Problem: Can 5 test tubes be spun simultaneously in a 12-hole centrifuge in a balanced way?

• What approaches fail?
• What techniques work and why?
• Lessons and generalizations
Algorithms (CS6161) Textbook

Textbook:

Introduction to Algorithms

by Cormen et al (MIT)

Introduction to Algorithms
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
Third Edition

Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, and substantial additions to the chapter on recurrences (now called "Divide-and-Conquer"). It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many new exercises and problems have been added for this edition.

As of the third edition, this textbook is published exclusively by the MIT Press.

Thomas H. Cormen is Professor of Computer Science and former Director of the Institute for Writing and Rhetoric at Dartmouth College. Charles E. Leiserson is Professor of Computer Science and Engineering at MIT. Ronald L. Rivest is Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT. Clifford Stein is Professor of Industrial Engineering and Operations Research at Columbia University.

“In light of the explosive growth in the amount of data and the diversity of computing applications, efficient algorithms are needed now more than ever. This beautifully written, thoughtfully organized book is the definitive introductory book on the design and analysis of algorithms. The first half offers an effective method to teach and study algorithms; the second half then engages more advanced readers and curious students with compelling material on both the possibilities and the challenges in this fascinating field.”
—Shang-Hua Teng, University of Southern California

“Introduction to Algorithms, the ‘bible’ of the field, is a comprehensive textbook covering the full spectrum of modern algorithms: from the fastest algorithms and data structures to polynomial-time algorithms for seemingly intractable problems, from classical algorithms in graph theory to special algorithms for string matching, computational geometry, and number theory. The revised third edition notably adds a chapter on van Emde Boas trees, one of the most useful data structures, and on multithreaded algorithms, a topic of increasing importance.”
—Daniel Spielman, Department of Computer Science, Yale University

“As an educator and researcher in the field of algorithms for over two decades, I can unequivocally say that the Cormen book is the best textbook that I have ever seen on this subject. It offers an incisive, encyclopedic, and modern treatment of algorithms, and our department will continue to use it for teaching at both the graduate and undergraduate levels, as well as a reliable research reference.”
—Gabriel Robins, Department of Computer Science, University of Virginia

Algorithms (CS6161) Textbook

Supplemental reading:

How to Solve It, by George Polya (MIT)

Princeton University Press, 1945

• A classic on problem solving

Good Articles / videos:

www.cs.virginia.edu/robins/CS_readings.html

George Polya (1887-1985)
SCHOOL OF OLOGY

ANTHROP 301
ARCHAEO 126
BACTERI 104
BI 326
ENTOM 217
ETYM 221
GE 204
PALEONT 113
PHYSI 312
PSYCH 204
TOXIC 307
Algorithms Syllabus

Fundamentals:

• History of algorithms
• Problem solving
• Pigeon-hole principle
• Occam's razor
• Uncomputability
• Universality
• Asymptotic complexity
• Set theory and logic
Data structures:

- Arrays
- Stacks and queues
- Linked lists
- Binary and general trees
- Height-balanced trees
- Heaps
- Hash tables
Algorithms Syllabus

Sorting and searching:

• Classical sorting methods
• Specialized sorting techniques
• Finding max & min
• Median finding and K^{th} selection
• Majority detection
• Meta algorithms
Algorithms Syllabus

Computational geometry:
• Convex hulls
• Lower bounds
• Line segment intersection
• Planar subdivision search
• Voronoi diagrams
• Nearest neighbors
• Geometric minimum spanning trees
• Delaunay triangulations
• Distance between convex polygons
• Triangulation of polygons
• Collinear subsets
Algorithms Syllabus

Graph algorithms:

- Depth-first search
- Breadth-first search
- Minimum spanning trees
- Shortest paths trees
- Radius-cost tradeoffs
- Steiner trees
- Degree-constrained trees
Algorithms Syllabus

NP-completeness:
- Resource-constrained computation
- Complexity classes
- Intractability
- Boolean satisfiability
- Cook-Levin theorem
- Transformations
- Graph clique problem
- Independent sets
- Hamiltonian cycles
- Colorability problems
- Heuristics
Algorithms Syllabus

Other topics in algorithms:

• Linear programming
• Matrix multiplication
• String matching
• Minimum matchings
• Network flows
• Distributed algorithms
• Amortized analysis
• Zero knowledge proofs
Overarching Philosophy

• Focus on the “big picture” & “scientific method”
• Emphasis on problem solving & creativity
• Discuss applications & practice
• A primary objective: have fun!
Algorithms Throughout History

A brief history of computing:

• Aristotle, **Euclid**, Archimedes, Eratosthenes
• Abu Ali al-Hasan ibn al-Haytham
• Fibonacci, Descartes, Fermat, Pascal
• Newton, Euler, Gauss, Hamilton
• Boole, De Morgan, Babbage, Ada Agusta
• Venn, Carroll, Cantor, Hilbert, Russell
• Hardy, Ramanujan, Ramsey
• Godel, Church, Turing, von Neumann
• Shannon, Kleene, Chomsky
An Ancient Computer: The Antikythera

- Oldest known mechanical computer
- Built around 150-100 BCE!
- Calculates eclipses and astronomical positions of sun, moon, and planets
- Very sophisticated for its era
- Contains dozens of intricate gears
- Comparable to 1700’s Swiss clocks
- Has an attached “instructions manual”
- Still the subject of ongoing research
Prerequisites

- Some **discrete math & algorithms** knowledge
- Ideally, should have taken CS4102
- Course will “bootstrap” (albeit quickly) from **first principles**
- Critical: **Tenacity**, patience
Course Organization

- **Exams**: probably take home
 - Decide by vote
 - Flexible exam schedule
- **Problem sets**:
 - Lots of problem solving
 - **Work in groups!**
 - Not formally graded
 - Many exam questions will come from homeworks!
- **Project** and demo
- **Extra credit** problems
 - In class & take-home
 - Find mistakes in slides, handouts, etc.
- **Course materials posted on Web site**
 www.cs.virginia.edu/robins/algorithms
Grading Scheme

- Attendance 10%
- Readings 20%
- Midterm 20%
- Final 20%
- Project 30%
- Extra credit 10%

Total: 110% +

Best strategy:
- Solve lots of problems!
- Do lots of readings / EC!
- “Ninety percent of success is just showing up.” – Woody Allen
Cheating Policy

- Cheating / plagiarism is strictly prohibited
- Serious penalties for violators
- Please review the UVa Honor Code
- Examples of Cheating / plagiarism:
 - Mass-copying of solutions from others / Web
 - Mass-sharing of solutions with others / Web
 - Cutting-and-pasting from other people / Web
 - Copying article/book/movie reviews from people / Web
 - Other people / Web solving entire problems for you
 - Providing other people / Web with verbatim solutions
 - This list is not exhaustive!

- We have automated cheating / plagiarism detection tools!
- We encourage collaborations / brainstorming
- Lets keep it positive (and not play “gotcha”)

Midway through the exam, Allen pulls out a bigger brain.
Contact Information

Professor Gabriel Robins
Office: 406 Rice Hall
Phone: (434) 982-2207
Email: robins@cs.virginia.edu
Web: www.cs.virginia.edu/robins
 www.cs.virginia.edu/robins/algorithms

Office hours: right after class
• Any other time
• **By email** (preferred)
• By appointment
• Q&A blog posted on class Web site
Course Readings
www.cs.virginia.edu/robins/CS_readings.html

Goal: broad exposure to lots of cool ideas & technologies!

- **Required**: total of at least 20 items over the semester
- Diverse categories: videos / Web sites / papers / books
- More than 20 total is even better! (extra credit)
- Pace: minimum two per week, and maximum two per day
- Don’t procrastinate!
- Email all submissions to: homework.cs6161@gmail.com
Required Readings
www.cs.virginia.edu/robins/CS_readings.html

• **Required videos**:
 – *Last Lecture*, Randy Pausch, 2007
 – *Time Management*, Randy Pausch, 2007
 – *Powers of Ten*, Charles and Ray Eames, 1977
Required Readings
“Scale of the Universe”, Cary and Michael Huang, 2012

- 10\(^{-24}\) to 10\(^{26}\) meters \(\Rightarrow\) 50 orders of magnitude!
Required Readings
www.cs.virginia.edu/robins/CS_readings.html

• More required videos:
 – Claude Shannon - Father of the Information Age, UCTV
 – The Pattern Behind Self-Deception, Michael Shermer, 2010
Required Readings
www.cs.virginia.edu/robins/CS_readings.html

• Required articles:
 – Decoding an Ancient Computer, Freeth, 2009
 – Alan Turing’s Forgotten Ideas, Copeland and Proudfoot, 1999
 – You and Your Research, Richard Hamming, 1986
 – Who Can Name the Bigger Number, Scott Aaronson, 1999
BENEDICT CUMBERBATCH IS OUTSTANDING

THE BEST BRITISH FILM OF THE YEAR

AN INSTANT CLASSIC

A SUPERB THRILLER

THE IMITATION GAME

BASED ON THE INCREDIBLE TRUE STORY

IN CINEMAS NOVEMBER 14

Extra credit!
Basic Concepts and Notation

Gabriel Robins

"When I use a word," Humpty Dumpty said, in a rather scornful tone, "it means just what I choose it to mean -- neither more nor less."

A set is formally an undefined term, but intuitively it is a (possibly empty) collection of arbitrary objects. A set is usually denoted by curly braces and some (optional) restrictions. Examples of sets are \{1,2,3\}, \{hi, there\}, and \{k \mid k \text{ is a perfect square}\}. The symbol \(\in\) denotes set membership, while the symbol \(\notin\) denotes set non-membership; for example, \(7 \in \{p \mid p \text{ prime}\}\) states that 7 is a prime number, while \(q \notin \{0,2,4,6,\ldots\}\) states that q is not an even number.

Some common sets are denoted by special notation:

The **natural numbers**: \(\mathbb{N} = \{1,2,3,\ldots\}\)

The **integers**: \(\mathbb{Z} = \{\ldots,-3,-2,-1,0,1,2,3,\ldots\}\)

The **rational numbers**: \(\mathbb{Q} = \left\{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\right\}\)

The **real numbers**: \(\mathbb{R} = \{x \mid x \text{ is a real number}\}\)

The **empty set**: \(\emptyset = \{}\)}
Johannes Kepler's Uphill Battle

"...so, you see, the orbit of a planet is elliptical.

What's an orbit?

What's a planet?

What's 'elliptical'?"
Discrete Math Review Slides

Symbolic Logic
- **Def**: *proposition* - statement either true (T) or false (F)
 - Ex: `1 + 1 = 2`
 - `2 + 2 = 3`
 - `3 < 7`
 - `x > 4 = 5`
 - "today is Monday"

Boolean Functions
- "and" `∧`
- "or" `∨`
- "not" `¬`
- "not" `⊕`
- "nand" `¬∧`
- "nor" `¬∨`
- "implies" `⇒`
- "equivalence" `⇔`

Logical Implication
- "implies" `⇒`
- Truth table:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p⇒q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Logical Equivalence
- "bi-conditional" `⇔`
- "if and only if" "(iff)"
- "necessary and sufficient"
- "logically equivalent"
- Truth table:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p=q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Predicates
- **Def**: *predicate* - a function or formula involving some variables
- Ex: `P(x) = "x > 3"`
 - `x` is the variable
 - `x > 3` is the predicate
 - `P(5)`
 - `P(1)`
- Ex: `Q(x,y) = "x^2 + y^2 = x^2 + y^2"`
 - `Q(2,3,4)
 - `Q(3,4,5)`

Quantifiers
- **Universal**: "for all" `∀`
 - `∀x P(x)`
 - `∀x < x + 1`
- **Existential**: "there exists" `∃`
 - `∃x P(x)`
 - `∃x x < x`

Sets
- **Def**: set - an unordered collection of elements
- Ex: `{1,2,3,4}`
 - `∅` is the empty set
- **Venn diagram**

Common Sets
- **Naturals**: \(N = \{1, 2, 3, 4, \ldots\}\)
- **Integers**: \(Z = \{-\ldots, -2, -1, 0, 1, 2, \ldots\}\)
- **Rationals**: \(Q = \{a/b \mid a, b \in \mathbb{Z}, b \neq 0\}\)
- **Reals**: \(\mathbb{R} = \{x \mid x \text{ is a real number}\}\)
- **Empty set**: \(\emptyset = \{\}\)

Subsets
- **Subset notation**: \(S \subseteq T\)
 - `S ⊆ T ⇔ (x ∈ S ⇒ x ∈ T)`

Intersection
- `S ∩ T = \{x \mid x ∈ S ∧ x ∈ T\}`

Function Types
- **1-to-1 Correspondence**: \(f: S \rightarrow T\)
 - `f` is both 1-1 and onto

Infinite Sets
- ** Infinite set**: \(S = k \forall k \in \mathbb{Z}\)
 - `\exists 1-1 corre: f: S→T, S→T`
- **Union**: \(S_1 ∪ S_2 = \{x \mid x ∈ S_1 ∨ x ∈ S_2\}\)

DeMorgan's Laws
- **Boolean logic version**: \((X\cap Y) = X\cap Y\)
- **Concrete logic version**: \((X∩Y) = X\cap Y\)

Additional Resources
- [Discrete Math Review Slides](http://www.cs.virginia.edu/robins/cs6161/discrete_math_review_slides.pdf)
Required Readings
www.cs.virginia.edu/robins/CS_readings.html

- **Required books:**
 - “How to Solve It”, Polya, 1957
 - “Infinity and the Mind”, Rucker, 1995
 - “Godel, Escher, Bach”, Hofstadter, 1979
 - “What If”, Munroe, 2014
Required Readings

www.cs.virginia.edu/robins/CS_readings.html

• 20 required readings, including all red font – marked ones
• Remaining videos / articles / books are “electives”
• Pacing: intended to help you avoid “cramming”
 • at least 2 submissions per week (due 5pm each Monday)
 • at most 2 submissions per day
• Min length: 2 paragraphs per article / video
 2 pages per book
• Books are worth more credit than articles / videos
• Email all submissions to: homework.cs6161@gmail.com
• Additional readings beyond 20 are welcome! (extra credit)
Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

• **Theory and Algorithms:**
 – *Who Can Name the Bigger Number*, Scott Aaronson, 1999
Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

• Biological Computing:
 – Big Lab on a Tiny Chip, Charles Choi, Scientific American, October 2007, pp. 100-103.

Email all submissions to: homework.cs6161@gmail.com
Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

• Quantum Computing:
 – Black Hole Computers, Seth Lloyd and Jack Ng, Scientific American, November 2004, pp. 52-61.
Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

• **History of Computing:**

• **Security and Privacy:**
Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

• Future of Computing:
 – Ballbots, Ralph Hollis, Scientific American, October 2006, pp. 72-77.
Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

• The Web:

• The Wikipedia Computer Science Portal:
 – Theory of computation and Automata theory
 – Formal languages and grammars
 – Chomsky hierarchy and the Complexity Zoo
 – Regular, context-free & Turing-decidable languages
 – Finite & pushdown automata; Turing machines
 – Computational complexity
 – List of data structures and algorithms

Email all submissions to: homework.cs6161@gmail.com
Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

- The Wikipedia Math Portal:
 - Problem solving
 - List of Mathematical lists
 - Sets and Infinity
 - Discrete mathematics
 - Proof techniques and list of proofs
 - Information theory & randomness
 - Game theory

- Mathematica's “Math World”

Email all submissions to: homework.cs6161@gmail.com
THE PROBLEM WITH WIKIPEDIA:

TACOMA NARROWS BRIDGE
 ◦ SUSPENSION BRIDGE
 ◦ STRUCTURAL COLLAPSE

[THREE HOURS OF FASCINATED CLICKING]

[Diagram showing links:
 - 24-HOUR ANALOG DIAL
 - LESBIANISM IN EROTICA
 - BATMAN
 - FATAL HILARITY
 - TAYLOR HANSON
 - COTTON
 - T-SHIRT
 - WET T-SHIRT CONTEST

WIKIFRIENDS:

I REALLY LIKED THAT MOVIE.

I HATED THAT MOVIE.

ME TOO.
Good Advice

• Ask questions ASAP
• Solve problems ASAP
• Work in study groups
• Do not fall behind
• “Cramming” won’t work
• Do lots of extra credit
• Attend every lecture
• Visit class Website often
• Solve lots of problems
Goal: Become a more effective problem solver!

Email all submissions to: homework.cs6161@gmail.com
Problem: Can 5 test tubes be spun simultaneously in a 12-hole centrifuge in a balanced way?

- What does “balanced” mean?
- Why are 3 test tubes balanced?
- Symmetry!
- Can you merge solutions?
- Superposition!
- Linearity! $f(x + y) = f(x) + f(y)$
- Can you spin 7 test tubes?
- Complementarity!
- Empirical testing…
Problem: $1 + 2 + 3 + 4 + \ldots + 100 = ?$

Proof: Induction…

$$1 + 2 + 3 + \ldots + 99 + 100$$

$$100 + 99 + 98 + \ldots + 2 + 1$$

$$101 + 101 + 101 + \ldots + 101 + 101 = 100*101$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
Drawbacks of Induction

- You must a priori know the formula / result
- Easy to make mistakes in inductive proof
- Mostly “mechanical” – ignores intuitions
- Tedious to construct
- Difficult to check
- Hard to understand
- Not very convincing
- Generalizations not obvious
- Does not “shed light on truth”
- Obfuscates connections

Conclusion: only use induction as a last resort! (i.e., rarely)
Problem: \((1/4) + (1/4)^2 + (1/4)^3 + (1/4)^4 + \ldots = ?\)

\[
\sum_{i=1}^{\infty} \frac{1}{4^i} = ?
\]

Extra Credit:
Find a short, geometric, induction-free proof.
Problem: \((1/4) + (1/4)^2 + (1/4)^3 + (1/4)^4 + \ldots = ?\)

Find a short, geometric, induction-free proof.

\[
\sum_{i=1}^{\infty} \frac{1}{4^i} = \frac{1}{3}
\]
Problem: \((1/8) + (1/8)^2 + (1/8)^3 + (1/8)^4 + \ldots = ?\)

\[
\sum_{i=1}^{\infty} \frac{1}{8^i} = ?
\]

Extra Credit:
Find a short, geometric, induction-free proof.
Problem: \((1/8) + (1/8)^2 + (1/8)^3 + (1/8)^4 + \ldots = ? \)

Find a short, geometric, induction-free proof.

\[
\sum_{i=1}^{\infty} \frac{1}{8^i} = \frac{1}{7}
\]
Problem: $1^3 + 2^3 + 3^3 + 4^3 + \ldots + n^3 = ?$

$$\sum_{i=1}^{n} i^3 = ?$$

Extra Credit: find a short, geometric, induction-free proof.
Problem: Can an 8x8 board with two opposite corners missing be tiled with 31 dominoes?

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Given any five points in/on the unit square, is there always a pair with distance ≤ $\frac{1}{\sqrt{2}}$?

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Given any five points in/on the unit equilateral triangle, is there always a pair with distance ≤ ½?

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Prove that there are an infinity of primes.

Extra Credit: Find a short, induction-free proof.

• What approaches fail?
• What techniques work and why?
• Lessons and generalizations
Problem: True or false: there are arbitrary long blocks of consecutive composite integers (i.e., big “prime deserts”)

Extra Credit: find a short, induction-free proof.

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Prove that $\sqrt{2}$ is irrational.

Extra Credit: find a short, induction-free proof.

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Does exponentiation preserve irrationality? i.e., are there two irrational numbers x and y such that x^y is rational?

Extra Credit: find a short, induction-free proof.

• What approaches fail?
• What techniques work and why?
• Lessons and generalizations
Problem: Solve the following equation for X:

$$X^X^{x^{x^{x^{x^x}}}} = 2$$

where the stack of exponentiated x’s extends forever.

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Are the complex numbers closed under exponentiation? E.g., what is the value of i^i?
Theorem [Turing]: not all problems are solvable by algorithms.
Theorem: not all functions are computable by algorithms.
Theorem: not all Boolean functions are computable by algorithms.
Theorem: most Boolean functions are not computable!

Q: Can we find a concrete example of an uncomputable function?
A: [Turing] Yes, for example, the Halting Problem.

Definition: The Halting problem: given a program P and input I, will P ever halt if we ran it on I?

Define \(H : \mathbb{N} \times \mathbb{N} \rightarrow \{0, 1\} \)

\[H(P, I) = 1 \text{ if program P halts on input I} \]
\[H(P, I) = 0 \text{ otherwise} \]

• Both P and I can be encoded as strings
• P and I can also be encoded as integers (in some canonical order)
• H is an everywhere-defined Boolean function on natural #’s
Theorem [Turing]: the halting problem \((H)\) is not computable.

Ex: the “3X+1” problem (the Ulam conjecture):

- Start with any integer \(X>0\)
- If \(X\) is even, then replace it with \(X/2\)
- If \(X\) is odd then replace it with \(3X+1\)
- Repeat until \(X=1\) (i.e., short cycle 4, 2, 1, ...)

Ex: 26 terminates after 10 steps
27 terminates after 111 steps

Termination verified for \(X<10^{18}\)

Q: Does this terminate for every \(X>0\) ?

A: Open since 1937!

“Mathematics is not yet ready for such confusing, troubling, and hard problems.” - Paul Erdős, who offered a $500 bounty for a solution to this problem

Observation: termination is in general difficult to detect!
Theorem [Turing]: the halting problem (H) is not computable.

Corollary: we can not algorithmically detect all infinite loops.

Q: Why not? E.g., do the following programs halt?

main()
{ int k=3; }

Halts!

main()
{ while(1) {} }

Runs forever!

main()
{ Find a Fermat triple $a^n+b^n=c^n$ with $n>2$ then stop}

Runs forever!

Open from 1637-1995!

main()
{ Find a Goldbach integer that is not a sum of two primes & stop}

?

Still open since 1742!

Theorem: solving the halting problem is at least as hard as solving arbitrary open mathematical problems!

Corollary: Its not about size!
Theorem [Turing]: the halting problem (H) is not computable.

Proof: Assume \(\exists \) algorithm S that solves the halting problem H, that always stops with the correct answer for any P & I.

Using S, construct algorithm / TM T:

\[
\begin{align*}
P & \rightarrow S \\
P(I) & \rightarrow \text{Does } \text{P(I) halt?} \\
\text{yes} & \rightarrow \text{STOP} \\
\text{no} & \rightarrow \text{STOP}
\end{align*}
\]

T(T) halts \(\Rightarrow \) T(T) does not halt
T(T) does not halt \(\Rightarrow \) T(T) halts
\(Q \Leftrightarrow \neg Q \Rightarrow \text{Contradiction!} \)

\(\Rightarrow \text{S cannot exist! (at least as an algorithm / program / TM)} \)
Theorem: all computable numbers are finitely describable.

Proof: A computable number can be outputted by a TM. A TM is a (unique) finite description.

What the unsolvability of the Halting Problem means:

There is no single algorithm / program / TM that correctly solves all instances of the halting problem in finite time each.

This result does not necessarily apply if we allow:

- Incorrectness on some instances
- Infinitely large algorithm / program
- Infinite number of finite algorithms / programs
- Some instances to not be solved
- Infinite “running time” / steps
- Powerful enough oracles
Q: When do we want to feed a program to itself in practice?
A: When we build compilers.

Q: Why?
A: To make them more efficient!
 To boot-strap the coding in the compiler’s own language!
Theorem: Virus detection is not computable.

Theorem: Infinite loop detection is not computable.
Self-Replication

- Biology / DNA
- Nanotechnology
- Computer viruses
- Space exploration
- Memetics / memes
- “Gray goo”

Problem (extra credit): write a program that prints out its own source code (no inputs of any kind are allowed).
Apples beget apples, but can machines beget machines? Today it takes an elaborate manufacturing apparatus to build even a simple machine. Could we endow an artificial device with the ability to multiply on its own? Self-replication has long been considered one of the fundamental properties separating the living from the nonliving. Historically our limited understanding of how biological reproduction works has given it an aura of mystery and made it seem unlikely that it would ever be done by a man-made object. It is reported that when René Descartes averted to Queen Christina of Sweden that animals were just another form of mechanical automata, Her Majesty pointed to a clock and said, “See to it that it produces offspring.”

The problem of machine self-replication moved from philosophy into the realm of science and engineering in the late 1940s with the work of eminent mathematician and physicist John von Neumann. Some researchers have actually constructed physical replicators. Forty years ago, for example, geneticist Lionel Penrose and his son, Roger (the famous physicist), built small assemblies of plywood that exhibited a simple form of self-replication (see “Self-Reproducing Machines,” by Lionel Penrose; SCIENTIFIC AMERICAN, June 1959). But self-replication has proved to be so difficult that most researchers study it with the conceptual tool that von Neumann developed: two-dimensional cellular automata.

Implemented on a computer, cellular automata can simulate a huge variety of self-replicators in what amount to alternate universes with different laws of physics from our own. Such models free researchers from having to worry about logistical issues such as energy and physical construction so that they can focus on the fundamental questions of information flow. How is a living being able to replicate unaided, whereas mechanical objects must be constructed by humans? How does replication at the level of an organism emerge from the numerous interactions in tissues, cells and molecules? How did Darwinian evolution give rise to self-replicating organisms?

The emerging answers have inspired the development of self-repairing silicon chips (see box on page 40) and autocatalyzing molecules (see “Synthetic Self-Replicating Molecules,” by Judson Rebek, Jr.; SCIENTIFIC AMERICAN, July 1994). And this may be just the beginning. Researchers in the field of nanotechnology have long proposed that self-replication will be crucial to manu-

By Moshe Sipper and James A. Reggia
Photovoltaic by David Emmite
factors of molecular-scale machines, and proponents of space exploration see a microscopically version of the process as a way to colonize planets using in situ materials. Recent advances have given credence to these futuristic-sounding ideas. As with other scientific disciplines, including genetics, nuclear energy and chemistry, those of us who study self-replication face the twofold challenge of creating replicating machines and avoiding dystopian predictions of devices running amok. The knowledge we gain will help us separate good technologies from destructive ones.

Playing Life

Science-Fiction Stories often depict cybernetic self-replication as a natural development of current technology, but they gloss over the profound problems it poses: how to avoid an infinite regress. A system might try to build a clone using a blueprint—that is, a self-description. Yet the self-description is part of the machine. Is it not? If so, what describes the description? And what does the description of the description? Self-replication in this case would be like asking an architect to make a perfect blueprint of his or her own studio. The blueprint would have to contain a miniature version of the blueprint, which would contain a miniature version of the blueprint and so on. Without this information, a construction crew would be unable to recreate the studio fully; there would be a blank space where the blueprint had been.

von Neumann’s great insight was an explanation of how to break out of the infinite regress. He realized that the self-description of a machine could be used to record instructions in a different way: as a copy of the blueprint and put it into the new studio.

Living cells use their self-description, which biologists call the genome, not unlike the von Neumann's model. Cells contain a blueprint for instructions on how to make DNA and proteins, and when this blueprint is translated into a self-replicating machine, it can be just as complex as the real world.

Copy Machines

Cellular Automata, self-replication occurs when a group of components—a “machine”—goes through a sequence of steps to construct a nearly duplicate of itself. Von Neumann’s machine was based on a universal constructor, a machine that, given the appropriate instructions, could create any pattern. The constructor consisted of numerous types of components spread over tens of thousands of cells and required a book-length manuscript to be specified. It has not been simulated in its entirety, let alone actually built, on account of its complexity. A constructor would be even more complicated in the Game of Life because the functions performed by single cells in von Neumann’s model—such as transmission of signals and generation of new components—have to be performed by composite structures in Life.

Emergent Replication

All these self-replicating structures have been designed through ingenious and much trial and error. This process is arduous and often frustrating; a small change to one of the rules results in an entirely different global behavior, most likely the disintegration of the structure in question. But recent work has gone beyond the direct-design approach. Instead of tailoring the rules to suit a particular type of structure, researchers have experimented with various sets of rules, filled the cellular-automata grid with a “primordial soup” of randomly selected components, and checked whether self-replicators emerged spontaneously.

In 1997 Huai-Hsin Chou, now at the University of Iowa, and Reggia noticed that as long as the initial density of the free-floating components was above a certain threshold, small self-replicating loops reliably appeared. Loops that collided underwent annihilation, so there was an ongoing process of death as well as birth. Over time, loops proliferated, grew in size and evolved through mutations triggered by debris from past collisions. Although the automata rules were deterministic, these mutations were effectively random.
because the system was complex and the components started in random locations.

Such loops are intended as abstract machines and not as simulacras of anything biological, but it is interesting to compare them with biomolecular structures. A loop loosely resembles circular DNA in bacteria, and the construction arm acts as the enzyme that catalyzes DNA replication. More important, replicating loops illustrate how complex global behaviors can arise from simple local interactions. For example, components move around a loop even though the rules say nothing about movement; what is actually happening is that individual cells are coming alive, dying or metamorphosing in such a way that a pattern is eliminated from one position and reconstructed elsewhere—a process that we perceive as motion. In short, cellular automata act locally but appear to think globally. Much the same is true of molecular biology.

In a recent computational experiment, Jason Lohn, now at the NASA Ames Research Center, and Regina experimented not with different structures but with different sets of rules. Starting with an arbitrary block of four components, they found that they could determine a set of rules that made the block self-replicate. They discovered these rules via a genetic algorithm, an automated process that simulates Darwinian evolution.

The most challenging aspect of this work was the definition of the so-called fitness function—the criteria by which sets of rules were judged, thus separating good solutions from bad ones and driving the evolutionary process toward rule sets that facilitated replication. You cannot simply assign fitness to those sets of rules that cause a structure to replicate, because none of the initial rule sets is likely to allow for replication. The solution was to devise a fitness function composed of a weighted sum of three measures: a growth measure (the extent to which each component type generates an increasing supply of that component), a relative position measure (the extent to which neighboring components stay together) and a replicability measure (a function of the number of actual replicators present). With the right fitness function, evolution can turn rule sets that are sterile into ones that are fecund; the process usually takes 150 or so generations.

Self-replicating structures discovered in this fashion work in a fundamentally different way than self-replicating loops do. For example, they move and deposit copies along the way—unlike replicating loops, which are essentially static. And although these newly discovered replicators consist of multiple, locally interacting components, they do not have an identifiable self-description—there is no obvious genome. The ability to replicate without a self-description may be relevant to the question about how the earliest biological self-replicating systems worked.

Continued on page 43

BUILD YOUR OWN REPLICATOR

SIMULATING A SMALL self-replicating loop using an ordinary chess set is a good way to get an intuitive sense of how these systems work. This particular cellular-automata model has four different types of components: pawns, knights, bishops and rooks. The machine initially comprises four pawns, a knight and a bishop. It has two parts—the loop itself, which consists of a two-by-two square, and a construction arm, which sticks out to the right.

The knight and bishop represent the self-description: the knight, whose orientation is significant, determines which direction to grow, while the bishop tags along and determines how long the sides of the loop should be. The pawns are fillers that define the rest of the shape of the loop, and the rook is a transient signal to guide the growth of a new construction arm.

As time progresses, the knight and bishop circulate counterclockwise around the loop. Whenever they encounter the arm, one copy goes out the arm while the original continues around the loop.

HOW TO PLAY: You will need two chessboards: one to represent the current configuration, the other to show the next configuration. For each round, look at each square of the current configuration, consult the rules and place the appropriate piece in the corresponding square on the other board. Each piece metamorphoses depending on its identity and that of the four squares immediately to the left, to the right, above and below. When you have reviewed each square and set up the next configuration, the round is over. Clear the first board and repeat. Because the rules are complicated, it takes a bit of patience at first. You can also view the simulation at towiie.epi.chess.

The direction in which a knight faces is significant. In the drawings here, we use standard chess conventions to indicate the orientation of the knight: the horse's nuzzle points forward. If no rule explicitly applies, the contents of the square stay the same. Squares on the edge should be treated as if they have adjacent empty squares off the board.

STAGES OF REPLICATION

INITIALLY, the self-description, or "genome"—a knight followed by a bishop—is placed at the start of the construction arm.

1. The knight and bishop move counterclockwise around the loop. At one of the knight heads out the arm.

2. The original knight-bishop pair continues to circulate. The bishop is cloned and follows the new knight out the arm.

3. The knight triggers the formation of two corners of the child loop. The bishop tags along, completing the gene transfer.

4. The knight forges the remaining corner of the child loop. The loops are connected by the construction arm and a knight-errant.

5. The knight-errant moves up to endow the parent with a new arm. A similar process, one step delayed, begins for the child loop.

6. The knight-errant, together with the original knight-bishop pair, conquers a rook. Meanwhile the old arm is erased.

7. The rook kills the knight and generates the new, upward arm. Another rook prepares to do the same for the child.

8. At last the two loops are separate and whole. The self-descriptions continue to circulate, but otherwise all is calm.

9. The parent prepares to give birth again. In the following step, the child too will begin to replicate.
Computers that fix themselves are the first application of artificial self-replication

LAUSANNE, SWITZERLAND—Not many researchers encourage the wanton destruction of equipment in their labs. Daniel Mange, however, likes it when visitors walk up to one of his inventions and press the button marked Kill. The lights on the panel go out, a small box full of circuitry is toast. Early in May his team unveiled its latest contraption at a science festival here—a wall-size digital clock whose components you can zap at will—and told the public: Give it your best shot. See if you can crash the system. But they failed.

The goal of Mange and his team is to instill electronic circuits with the ability to take a lickin' and keep on tickin'—just like living things. Flesh-and-blood creatures might not be so good at calculating it to the millionth digit, but they can get through the day without someone pressing Ctrl-Alt-Del. Combining the precision of digital hardware with the resilience of biological wetware is a leading challenge for modern electronics.

Electronics engineers have been working on fault-tolerant circuitry for several years ever since there were electronics engineers [see “Redundancy in Computers,” by William H. Pierce; SCIENTIFIC AMERICAN, February 1964]. Computer modules would still be dripping data at 1200 baud if it weren’t for error detection and correction. In many applications, simple quality-control checks, much like extra data bits, suffice. More complex systems provide entire backup computers. The space shuttle, for example, has five processors. Four of them perform the same calculations; the fifth checks whether they agree and pulls the plug on any dissenter.

The problem with these systems, though, is that they rely on centralized control. What if that control unit goes bad? Nature has solved that problem through radical decentralization. Cells in the body are all basically identical; each takes on a specialized task, performs it autonomously and, in the event of infection or failure, commits hari-kiri so that its tasks can be taken up by new cells. These are the attributes that Mange, a professor at the Swiss Federal Institute of Technology here, and others have sought since 1993 to emulate in circuitry, as part of the “Embrronics” [embryonic electronics] project.

One of their earlier inventions, the MICTREE (microinstruction tree) artificial cell, consisted of a single processor and four bits of data storage. The cell is contained in a plastic box roughly the size of a pack of Post-its. Electrical contacts run along the sides so that cells can be snapped together like Lego. As in cellular automata, the models used to study the theory of self-replication, the MICTREE cells are connected only to their immediate neighbors. The communication burden on each cell is thus dependent of the total number of cells. The system, in other words, is easily scalable—unlike many parallel-computing architectures.

Cells follow the instructions in their “genome,” a program written in the Pascal computer language. Like their biological antecedents, the cells all contain the exact same genome and execute part of it based on their position within the array, which each cell calculates relative to its neighbors. Waste-

A crash-proof computer is a two-dimensional array of artificial cells, each one a simple processor. In this application, four cells work together as a stop-watch, one cell per digit. Each cell counts up to either five or nine, depending on its coordinates within the array. The rest of the cells in the array are spares that take over if a cell fails or is killed. The Bit-Box G13 cells, shown here, are based on the MICTREE architecture described in the text.

CRASH-PROOF COMPUTER

The front panel of a cell contains a current instruction register, data register, and kill button. The cell has two X and two Y coordinates, one power supply, and one spare cell. The control circuitry regulates the power supply and specifies the instructions to be executed.

ROBOT, HEALTHY SELF

front panel of cell

Though it may seem, this redundancy allows the array to withstand and the loss of any cell. Whenever someone presses the M. KILL button on a cell, that cell shuts down, and its left and right neighbors become directly connected. The right neighbor recalculates its position and starts executing the decreased program. Its tasks, in turn, are taken up by the next cell to the right, and so on, until a cell designated as a spare is pressed into service.

Writing programs for any parallel processor is tricky, but the MICTREE array requires an especially unconventional approach. Instead of giving explicit instructions, the programmer must devise simple rules out of which the desired function will emerge. Being Swiss, Mange demonstrates by building a superetable stopwatch. Displaying minutes and seconds requires four cells in a row, for each digit. The genome allows for two cell types: a counter from zero to nine and a counter from zero to five. An oscillator feeds one pulse per second into the rightmost cell. After 10 pulses, this cell cycles back to zero and sends a pulse to the cell on its left, and so on down the line. The watch takes up part of an array of 12 cells; when you kill one, the clock transplants itself one cell over and carries on. Obviously, there is a limit to its resilience: the whole thing will fall apart, at most, eight kills.

The prototype MICTREE cells are hardwired, so their processing power cannot be tailored to a specific application. In a finished product, cells would instead be implemented in a field-programmable gate array, a grid of electronic components that can be reconfigured on the fly [see “Configurable Computing,” by John Villasenor and William H. Mangione-Smith; SCIENTIFIC AMERICAN, June 1987]. Mange’s team is now custom-designing a gate array, known as MUXTREE (multiplex treeer), that is optimized for artificial cells. In the biological metaphor, the components of this array are the “molecules” that constitute a cell. Each consists of a logic gate, a data bit and a string of configuration bits that determines the function of this gate.

Building a cell out of such molecules offers not only flexibility but also extra endurance. Each molecule contains two copies of the gate and three of the storage bit. If the two gates ever give different results, the molecule sends its data bit [preserved by the triplate storage] and configuration to its right neighbor, which does the same, and the process continues until the rightmost molecule transfers its data to a spare. This second level of fault tolerance prevents a single error from wiping out an entire cell.

A total of 2,000 molecules, divided into four 20-by-25 cells, make up the biobot—the giant digital clock that Mangel’s team has just put on display. Each molecule is encased in a small box and includes a kill button and an LED display. Some molecules are configured to perform computations, others serve as pixels in the clock display. Making liberal use of the kill buttons, I did my utmost to crash the system, something I’m usually quite good at. But the pockly clock just wouldn’t submit. The clock display did start to look funny—nearlys bent over as their pixels shifted to the right—but at least it was still legible, unlike most faulty electronic signs.

That said, the system did suffer from display glitches, which Mange attributes to the “molecules’”—the electronic circuits’—decentralized processing power is decentralized, the cells still rely on a central oscillator to coordinate their communications; sometimes they fall out of sync. Another Embronics team, led by Andy Tyrell of the University of York in England, has been studying making the cells asynchronous, like their biological counterparts. Cells would generate handshake signals to orchestrate data transfers. The present system is also unable to catch certain types of error, including damaged configuration strings. Tyrell’s team has proposed adding watchdog molecules—an immune system—that would monitor the configurations [and one another] for defects.

Although these systems demand an awful lot of overhead, do other fault-tolerant technologies. "While Embronics appears to be heavy on redundancy, it actually is not that bad when compared to other systems," Tyrell argues. Moreover, MICTREE should be easier to scale down to the nano level, the "molecules" are simple enough to really be molecules. Says Mange, "We are preparing for the situation where electronics will be at the same scale as biology."

On a philosophical level, Embronics comes very close to the dream of building a self-replicating machine. It may not come too far in the near future, as dramatic as a robot that can go down to Radio Shack, pull parts off the racks, and take them home to resolder a connection or build a loving mate. But the effect is much the same. Letting machines determine their own destiny—whether reconfiguring themselves on a silicon chip or reprogramming themselves using a neural network or genetic algorithm—sounds scary, but perhaps we should be gratified that machines are becoming more like us: imperfect, fallible but stubbornly resourceful.

—George Musser, imperfect but resourceful editor and writer
In a sense, researchers are seeing a continuum between nonliving and living structures.

Simulations the "organisms" are computer programs that vie for processor time and memory. Ray has observed the emergence of "paradise" that co-opt the self-replication code of other organisms.

Getting Real

So what good are these machines? Von Neumann’s universal constructor can compute in addition to replicating, but it is an impractical beast. A major advance has been the development of simple yet useful replicators. In 1995 Gianluca Tempesi of the Swiss Federal Institute of Technology in Lausanne simplified the loop self-description so it could be interfaced with a small program—in this case, one that would spell the acronym of his lab, "USL." His insight was to create automata rules that allow loops to replicate in two stages. First the loop, like Langton’s loop, makes a copy of itself. Once finished, the daughter loop sends a signal back to its parent, at which point the parent sends the instructions for writing out the letters.

Drawing letters was just a demonstration. The following year, Jean-Yves Perrier, Jacques Zahn and one of us (Sipper) designed a self-replicating loop with universal computational capabilities—that is, with the computational power of a universal Turing machine, a highly simplified but fully capable computer. This loop has two "tapes," or long strings of computation that can be assigned values such that the entire expression evaluates to "true."

This problem is NP-complete—in other words, it belongs to the family of nasty puzzles, including the famous traveling-salesman problem, for which there is no known efficient solution. In Chou and Reggia’s cellular-automata universe, each replicator received a different partial solution. During replication, the solutions mutated, and replicators with promising solutions were allowed to proliferate while those with failed solutions died out.

Although various teams have created cellular automata in electronic hardware, such systems are probably too wasteful for practical applications; automata were never really intended to be implemented directly. Their purpose is to illustrate the underlying principles of replication and, by doing so, inspire more concrete efforts. The loops provide a new paradigm for designing a parallel computer from either transistors or chemicals [see "Computing with DNA," by Leonard M. Adleman, SCIENTIFIC AMERICAN, August 1994].

In 1980 a NASA team led by Robert Freitas, Jr., proposed planting a factory on the moon that would replicate itself, using local lunar materials, to populate a large area exponentially. Indeed, a similar probe could colonize the entire galaxy, as physicist Frank Tipler of Tulane University has argued. In the nearer term, computer scientists and engineers have experimented with the automated design of robots [see "Dawn of a New Species?" by George Musser, SCIENTIFIC AMERICAN, November 2000]. Although these systems are not truly self-replicating—the offspring are much simpler than the parent—they are a first step toward fulfilling the queen of Sweden’s request.

Should physical self-replicating machines become practical, they will revolutionize the world in ways we cannot yet imagine. As the philosopher William of Ockham once said: "Nothing must not be multiplied without necessity."
Non-Existence Proofs

• Must cover all possible (usually infinite) scenarios!
• Examples / counter-examples are not convincing!
• Not “symmetric” to existence proofs!

Ex: proofs that you are a millionaire:

“Proofs” that you are not a millionaire?

P≠NP
Alan Turing conceived of the modern computer in 1935. Today all digital computers are, in essence, "Turing machines." The British mathematician also pioneered the field of artificial intelligence, or AI, proposing the famous and widely debated Turing test as a way of determining whether a suitably programmed computer can think. During World War II, Turing was instrumental in breaking the German Enigma code in part of a top-secret British operation that historians say shortened the war in Europe by two years. When he died at the age of 41, Turing was doing the earliest work on what would now be called artificial life, simulating the chemistry of biological growth.

Throughout his remarkable career, Turing had no great interest in publicizing his ideas. Consequently, important aspects of his work have been neglected or forgotten over the years. In particular, few people—even those knowledgeable about computer science—are familiar with Turing's fascinating anticipation of connectionism, or neuronlike computing. Also neglected are his groundbreaking theoretical concepts in the exciting area of "hypercomputation." According to some experts, hypercomputers might one day solve problems heretofore deemed intractable.

The Turing Connection

Digital computers are superb number crunchers. Ask them to predict a rocket's trajectory or calculate the financial figures for a large multinational corporation, and they can churn out the answers in seconds. But seemingly simple actions that people routinely perform, such as recognizing a face or reading handwriting, have been devilishly tricky to program. Perhaps the networks of neurons that make up the brain have a natural facility for such tasks that standard computers lack. Scientists have thus been investigating computers modeled more closely on the human brain.

Connectionism is the emerging science of computing with networks of artificial neurons. Currently researchers usually simulate the neurons and their interconnections within an ordinary digital computer (just as engineers create virtual models of aircraft wings and skyscrapers). A training algorithm that runs on the computer adjusts the connections between the neurons, honing the network into a special-purpose machine dedicated to some particular function, such as forecasting international currency markets.

Modern connectionists look back to Frank Rosenblatt, who published the first of many papers on the topic in 1957, as the founder of their approach. Few realize that Turing had already investigated connectionist networks as early as 1948, in a little-known paper entitled "Intelligent Machines."

Written while Turing was working for the National Physical Laboratory in London, the manuscript did not meet with his employer's approval. Sir Charles Darwin, the rather headstrongly director of the laboratory and grandson of the great English naturalist, dismissed it as a "schoolboy essay." In reality, this fortesque paper was the first manifesto of the field of artificial intelli-
Few realize that Turing had already investigated connectionist networks as early as 1948.

unorganized machine, which consists of artificial neurons and devices that modify the connections between them. B-type machines may contain any number of neurons connected in any pattern but are always subject to the restriction that each neuron may pass information to at least one other neuron. No neuron may pass information to more than one other neuron.

All connection modifiers have two training fibers. Applying a pulse to one of them sets the modifer to "pass mode," in which an input—either 0 or 1—passes unchanged and becomes the output. A pulse on the other fiber places the modifier in "interrupt mode," in which the output is always 1, no matter what the input is. In this state, the modifier destroys all information attempting to pass along the connection to which it is attached.

Once set, a modifier will maintain its function (either "pass" or "interrupt") unless it receives a pulse on the other training fiber. The presence of these inhibitors prevents connection modifiers from the training of a B-type unorganized machine by means of what Turing called "apparent interference, mimicking education." Actually, Turing theorized that "the cortex of an infant is an unorganized machine, which can be organized by suitable interfering training."

Each of Turing's model neurons has two input fibers, and the output of a neuron is a simple logical function of its two inputs. Every neuron is effective, and the work executes the same logical operation of "not" and (or NAND); the output is 1 if either of the inputs is 0. If both inputs are 0, then the output is 0. Turing selected NAND because every other logical (or Boolean) operation can be achieved by groups of NAND neurons. Furthermore, he showed that any such logical operation could be carried out by a network of NAND neurons, not only set out the fundamentals of connectionism but also brilliantly introduced many of the concepts that were later to become the foundation of some cases after reinvention by others.

In the paper, Turing invented a kind of neural network that he called a "B-type machine" in such a way that it becomes a general-purpose computer. This discovery illuminates one of the most fundamental problems in connectionist concern in connectionism.

From a top-down perspective, cognition includes complex sequential processes, often involving long-term memory. In biological systems, this fact is the model for how to recognize these different kinds of processes. The figure's diagram solves the specific, by virtue of being a neural network acting as a general-purpose computer, is able to carry out the sequential, causal processing of the input in the vertical flow from the top to the bottom. In 1948, this hypothesis was well ahead of its time, and today it remains among the best guesses concerning one of cognitive science's hardest problems.

Computing the Uncomputable

In 1935 Turing thought up the abstract machine he called the "universal Turing machine." It consists of a lossless memory machine that stores both program data and a scanner that moves back and forth through the memory, symbol by symbol, reading the instruction and writing additional symbols. Each of the machine's basic actions is very simple—such as "identity the symbol on which the scanner is positioned," "write '1'" and "move one position to the left." Complexity is achieved by chaining together further numbers of these basic actions.

Due to its simplicity, a universal Turing machine can execute any task that can be done by the most powerful of today's computers. In fact, all modern digital computers are in essence universal Turing machines [see "Turing Machines," by John E. Hopcroft, SCIENTIFIC AMERICAN, May 1984].

Turing's aim in 1935 was to devise a machine—one as simple as possible—that is capable of all of the basic operations of any mechanism in which it is possible to carry out any definite rule of thumb process which could have been done by a human operator working in a disciplined but unintelligent manner.

Such powerful computing devices notwithstanding, an intriguing question arises: Can machines be devised that are capable of accomplishing even more? The answer is yes. These "hypermachines" can be described on paper, but no one as yet knows whether it will be possible to build one. The field of hypercomputation is currently attracting a growing number of scientists.

Before the recent surge of interest in hypercomputation, any information-processing job that was known to be too difficult for universal Turing machines was written off as "uncomputable." In this sense, a hypermachine computes the uncomputable.

Examples of such tasks can be found in even the most straightforward areas of mathematics. For instance, given an arithmetical statement written on a random Turing machine, the universal Turing machine may not always be able to tell which are theorems (such as "$\pi + 5 = 12"\) and which are nontheorems (such as "every number is the sum of two even numbers."). Another type of uncomputable problem comes from geometry. A set of tiles—variously sized squares with different colored edges—"tiles the plane" if the Euclidean plane can be covered by copies of the tiles with no gaps or overlaps and with adjacent edges always the same color. Logicians William Hanf and Dale Myers of the University of Hawaii have discovered a tile set that tiles the plane only in patterns too complicated for a universal Turing machine to calculate. In the field of computer science, a universal Turing machine cannot help predict whether a given program will terminate or continue running forever. This is sometimes expressed by saying that no general-purpose programming language (Pascal, BASIC, Prolog, C and so on) can have a foolproof crash detector; a tool that detects all bugs that could lead to crashes, including errors that result in infinite processing loops. Turing himself was the first to investigate the idea of machines that can perform mathematical tasks too difficult for human beings.
Using an Oracle to Compute the Uncomputable

Alan Turing proved that his universal machine—and by extension, even today’s most powerful computers—could never solve certain problems. For instance, a universal Turing machine cannot always determine whether a given software program will terminate or continue running forever. In some cases, the best the universal machine can do is execute the program and wait—maybe eternally—for it to finish. But in his doctoral thesis (below), Turing did imagine that a machine equipped with a special “oracle” could perform this and other “uncomputable” tasks. Here is one example of how, in principle, an oracle might work.

Consider a hypothetical machine for solving the formidable “terminating program” problem above. A computer program can be represented as a finite string of 1s and 0s. This sequence of digits can also be thought of as the binary representation of an integer, just as 101101 is the equivalent of 91. The oracle’s job can then be restated as, “Given an integer that represents a program for any computer that can be simulated by a universal Turing machine, output a 1 if the program will terminate or a 0 otherwise.”

The oracle consists of a perfect measuring device and a store, or memory, that contains a precise value: call it t for Turing—of some physical quantity. (The memory might, for example, resemble a capacitor storing an exact amount of electricity.) The value of t is an irrational number; its written representation would be an infinite string of binary digits, such as 0.00000001101100...

The crucial property of t is that its individual digits happen to represent accurately which programs terminate and which do not. So, for instance, if the integer representing a program were 8735439, then the oracle could by measurement obtain the 8735439th digit of t (counting from left to right after the decimal point). If that digit were 0, the oracle would conclude that the program would forever.

Obvious, without the oracle would be useless, and finding some physical variable in nature that takes this exact value might very well be impossible. So the search is for some practicable way of implementing an oracle. If such a means were found, it might provide the key to the field of computer science, which could become enormous.

—B.J. and D.P.

for universal Turing machines. In his 1938 doctoral thesis at Princeton University, he described “a new kind of machine” the “O-machine.”

An O-machine is the result of augmenting a universal Turing machine with a black box, or “oracle,” that is a mechanism for carrying out uncomputable tasks. In other respects, O-machines are similar to ordinary computers. A digitally encoded program is wired together the first electronic embodiment of a universal Turing machine decades ago. On the other hand, work on hypercomputers has simply tried out for want of some way of realizing an oracle.

The search for suitable physical, chemical or biological phenomena is getting under way. Perhaps the answer will be complex molecules or other structures that can be found in patterns as complicated as those discovered by Hahn and Myers. Or, as suggested by John Doyle of MIT, there may be naturally occurring equilibrating systems with discrete spectra that can be seen as carrying out, in principle, an uncomputable task, producing appropriate output (1 or 0, for example) after being bombarded with input.

Outside the confines of mathematical logic, Turing’s O-machines have largely been forgotten, and indeed a myth has taken hold. According to this apocryphal account, Turing demonstrated in the mid-1950s that hypercomputers are impossible. He and Alonzo Church, the logician who was Turing’s doctoral adviser at Princeton, are mistakenly credited with having enunciated a principle to the effect that a universal Turing machine can exactly simulate the behavior of any other information-processing machine. This proposition, widely but incorrectly, was taken as the Church-Turing thesis that no machine can carry out an information-processing task that lies beyond the scope of a universal Turing machine. In truth, Church and Turing claimed only that a universal Turing machine can match the behavior of any human mathematician working with paper and pencil in accordance with an algorithmic method—a considerably weaker claim that certainly does not rule out the possibility of hypercomputers.

Even among those who are pursuing the goal of building hypercomputers, Turing’s pioneering theoretical contributions have been overlooked. Experts routinely talk of carrying out information processing “beyond the Turing limit” and describe themselves as attempting to “break the Turing barrier.” A recent review in New Scientist of this emerging field states that the new machines “fall outside Turing’s conception” and are “computers of a type never envisioned by Turing,” as if the British genius had not conceived of such devices more than half a century ago. Sadly, it appears that what has already occurred with respect to Turing’s ideas on computation is starting to happen all over again.

The Final Years

In the early 1950s, during the last years of his life, Turing pioneered the field of artificial life. He was trying to simulate a chemical mechanism by which the genes of a fertilized egg, cell may determine the anatomical structure of the resulting animal or plant. He described this research as “not altogether unconnected” to his study of natural neural networks, because “brain structure has to be… achieved by the genetic embryological mechanisms, and this theory that I am now working on may make clearer what restrictions this really implies,” during this period, Turing achieved the distinction of being the first to engage in the computer-assisted exploration of nonlinear dynamical systems. His theory used nonlinear differential equations to express the chemistry of growth.

But in the middle of this groundbreaking investigation, Turing died from cyanide poisoning, possibly by his own hand. On June 8, 1954, shortly before what would have been his 42nd birthday, he was found dead in his apartment. He had left a large pile of handwritten notes and some computer programs. Decades later this fascinating material is still not fully understood.

Even among experts, Turing’s pioneering theoretical concept of a hypermachine has largely been forgotten.

The Authors

B. Jack Copeland and Diane Proudfoot are the editors of the Turing Project at the University of Canterbury, New Zealand, which aims to develop and apply Turing’s ideas using modern techniques. The authors are professors in the philosophy department at Canterbury, and Copeland is visiting professor of computer science at the University of Portsmouth in England. They have written numerous articles on Turing, Copeland’s Turing Machines and The Essential Turing are forthcoming from Oxford University Press, and his Artificial Intelligence was published by Blackwell in 1993. In addition to the logical study of hypercomputers and the simulation of B-type neural networks, the authors are investigating the computer models of biological growth that Turing was working on at the time of his death. They are organizing a conference in London in May 2000 to celebrate the 50th anniversary of the pilot model of the Automatic Computing Engine, an electronic computer designed primarily by Turing.

Further Reading

BENEDICT CUMBERBATCH IS OUTSTANDING

THE BEST BRITISH FILM OF THE YEAR

AN INSTANT CLASSIC

A SUPERB THRILLER

THE IMITATION GAME

BENEDICT CUMBERBATCH
KEIRA KNIGHTLEY

BASED ON THE INCREDIBLE TRUE STORY

IN CINEMAS NOVEMBER 14

Extra credit!
Theorem: some real numbers are not finitely describable!
Theorem: some finitely describable real numbers are not computable!
JOHANNES KEPLER'S UPHILL BATTLE

"...SO, YOU SEE, THE ORBIT OF A PLANET IS ELLIPICAL."

"WHAT'S AN ORBIT?"

"WHAT'S A PLANET?"

"WHAT'S 'ELLIPtical'?"
Pigeon-Hole Principle

- J. Dirichlet (1834)
- “Drawer principle”
- “Shelf Principle”
- “Box principle”

Theorem (pigeon-hole): There is no injective (1-to-1) function from a finite set (domain) to a smaller finite set (range).

Generalization:
N objects placed in M containers; then:
- at least 1 container must hold $\geq \left\lceil \frac{N}{M} \right\rceil$
- at least 1 container must hold $\leq \left\lfloor \frac{N}{M} \right\rfloor$
Problem: Given any five points in/on the unit square, is there always a pair with distance $\leq \frac{1}{\sqrt{2}}$?

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Given any five points in/on the unit equilateral triangle, is there always a pair with distance $\leq \frac{1}{2}$?

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Given any five points in/on the unit equilateral triangle, is there always a pair with distance \(\leq \frac{1}{2} \) ?

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Given any ten points in/on the unit square, what is the maximum pairwise distance?

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations
Problem: Solve the following equation for X:

$\underbrace{X \times X \times X \cdots} = 2$

$X = 2 \Rightarrow X^2 = 2 \Rightarrow X = \sqrt{2}$

where the stack of exponentiated x’s extends forever.

This “power tower” converges for:

$0.065988 \approx e^{-e} < X < e^{1/e} \approx 1.444668$

Generalization to complex numbers:

$y(x) = \underbrace{x \times x \times \cdots} = \lim_{n \to \infty} x^n$
The expression \(\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}}}}}}\) evaluates to approximately 1.99820347751.