Sorting

Almost half of all CPU cycles are spent on sorting!

- **Input**: array X[1..n] of integers
- **Output**: sorted array (permutation of input)

In: 5,2,9,1,7,3,4,8,6
Out: 1,2,3,4,5,6,7,8,9

- Assume WLOG all input numbers are unique
- Decision tree model ⇒ count comparisons “<”
Lower Bound for Sorting

Theorem: Sorting requires $\Omega(n \log n)$ time.

Proof: Assume WLOG unique numbers

$\Rightarrow n!$ different permutations

\Rightarrow comparison decision tree has $n!$ leaves

\Rightarrow tree height $\geq \log (n!) > \log \left(\left(\frac{n}{e} \right)^n \right) = n \cdot \log \left(\frac{n}{e} \right) = \Omega(n \log n)$

$\Rightarrow \Omega(n \log n)$ decisions / time necessary to sort
1. AKS sort
2. Bead sort
3. Binary tree sort
4. Bitonic sorter
5. Block sort
6. Bogosort
7. Bozo sort
8. Bubble sort
9. Bucket sort
10. Burstsort
11. Cocktail sort
12. Comb sort
13. Counting sort
14. Cubesort
15. Cycle sort
16. Flashsort
17. Franceschini's sort
18. Gnome sort
19. Heapsort
20. In-place merge sort
21. Insertion sort
22. Introspective sort
23. Library sort
24. Merge sort
25. Odd-even sort
26. Patience sorting
27. Pigeonhole sort
28. Postman sort
29. Quantum sort
30. Quicksort
31. Radix Sort
32. Sample sort
33. Selection sort
34. Shaker sort
35. Shell sort
36. Simple pancake sort
37. Sleep sort
38. Smoothsort
39. Sorting network
40. Spaghetti sort
41. Splay sort
42. Spreadsort
43. Stooge sort
44. Strand sort
45. Timsort
46. Tree sort
47. Tournament sort
48. UnShuffle Sort
Q: Why so many sorting algorithms?
A: There is no “best” sorting algorithm!

Some considerations:

• Worst case?
• Average case?
• In practice?
• Input distribution?
• Near-sorted data?
• Stability?
• In-situ?
• Randomized?
• Stack depth?
• Internal vs. external?
• Pipeline compatible?
• Parallelizable?
• Locality?
• Online
Problem: Given n pairs of integers (x_i, y_i), where $0 \leq x_i \leq n$ and $1 \leq y_i \leq n$ for $1 \leq i \leq n$, find an algorithm that sorts all n ratios x_i / y_i in linear time $O(n)$.

• What approaches fail?
• What techniques work and why?
• Lessons and generalizations
Problem: Given n integers, find in $O(n)$ time the majority element (i.e., occurring $\geq n/2$ times, if any).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Given n objects, find in $O(n)$ time the majority element (i.e., occurring $\geq n/2$ times, if any), using only equality comparisons ($=$).

• What approaches fail?
• What techniques work and why?
• Lessons and generalizations
Problem: Given \(n \) integers, find both the maximum and the next-to-maximum using the least number of comparisons (exact comparison count, not just \(O(n) \)).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Bubble Sort

Input: array $X[1..n]$ of integers
Output: sorted array (monotonic permutation)

Idea: keep swapping adjacent pairs

until array X is sorted do
 for $i=1$ to $n-1$
 if $X[i+1] < X[i]$
 then swap($X, i, i+1$)

• $O(n^2)$ time worst-case, but sometimes faster
• Adaptive, stable, in-situ, slow
Odd-Even Sort

Input: array X[1..n] of integers
Output: sorted array (monotonic)

Idea: swap even and odd pairs

```plaintext
until array X is sorted do
    for even i=1 to n-1
        if X[i+1]<X[i] swap(X,i,i+1)
    for odd i=1 to n-1
        if X[i+1]<X[i] swap(X,i,i+1)
```

• O(n^2) time worst-case, but faster on near-sorted data
• Adaptive, stable, in-situ, parallel
Selection Sort

Input: array $X[1..n]$ of integers
Output: sorted array (monotonic permutation)

Idea: move the largest to current pos

```
for i=1 to n-1
    let $X[j]$ be largest
    among $X[i..n]$
    swap($X$, i, j)
```

- $\Theta(n^2)$ time worst-case
- Stable, in-situ, simple, not adaptive
- Relatively fast (among quadratic sorts)
Insertion Sort

- **Input**: array \(X[1..n] \) of integers
- **Output**: sorted array (monotonic permutation)

Idea: insert each item into list

```
for i=2 to n
    insert \( X[i] \) into the sorted list \( X[1..(i-1)] \)
```

- \(O(n^2) \) time worst-case
- \(O(nk) \) where \(k \) is max dist of any item from final sorted pos
- **Adaptive**, **stable**, **in-situ**, **online**
Heap Sort

Input: array $X[1..n]$ of integers

Output: sorted array (monotonic)

Idea: exploit a heap to sort

```
InitializeHeap
For i=1 to n HeapInsert(X[i])
For i=1 to n do
    M=HeapMax; Print(M)
    HeapDelete(M)
```

- $\Theta(n \log n)$ optimal time
- **Not** stable, **not** adaptive, in-situ
SmoothSort

Input: array $X[1..n]$ of integers

Output: sorted array (monotone)

Idea: adaptive heapsort

- Uses multiple (Leonardo) heaps
- $O(n \log n)$
- $O(n)$ if list is mostly sorted
- Not stable, adaptive, in-situ

```
InitializeHeaps
for i=1 to n HeapsInsert(X[i])
for i=1 to n do
    M=HeapsMax; Print(M)
    HeapsDelete(M)
```
Historical Perspectives

Edsger W. Dijkstra (1930-2002)

- Pioneered software engineering, OS design
- Invented concurrent programming, mutual exclusion / semaphores
- Invented shortest paths algorithm
- Advocated structured (GOTO-less) code
- Stressed elegance & simplicity in design
- Won Turing Award in 1972
Quotes by Edsger W. Dijkstra (1930-2002)

• “Computer science is no more about computers than astronomy is about telescopes.”

• “If debugging is the process of removing software bugs, then programming must be the process of putting them in.”

• “Testing shows the presence, not the absence of bugs.”

• “Simplicity is prerequisite for reliability.”

• “The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offense.”

• “Object-oriented programming is an exceptionally bad idea which could only have originated in California.”

• “Elegance has the disadvantage, if that's what it is, that hard work is needed to achieve it and a good education to appreciate it.”
Generalizing Heap Sort

Input: array $X[1..n]$ of integers

Output: sorted array

```
InitializeTree
For i=1 to n
   TreeInsert(X[i])
For i=1 to n do
   M=TreeMax; Print(M)
   TreeDelete(M)
```

- **Observation:** other data structures can work here!
- **Ex:** replace heap with any *height-balanced* tree
- **Retains** $O(n \log n)$ worst-case time!
Tree Sort

Input: array $X[1..n]$ of integers

Output: sorted array (monotonic)

Idea: populate a tree & traverse

- InitializeTree
- for $i=1$ to n TreeInsert($X[i]$)
- traverse tree in-order
to produce sorted list

- Use balanced tree (AVL, B, 2-3, splay)
- $O(n \log n)$ time worst-case
- Faster for near-sorted inputs
- Stable, adaptive, simple
B-Tree Sort

- Multi-rotations occur infrequently
- Rotations don’t propagate far
- Larger tree \Rightarrow fewer rotations
- Same for other height-balanced trees
- Non-balanced search trees average $O(\log n)$ height
AVL-Tree Sort

- Multi-rotations occur infrequently
- Rotations don’t propagate far
- Larger tree \Rightarrow fewer rotations
- Same for other height-balanced trees
- Non-balanced trees average $O(\log n)$ height
Merge Sort

Input: array X[1..n] of integers
Output: sorted array (monotonic)

Idea: sort sublists & merge them

```
MergeSort(X,i,j)
    if i<j then m=floor((i+j)/2)
        MergeSort(X,i..m)
        MergeSort(X,m+1..j)
        Merge(X,i..m,m+1..j)
```

- \(T(n)=2T(n/2)+n=\Theta(n \log n) \) optimal!
- Stable, parallelizes, not in-situ
- Can be made in-situ & stable
Theorem: MergeSort runs within time $\Theta(n \log n)$ which is optimal.

Proof: Even-split divide & conquer:

$$T(n) = 2 \cdot T(n/2) + n$$

<table>
<thead>
<tr>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/2</td>
</tr>
<tr>
<td>n/2</td>
</tr>
<tr>
<td>n/4</td>
</tr>
<tr>
<td>n/4</td>
</tr>
<tr>
<td>n/4</td>
</tr>
<tr>
<td>n/4</td>
</tr>
<tr>
<td>n/8</td>
</tr>
<tr>
<td>n/8</td>
</tr>
<tr>
<td>n/4</td>
</tr>
<tr>
<td>n/4</td>
</tr>
<tr>
<td>n/4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

n total / level

\Rightarrow log n levels of recursion

Total time is $O(n \log n)$; $\Omega(n \log n) \Rightarrow \Theta(n \log n)$
Quicksort

Input: array $X[1..n]$ of integers
Output: sorted array (monotonic)

Idea: sort two sublists around pivot

```
QuickSort(X,i,j)  
    If i<j Then p=Partition(X,i,j)  
    QuickSort(X,i,p)  
    QuickSort(X,p+1,j)
```

- $\Theta(n \log n)$ time average-case
- $\Theta(n^2)$ worst-case time (rare)
- **Unstable**, parallelizes, $O(\log n)$ space
- Ave: only beats $\Theta(n^2)$ sorts for $n>40$
Shell Sort

Input: array X[1..n] of integers

Output: sorted array (monotonic)

Idea: generalize insertion sort

for each h_i in sequence $h_k, \ldots, h_1 = 1$

Insertion-sort all items h_i apart

- Array is sorted after last pass ($h_i = 1$)
- Long swaps quickly reduce disorder
- $O(n^2), O(n^{3/2}), O(n^{4/3}), \ldots$?
- Complexity still open problem!
- LB is $\Omega(N(\log/\log \log n)^2)$
- Not stable, adaptive, in-situ
Counting Sort

Input: array $X[1..n]$ of integers in small range $1..k$

Output: sorted array (monotonic)

Idea: use values as array indices

```plaintext
for $i=1$ to $k$ do $C[i] = 0$
for $i=1$ to $n$ do $C[X[i]]++$
for $i=1$ to $k$ do if $C[i] \neq 0$ then print($i$) $C[i]$ times
```

- $\Theta(n)$ time, $\Theta(k)$ space
- Not comparison-based
- For specialized data only
- Stable, parallel, not in-situ
Q: Why not use counting sort for arbitrary 32-bit integers? (i.e., range k is “fixed”)

A: Range is fixed (2^{32}) but very large (4,294,967,296). Space/time: the counts array will be huge (4 GB)

Much worse for 64-bit integers ($2^{64} > 10^{19}$):

Time: 5 GHz PC will take over $2^{64} / (5 \cdot 10^9) / (60 \cdot 60 \cdot 24 \cdot 365)$ sec > 116 years to initialize array!

Memory: $2^{64} > 10^{19} > 18$ Exabytes > 2.3 million TB RAM chips! > total amount of Google’s data!

Q: What’s an Exabyte? (10^{18})
What does an Exabyte look like?

- All content of Library of Congress: ~ 0.001 Exabytes
- Total words *ever spoken* by humans: ~ 5 Exabytes
- Total data stored by Google: ~ 15 Exabytes
- Total monthly world internet traffic: ~ 110 Exabytes
- Storage capacity of 1 gram of DNA: ~ 455 Exabytes
Orders-of-Magnitude

Standard International (SI) quantities:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Exponent</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deca</td>
<td>10^1</td>
<td></td>
</tr>
<tr>
<td>Hecto</td>
<td>10^2</td>
<td></td>
</tr>
<tr>
<td>Kilo</td>
<td>10^3</td>
<td></td>
</tr>
<tr>
<td>Mega</td>
<td>10^6</td>
<td></td>
</tr>
<tr>
<td>Giga</td>
<td>10^9</td>
<td></td>
</tr>
<tr>
<td>Tera</td>
<td>10^{12}</td>
<td></td>
</tr>
<tr>
<td>Peta</td>
<td>10^{15}</td>
<td></td>
</tr>
<tr>
<td>Exa</td>
<td>10^{18}</td>
<td></td>
</tr>
<tr>
<td>Zetta</td>
<td>10^{21}</td>
<td></td>
</tr>
<tr>
<td>Yotta</td>
<td>10^{24}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deci</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>Centi</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Milli</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>Micro</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Nano</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>Pico</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>Femto</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>Atto</td>
<td>10^{-18}</td>
</tr>
<tr>
<td>Zepto</td>
<td>10^{-21}</td>
</tr>
<tr>
<td>Yocto</td>
<td>10^{-24}</td>
</tr>
</tbody>
</table>
Orders-of-Magnitude

- “Powers of Ten”, Charles and Ray Eames, 1977
Orders-of-Magnitude

• “Scale of the Universe”, Cary and Michael Huang, 2012

Giant Earthworm

- 10^{-24} to 10^{26} meters \Rightarrow 50 \text{ orders of magnitude!}
Bucket Sort

Input: array $X[1..n]$ of real numbers in $[0,1]$

Output: sorted array (monotonic)

Idea: spread data among buckets

```plaintext
for i=1 to n do
    insert $X[i]$ into bucket $\lfloor n \cdot X[i] \rfloor$
for i=1 to n do Sort bucket i
concatenate all the buckets
```

- $O(n+k)$ time expected, $O(n)$ space
- $O(\text{Sort})$ time worst-case
- Assumes substantial data uniformity
- Stable, parallel, not in-situ
- Generalizes counting sort / quicksort
Q: How does bucket sort generalize counting sort? Quicksort?
Radix Sort

Input: array X[1..n] of integers each with d digits in range 1..k

Output: sorted array (monotonic)

Idea: sort each digit in turn

For i=1 to d do
StableSort(X on digit i)

- Makes d calls to **bucket sort**
- $\Theta(d \cdot n)$ time, $\Theta(k+n)$ space
- Not comparison-based
- **Stable**
- Parallel
- Not in-situ
Radix Sort

| 6428 | 4754 | 9650 | 5650 | 9843 | 7118 | 8804 | 3871 | 6592 | 1163 | 2899 | 9602 |

Q: is **Radix Sort** faster than **Merge Sort**? \(\Theta(d \cdot n) \) vs. \(\Theta(n \log n) \)
Sorting Comparison

- **O(n log n)** sorts tend to beat the **O(n^2)** sorts (n>50)
- Some sorts work faster on random data vs. near-sorted data
- For more details see http://www.sorting-algorithms.com
Meta Sort

Q: how can we easily modify quicksort to have O(n log n) worst-case time?

Idea: combine two algorithms to leverage the best behaviors of each one.

MetaSort(X,i,j):

parallel-run:
 • QuickSort(X,i,j)
 • MergeSort(X,i,j)

when either stops, abort the other

• Ave-case time is Min of both: O(n log n)
• Worst-case time is Min of both: O(n log n)
• Meta-algorithms / meta-heuristics generalize!

“Two heads are better than one”!
“The Sound of Sorting” (15 algorithms)

- Sound **pitch** is proportional to **value** of current sort element sorted!

https://www.youtube.com/watch?v=kPRA0W1kECg
Problem: Given n pairs of integers (x_i, y_i), where $0 \leq x_i \leq n$ and $1 \leq y_i \leq n$ for $1 \leq i \leq n$, find an algorithm that sorts all n ratios x_i / y_i in linear time $O(n)$.

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Given n integers, find in $O(n)$ time the majority element (i.e., occurring $\geq n/2$ times, if any).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Given n objects, find in $O(n)$ time the majority element (i.e., occurring $\geq n/2$ times, if any), using only equality comparisons ($=$).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Given n integers, find both the maximum and the next-to-maximum using the least number of comparisons (exact comparison count, not just $O(n)$).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Finding the Minimum
Finding the Minimum

Input: array $X[1..n]$ of integers
Output: minimum element

Theorem: $\Omega(n)$ time is necessary to find Min.

Proof 1: each element must be examined at least once, otherwise we may miss the true minimum. Therefore $\Omega(n)$ work is required.

Proof 2: Assume a correct min-finding algorithm didn’t examine element X_i for some array X. Then the same algorithm will be wrong on X with X_i replaced with say -10^{100}. Non-existence argument!
Finding the Minimum

Every input must be examined linear time lower bound!
Finding the Minimum

Input: array $X[1..n]$ of integers
Output: minimum element
Idea: keep track of the best-so-far

Min = $X[1]$
for $i = 2$ to n
 if $X[i] < \text{min}$ then $\text{min} = X[i]$

• Exact comparison count: $n-1$

Theorem: $n-1$ comparisons are sufficient for finding the minimum.

Corollary: This $\Theta(n)$-time algorithm is optimal.

Q: What about finding the maximum?
Finding the Minimum

Q: Can we do better than $n-1$ comparisons?

Theorem: $n/2$ comparisons are necessary for finding the minimum.

Idea: must examine all n inputs!

Proof: each element must participate in at least 1 comparison (otherwise we may miss e.g. -10^{100}).

- Each comparison involves 2 elements
- At least $n/2$ comparisons are necessary

Q: Can we improve lower bound up to $n-1$?
Finding the Minimum

Theorem: \(n-1 \) comparisons are necessary for finding the minimum (or maximum).

Idea: keep track of “knowledge” gained!

Proof: consider two classes of elements:

- At each comparison, at most 1 element moves from “unknown” to “won (Min)”.
- At least \(n-1 \) moves / comparisons are necessary to convert the initial state into the final state.

Corollary: The \((n-1)\)-comparison algorithm is optimal.
Finding the Min and Max

Input: array $X[1..n]$ of integers
Output: minimum and maximum elements
Idea: find Min independently from Max

FindMin(X)
FindMax(X) ≡ FindMin$(-X)$

- $n-1$ comparisons to find Min
- $n-1$ comparisons to find Max
- Total $2n-2$ comparisons needed

Observation: much information is discarded!

Q: Can we do better than $2n-2$ comparisons?
Finding the Min and Max

Input: array X[1..n] of integers
Output: minimum and maximum elements
Idea: pairwise compare to reduce work

Theorem: \(3n/2-2\) comparisons are sufficient for finding the minimum and maximum.

Diagram:
- Max \((n/2 \text{ Max values}) \Rightarrow n/2-1 \text{ comparisons}\)
- Min \((n/2 \text{ Min values}) \Rightarrow n/2-1 \text{ comparisons}\)
Finding the Min and Max

Theorem: $3n/2 - 2$ comparisons are necessary for finding the minimum and maximum.

Idea: keep track of “knowledge” gained!

Proof: consider four classes of elements:

- Not tested
- Only won
- Only lost
- Won & lost

Initial state:
- Not tested: n
- Only won: 0
- Only lost: 0
- Won & lost: 0

Final state:
- Not tested: 0
- Only won: 1
- Only lost: 1
- Won & lost: $n-2$

Min

Max
Finding the Min and Max

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Result</th>
<th>Minimum Guaranteed Knowledge Gained</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N < N \Rightarrow L & W)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(N < W \Rightarrow L & W)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(N < L \Rightarrow L & B)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(N < B \Rightarrow L & B)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(W < W \Rightarrow B & W)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(W < L \Rightarrow B & B)</td>
<td>0</td>
<td>“moves” towards final state</td>
</tr>
<tr>
<td>(W < B \Rightarrow B & B)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(L < L \Rightarrow L & B)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(L < B \Rightarrow L & B)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(B < B \Rightarrow B & B)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Moving from N to B forces passing through W or L
Emptying N into W & L takes n/2 comparisons
Emptying most of W takes n/2-1 comparisons
Emptying most of L takes n/2-1 comparisons
Other moves will not reach the “final state” any faster
Total comparisons required: 3n/2 - 2
\[3n/2 - 2 \] comparisons are necessary for finding the minimum and maximum.

Theorem: Our Min & Max algorithm is optimal.
Problem: Given n integers, find both the maximum and the next-to-maximum using the least number of comparisons (exact comparison count, not just $O(n)$).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Finding the Max and Next-to-Max

Theorem: \((n-2) + \log n\) comparisons are sufficient for finding the maximum and next-to-maximum.

Proof: consider elimination tournament:

```
1 2 ... ... n
```

maximal comparisons

\((\log n) - 1\) comparisons

```
max
```

Theorem: \((n-2) + \log n\) comparisons are necessary for finding the maximum and next-to-maximum.
Selection (Order Statistics)

Input: array $X[1..n]$ of integers and i

Output: i^{th} largest integer

Obvious: i^{th}-largest subroutine can find median since median is the special case $(n/2)^{th}$-largest

Not obvious: repeat medians can find i^{th} largest:

Two cases:

1. $i < n/2 \Rightarrow$ find i^{th} largest
2. $i > n/2 \Rightarrow$ find $(i-n/2)^{th}$ largest
Selection (Order Statistics)

Run time for i^{th} largest: $T(n) = T(n/2) + M(n)$
where $M(n)$ is time to find median

- Finding median in $O(n \log n)$ time is easy (why?)
- Assume $M(n) = c \cdot n = O(n)$
 \[\Rightarrow T(n) < c \cdot (n + n/2 + n/4 + n/8 + \ldots) \]
 \[< c \cdot (2n) = O(n) \]

Conclusion: linear-time median algorithm automatically yields linear-time i^{th} selection!

New goal: find the median in $O(n)$ time!

Recurse!

\[\begin{array}{cccccccccc}
1 & 2 & \ldots & \ldots & n/2-1 & n/2 & \ldots & \ldots & n-1 & n \\
\end{array} \]

$i < n/2 \Rightarrow$ find i^{th} largest or $i > n/2 \Rightarrow$ find $(i-n/2)^{th}$ largest
QuickSelect (ith-Largest)

Idea: partition around pivot and recurse

\[X: \begin{array}{cccccccc}
p & p+1 & \ldots & q & q+1 & \ldots & r-1 & r \\
k=q-p+1 \text{ elements} & & & & \text{r} - q \text{ elements} & & & \\
i < k \Rightarrow \text{QuickSelect i}^{\text{th}} \text{ largest or} & & & & i > k \Rightarrow \text{QuickSelect (i-k)}^{\text{th}} \text{ largest} & & & \\
\end{array} \]

\[
\text{QuickSelect}(X,p,r,i) \\
\hspace{1em} \text{if } p == r \text{ then return}(X[p]) \\
\hspace{1em} q = \text{RandomPartition}(X,p,r) \\
\hspace{1em} k = q - p + 1 \\
\hspace{1em} \text{If } i \leq k \text{ then return}(\text{QuickSelect}(X,p,q,i)) \\
\hspace{1em} \text{else return}(\text{QuickSelect}(X,q+1,r,i-k))
\]

- \(O(n)\) time average-case (analysis like QuickSort’s)
- \(\Theta(n^2)\) worst-case time (very rare)
Median in Linear Time

Idea: quickly eliminate a constant fraction & repeat

[Blum, Floyd, Pratt, Rivest, and Tarjan, 1973]

• Partition into \(\frac{n}{5} \) groups of 5 each
• Sort each group (high to low)
• Compute median of medians (recursively)
• Move columns with larger medians to right
• Move columns with smaller medians to left
Median in Linear Time

Idea: quickly eliminate a constant fraction & repeat

[Blum, Floyd, Pratt, Rivest, and Tarjan, 1973]

- > 3/10 of elements larger than median of medians
- > 3/10 of elements smaller than median of medians
- Partition all elements around median of medians
- Each partition contains at most $7n/10$ elements
- Recurse on the proper partition (like in QuickSelect)
Median in Linear Time

Idea: quickly eliminate a constant fraction & repeat

[Blum, Floyd, Pratt, Rivest, and Tarjan, 1973]

\[T(n) = T(n/5) + T(7n/10) + O(n) \]

\[= T(2n/10) + T(7n/10) + O(n) \]

\[\leq T(2n/10 + 7n/10) + O(n) \] since \(T(n) = \Omega(n) \)

\[= T(9n/10) + O(n) \Rightarrow T(n) = O(n) \]

- Median is found in \(\Theta(n) \) time worst-case!

Large constant overhead!
Median selection in $Q(n)$ time worst-case.

Exact upper bounds: $< 24n, 5.4n, 3n, 2.95n, \ldots + o(n)$

Exact lower bounds: $> 1.5n, 1.75n, 1.8n, 1.837n, 2n, \ldots + O(1)$

Closing this comparisons gap further is still an open problem!