
Algorithms
Problem Set 2

University of Virginia

Gabriel Robins

Please make all algorithms as efficient as you can, and state their time and space complexities.

1-46. Solve the following problems from the [Cormen, Third Edition, 2009] algorithms textbook:

p. 166: 6.5-9
p. 188: 7-4, 7-6
p. 197: 8.2-4
p. 200: 8.3-2, 8.3-4
p. 204: 8.4-2, 8.4-4
p. 206-207: 8-2, 8-3, 8-4
p. 215: 9.1-1, 9.1-2
p. 223-226: 9.3-1, 9.3-3, 9.3-4, 9.3-5, 9.3-6, 9.3-7, 9.3-8, 9.3-9
p. 236: 10.1-5
p. 240: 10.2-2, 10.2-3, 10.2-7, 10.2-8
p. 248: 10.4-3, 10.4-5
p. 255: 11.1-4
p. 289: 12.1-3
p. 299: 12.3-3, 12.3-4
p. 331-332: 13-1
p. 345: 12.1-8
p. 354-355: 14.3-7. 14-1
p. 397: 15.4-5, 15.4-6
p. 405-410: 15-2, 15-3, 15-5, 15-8
p. 422: 16.1-4
p. 428: 16.2-5
p. 437: 16.3-9
p. 446-447: 16-1

47. Give an algorithm that given a weighted graph, finds a spanning tree having the least possible
product of its edge weights. Name a practical application of this problem.

48. True or false: if all edge weights of a graph are unique, then the MST is unique as well.

49. Give an efficient algorithm for finding the next-to-minimum spanning tree of a weighted graph.

50. The shortest path between two nodes in a weighted graph may be not unique. Give an algorithm

to find a shortest path between two nodes with a minimum number of edges.

51. Prove whether there exist a data structure where the operations INSERT, DELETE, and MIN
each requires O(1) worst-case time each.

52. Does there exist a data structure where add/delete/find require O(1) expected-time and O(log n)
worst-case time?

53. A "probe" at a pair of nodes A and B in a tree T determines whether all edges along the path in T
from A to B are "intact" (e.g., we are looking for "open faults" in an electrical circuit).

a) What is the minimum # of probes (in terms of the # of nodes & leaves of the tree) required to
completely test all edges in a given tree?

b) Give an algorithm that finds such a minimum set of probes for an arbitrary tree.

54. We would like to make a height-balanced binary search tree persistent, in the following sense.
At the end of an arbitrarily long mixed series of node ADD and/or DELETE operations, the state
of the tree after each individual operation is still explicitly represented. After N such arbitrary
ADD and/or DELETE operations are performed (starting with an empty tree), within O(1) time
we can obtain a pointer to the complete tree as it was right after the i

th
 operation, for any given i.

Similarly, we need to support FIND queries on each of the N past versions of the tree, without
asymptotic time penalty over normal tree searches. How can such a scheme be implemented
efficiently, without asymptotically slowing down the worst-case ADD and DELETE times?
What is the space penalty (in terms of N) required to implement this scheme?

55. Give an efficient algorithm that given N points in the plane, determines whether any three of the

points are collinear. What is the time complexity as a function of N?

56. Give an efficient algorithm that given N points in the plane, determines whether any three of the

points are collinear and equally-spaced (along their containing line). What is the time
complexity?

57. Give an efficient algorithm that given N points in the plane, determines a maximum (largest-

cardinality) collinear subset. What is the time complexity?

58. Give an efficient algorithm that given N points in the plane, determines a maximum collinear

equally-spaced subset. What is the time complexity?

59. Give an efficient algorithm that given N points in the plane, determines all maximal collinear
subsets (a maximal collinear subset is one that is not properly contained in any larger collinear
subset).

60. Give an optimal algorithm that given N points in the plane, determines all maximal collinear
equally-spaced subsets. What is the time complexity? What is the time complexity as a function
of N? Prove the optimality of your algorithm.

