha - \beta) \cdot \beta \cap (\alpha - \beta) = \Lambda \cdot$ [*110.32] $\supset . \operatorname{Nc}^{\prime} \alpha = \operatorname{Nc}^{\prime} \beta + . \operatorname{Nc}^{\prime} (\alpha - \beta) : \supset F . \operatorname{Prop}$ *11071. $\vdash : (\Im \mu) \cdot \operatorname{Ne}^{\prime} \alpha = \operatorname{Ne}^{\prime} \beta +_{\alpha} \mu \cdot \mathcal{O} \cdot (\Im \delta) \cdot \delta \operatorname{sm} \beta \cdot \delta \mathcal{O} \alpha$ Dem. F.*100³.*110⁴.⊃ $\vdash : \mathrm{Nc}^{\prime} \alpha = \mathrm{Nc}^{\prime} \beta +_{c} \mu \cdot \mathcal{I} \cdot \mu \in \mathrm{NC} - \iota^{\prime} \Lambda$ (1) $\vdash .*110^{\circ}3. \supset \vdash : \operatorname{Nc}^{\prime} \alpha = \operatorname{Nc}^{\prime} \beta + \operatorname{Nc}^{\prime} \gamma . \equiv . \operatorname{Nc}^{\prime} \alpha = \operatorname{Nc}^{\prime} (\beta + \gamma).$ [*100.3.31] $\Im \cdot \alpha \operatorname{sm} (\beta + \gamma)$. $\mathbf{D} \cdot (\mathbf{\pi}R) \cdot R \in 1 \rightarrow 1 \cdot \mathbf{D}'R = \alpha \cdot \mathbf{\Pi}'R = \bigcup \Lambda_{\mathbf{y}}''\iota''\beta \cup \Lambda_{\mathbf{g}} \bigcup ''\iota''\gamma$ [*73·1] $\Im_{\bullet}(\Im R) \cdot R \in 1 \to 1 \cdot \downarrow \Lambda_{\bullet} :: \beta \subset \Pi' R \cdot R :: \downarrow \Lambda_{\bullet} :: \beta \subset \alpha \cdot$ [*37.15] $[*110\cdot12.*73\cdot22]$ **D**. (\Im \delta). δ **C** α . δ sm β (2)

 \vdash .(1).(2). \supset \vdash . Prop

🕲 pm54.43 - Metamath Proof Explorer - Mozilla Firefox								
e Edit Yew Higtory Bookmarks Iools Help								
C X 🚯 http://us.metamath.org/mpegifym54.43.html								
🙍 Most Visited 🌩 Getting Started 🔊 Latest Headlines 🗋 Customize Links 🗋 Free Hotmail 🗋 http://www.scientific 🗋 Suggested Sites 🗋 Web Site Gallery 📄 Windows Marketplace 📄 Windows Media 📄 Windows								
Coogle principia mathematica pdi 🔄 🖸 Search • 🛉 🧔 🏰 • M • 🏠 Bookmarks• PageRank • 🐴 AutoLink 🖺 AutoLink 🚡 AutoLink 🚡 AutoLink 🚡 autoFil 🍙 Send to• 🏑 🖳 principia 🗟, mathematica 🧕 pdf		Settings*						
Wolfram 尊•								
Metamath Proof Explorer		<u> <u> <u>Related theorems </u> </u></u>						

Metamath Proof Explorer

<u>Previous</u> <u>Next ></u> Related theorems Unicode version

Theorem pm54.43 4699

Description: Theorem *54.43 of [WhiteheadRussell] p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia Mathematica#Quotations. This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2.

Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see <u>card1</u> 4965), so that their $A \in 1$ means, in our notation, $A \in \{x \mid (card^* \in 1) \}$ $x = 1_0$ i.e. (card $A = 1_0$ (by elab 1939) i.e. $A \approx 1_0$ (by carden 4983 and carden 4984). We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)

Theorem pm110.643 mm shows the derivation of 1+1=2 for cardinal numbers from this theorem.

Assertion							
Ref	Expression						
pm54.43	$\vdash ((A \approx 1_o \land B \approx 1_o) \to ((A \cap B) = \emptyset \leftrightarrow (A \cup B) \approx 2_o))$						

Sten	en Hyn Ref Expression						
1		1 on 4262	$1_{n} \in On$				
2	1	onirri 3066	$\dots, \neg \vdash \neg 1_0 \in I_0$				
3		disjsn 2493	$\dots, 7 \vdash ((1_a \cap \{1_a\}) = \emptyset \leftrightarrow \neg 1_a \in 1_a)$				
4	2, 3	mpbir 188	$\dots 6 \vdash (1_o \cap \{1_o\}) = \emptyset$				
5		<u>unen</u> 4563	$\dots \oplus \vdash (((A \approx 1_{o} \land B \approx \{1_{o}\}) \land ((A \cap B) = \emptyset \land (1_{o} \cap \{1_{o}\}) = \emptyset)) \to (A \cup B) \approx (1_{o} \cup \{1_{o}\}))$				
6	4, 5	<u>mpanr2</u> 713	$\dots 5 \vdash (((A \approx 1_o \land B \approx \{1_o\}) \land (A \cap B) = \emptyset) \to (A \cup B) \approx (1_o \cup \{1_o\}))$				
7	6	<u>ex</u> 371	$\dots 4 \vdash ((A \approx 1_o \land B \approx \{1_o\}) \to ((A \cap B) = \emptyset \to (A \cup B) \approx (1_o \cup \{1_o\})))$				
8	1	<u>elisseti</u> 1860	\dots 6 \vdash 1 ₀ \in V				
9	8	<u>ensn1</u> 4553					
10	8, 9	ensymi 4542	\dots 5 \vdash 1 _o \approx {1 _o }				
11		<u>entr</u> 4543	$\dots : \vdash ((B \approx 1_o \land 1_o \approx \{1_o\}) \to B \approx \{1_o\})$				
12	10, 11	<u>mpan2</u> 699	$\ldots 4 \vdash (B \approx 1_o \rightarrow B \approx \{1_o\})$				
13	7,12	<u>sylan2</u> 453	$\square : \vdash ((A \approx 1_o \land B \approx 1_o) \to ((A \cap B) = \emptyset \to (A \cup B) \approx (1_o \cup \{1_o\})))$				
14		<u>df-20</u> 4258	$\ldots $ $b \vdash 2_{o} = suc 1_{o}$				
15		<u>df-suc</u> 2971	$\dots \circ \vdash suc \ 1_{o} = (1_{o} \cup \{1_{o}\})$				
16	14, 15	<u>eqtri</u> 1534	$\ldots 4 \vdash 2_o = (1_o \cup \{1_o\})$				
17	16	<u>breq2i</u> 2691	$\square : \vdash ((A \cup B) \approx 2_o \leftrightarrow (A \cup B) \approx (1_o \cup \{1_o\}))$				
18	13, 17	<u>syl6ibr</u> 211	$2 \vdash ((A \approx 1_o \land B \approx 1_o) \to ((A \cap B) = \emptyset \to (A \cup B) \approx 2_o))$				

. = 4 42

🖶 Next 👚 Previous 🖉 Highlight all 🔲 Match case

× Find: Done

pm54.43 - Metamath Proof Explorer - N Elle Edit View History Bookmarks Id	Mozilla Firefox ools <u>H</u> elp				
🕢 > - C × 🏡 🕅 ht	ttp://us.metamath.c	org/mpegif/pm54.43.htm	1	☆ - 🖸 Google	, P
🔎 Most Visited 🏇 Getting Started 🔝 Lates	st Headlines 📄 Cu	ustomize Links 📄 Free	Hotmail 📄 http://www.scien	tific 🗋 Suggested Sites 🗋 Web Site Gallery 📄 Windows Marketplace 📄 Windows Media 📄 Windows	
Google principia mathematica pdf	• G	Search 🔹 🖗 👘	🔹 🕅 🔹 🏠 Bookmarks*	PagePant - 🔨 AutoLink 🐚 AutoFill ┢ Send to- 🥖 📴 principia 🖳 mathematica 🖳 pdf	Setting:
Wolfram ቑ•		🛊 🌣 🌚 🔅 (±.₩		
	19		sneq 2466		
	20	19	<u>uneq2d</u> 2232	$\dots \dots $	
	21		<u>unidm</u> 2223	$\dots \dots $	
	22	20, 21	<u>syl5reqr</u> 1561	$\dots \dots $	
	23		visset 1855		
	24	23	<u>ensn1</u> 4553	$\dots \dots $	
	25		<u>1sdom2</u> 4656	$\dots \dots $	
	26		ensdomtr 4600	$\dots \dots $	
	27	24, 25, 26	5 <u>mp2an</u> 700	$\dots \dots \dots \dots \square \square \vdash \{x\} \prec 2_o$	
	28	22, 27	syl6eqbr 2716	$\dots \dots $	
	29		sdomnen 4516	\dots	
	30	28, 29	<u>syl</u> 10	$\dots \dots $	
	31	30	necon2ai 1650	$\dots \dots $	
	32		disjsn2 2494	$\dots \dots $	
	33	31, 32	<u>syl</u> 10	$\dots \cup \cup \cup ((\{x\} \cup \{y\}) \approx 2_o \to (\{x\} \cap \{y\}) = \emptyset)$	
	34	33	<u>ali</u> 8	$\dots \otimes \vdash ((A = \{x\} \land B = \{y\}) \to ((\{x\} \cup \{y\}) \approx 2_o \to (\{x\} \cap \{y\}) = \emptyset))$	
	35		<u>uneq12</u> 2227	$\dots \cup \vdash ((A = \{x\} \land B = \{y\}) \to (A \cup B) = (\{x\} \cup \{y\}))$	
	36	35	breq1 d 2693	$\dots \otimes \vdash ((A = \{x\} \land B = \{y\}) \to ((A \cup B) \approx 2_{o} \leftrightarrow (\{x\} \cup \{y\}) \approx 2_{o}))$	
	37		ineq12 2260	$\dots \dots \cup \vdash ((A = \{x\} \land B = \{y\}) \to (A \cap B) = (\{x\} \cap \{y\}))$	
	38	37	eqeq1d 1522	$\dots \otimes \vdash ((A = \{x\} \land B = \{y\}) \to ((A \cap B) = \emptyset \leftrightarrow (\{x\} \cap \{y\}) = \emptyset))$	
	39	34, 36, 38	3 <u>3imtr4d</u> 545	$\dots, 7 \vdash ((A = \{x\} \land B = \{y\}) \to ((A \cup B) \approx 2_o \to (A \cap B) = \emptyset))$	
	40	39	<u>ex</u> 371	$\dots \land \vdash (A = \{x\} \to (B = \{y\} \to ((A \cup B) \approx 2_o \to (A \cap B) = \emptyset)))$	
	41	40	19.23adv 1248	$\dots 5 \vdash (A = \{x\} \to (\exists y \ B = \{y\} \to ((A \cup B) \approx 2_o \to (A \cap B) = \emptyset)))$	
	42	41	19.23aiv 1330	$\dots 4 \vdash (\exists x \ A = \{x\} \rightarrow (\exists y \ B = \{y\} \rightarrow ((A \cup B) \approx 2_{\circ} \rightarrow (A \cap B) = \emptyset)))$	
	43	42	imp 348	$\square : \vdash ((\exists x \ A = \{x\} \land \exists y \ B = \{y\}) \to ((A \cup B) \approx 2_o \to (A \cap B) = \emptyset))$	
	44		en1 4555	$\exists \vdash (A \approx 1_{o} \leftrightarrow \exists x \ A = \{x\})$	
	45		<u>en1</u> 4555	$\Box := \vdash (B \approx 1_o \leftrightarrow \exists y \ B = \{y\})$	
	46	43, 44, 45	5 <u>syl2anb</u> 457	$2 \vdash ((A \approx 1_o \land B \approx 1_o) \to ((A \cup B) \approx 2_o \to (A \cap B) = \emptyset))$	
	47	18, 46	impbid 518	$1 \vdash ((A \approx 1_o \land B \approx 1_o) \to ((A \cap B) = \emptyset \leftrightarrow (A \cup B) \approx 2_o))$	

Colors of variables: wff set class

Syntax hints: $\neg \underline{wn} 2 \rightarrow \underline{wi} 3 \leftrightarrow \underline{wb} 144 \land \underline{wa} 221 = \underline{wceq} 989 \in \underline{wcel} 991 \exists \underline{wex} 1013 \neq \underline{wne} 1624 \cup \underline{cun} 2093 \cap \underline{cin} 2094 \otimes \underline{c0} 2328 \{\underline{csn} 2458 \ class class class \underline{wbr} 2683 \cap \underline{csnc} 2967 \exists \underline{csn} 2458 \ class class \underline{class} \underline$

This theorem is referenced by: <u>pm110.643</u> 5057 <u>unpde2eg2</u> 10809

This theorem was proved from axioms: $ax-1 \ 4 \ ax-2 \ 5 \ ax-3 \ 6 \ ax-mp \ 7 \ ax-7 \ 995 \ ax-gen \ 996 \ ax-8 \ 997 \ ax-9 \ 998 \ ax-10 \ 999 \ ax-11 \ 1000 \ ax-12 \ 1001 \ ax-13 \ 1002 \ ax-14 \ 1003 \ ax-17 \ 1004 \ ax-4 \ 1006 \ ax-50 \ 1018 \ ax-60 \ 1011 \ ax-90 \ 1156 \ ax-100 \ 1174 \ ax-16 \ 1244 \ ax-110 \ 1252 \ ax-ext \ 1496 \ ax-rep \ 2759 \ ax-sep \ 2759 \ a$

😕 pm110.643 - Metamath Proof Explorer - Mozilla Firefox		
Elle Edit View History Bookmarks Tools Help		(*)
C X 💩 http://us.metamath.org/mpegf/pm110.643.html	☆ • Google	P
🔎 Most Visited 🌘 Getting Started 🔊 Latest Headlines 🗋 Custonize Links 🗋 Free Hotmail 🗋 http://www.scientific 🖒 Suggested Stes 🗋 Web Sike Gallery 🗋 Windows Marketplace 📄 Windows Marketplace		
Cocycle principle mathematics pdf 🖉 C Search + 🐗 🍁 • M + 🏠 Bookmarks- PapeRank + 🗞 AutoLink, 🗋 AutoLink, 🔁 AutoLink, 🔁 AutoLink, 🔪 AutoLink, 🖌 Cocycle C and C		Settings*
Metamath Proof Explorer		<u>Previous</u> <u>Next ></u> <u>Related theorems</u>

Theorem pm110.643 5057

Unicode version

Description: 1+1=2 for cardinal number addition. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Unlike us, Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 4856), but after applying definitions, our theorem is equivalent. See also the comment for pm54.43 4889. The comment for cdavali 5054 explains why we use \approx instead of =.

Assertion								
Ref	Expression							
m110.643	$\vdash (1_o +_c 1_o) \approx 2_o$							

110 (41

6 701

Step	Нур	Ref	Expression
1		<u>l on</u> 4262	$\dots 4 \vdash 1_{o} \in On$
2	1	<u>elisseti</u> 1860	\ldots \vdash 1 _o \in V
3	2, 2	<u>cdavali</u> 5054	$2 \vdash (1_o +_c 1_o) = ((1_o \times \{\emptyset\}) \cup (1_o \times \{1_o\}))$
4		<u>xp01 disj</u> 4267	$\square : \exists \vdash ((1_o \times \{\varnothing\}) \cap (1_o \times \{1_o\})) = \varnothing$
5		<u>0ex</u> 2777	\dots 5 $\vdash \emptyset \in V$
6	2, 5	<u>xpsnen</u> 4564	$1.14 \vdash (1_o \times \{\emptyset\}) \approx 1_o$
7	2, 2	<u>xpsnen</u> 4564	$1.14 \vdash (1_o \times \{1_o\}) \approx 1_o$
8		<u>pm54.43</u> 4699	$\dots 4 \vdash (((1_o \times \{\varnothing\}) \approx 1_o \land (1_o \times \{1_o\}) \approx 1_o) \to (((1_o \times \{\varnothing\}) \cap (1_o \times \{1_o\})) = \varnothing \leftrightarrow ((1_o \times \{\varnothing\}) \cup (1_o \times \{1_o\})) \approx 2_o))$
9	6, 7, 8	<u>mp2an</u> 700	$\square S \vdash (((1_o \times \{\varnothing\}) \cap (1_o \times \{1_o\})) = \varnothing \leftrightarrow ((1_o \times \{\varnothing\}) \cup (1_o \times \{1_o\})) \approx 2_o)$
10	4, 9	<u>mpbi</u> 187	$2 \vdash ((1_o \times \{\emptyset\}) \cup (1_o \times \{1_o\})) \approx 2_o$
11	3, 10	eqbrtri 2698	$1 \vdash (1_o +_c 1_o) \approx 2_o$

Colors of variables: wff set class

Syntax hints: \leftrightarrow wb 144 = wceq 989 \cup cun 2093 \cap cin 2094 \otimes c0 2328 {csn 2458 class class class class wbr 2683 \cap n con 2695 \times cxp 3239 (class class class class) co 4009 1_o clo 4252 2_o c20 4253 \approx cen 4493 + c ccda 5051

This theorem was proved from axioms: ax-1 4 ax-2 5 ax-3 6 ax-mp 7 ax-7 995 ax-gen 996 ax-8 997 ax-9 998 ax-10 999 ax-11 1000 ax-12 1001 ax-13 1002 ax-14 1003 ax-17 1004 ax-4 1006 ax-50 1008 ax-60 1011 ax-90 1156 ax-100 1174 ax-16 1244 ax-110 1252 ax-ext 1496 ax-rep 2759 ax-sep 2769 ax-nul 2776 ax-pow 2809 ax-pr 2844 ax-un 3079

This theorem depends on definitions: df-bi 145 df-or 222 df-an 223 df-3or 779 df-3an 780 df-ex 1014 df-sb 1206 df-eu 1417 df-mo 1418 df-clab 1502 df-cleg 1507 df-cleg 1507 df-cleg 1507 df-rel 1681 df-rex 1692 df-reu 1683 df-rab 1694 df-y 1854 df-sbc 1983 df-csb 2048 df-dif 2097 df-un 2098 df-in 2099 df-ss 2101 df-nul 2329 df-pw 2451 df-sn 2461 df-pr 2462 df-tp 2464 df-op 2465 df-uni 2561 df-int 2592 df-br 2684 df-opab 2732 df-tr 2746 df-eprel 2889 df-id 2902 df-po 2907 df-so 2919 df-fr 2937 df-we 2952 df-ord 2968 df-on 2969 df-suc 2971 df-xp 3255 df-rel 3256 df-cnv 3257 df-co 3258 df-dn 3259 df-rn 3260 df-res 3261 df-ima 3262 df-fun 3263 df-fn 3264 df-f 3266 df-f1 3266 df-f0 3267 df-f1 3268 df-fv 3269 df-opr 4011 df-oprab 4012 df-10 4257 df-20 4258 df-er 4389 df-en 4497 df-dom 4498 df-sdom 4499 df-cda 5052

Copyright terms: Public domain

× Find: Done

Albert Einstein Bertrand Russell NOTICE TO THE WORLDrenounce war or perish! ...world peace or universal death!

AUDIO MASTERWORKS LPA 1225

Russell's paradox was invented by Russell in 1901 to show that naïve set theory is self-contradictory: Define: set of all sets that do not contain themselves

 $S = \{ T \mid T \notin T \}$ Q: does S contain itself as an element?

 $S \notin S \Leftrightarrow S \in S$ contradiction!

Similar paradoxes:

- "A barber who shaves exactly those who do not shave themselves."
- "This sentence is false."
- "I am lying."
- "Is the answer to this question 'no'?"
- "The smallest positive integer not describable in twenty words or less."

IF YOU CONSIDER THE SET OF ALL SETS THAT HAVE NEVER BEEN CON-SIDERED, WILL IT DISAPPEAR?

Star Trek, 1967, "I, Mudd" episode Captain James Kirk and Harry Mudd use a logical paradox to cause hostile android "Norman" to crash

MY NOSE WILL GROW NOW! AUTHOR KATHARINE GATES RECENTLY ATTEMPTED TO MAKE A CHART OF ALL SEXUAL FETISHES.

LITTLE DID SHE KNOW THAT RUSSELL AND WHITEHEAD HAD ALREADY FAILED AT THIS SAME TASK.

ABOVE Is True

