
An Interactive Gate-Level Simulator
of a Classical Von Neumann Architecture,

as an Educational Aid for Introducing Novices
to the Fundamentals of Computer Organization

Gabriel Robins

Computer Science Department
University of California, Los Angeles

Los Angeles, California 90025

1 Abstract

I have developed an interactive tool for the
simulation of a classical Von Neumann computer
architecture. The simulation takes place at the
register, bus, and gate level. The simulated
system consists of 9 registers, 4 buses, 40 gates,
an adder, a memory, a micro-programmed control
subsystem, a 3-phase clock, a "scratch" register,
logical inverters, a bi-directional shift register,
several constant registers, and zero-detect logic.
A friendly user interface was also implemented,
featuring an assembler, a microcode interpreter,
and a terminal-independent full-screen display
facility. My simulator prototype could effectively
be used as an educational tool for the introduction
of novices to the fundamentals of computer
organization. Alternatively, the construction of
such a simulator may in itself constitute a good
term project for an upper division hardware
course.

Keywords: Computer organization, simulation, learning
tools, computer hardware, educational aids, user training
systems.

2. Introduction

We have developed an interactive tool for the
simulation of a classical von Neumann computer
architecture. The simulation takes place at the
register, bus, and gate level. The components of
our system include 9 registers, 4 buses, 40 gates,
1 adder, a memory, a micro-programmed control
subsystem, a 3-phase clock, an extra "scratch"
register, logical inverters, a bi-directional shift
register, several constant registers, and zero-
detect logic. In addition, we have constructed a
friendly user interface, featuring an assembler, a
microcode interpreter, and a terminal-independent
full-screen display facility.

There exists a distinct lack of software tools
to aid and enhance the teaching of computer science
at the undergraduate level. We believe that our
interactive simulator prototype constitutes an
extremely useful educational tool for the
introduction of novices to the fundamentals of
computer organization. The architecture we
consider is based on the one discussed in
[Tanenbaum].

3. Overview

This simulator requires 3 specification: the
micro-code, the assembly instruction set, and the
user program. When the simulator starts running,
it loads the micro-program into the micro-store;
next, it reads and assembles the user program into
machine language, according to the instruction set
specified (or else the default assembly instruction
set). The resulting machine program is loaded into
the main memory of the simulator. The simulator
then begins to execute the micro-program; the
micro-program, in turn, fetches, decodes, and
executes instructions of the machine-language
program.

By programming the simulator in micro-code,
the user may thus create new and novel
"instruction sets" for the "machine." For example,
suppose the user wanted to add an assembly
instruction "sqrt" which takes the integer square-
root of the ACC register and leaves the result in
the ACC register. The user will then need to add a
new opcode called "sqrt" (and a corresponding
machine-instruction code) to the assembly
instruction set of the machine (by updating that
file), and next modify the micro-program to
perform the square root operation on the ACC
register whenever the new instruction is
encountered.

1

The organization of the rest of this paper is
as follows: section 4 describes the details of the
simulated hardware, section 5 describes the
assembler and the assembly language, section 6
describes the microcode interpreter and its
language, section 7 discusses the user interface,
and section 8 summarizes the implementation and
explains how to obtain the source code.

4. The Hardware

The computer system we chose to simulate is
a simplified von Neumann-type single-processor
micro-program controlled machine. The schematic
organization of this system is given in Appendix II.
A detailed description of the components and
topology of the system follows. Unless otherwise
specified, when two registers/buses with different
numbers of bits are connected, say m and n where
m > n, the connection consists of bits 0 through n-1
of the first register/bus being connected to bits 0
through n-1 of the second register/bus. The rest
of the m-n connections are connected to logical low
(0).

4.1. Registers

IC- a 10-bit used as the instruction counter for
the user's program.
IX - a 10-bit register used as the index register by
user programs for array-type addressing.
SP - a 10-bit register used as a stack pointer for
call/return instructions as well as for arbitrary
push/pop operations.
X - an 18-bit register used as a scratch register in
various micro-instructions, and is invisible to the
assembly -language program.
ACCg - an 18-bit register which serves as an
"*accumulator" in the user's program.
MAR - a 10-bit register used primarily to store
the address of where main memory is going to be
written into or read from. It may also be used as a
scratch register by the micro-program.
MBR - an 18-bit used to store the data involved in
all memory read/write operations.
OC - a 6-bit register used to store the o of
the currently executed macro-instruction.
II - a 2-bit register used to store the
indexing/indirection flags of the currently
executing assembly instruction.

4.2. Buses

Data bus - an 18-bit bi-directional bus that is
connected to the various registers and to the adder

output lines. Most movement of data between
registers takes place via the data bus.

r - a 10-bit bi-directional bus that is
connected to the MAR register and to the adder
output bus. This bus is used to supply the MAR
register with the address of memory locations in
read/write operations.
Left adder bus - an 18-bit bus that connects the
various registers and several constant registers
with the left input to the adder module.
Right adder bus - an 18-bit bus that connects
the various registers and several constant
registers with the right input to the adder module.

4.3. Gates

There are 40 distinct gates, each, when open,
initiates a micro-operation. Any number of gates
may be open at the same time, but some
combinations of gates are mutually exclusive (ex:
left-shift and right-shift). The hardware diagram
in Appendix II specifies which gates open what
hardware connections.

4.4. Memory

The main memory consists of 1024 words of
18 bits each. The memory locations have
addresses in the range 0 through 1023, inclusive.
Each word has its bits numbered 0 through 17,
inclusive, where bit 0 is considered to be the least
significant when numeric values are represented.

4.5. Inverters

There is a single logical inverter between
each of the adder left and right buses, and the
adder. These may invert none, one, or both
arguments to the adder, depending on whether
neither, one, or both are enabled.

4.6. Adder

There is an 18-bit adder whose inputs are the
outputs of the inverters. At each clock cycle, the
adder (which consists of solid-state combinatorial
logic) sums its inputs and outputs the answer to its
output.

4.7. Shifter

There is a single bi-directional shift register
between the adder output and the data and address
buses. It may shift the adder output by one bit to

2

either left or right, depending on whether it is
enabled.

4.8. Zero-detect logic

After each addition operation of the adder,
the zero-detect logic resets or presets a bit that
can be later tested for branching purposes. The
zero-detect logic is set to '1' if the last addition
resulted in a zero answer, and to 'V if the last
addition resulted in a non-zero answer.

4.9. The Control Subsystem

The micro-programmed control subsystem of
the machine is implemented by a control store
micro-memory, a CSAR (control store address
register) and CSBR (control store data register)
registers, and hard-wired micro control logic. This
entire subsystem is invisible to the assembly-
language user.

4.9.1. The Micro-memory

The micro-memory consists of 512 words of
storage, each of which contains 41 bits. The
micro-memory words are numbered 0 through 511,
inclusive, while the bits in each micro word are
numbered 0 through 40, inclusive.

4.9.2. Micro-registers

CS AR - this is a 9-bit register that is used to
address the micro-memory. It is similar in
function to the MAR register for the main memory.
CSAR is an acronym for "Control Store Address
Register".

CSBR - this is a 41-bit register that contains the
current micro instruction being executed. This
register is directly in control of the hard-wired
control logic and supervises the opening and closing
of control gates (i.e., the generation of control
signals) by virtue of the values contained in its
bits. CSBR is an acronym for "Control Store Buffer
Register".

4.9.3. Control Logic

The control logic for the micro programmed
control subsystem is hard-wired (in this simulation
it is written in C). It supervises the loading of
instructions from the micro-memory, incrementing
the CSAR register, and generating the control
signals from the value of the CSBR and the clock

pulses.

4.9.4. Start Toggle

The start toggle is a single bit register that
allows the system to commence execution (when
high) or causes the entire operation of the system
to be suspended (when low). This is used to halt
execution of the simulation, so that the user may
inspect the contents of various registers/buses.

4.9.5. Clock

The operation of the control subsystem is
governed by a three-phase clock. The phases of the
clock are numbered P0, P1, and P2. The set of 40
system gates is partitioned into 3 distinct non-
empty disjoint subsets, each of which contains
gates that can be open ONLY during a unique clock
phase. These sets are:

phaeQ 1 ates (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19,
37, 38)

phase 1 gates= { 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 39, 40 }

1 3 { 34, 35, 36)

This partition exists in order to eliminate
certain nasty ambiguities that arise when several
inputs are allowed to to enter into the same
register simultaneously, thereby rendering its
contents undefined.

4.9.6. Micro-Instruction Format

Each micro instruction has one of the two
formats specified in Appendix Ill. In the first
format, the only operations that can occur are
gates being opened according to which of bits 1
through 40 of the instruction are set high, during
the appropriate clock phases. In the second format,
a certain bit (specified by bits 10 through 14) of a
register (specified by bits 1 through 9) is examined
and compared with bit 15 of that instruction. If the
comparison was successful (i.e., they were equal),
then micro-control is transferred to the micro-
location specified by bits 16 through 25 of the
instruction. Both the "bit num" and the "address"
fields are encoded in binary; the rest of the fields
are linearly encoded, and only one of the bits of all
of these fields must be set high (the rest being set
low) in order for the instruction to logically make
sense.

Having the system be micro-programmed

3

makes it very powerful with respect to non-micro-
programmed systems. This is because new user-
level assembly instruction sets can be easily
implemented, and only by changing the micro-
program, not having to touch the hardware at all.
In fact, users may write their own micro-
programs, thereby taking advantage of higher
machine efficiency to suit their particular
applications.

5. The Assembly Language

This section describes the assembler for the
machine. The purpose of the assembler is to
"*compile" the user's assembly language into
machine language and to place the resulting object
code into the main memory so that it may be later
executed. The reason for having an assembler, is
to make the task of programming less tedious for
the user; otherwise, the user would have had to
program directly in the hardware's binary machine
language.

A reasonable instruction set has already been
written (and is the default instruction set) in order
to accommodate users who do not wish to go
through the tedium of writing their own micro-
programs. Sensible mnemonics were also assigned
to the various operations. It should be noted that
the assembler is written in a general manner. The
opcode mnemonics are read from an external file,
and thus subject to modification by the user. The
rest of the functions of the assembler remain
unchanged from language to language. In fact, the
only difference between two assembly languages
here is between their two respective opcode
mnemonic sets. Appendix IV gives the the
mnemonics and their respective opcodes for the
default assembly instruction set.

5.1. Stack

As can be easily seen, this language has a
built-in stack facility for calling functions and for
pushing values onto a stack. This makes the
language posses substantial versatility. In the
micro-program, the stack is rooted at the top of
memory (location 1023) and grows toward smaller
memory locations.

5.2. Instruction Format

The instruction format for this language calls
for each instruction to be one word in length, in the
format specified in Appendix V.

5.3. Assembly Syntax

This assembler recognizes an assembly
language that is in a standard format, where each
line of code is composed of one to three fields:
label, opcode, and address. The address field may
be immediately preceded by the character " which
signified indirection, and succeeded by the two
characters '0' which signify indexing. In addition
to the default opcodes described earlier, there are
three additional pseudo-opcode: the 'l.QIL' opcode,
which is used to associate a label with a
number/address, the 'an' pseudo-operator, which
is used to store data/constants into memory
locations during the assembly process, and the '.'
pseudo-operator, used to assemble code into
several separate memory regions. A sample
assembly program is given in Appendix I.

6. The Microcode Interpreter

This section describes the microcode
interpreter. The function of the microcode
interpreter is to convert the microcode from the
symbolic form it is written in, to the form that can
be placed into the micro-memory. Alternatively,
the microcode would have been coded in binary by
the user, which makes for a very tedious and
error-prone task.

6.1. Microcode Syntax

The micro-program in symbolic form is
composed of as many occurrences of the following
40 strings as desired: alu-right=ic, alu-left=ic,
alu-right=ix, alu-left=ix, alu-right=sp, alu-
left=sp, alu-right=x, alu-left=x, alu-right=acc,
alu-left=acc, alu-right=-I, alu-left=0, alu-
right=0, alu-right=1, alu-right=sign, mar=mbr,
oc=mbr, ii=mbr, alu-left=mbr, left-shift, right-
shift, data-bus=alu-output, address-bus=alu-
output, data-bus=mbr, sp=data-bus, x=data-bus,
x=18, acc=data-bus, mar=ic, ic-data-bus,
mar=address-bus, mbr=data-bus, ix=data-bus,
mbr=mem(mar), mem(mar)=mbr, start=off,
invert-left-alu, invert-right-alu, x=10, data-
bus=mar.

Each set of micro-operations that are
specified on ONE input line, will be executed during
ONE clock cycle (but maybe in different clock
phases). The character ';' is used as a separator
and should follow each one of the strings. Labels
may be used, and comments are placed between
curly brackets. In addition to the micro operations

4

specified above, two more micro-instructions may
be specified: the 'if' and the 'g.Q2a'. The 'if' has the
following syntax:

if(r=ng,kjW=c.ml_ then goto label;

where 'Leg.' is one of the strings { ic, ix, sp, x,
acc, mbr, mar, oc, ii, zero-detect }, 'bit' is a
decimal number that represents the bit to be
tested, ',..m.2.' is either 0 or 1 (the value to be
tested against), and 'label' is a valid label in the
micro-program to be branched to if the test is
successful (i.e. reg(bit)=cmp). The 'goto' micro-
instruction is much simpler:

goto laelk;

This micro-instruction unconditionally transfers
micro-control to the micro-location specified by
'lab- l'.

7. The User Interface

7.1. Screen format

The simulator updates the terminal display in
a screen-oriented fashion. Direct cursor control is
exercised through a library package which is
intelligent enough to look up the terminal type in the
appropriate UNIX system file. The most current
values of the various registers and buses are
displayed on the screen at all times, unless the user
specified to the simulator to run in the 'quiet' mode.
This display makes possible for the user to trace
only the specific system components of his/her
choice, while possibly ignoring the rest, with
minimal cognitive overhead. While the system is
running, the display appears as in Appendix VI.

7.2. The Interaction With the User

All commands are one letter long, which in all
cases is the first letter of the word describing the
command. A short menu is present at the bottom of
the display at all times, summarizing the
commands. A help facility makes it possible to
review the functions of the commands at any given
time. Some commands generate a sub-menu, which
contains subcommands appropriate for the original
command only.

The various commands that are available at
the top-level are: Pause - pauses between clock
cycles (or phases), and wait for a new command,
Continue - negates the last pause command, 5 -

halts the machine, and creates a final memory
dump, Quiet - does all things silently without
updating the display, Trace - negates the 'quiet'
command, Redraw - clears the screen and redraw
the display, Values - allows the user to change the
contents of registers and buses, Microcode - lists
the interpreted microcode, O - lists the object
code of the assembled program, Examine - lists the
contents of the entire main memory, Hala - print
this summary.

7.3. Error Handling

The microcode interpreter, as well as the
assembler, may produce various diagnostic
messages during normal operation. This usually
occurs when the user fails to comply with the
syntax rules built into the simulator. All such
error messages are meant to be self-explanatory.
The line number on which the error occurred is
included in the error-message, when appropriate.
When the microcode contains errors, assembly will
not be attempted. When the source program
contains errors, execution will not be attempted.

8. The Implementation

The hard-wired part of the control subsystem
is written directly in the C language (after all, the
simulation has to end somewhere). Execution of the
microcode is done here and here only. Execution of
the microcode commences at micro location 0 and
proceeds logically unless "goto" instructions alter
the logic flow. The Microcode is assumed to have
been assembled and placed into the micro-memory.
Execution of the microcode halts only after the
microcode instruction 'start=off' has been
executed. Each microcode instruction is fetched
from the micro-memory, placed into the CSBR
register, and combined with the clock pulses to
generate control signals that will open various
system gates.

As the microcode executes, it will fetch and
interpret individual assembly/machine instructions
from the user's program in main memory.
Appropriate gates will open and close, and the
desired effect will be achieved by having the
corresponding micro operations take place. The
types and effects of the various micro operations
are described in earlier sections. To obtain the
annotated C-sources constituting the simulator,
please contact the author: Gabriel Robins, P.O. Box
8369, Van Nuys, California, 91409-8369, U.S.A.

5

simulator prototype, or other similar tools, will
9. Summary prove to be useful educational tools for the

introduction of novices to the fundamentals of
I have developed an interactive tool for the computer organization. Indeed, the construction of

simulation of a classical Von Neumann computer such a simulator will in itself constitute a good
architecture. The simulation takes place at the term project for an upper division hardware
register, bus, and gate level, and features a course.
friendly user interface, an assembler, a microcode
interpreter, and a terminal-independent full-screen 1 0. Bibliography
display facility.

Tanenbaum, S., Structured Computer Organization
There exists a distinct lack of software tools Englewood Cliffs, New Jersey, Prentice Hall, 1976.

to aid the teaching of computer science at the
undergraduate level. I believe that my interactive

1 1 Appendix I: Usage Examples

11.1. Sample Micro-program

This is part of the default microcode for the simulated machine:

{ initialize the instruction counter and stack pointer to 0 }
alu-left=O ; alu-right=O ; data-bus=alu-output ; ic=data-bus; sp=data-bus;

{ fetch a macro-instruction from the main memory }
fetch: mar=ic; mbr=mem(mar);

{ transfer the opcode and the indexing and indirection flags and
increment the instruction counter }

oc--mbr; ii=mbr; mar=mbr; alu-left=ic; alu-right=l; data-bus=alu-output; $
ic=data-bus;

{ the following section is a giant 'switch' construct, that decodes the 64
possible opcodes and branches to the appropriate place for the execution
of the corresponding machine instruction)
0-to-63: if bit(oc,5)=l then goto 32-to-63;
O-to-31: if bit(oc,4)=l then goto 16-to-31;
O-to-15: if bit(oc,3)=l then goto 8-to-15;
0-to-7: if bit(oc,2)=l then goto 4-to-7;
0-to-3: if bit(oc,l)=l then goto 2-to-3;
0-to-i: if bit(oc,O)=l then goto 1-to-l;

{ nop - no operation }
0-to-0: goto fetch;

---}
{ add - add memory to register I

{---}
{ see if this instruction requires indexing }
1-to-l: if bit(ii,O)=O then goto 1-to-l-no-indexing;

{ preform the indexing)
data-bus=mar; x=data-bus;
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-bus;
{ see if this instruction requires indirection I

1-to-l-no-indexing: if bit(ii,l)=O then goto 1-to-l-no-indirection;
{ perform the indirection }
mbr=mem (mar);
mar-mbr;
{ fetch the data from memory }

1-to-l-no-indirection: mbr=mem(mar);
alu-left=mbr; alu-right=acc; data-bus=alu-output; acc-data-bus;

goto fetch;
2-to-3: if bit(oc,O)=l then goto 3-to-3;

6

{ -- }
{ sub - subtract memory from register }

{--
{ see if this instruction requires indexing }

2-to-2: if bit(ii,O)=O then goto 2-to-2-no-indexing;
{ preform the indexing }
data-bus--mar; x=data-bus;
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-bus;
{ see if this instruction requires indirection }

2-to-2-no-indexing: if bit(ii,l)=D then goto 2-to-2-no-indirection;
{ perform the indirection }
mbr=mem(mar);
mar=mbr;
{ fetch the data from memory }

2-to-2-no-indirection: mbr=mem(mar);
alu-left=mbr; alu-right=0; invert-left-alu; data-bus=alu-output; x=data-bus;

alu-left=x; alu-right=1; data-bus=alu-output; x=data-bus;
alu-left=x; alu-right=acc; data-bus=alu-output; acc=data-bus;
goto fetch;

{ Most of the micro-program is omitted here for space considerations... }
{---}

{ hlt - halt the machine }
{ ---
63-to-63: start=off;

goto fetch;
end

11.2. Sample Assembly Program

{ This program generates the first 25 Fibonacci numbers and places them in an array
in memory locations 50 thru 74 }

equ 25
equ 50
equ 0
equ 2
call init
lda -2 ()
add -1()
sta 0 ()
incr ix
ldai array
addai max
subar ix
janz fibo
hlt
org 100
ldai array
ldixr acc
ldai 1
sta 0()
incr ix
sta 0()
incr ix
ret
end

{
{
{
{
{
{
{
{
{

number of Fibonacci numbers we want }
array begins at 50 }
defines the accumulator }
defines the index register }
initialize }
get the Nth-2 Fibonacci number I
add to it the Nth-l Fibonacci number }
store the result into the array }
increment the index }

{}
{O{ see if we have enough Fibonacci nums}
{}
{ if not, go generate some more }
{ stop the machine)
{ place the routine starting at loc 100 }
{ initialize the array index }

{ set the 1st Fibonacci number manually }

{{
{
{

set the 2nd Fibonacci number manually }
set the array pointer to the 3rd element }
return to the caller }
end of assembly)

7

max
array
acc
ix

fibo

init

11.3. Main Memory Dump

Note the computed Fibonacci numbers beginning in memory location 50:

Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:

0
1
2
3
4
5
6
7
8
9

10
(intermediate

Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

(intermediate
Location: 99 =
Location: 100 =
Location: 101 =
Location: 102 =
Location: 103 =
Location: 104 =
Location: 105 =
Location: 106 =
Location: 107 =
Location: 108 =

(intermediate
Location: 1022 =
Location: 1023 =

0000000000
0000000001
0000000010
0000000011
0000000100
0000000101
0000000110
0000000111
0000001000
0000001001
0000001010
locations have
0000110001
0000110010
0000110011
0000110100
0000110101
0000110110
0000110111
0000111000
0000111001
0000111010
0000111011
0000111100
0000111101
0000111110
0000111111
0001000000
0001000001
0001000010
0001000011
0001000100
0001000101
0001000110
locations have
0001100011
0001100100
0001100101
0001100110
0001100111
0001101000
0001101001
0001101010
0001101011
0001101100
locations have
1111111110
1111111111

Contents: 100000000001100100
Contents: 000011011111111110
Contents: 000001011111111111
Contents: 000100010000000000
Contents: 000101000000000010
Contents: 100101000000110010
Contents: 000111000000011001
Contents: 001110000000000010
Contents: 011101000000000001
Contents: 111111000000000000
Contents: 000000000000000000

the same value)
Contents: 000000000000000000
Contents: 000000000000000001
Contents: 000000000000000001
Contents: 000000000000000010
Contents: 000000000000000011
Contents: 000000000000000101
Contents: 000000000000001000
Contents: 000000000000001101
Contents: 000000000000010101
Contents: 000000000000100010
Contents: 000000000000110111
Contents: 000000000001011001
Contents: 000000000010010000
Contents: 000000000011101001
Contents: 000000000101111001
Contents: 000000001001100010
Contents: 000000001111011011
Contents: 000000011000111101
Contents: 000000101000011000
Contents: 000001000001010101
Contents: 000001101001101101
Contents: 000000000000000000

the same value)
Contents: 000000000000000000
Contents: 100101000000110010
Contents: 010010000000000000
Contents: 100101000000000001
Contents: 000100010000000000
Contents: 000101000000000010
Contents: 000100010000000000
Contents: 000101000000000010
Contents: 100001000000000000
Contents: 000000000000000000

the same value)
Contents: 000000000000000000 = 0
Contents: 000000000000000001 = 1

131172
14334
6143
17408
20482
151602
28697
57346
118785
258048
0

0
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765
0

0
151602
73728
151553
17408
20482
17408
20482
135168
0

1 2. Appendix II: The Hardware Diagram

8

1 3. Appendix I1l: The Microcode Instruction Format

(I) The GATE micro-instruction:

1 gates to be opened during current clock cycle

0 1 2 3 39 40

(11) The TEST micro-instruction:

0 1C IX SP X ACC MBR MAR 03 II bit num cmp address zd unused

0 1 2 3 4 5 6 7 8 9 10...14 15 16...25 26 27...40

1 4. Appendix IV: The Default Assembly Instruction Set

op num mnemonic binary code effect of operation

0 nop 000000 no operation
1 add 000001 add memory to register acc
2 sub 000010 subtract memory from register acc
3 Ida 000011 load memory into register acc
4 sta 0001 00 store register acc into memory
5 incr 000101 increment register
6 decr 00011 0 decrement register
7 addai 000111 add to register acc immediate
8 subai 001000 subtract from register acc immediate
9 addixi 001 001 add to ix immediate
1 0 subixi 001010 subtract from ix immediate
1 1 addspi 001 011 add to sp immediate
1 2 subspi 001100 subtract from sp immediate
1 3 addar 001101 add register to acc
1 4 subar 001110 subtract register from acc
1 5 addixr 001111 add register to ix
1 6 subixr 010000 subtract register from ix
1 7 Idar 010001 load acc with register
1 8 Idixr 010010 load ix with register
1 9 Idicr 010011 load ic with register
20 inva 010100 invert acc
21 invix 010101 invert ix
22 anda 010110 and acc with memory
23 ora 010111 or acc with memory
24 xora 011000 xor acc with memory
25 rsfta 011001 right shift acc
26 lsfta 011010 left shift acc
27 jmp 011011 jump
28 jaz 011100 jump if acc is zero
29 janz 011101 jump if acc is not zero
30 jixz 011110 jump if ix is zero
31 jixnz 011111 jump if ix is not zero
32 call 100000 call a subroutine
33 ret 100001 return to caller
34 pusha 1 00010 push register acc onto stack
35 popa 100011 pop acc from stack

10

36 zeroa 100100 zero out the acc
37 Idai 100101 load acc immediate
63 hIt 111 111 halt the machine

1 5. Appendix V: The Assembly Instruction Format

operation code Iindirection indexing address of operand

17 ... 12 11 10 9 ... 0

Bit 11, when on, causes indirection to occur. Bit 10, when on, causes indexing to occur via the IX
register. Indexing takes precedence over indirection.

1 6. Appendix VI: The Main Display

----- Computer-Si mu lat i on-bW--Gabr i el-Rob i ns--vers i on-3-of-7/26/88--------

RCC=000100010100101111=17711 DATR-BUS=000000000000000000=0

MBR=000100010000000000=17408 RDDRESS-BUS=0000000000=0

MRR=0000000000=0 ALU-LEFT-BUS=000000000000000011=3

IC=0000000011=3 ALU-RIGHT-BUS=000000000000000001=1

open gates: 2 14 16 17 18

micro-ops: alu-left=ic; alu-right=l; mar=mbr; oc=mbr; ii=mbr;

---- --- ---- --- ---- --- ---- --- ---- --- --- CLOCK-PHRSE=g
0C=000100=4 11=01=1 Micro Program

Control Logic STRRT=off pausing
CSAR=0000000011=3

$P=0000000000=0
CSBR=10100000000000101110001000000010000000000

[IX=0001000111=71
X=000000001111111111=1023 type=GRTE1

-- i
-Pause-Cont i nue-Stop-Qu iet-Trace-Redraw-Values-Mi crocode-Obj ect-Exam i ne-He Ip--

11

1 7. Table of Contents

1 Abstract ... 1
2 Introduction .. 1
3 Overview ... 1
4 The Hardware ... 2

4.1 Registers .. 2
4.2 Buses ... 2
4.3 Gates ... 2
4.4 M emory ... 2
4.5 Inverters ... 2
4.6 Adder .. 2
4.7 Shifter ... 2
4.8 Zero-detect logic ... 3
4.9 The Control Subsystem ... 3

4.9.1 The M icro-memory .. 3
4.9.2 M icro-registers ... 3
4.9.3 Control Logic .. 3
4.9.4 Start Toggle .. 3
4.9.5 Clock .. 3
4.9.6 M icro-Instruction Form at .. 3

5 The Assembly Language .. 4
5.1 Stack ... 4
5.2 Instruction Form at .. 4
5.3 Assem bly Syntax ... 4

6 The M icrocode Interpreter ... 4
6.1 Microcode Syntax ... 4

7 The User Interface ... 5
7.1 Screen format .. 5
7.2 The interaction W ith the User .. 5
7.3 Error Handling ... 5

8 The Im plem entation .. 5
9 Sum m ary ... 6
10 Bibliography ... 6
11 Appendix 1: Usage Examples .. 6

11.1 Sample M icro-program .. 6
11.2 Sample Assembly Program ... 7
11.3 Main M emory Dum p ... 8

12 Appendix II: The Hardware Diagram ... 8
13 Appendix II: The M icrocode Instruction Format ... 1 0
14 Appendix IV: The Default Assembly Instruction Set ... 1 0
15 Appendix V: The Assem bly Instruction Format ... 1 1
16 Appendix VI: The Main Display .. 1 1
17 Table of Contents .. 1 2

12

An Interactive Gate-Level Simulator'
of a Classical Von Neumann Architecture,

as an Educational Aid for Introducing Novices
to the Fundamentals of Computer Organization

Gabriel Robins

Computer Science Department
University of California, Los Angeles

"Begin at the beginning," said the King very
gravely, "and go on till you come to the end; then stop."

1. Abstract

I have developed an interactive tool for the simulation of a classical Von Neumann
computer architecture. The simulation takes place at the register, bus, and gate level. The
system consists of 9 registers, 4 buses, 40 gates, an adder, a memory, a micro-programmed
control subsystem, a 3-phase clock, a "scratch" register, logical inverters, a bi-directional
shift register, several constant registers, and zero-detect logic. A friendly user interface has
been constructed, featuring an assembler, a microcode interpreter, and a terminal-independent
full-screen display facility. My simulator prototype could effectively be used as an educational
tool for the introduction of novices to the fundamentals of computer organization. Alternatively,
the construction of such a simulator may in itself constitute a good term project for an upper
division hardware course.

Keywords: Computer organization, simulation, learning tools, computer hardware, educational aids,
user training systems.

Alice thought to herself, "1 don't see how he can ever
finish if he doesn't begin."

2. Introduction

We have developed an interactive tool for the simulation of a classical von Neumann
computer architecture. The simulation takes place at the register, bus, and gate level. The
components of our system include 9 registers, 4 buses, 40 gates, 1 adder, a memory, a micro-
programmed control subsystem, a 3-phase clock, an extra "scratch" register, logical
inverters, a bi-directional shift register, several constant registers, and zero-detect logic. In
addition, we have constructed a friendly user interface, featuring an assembler, a microcode
interpreter, and a terminal-independent full-screen display facility.

"But it isn't old!" Tweedledum cried, in a greater fury than ever. "It's new, I tell you-"

© 1988, by Gabriel Robins

1

An Interactive Gate-Level Simulator as an Educational Aid

There exists a distinct lack of software tools to aid and enhance the teaching of computer
science at the undergraduate level. We believe that our interactive simulator prototype
constitutes an extremely useful educational tool for the introduction of novices to the
fundamentals of computer organization. The architecture we consider is based on the one
discussed in [Tanenbaum].

3. Overview

"The Question is," said Alice, "whether you can make

words mean so many different things."

This simulator requires 3 specification: the micro-code, the assembly instruction set, and
the user program. When the simulator starts running, it loads the micro-program into the
micro-store; next, it reads and assembles the user program into machine language, according to
the instruction set specified (or else the default assembly instruction set). The resulting
machine program is loaded into the main memory of the simulator. The simulator then begins to
execute the micro-program; the micro-program, in turn, fetches, decodes, and executes
instructions of the machine-language program.

By programming the simulator in micro-code, the user may thus create new and novel
"instruction sets" for the "machine." For example, suppose the user wanted to add an assembly
instruction "sqrt" which takes the integer square-root of the ACC register and leaves the result
in the ACC register. The user will then need to add a new opcode called "sqrt" (and a
corresponding machine-instruction code) to the assembly instruction set of the machine (by
updating that file), and next modify the micro-program to perform the square root operation on
the ACC register whenever the new instruction is encountered.

4. The Hardware

"The time has come," the Walrus said, "to talk of many
things."

The computer system we chose to simulate is a simplified von Neumann-type single-
processor micro-program controlled machine. The schematic organization of this system is
given in appendix II. A detailed description of the components and topology of the system follows.
Unless otherwise specified, when two registers/buses with different numbers of bits are
connected, say m and n where m > n, the connection consists of bits 0 through n-1 of the first
register/bus being connected to bits 0 through n-1 of the second register/bus. The rest of the
m-n connections are connected to logical low (0).

4.1. registers

"Oh!" said Alice. She was too much puzzled to make
any other remark.

2

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

M - a 10-bit register whose output is connected to both adder buses, as well as to the MAR
register (gates 1, 2, 29, respectively) and whose input is connected to the data bus (gate 30).
This register is used as the instruction counter for the user's program.

IX - a 10-bit register whose output is connected to both adder buses (gates 3, 4) and whose
input is connected to data bus (gate 33). This register is used as the ind r by user
programs for array-type addressing.

SP - a 10-bit register whose output is connected to both adder buses (gates 5, 6) and whose
input is connected to the data-bus (gate 25). This register is used as a stack.pinter for
call/return instructions as well as for arbitrary push/pop operations.

X - an 18-bit register whose output is connected to both adder buses (gates 7, 8) and whose
input is connected to the data bus, as well as to two constant registers "10" and "18" (gates 26,
39, 27, respectively). This register is only used as a scratch reait in various micro-
instructions, and is invisible to the assembly -language program.

ACC - an 18-bit register whose output is connected to both adder buses (gates 9, 10) and
whose input is connected to the data bus (gate 28). This register is used in all arithmetic and
logical operations, and serves as an "accul*at" in the user's program.

MAR - a 10-bit register whose output is connected to the data bus and to the memory (gate
40), and whose input is connected to the IC register as well as to the address bus (gates 29, 31,
respectively). This register is also known as the memory address register, and is used
primarily to store the address of where main memory is going to be written into or read from.
It may also be used as a scratch register by the micro-program.

U - an 18-bit register whose output is connected to the main memory, data-bus, and left
adder bus (gates 35, 24, and 19,respectively), and whose input is connected to the memory and
to the data bus (gates 34, and 32, respectively). This register is also known as the memory
buffrjrgister and is used to store the data involved in all memory read/write operations (i.e.,
it contains the data to be read/written from/into a memory location referenced by register
MAR).

OC - a 6-bit register whose output is directly connected to the micro-programmed control
subsystem, and whose input is connected to the MBR register (gate 17). This register is used to
store the op-,ode of the currently executed macro-instruction.

1I - a 2-bit register whose output is directly connected to the micro-programmed control
subsystem, and whose input is connected to the MBR register's bits 10 through 11 (gate 18).
This register is used to store the indexing/indirection flags of the currently executing assembly
instruction.

4.2. Buses

"Would you tell me please,' said Alice, "what that
means?"

3

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Data bus - an 18-bit bi-directional bus that is connected to the various registers and to the
adder output lines. Most movement of data between registers takes place via the data bus.

Address bus - a 10-bit bi-directional bus that is connected to the MAR register and to the
adder output bus. This bus is used to supply the MAR register with the address of memory
locations in read/write operations.

Left adder bus - an 18-bit bus that connects the various registers and several constant
registers with the left input to the adder module. This bus is used to supply the adder with its
left argument.

Riaht adder bus - an 18-bit bus that connects the various registers and several constant
registers with the right input to the adder module. This bus is used to supply the adder with its
right argument.

4.3. Gates

"1 don't understand you," said Alice. "Its dreadfully
confusing!"

There are 40 distinct gates, each, when open, initiates a micro-operation. Any number of
gates may be open at the same time, but some combinations of gates are mutually exclusive (ex:
left-shift and right-shift). A summary of the various gates and the micro operations they
initiate follows:

1. alu-right = ic
2. alu-left = ic
3. alu-right = ix
4. alu-left = ix
5. alu-right = sp
6. alu-left = sp
7. alu-right = x
8. alu-left = x
9. alu-right = acc
10. alu-left = acc
11. alu-right = -1
12. alu-left = 0
13. alu-right = 0
14. alu-right = 1
15. alu-right = sign
16. mar = mbr
17. oc =mbr
18. ii = mbr
19. alu-left = mbr
20. left-shift
21. right-shift
22. data-bus = alu-output
23. address-bus = alu-output
24. data-bus = mbr
25. sp = data-bus
26. x = data-bus

4

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

27. x = 18
28. acc = data-bus
29. mar= ic
30. ic = data-bus
31. mar = address-bus
32. mbr = data-bus
33. ix = data-bus
34. mbr = mem(mar)
35. mem(mar) = mbr
36. start = off
37. invert-left-alu
38. invert-right-alu
39. x = 10
40. data-bus = mar

4.4. Memory

"It's a poor sort of memory that only works
backwards,' the Queen remarked.

The main memory consists of 1024 words of 18 bits each. The memory locations have
addresses in the range 0 through 1023, inclusive. Each word has its bits numbered 0 through
17, inclusive, where bit 0 is considered to be the least significant when numeric values are
represented.

4.5. Inverters

There is a single logical inverter between each of the adder left and right buses, and the
adder. These may invert none, one, or both arguments to the adder, depending on whether
neither, one, or both are enabled.

4.6. Adder

"Can you do Addition?" the White Queen asked. "What's
one and one and one and one and one and one and one and
one and one and one?"
"1 don't know," said Alice. "I lost count."
"She can't do Addition," the Red Queen interrupted.

There is an 18-bit adder whose inputs are the outputs of the inverters. At each clock
cycle, the adder-(which consists of solid-state combinatorial logic) sums its inputs and outputs
the answer to its output.

4.7. ShIfter

There is a single bi-directional shift register between the adder output and the data and
address buses. It may shift the adder output by one bit to either left or right, depending on

5

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

whether it is enabled.

4.8. Zero-detect logic

After each addition operation of the adder, the zero-detect logic resets or presets a bit that
can be later tested for branching purposes. The zero-detect logic is set to 'V' if the last addition
resulted in a zero answer, and to '0' if the last addition resulted in a non-zero answer.

4.9. The Control Subsystem

Alice remained looking thoughtfully at the mushroom
for a minute, trying to make out which were the two
sides of it; and, as it were perfectly round, she found
this a very difficult question.

The micro-programmed control subsystem of the machine is implemented by a control
store micro-memory, a CSAR (control store address register) and CSBR (control store data
register) registers, and hard-wired micro control logic. This entire subsystem is invisible to
the assembly-language user.

4.9.1. The Micro-memory

"*-But there's one great advantage in it, that one's

memory works both ways."

The micro-memory consists of 512 words of storage, each of which contains 41 bits. The
micro-memory words are numbered 0 through 511, inclusive, while the bits in each micro
word are numbered 0 through 40, inclusive.

4.9.2. Micro-registers

"And now which is which?' she said to herself

CSAR - this is a 9-bit register that is used to address the micro-memory. It is similar in
function to the MAR register for the main memory. CSAR is an acronym for "Control Store
Address Register".

CSBR - this is a 41-bit register that contains the current micro instruction being executed.
This register is directly in control of the hard-wired control logic and supervises the opening
and closing of control gates (i.e., the generation of control signals) by virtue of the values
contained in its bits. CSBR is an acronym for "Control Store Buffer Register".

4.9.3. Control Logic

The control logic for the micro programmed control subsystem is hard-wired (in this
simulation it is written in C). It supervises the loading of instructions from the micro-

6

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

memory, incrementing the CSAR register, and generating the control signals from the value of
the CSBR and the clock pulses.

4.9.4. Start Toggle

"1 know something interesting is sure to happen,' she
said to herself

The start toggle is a single bit register that allows the system to commence execution
(when high) or causes the entire operation of the system to be suspended (when low). This is
used to halt execution of the simulation, so that the user may inspect the contents of various
registers/buses.

4.9.5. Clock

The operation of the control subsystem is governed by a three-phase clock. The phases of
the clock are numbered P0, P1, and P2. The set of 40 system gates is partitioned into 3 distinct
non-empty disjoint subsets, each of which contains gates that can be open ONLY during a unique
clock phase. These sets are:

phs ae = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 37, 38}

phase..1gates = { 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 39, 40 }

phas 3 gate = { 34, 35, 36)

This partition exists in order to eliminate certain nasty ambiguities that arise when
several inputs are allowed to to enter into the same register simultaneously, thereby rendering
its contents undefined.

4.9.6. Micro-Instruction Format

"You'll get used to it in time,' said the Caterpillar;

Each micro instruction has one of the following formats:

(I) The GATE micro-instruction:

(11)

1 1 gates to be opened during current clock cycle

0 1 2 3 39 40

The TEST micro-instruction:

1o 0 CI ixI SPl Xl ACCI MBR MAR!CC 1 iJ bit numi cmpl address I zd I unused!
0 1 2 3 4 5 6 7 8 9 10...14 15 16...25 26 27...40

7

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

In the first format, the only operations that can occur are gates being opened according to
which of bits 1 through 40 of the instruction are set high, during the appropriate clock phases.

In the second format, a certain bit (specified by bits 10 through 14) of a register
(specified by bits 1 through 9) is examined and compared with bit 15 of that instruction. If the
comparison was successful (i.e., they were equal), then micro-control is transferred to the
micro-location specified by bits 16 through 25 of the instruction. Both the "bit num" and the
"address" fields are encoded in binary; the rest of the fields are linearly encoded, and only one of
the bits of all of these fields must be set high (the rest being set low) in order for the
instruction to logically make sense.

Having the system be micro-programmed makes it very powerful with respect to non-
micro-programmed systems. This is because new user-level assembly instruction sets can be
easily implemented, and only by changing the micro-program, not having to touch the hardware
at all. In fact, users may write their own micro-programs, thereby taking advantage of higher
machine efficiency to suit their particular applications.

5. The Assembly Language

The Red Queen shook her head. "you may call it
'nonsense' if you like," she said, "but I've heard
nonsense, compared with which that would be as
sensible as a dictionary!"

This section describes the assembler for the machine. The purpose of the assembler is to
"compile" the user's assembly language into machine language and to place the resulting object
code into the main memory so that it may be later executed. The reason for having an
assembler, is to make the task of programming less tedious for the user; otherwise, the user
would have had to program directly in the hardware's binary machine language.

A reasonable instruction set has already been written (and is the default instruction set)
in order to accommodate users who do not wish to go through the tedium of writing their own
micro-programs. Sensible mnemonics were also assigned to the various operations. It should
be noted that the assembler is written in a general manner. The opcode mnemonics are read
from an external file, and thus subject to modification by the user. The rest of the functions of
the assembler remain unchanged from language to language. In fact, the only difference between
two assembly languages here is between their two respective opcode mnemonic sets.

5.1. Mnemonics

"1 can't believe that!" said Alice.
"Can't you?" the Queen said in a pitying tone. "Try
again: draw a long breath, and shut your eyes."

Here we give the mnemonics and their respective opcodes for the default assembly
instruction set.

8

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

op num mnemonic binary code effect of operation

0 nop 000000 no operation
1 aid 000001 add memory to register acc
2 sub 000010 subtract memory from register acc
3 Ida 000011 load memory into register acc
4 sta 000100 store register acc into memory
5 incr 000101 increment register
6 decr 000110 decrement register
7 addai 000111 add to register acc immediate
8 subai 001000 subtract from register acc immediate
9 addixi 001001 add to ix immediate
1 0 subixi 001010 subtract from ix immediate
1 1 addspi 001011 add to sp immediate
1 2 subspi 001100 subtract from sp immediate
13 addar 001101 add register to acc
1 4 subar 001110 subtract register from acc
1 5 addixr 001111 add register to ix
1 6 subixr 010000 subtract register from ix
1 7 Idar 010001 load acc with register
1 8 ldixr 010010 load ix with register
1 9 Idicr 010011 load ic with register
20 inva 010100 invert acc
21 invix 010101 invert ix
22 anda 010110 and acc with memory
23 ora 010111 or acc with memory
24 xora 011000 xor acc with memory
25 rsfta 011001 right shift acc
26 Isfta 011010 left shift ace
27 jmp 011011 jump
28 jaz 011100 jump if acc is zero
29 janz 011101 jump if acc is not zero
30 jixz 011110 jump if ix is zero
31 jixnz 011111 jump if ix is not zero
32 call 100000 call a subroutine
33 ret 100001 return to caller
34 pusha 100010 push register acc onto stack
35 popa 100011 pop acc from stack
36 zeroa 100100 zero out the acc
37 Idai 100101 load acc immediate
63 hIt 111111 halt the machine

In addition, there are three pseudo-operators that have effect only during the assembly
process. These are the 'con', 'equ', and the 'org' operators, and will be discussed later.

9

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

5.2. Stack

"Why?" said the Caterpillar. Here was another puzzling
question;

As can be easily seen, this language has a built-in stack facility for calling functions and
for pushing values onto a stack. This makes the language posses substantial versatility. In the
micro-program, the stack is rooted at the top of memory (location 1023) and grows toward
smaller memory locations.

5.3. Instruction Format

"Come, there's half my plan done now! How puzzling
all these changes are!"

The instruction format for this language calls for each instruction to be one word in
length, having the following format:

operation code I indirection I indexing address of operand

17 ... 12 11 10 9 0

Bit 11, when on, causes indirection to occur. Bit 10, when on, causes indexing to occur via the

IX register. Indexing takes precedence over indirection.

5.4. Syntax

"Curiouser and curiouserd cried Alice

This assembler recognizes the assembly language that is described by the following rules:

0 Each line of code is composed of one to three fields: label, opcode, and address.

0 The label field contains a label that may be referenced to anywhere else in the program.
This label must consist of any non-white-space (i.e., non-blank-looking-when-
printed) characters and can be of any length.

& The opcode field must contain a string that corresponds to one of the legal opcodes.

0 The address field must contain a string that consists of the characters '0' through '9',
optionally preceded by the character '-'. The address field may be immediately preceded
by the character '*° which signified indirection, and succeeded by the two characters '()'
which signify indexing. The last two options are not mandatory but should not be
separated with a blank from the rest of the address field when included. Instead of a
number, the address field may be a label, conforming to the rules of label-forming. The

10

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

address will be filled with the value of the label before the end of assembly. Each label
must be unique in the program when appearing on the left on an opcode.

The label field may start on or before column 3. The opcode field should start following
the label field and anywhere on or before column 15. The address field should start after
the opcode field and on or before column 40. There should be at least one white-space
between each pair of fields.

In addition to the default opcodes described earlier, there are three more pseudo-
opcodes. These are used during assembly only, and are not used at all during execution.
The first one is the '12.g.u: opcode. It associates the label on its line with the
number/address appearing on the same line, for future references in the program. This
is useful for defining "global" constants once at the beginning of the program, and
referring to them by name all throughout the program. The second one is the '=on'
pseudo-operator. It places the value of the address of the same line into the memory
location specified by the assembly memory counter. The address here may be a label.
This operator can be used to store data/constants into memory locations during the
assembly process. The third is the 'M.g.' pseudo-operator. It simply modifies the
assembler memory counter to become the address field specified with this operator.
This is used to assemble code into several separate memory regions.

The last line of any program must contain only the string "end" in the normal opcode
field of that line.

Comments may be included between curly brackets (i.e., '{' and '}'). All comments will
be ignored. Blank lines may be inserted anywhere in the source program. All such lines
will also be ignored. Comments may span several lines.

Immediate instructions have their data in the address field, so the data can only be ten
bits long, not eighteen.

Instructions that operate on registers (ex: 'addar') take as an operand (i.e., as the
address field) a number between 0 and 3, inclusive, that represents the register to be
operated on as follows:

0 - ACC
1 - SP
2 - IX
3 - IC

It is usually convenient to define these registers with 'equ's at the beginning of the
program, for future references. For example:

ix equ 2

addar i x

The last statement adds to the accumulator the contents of IX.

11

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Character case (upper vs. lower) matters, so the label 'FOO is distinct from 'foo', and
both are distinct from 'Foo'.

6. The Microcode Interpreter

It sounded an excellent plan, no doubt, and very neatly
and simply arranged: the only difficulty was, that she
had not the smallest idea how to set about it.

This section describes the microcode interpreter. The function of the microcode
interpreter is to convert the microcode from the symbolic form it is written in, to the form
that can be placed into the micro-memory. Alternatively, the microcode would have been coded
in binary by the user, which makes for a very tedious and error-prone task.

6.1. Syntax

"1 didn't say there was nothing better,' the King
replied. *1 said there was nothing like it.'

The micro-program in symbolic form should comply with the following rules:

Each line shall be composed of as many occurrences of the following 40 strings as
desired:

1. alu-right=ic
2. alu-left=ic
3. alu-right=ix
4. alu-left=ix
5. alu-right=sp
6. alu-left=sp
7. alu-right=x
8. alu-left=x
9. alu-right=acc
1 0 alu-left=acc
11. alu-right=-I
12. alu-left=0
13. alu-right=0
14. alu-right=1
1 5. alu-right=sign
16. mar=mbr
17. oc=mbr
18. ii=mbr
19. alu-left=mbr
20. left-shift
21. right-shift
22. data-bus=alu-output
23. address-bus=alu-output
24. data-bus=mbr
25. sp=data-bus

12

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

26. x=data-bus
27. x=18
28. acc-data-bus
29. mar=ic
30. ic-data-bus
31. mar=address-bus
32. mbr=data-bus
33. ix-data-bus
34. mbr=mem(mar)
35. mem(mar)=mbr
36. start=off
37. invert-left-alu
38. invert-right-alu
39. x=10
40. data-bus=mar

Each set of micro-operations that are specified on ONE input line, will be executed

during ONE clock cycle (but maybe in different clock phases).

"* The character ';' is used as a separator and should follow each one of the strings.

"* Any line may be labeled by placing a label string at its beginning and by separating the
label from the first micro-operation by the character ':'. Each label so used must be
unique in the micro-program.

"* Comments may be inserted between curly brackets. All comments will be ignored by the
interpreter. Blank line will also be ignored and therefore can be inserted anywhere.
Comments may span several lines.

"* The last line of the micro program must contain the string "end", and nothing else.

"* Case matters, so the label 'FOO' is distinct from 'foo', and both are distinct from 'Foo'.

* Long lines may be continued by placing the character '$' at the end of the line to be
continued, and this may be done to continue a single micro instruction on as many lines
as desired.

In addition to the micro operations specified above, two more micro-instructions may be
specified: the 'if' and the 'gQ=.'. The 'if' has the following syntax:

if(L,.g.,b.L).m then goto label;

where 'L,.g.' is one of the strings { ic, ix, sp, x, acc, mbr, mar, oc, ii, zero-detect }, bit'
is a decimal number that represents the bit to be tested, '.mp.' is either 0 or 1 (the
value to be tested against), and 'label' is a valid label in the micro-program to be
branched to if the test is successful (i.e. reg(bit)=cmp). The 'goto' micro-instruction
is much simpler:

goto Jabel;

This micro-instruction unconditionally transfers micro-control to the micro-location
specified by 'label. If the label has any non-numeric character in it, it is considered to

13

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

be a relative target address, to be determined when the same label is found at the
beginning of another micro instruction. If the label consists entirely of numeric
characters, it is taken to be an absolute address, specified in decimal. For example,
'123-foo' is a label while '123' is a absolute micro-memory address. In the former
case, the interpreter will search for a '123-foo' label on the other microcode source
lines, and, if none are found, an 'undefined micro-label' will be generated. The label in
the 'if' and 'goto' statements may optionally be replaced by an absolute address: this
address will be taken literally to be the branching address, but in almost all cases, a
label is much preferable to an absolute branching address, and so the provision for this
capability here is only token.

White-spaces may be inserted anywhere in the micro-program, as all white-spaces are
completely ignored.

Any failures to comply with the above rules will cause syntax errors to be generated
during the microcode-interpretation phase of this program. All error messages are explicit and
are meant to be self-explanatory. After the microcode has been interpreted, it will be placed
into the micro-memory, beginning at micro-memory location 0.

7. The User Interface

"Thank you very much," she whispered in reply, Obut I
can do quite well without.

7.1. Screen format

The simulator updates the terminal display in a screen-oriented fashion. Direct cursor
control is exercised through a library package which is intelligent enough to look up the
terminal type in the appropriate UNIX system file. The most current values of the various
registers and buses are displayed on the screen at all times, unless the user specified to the
simulator to run in the 'quiet' mode. This display makes possible for the user to trace only the
specific system components of his/her choice, while possibly ignoring the rest, with minimal
cognitive overhead. In addition, this method of display is generally considered particularly
aesthetically pleasing (it is analogous to using a window-editor, whereas the alternative is a
line-editor).

While the system is running, the display appears as follows:

14

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

---------Computer-Simulation-by--Gabriel-Robins--version-3-of-7/26/88-------

ACC=000100010100101111=17711 DRTR-BUS=000000000000000000=0

MBR=000100010000000000=17408 RDDRESS-BUS=0000000000=0

MRR=0000000000=0 RLU-LEFT-BUS=000000000000000011=3

IC=0000000011=3 ALU-RIGHT-BUS=000000000000000001=1

open gates: 2 14 16 17 18

micro-ops: alu-left=ic; alu-right=l; mar=mbr; oc=mbr; ii=mbr;

OC=000100=4 11=01=1 Micro Program
Control Logic

CSAR=0000000011=3

CSBR=10100000000000101110001000000010000000000

X=000000001111111111=1023 type=GRTEf

-Pause-Continue-Stop-Quiet-Trace-Redraw-Values-M

CLOCK-PHASE=O

STRRT=off pausing

SP=0000000000=0

IX=0001000111=71

crocode-Obiect-Examine-Help--

7.2. The Interaction With the User

But Humpty Dumpty only shut his eyes, and said "Wait
till you've tried."

All commands are one letter long, which in all cases is the first letter of the word
describing the command. A short menu is present at the bottom of the display at all times,
summarizing the commands. A help facility makes it possible to review the functions of the
commands at any given time. Some commands generate a sub-menu, which contains
subcommands appropriate for the original command only. A major feature of the user interface
is that pressing 'return' is never necessary, and most of the time even quite useless. Instead,
the simulator 'senses' when a key was pressed, and accordingly takes the appropriate action.
When no keys are pressed, it will continue merrily about its simulation, not bothering to
prompt the user. Some commands, however, directly cause the simulator to pause and read
keyboard input. This scheme tends to minimize both the number of key strokes and the elapsed
time involved when controlling the behavior of the simulator.

7.3. The Commands

"When I use a word,' Humpty Dumpty said, in a rather
scornful tone, wit means just what I choose it to mean -

- neither more nor less.'

The various commands that are available at the top-level are:

Pause - pause between clock cycles, and wait for a command. The pause command is

15

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

two-level: a second pause will cause the machine to pause between clock phases.
Subsequent pause commands will not have any effect.

• Continue - negate the last pause command.

• B= - halt the machine, and create a final memory dump.

* Quiet - do all things silently, (do not update the display). This is useful for going
quickly through thousands of simulation steps, without having to watch the changes in
the system on the screen (which tends to greatly slow down the simulation).

S ITrace - negate the 'quiet' command. All state changes of the simulator will be reflected
on the screen.

* fRedraw - clear the screen and redraw the display. This is useful when some renegade
process writes bogus text to your terminal and 'messes up' the display.

• Values, - allows the user to change the contents of registers and buses through a window-
editor. This is very useful for experimenting with the simulator, and playing various
'what-if' scenarios.

0 Microcod - list the interpreted microcode.

0 Objec - list the object code of the assembled program.

0 Examine - list the contents of the entire main memory.

* J . - print this summary.

All commands that list things, do so by piping the output through a familiar system filter,
for the convenience of the user. All standard system subcommands that can be used with this
filter, can also be used when doing a listing. The filter used here is the UNIX utility more(l).

7.4. Error Handling

"It is wrong from beginning to end," said the
Caterpillar, decidedly;

The microcode interpreter, as well as the assembler, may produce various diagnostic
messages during normal operation. This usually occurs when the user fails to comply with the
syntax rules built into the simulator. All such error messages are meant to be self-
explanatory. The line number on which the error occurred is included in the error-message,
when appropriate. When the microcode contains errors, assembly will not be attempted. When
the source program contains errors, execution will not be attempted.

16

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

7.5. Special Files

"Ah, what is it now?' the Unicorn cried eagerly.
"Youll never guess! I couldn't."

Several file names have special meaning to the simulator:

" "obect.dum4" - this file will contain the dump of the assembled user program,
immediately after the assembly. It is not updated, so it will not be current when
running self-modifying programs.

"microcode.dump" - this file will contain the dump of the microcode. Since the
microcode can not modify itself, this file is always current. For large micro-programs,
however, the usefulness of the binary microcode dump is questionable.

"final.memory. - this file will contain the final dump of the memory, after the entire
system halted. It is meant to be used for debugging as well as for output presentation
purposes (i.e., since there are no output devices associated with the simulator,
programs can "print" to the memory, which can be examined by the user).

"mnemonics" - this is the default file assumed by the simulator to initially contain the
mnemonics (to the assembler) that define the assembly language being emulated in the
microcode. This default may be overridden by specifying an appropriate argument when
invoking the simulator. The format of the mnemonics file consists of two string per
line, each enclosed in double quotes. what is before, after, or between the two strings is
ignored. The first string is the opcode mnemonic, whose length is arbitrary, while the
second string is the corresponding bit configuration, which should consist of the
characters '0' and '1' only. The length of the second string must be 6 characters (a
condition inherent in the topology of the system being simulated). The very last line of
the file should contain the string "end" and nothing else. Here is an example of a valid
"mnemonics" file:

"nop", "000000" { this is the nop operation}
{foo} "addr", { addition) "000111" { guess what this is }
end

This file defines an assembly language with two opcodes: 'nop' and 'addr'. Notice that
column alignment and comment insertion are completely arbitrary.

""icro.e - this is the default file assumed by the simulator to initially contain the
microcode. This default may be overridden by specifying an appropriate argument when
invoking the simulator.

" program" - this is the default file assumed by the simulator to initially contain the
source program. This default may be overridden by specifying an appropriate argument
when invoking the simulator.

""* lo..l - this file will be created only when errors were encountered during the
microcode interpretation, and in this case it will contain the summary of the errors
generated by the microcode interpreter.

17

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

"* mbIy.1oo" - This file will be created only when errors were encountered during the
assembly phase, and is this case it will contain the summary of the assembly errors
generated by the assembler.

In addition the the above files, the simulator will leave behind files which contain the
binary image of the corresponding microcode file. These files will have a '.o' extension attached
to the end of their name. For example, if you invoked the simulator with the microcode file
'blah', a new file will be created under the name 'blah.o'. Any subsequent invocations of the
simulator with the file 'blah' as the microcode file, will cause the microcode to be actually
loaded from 'blah.o' instead, unless, of course, 'blah' has been modified since the creation of
'blah.o'. The underlying reasoning behind this scheme is concern with efficiency.

8. Invoking the Simulator

"Please then, said Alice, "how am I to get in?"

Invoking the simulator involves simply typing the name of the simulator to the UNIX
operating system, followed by up to three positional arguments, all of which are optional. When
omitted, each one of the arguments defaults to a value specified in a previous section. The
arguments are:

1. The source program file (to be read by the assembler)

2. The microcode file (to be read by the microcode interpreter)

3. The mnemonics file (to be read by the assembler)

To override only one of the default values, specify null arguments for the rest of the previous
arguments.

Examples follow:

emula - calls the simulator with no arguments (so the defaults will prevail).

emula mysource - calls the simulator with overriding the first argument only,
accepting the defaults for arguments 2 and 3.

emula " micro.prog - calls the emulator while overriding only the second argument.

emula ' " mne - overrides argument 3, leaving the first two to default.

Sa - overriding all 3 argum ents.

This scheme permits testing various programs with various microcode sets, without
wasting time on file copying and manipulation. Note that the simulator "knows" what it is
called. That is, the simulator will not run, unless it is invoked using the name "emula".

18

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

9. The Implementation

"If there is no meaning in it, said the King, "that
saves a world of trouble, you know, as we needn't try
to find any.a

The hard-wired part of the control subsystem is written directly in the C language (after
all, the simulation has to end somewhere). Execution of the microcode is done here and here
only. Execution of the microcode commences at micro location 0 and proceeds logically unless
"goto" instructions alter the logic flow. The Microcode is assumed to have been assembled and
placed into the micro-memory. Execution of the microcode halts only after the microcode
instruction 'start=off' has been executed. Each microcode instruction is fetched from the
micro-memory, placed into the CSBR register, and combined with the clock pulses to generate
control signals that will open various system gates.

As the microcode executes, it will fetch and interpret individual assembly/machine
instructions from the user's program in main memory. Appropriate gates will open and close,
and the desired effect will be achieved by having the corresponding micro operations take place.
The types and effects of the various micro operations are described in earlier sections. The
annotated C-code constituting the simulator is listed in appendix I.

10. Summary

"Pray don't trouble yourself to say it any longer than
that," said Alice.

I have developed an interactive tool for the simulation of a classical Von Neumann
computer architecture. The simulation takes place at the register, bus, and gate level, and
features a friendly user interface, an assembler, a microcode interpreter, and a terminal-
independent full-screen display facility.

There exists a distinct lack of software tools to aid the teaching of computer science at the
undergraduate level. I believe that my interactive simulator prototype, or other similar tools,
will prove to be useful educational tools for the Introduction of novices to the fundamentals of
computer organization. Indeed, the construction of such a simulator will in itself constitute a
good term project for an upper division hardware course.

"Tut, tut, child" said the Duchess, "Everything's got a
moral, if only you can find it.'

19

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

11. Acknowledgements

Alice said afterwards that she had never seen such a
fuss made about anything in all her life.

I originally conceived this project while attending a CS151B course, taught at UCLA by Dr.
N. A. Alexandridis during the Winter of 1983. The simulation system that I developed was used
in subsequent quarters to introduce computer science undergraduates to the fundamentals of
computer hardware and organization; recently I decided that this system could still be very
useful in computer science instruction to undergraduates; I therefore extracted this system
from my tape archives and polished it. The various quotations sprinkled through this paper
were taken from the classic works of [Carroll].

12. Bibliography

After a pause, Alice began. "Well! they were BOTH
very unpleasant characters-"

Carroll, L., The Annotated Alice: Alice's Adventures in Wonderland & Through the Looking Glass.
(with an introduction and notes by Martin Gardner), Signet Press, New York, 1960.

Tanenbaum, S., Structured Computer Organization, Englewood Cliffs, New Jersey, Prentice
Hall, 1976.

20

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

1 3. Appendix 1: The Annotated Source Code

"I'm afraid I can't put it more clearly," Alice replied
very politely, "for I can't understand it myself, to
begin with;"

13.1. Global Definitions Code

Alice sighed and gave it up. "its exactly like a riddle
with no answer!" she thought.

The following section defines all the constants used bu the program. The names arel
descriptive, and are meant to be self-explanatory.

#include <stdio.h>
#include <sgtty.h>

#define DEBUG 0
#define BOOLEAN char
#define STRING char
#define MEMORYLENGTH 1024
#define WORDLENGTH 1 8
#define OPCOOE_LENGTH 6
#define ADDRESSLENGTH 10
#define TRUE 1
#define FALSE 0
#define NEWLINE '\n'
#define ENDOFSTRING '\0'
#define ASSEMBLERLABELCOLUMN 3
#define ASSEMBLEROPCODE_COLUMN 1 5
#define ASSEMBLERADDRESSCOLUMN 40
#define ASSMMAX_NUM OFLABELS 1000
#define MAXLENGTH OFLABELFIELD 9
#define MAXLENGTH OF OPCODEFIELD 7
#define MAXLENGTH OFADDRESSFIELD 9
#define BEGINNINGASSEMBLYADDRESS 0
#define SUCCESSFUL TRUE
#define HIGH TRUE
#define LOW FALSE
#define OPCODE BIT POSITION 0
#define - INDIRECTION BIT POSITION 6
#define INDEXING BIT POSITION 7
#define ADDRESSBITPOSITION 8
#define PONTER int
#define HIGHBIT "1"
#define LOWBIT "0"
#define MEMORYHIGH '1'

21

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MEMORYLOW
PHASESPERCLOCKCYCLE
PHASESPERMICROCYCLE
LENGTH
MICRO OPCODEBITPOSITION
REGISTER
GATE
TEST
NUMBER OFGATES
LENGTHOFMICROINSTRUCTIONS
BUS
LATCH
FLAG
OPEN

CLOSED
SIGNWORD
WORD

INDEXINGBIT
INDIRECTION_BFT
NUMBER OFREGISTERS
MICROMEMORYLENGTH
MAXNUMOFMICROLABELS
WINDOW

tenbits
eighteenbits
twobits
sixbits
DOUBLE QUOTE
NO-CLEAR
OBJECTDUMPFILE
FINALMEMORYDUMPFILE
MICROCODEDUMP_FILE
ASSEMBLERMNEMONICSFILE
ASSEMBLERERRORLOG
LOADERERROR_LOG
DEFAULTMICROCODEFILE
DEFAULTPROGRAMFILE

22

'o'
3
3
int
0
int
TRUE
FALSE
40
NUMBEROFGATES+1
int
int
BOOLEAN
HIGH
LOW

0400000
int
02000
04000
10
512
MICROMEMORYLENGTH
int
01777
0777777
03
077

12345
"object.dump"

"final.memory"
"microcode.dump"
"mnemonics"
"assembly.log"
"microload.log"

"microcode"
"program"

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

13.2. The Main Program Code

"Would you tell me, please, which way I ought to go
from here?"

"That depends a good deal on where you want to get
to," said the Cat

"1 don't care much where," said Alice.
"Then it does not matter which way you go," said the

Cat.

This is the main body of the program. When invoking the program with no arguments, the
microcode is read from the default file 'microcode' in the current directory, and the source
assembly code is read from the default file 'program' in the current directory. If one argument
is specified, it is taken to be the assembly source code file. If two arguments are specified, the
second is taken to be the microcode file. If more than two arguments are given, the rest are
ignored.

Three major events take place during the execution of this program: (I) The microcode file
is read, the microcode is interpreted, and the resulting micro-instructions are placed into the
micro memory. (11) The assembly source code file is read, the assembly program is
interpreted, and the resulting object code is placed into the main memory. (111) Execution of
the microcode commences. If errors were detected at any stage, all subsequent stages will not
be attempted. Error messages are very explicit, and are meant to be self-explanatory.

#include "defs.h"
#include <signal.h>

goodbye(action)
int action;
{
if(action=NOCLEAR)

system(" reset ; csh -f -c \"tset >& /dev/null\" ");
else

system(" clear ; reset ; csh -f -c \"tset >& /dev/null\" ; clear ;
clear");
exit(0);I

main (argc, argv)
int argc;
char *argv[];{

/*/* the argument count */
the argument values */

23

Once execution begins, the display will be updated with the current values of the various
registers and buses. Several commands may be issued from the keyboard at any point during the
execution. These commands all consist of one letter (no carriage return is necessary) and a
summary of those is printed at the bottom of the display at all times. In addition, one of these
commands is a help command, that elaborates on the functions of the other commands. The
program is meant to be used very interactively, although if no commands are issued, execution
will proceed and reach its logical conclusion.

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

The following declaration defines the mnemonics used for the various micro operations by
the micro-program interpreter.

static STRING *micro-ops[] = {
/* 1 */ "alu-right=ic",
/* 2 */ "alu-left=ic",
/* 3 */ "alu-right=ix",
/* 4 */ "alu-left=ix",
/* 5 */ "alu-right=sp",
/* 6 */ "alu-left=sp",
/* 7 */ "alu-right=x",
/* 8 */ "alu-left=x",
/* 9 */ "alu-right=acc",
/*10 */ "alu-left=acc",
/*Ii */ "alu-right=-1-",
/*12 */ "alu-left=0",
/*13 */ "alu-right=0",
/*14 */ "alu-right=l",
/*15 */ "alu-right=sign",
/*16 */ "mar--mbr",
/*17 */ "oc=xnbr",
/*18 */ "ii--mbr",
/*19 */ "alu-left--mbr",
/*20 */ "left-shift",
/*21 */ "right-shift",
/*22 */ "data-bus=alu-output",
/*23 */ "address-bus=alu-output",
/*24 */ "data-bus=mbr",
/*25 */ "sp=data-bus",
/*26 */ "x=data-bus",
/*27 */ "x=18",
/*28 */ "acc=data-bus",
/*29 */ "mar=ic",
/*30 */ "ic=data-bus",
/*31 */ "mar=address-bus",
/*32 */ "mbr=data-bus",
/*33 */ "ix=data-bus",
/*34 */ "mbr=mem(mar)",
/*35 */ "mem(mar)=mbr",
/*36 */ "start=off",
/*37 */ "invert-left-alu",
/*38 */ "invert-right-alu",
/*39 */ "x=10",
/'40 */ "data-bus=mar"

"Of course they answer to their names?' the Gnat
remarked carelessly.
"1 never knew them to do it.*
"What's the use of their having names,' the Gnat said,
"if they won't answer to them?"
"No use to THEM," said Alice; but it's useful to the
people that name them, I suppose. If not, why do things
have names at all?"

The next declaration defines the space for the various operations that constitute the
assembly language for this machine. These mnemonics are used by the assembler to decode thel

24

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

user's source program.

static STRING *opcodes[2*64];

The following declaration defines the main memory for the machine.

WORD memory [MEMORYLENGTH];

The following declaration defines the micro memory of the micro-programmed control
isubsystem for the machine. 9

BOOLEAN micro memory [MICROMEMORYLENGTH] [LENGTHOFMICROINSTRUCTIONS];

int i,tempo;

The next declaration defines the variables that will contain the names of the program file!
land of the microcode file.

STRING program file [80] ,microcodefile [80];
int number-ofopcodes;

if(strcmp((argv[0])+strlen(argv[0])-5,"emula") !=0)
{
printf ("I am called 'emula', and will only answer to this

name. \n");
exit (0);
I

signal (SIGINT, goodbye);
signal (SIGQUIT, goodbye);

system("reset ; csh -f -c \"tset >& /dev/null\" ; clear ");

if(argc>2 && strcmp(argv[2J,"") !=0)
strcpy(microcode file,argv[2]); /* grab the 2nd argument */

/* use the default name */
else strcpy (microcode file, DEFAULTMICROCODEFILE);
if(argc>l && strcmp(argv[l],"")!=0)

strcpy(program file,argv[l]); /* grab the 1st argument */
/* use the default name. */

else strcpy(programfile,DEFAULTPROGRAMFILE);

The next statement will invoke the microcode interpreter. A success flag will be returned.

tempo=loadmicro_program into_micromemory (micromemory, microops,
microcode_file);

If the microcode interpretation was successful, proceed.

if (tempo=SUCCESSFUL)

{
printf ("Microcode load successful. \n");
unlink (LOADERERRORLOG);

if(argc>3 && strcmp(argv[3],"")!=0)

25

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

number of opcodes=grabmnemonics(opcodes,argv[3]);
else

numberofopcodes=grab mnemonics (opcodes,ASSEMBLERMNEMONICSFILE);

printf ("Assembling user program from file '%s'
\n", program file) ;

The next statement will invoke the assembler.

tempo = Assembler (memory, opcodes, number ofopcodes,program file);

If the assembly was successful, proceed.

if (tempo - SUCCESSFUL){
printf ("Assembly successful. \n");

unlink (ASSEMBLERERRORLOG);

printf ("Execution will commence at location 0.\n\n");
printf (" (press return to continue)");
getc (stdin);

Start the execution of the microcode.

Execute (micro memory,memory,micro_ops);

Dump the contents of the main memory to a file for future reference.

printf("Dumping the entire memory to file '%s'\n\n",
FINAL MEMORYDUMP FILE);

dump__memory (memory, MEMORY LENGTH, FINALMEMORYDUMP_FILE);

}
else

printf ("Assembly unsuccessful, no execution attempted.\n");

}
else printf ("Errors in microcode - cannot proceed.\n");

unlink(OBJECTDUMPFILE);

}

26

I

EI
I

I

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

1 3.3. Assembler Code

"Why," said the Dodo, 'the best way to explain it is to
do it."

This section contains the assembler for the machine. The purpose of the assembler is to
"compile" the user's assembly language into machine language and to place the resulting object
module into the main memory so that it may be executed. The reason for having an assembler, is
to make the task of program less tedious for the user.

#include "defs. h"
#include <ctype.h>

Assembler (memory, opcodes, number of opcodes, file)
WORD memory [];
STRING *opcodes[],file [] ;
int number of opcodes;{

BOOLEAN continueassembling = TRUE;
char buff[80];
char label[MAX LENGTH OF LABELFIELD+l];
char opcode (MAX LENGTH OF OPCODE FIELD+l J;
char address [MAX LENGTH OF ADDRE-SS FIELD+l];
POINTER label names [ASSM MAX NUM OF LABELS];
int label targets[ASSMMAXNUM OFLABELS];
int number of labels=0;
int assembly_memorycounter=BEGINNINGASSEMBLY ADDRESS;
STRING tmp [OPCODELENGTH+1 J;
int i, J;
BOOLEAN success flag = TRUE;
int number of references=0;
int reference locations[ASSM MAX NUM OF LABELS*2];
POINTER referencelabels[ASSMMAXNUM OFLABELS*2];
BOOLEAN inputline ok flag;
WORD current word;
FILE *fd,*assembler err;
extern int global_filelinenumber;
FLAG all-numeric;

global filelinenumber=0;
print ("Assembly begins: \n\n");
fd=fopen (file, "r");
assembler err=fopen (ASSEMBLER ERRORLOG, "w");

Open the program source file.

if (fd=NULL)
{

printf("The source file '%s' can not be found.",file);
printf (" Check name and try again\n");

fprintf(assemblererr,"The source file '%s' can not be
found. ",file);

fprintf (assemblererr," Check name and try again\n");
return (FALSE);

27

Gabriel Robins

Gabriel RobinsAn Interactive Gate-Level Simulator as an Educational Aid

}
for(i=0;i<MEMORY LENGTH;i++)memory[i]=O;
while (continue__assembling)
{

current word=0;
Getline (buff, fd);

Get the next source line.

inputline ok flag=TRUE;

Parse the line.

Parse (buff,label,opcode, address);

Watch out for 'end'.

if (strcmp (opcode, "end") =0)
continueassembling=FALSE;

else

Is this an 'equ' ?

if (strcmp (opcode, "equ")=0)
{

label names[number of labels]=
s-trcpy (malloc (strlen (label) +1), label);

labeltargets[number of labels]=dec-stringto num(address);
number of labels++;

}
else

if (stranp (opcode, "con") =0)
{

I 'con' was found.

if(label[0]!=ENDOFSTRING)
{

label names(number of labels]=
strcpy (malloc (strlen (label) +1),label);

label targetsInumber of labels]=assemblymemory counter;
number of labels++;}

memory [assemblymemorycounter] =dec string tonum (address);
assemblymemorycounter++;
if (assembly_memorycounter >=- MEMORYLENGTH)
{
printf("*** error: program exceeds memory bounds.\n");
printf ("Cannot continue with assembly: goodbye. \n");
fprintf (assemblererr,

"*** error: program exceeds memory bounds.\n");
fprintf (assemblererr,

"Cannot continue with assembly: goodbye.\n");
goodbye (NOCLEAR);
}

28

An Interactive Gate-Level Simulator as an Educational Aid

}
else
if (stranp (opcode, "org") =0)

assembly_memory_counter=dec_string_to num(address);
else
{

i=O;

See which opcode it is.

while(i<2*number of opcodes &&
strcmp(opcodesf[i],opcode) !=O)

i++;

if(i=2*number of opcodes){
printf(

"* error: undefined operator mnemonic '%s' on line
%d. \n",

opcode,globalfile_linenumber);
fprintf (assembler err,

"*** error: undefined operator mnemonic '%s' on line
%d. \n",

opcode,globalfileline number);

success_flag=FALSE;
inputlineokflag=FALSE;

}
else{

strcpy(tmp,opcodes[i+l]);

Place the code into the current memory location.

current word=current word I
(binarystring--tonum (tmp) << 12);

}
if(label[0]!=END OF STRING && input lineok flag)
{

i=O;

Check for duplicate label.

while (strcmp(label._names[i],label) !=O
&& i<= number of labels)i++;

if(strcmp(labelnames[i],label) !=O){

Save the label away for future resolution.

label names[number of labels]=
strcpy (malloc (strlen (label) +i),label);

label targets[number of labels]=assemblymemorycounter;
number of labels++;

}

29

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

else
{

printf
"*** error: duplicate label '%s'
label,global file line-number);

fprintf (assembler err,
"*** error: duplicate label '%s'
label,globalfileline number);

I

on line %d.\n",

on line %d.\n",

success flag=FALSE;
input lineok flag=FALSE;

iif (address [0]J='*I')
{

Indirection is done in this instruction.

current word=current word I INDIRECTION BIT;
strcpy (address, address+l);

}
if (address[strlen(address)-l]=')'

&& address[strlen(address)-2]=' ('
{

Indexing is done in this instruction.

current word=current word I INDEXING BIT;
addressTstrlen (address) -2] =END OF STRING;I

Is the address numeric, or is it a label ?

all numeric=TRUE;
for (i=0; i<strlen (address) ; i++)

all numeric=all numeric &&
(isdigit(address[i]) 11 address[i]-'-');

if(inputline ok flag)
if (allnumeric)

The address is numeric.

currentword=currentword I (dec_string tonum(address)
& tenbits);

else

{
I The address is a label.

}

reference locations[number of references]
=assembly_memory_counter;

reference labels[number of referencesJ=
strcpy(malloc(strlen(address)+l),address);

number of references++;

30

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Place the assembled instruction into the main memory.

memory [assemblymemorycounter] =currentword;

Increment the assembler memory counter.

if (inputline ok flag)assembly_memorycounter++;
if (assembly memorycounter >= MEMORYLENGTH)
{
printf("*** error: program exceeds memory bounds.\n");
printf ("Cannot continue with assembly: goodbye.\n");
fprintf (assemblererr,

"*** error: program exceeds memory bounds.\n");
fprintf (assemblererr,

"Cannot continue with assembly: goodbye.\n");
goodbye (NOCLEAR);}

}
}

assemblymemorycounter--;

Alice sighed and gave it up. "Its exactly like a riddle
with no answer!" she thought.

Resolve all the references to labels throughout the program.

for(i=O;i<number of references;i++)
{

j=0;
while (strcmp (reference labels[i],label_names[j]) !=0

&& J< number of labels)j++;
if(j<number of labels)

memory [referencelocations [i]]=memory [referencelocations [i] I
label-targets[j];

else
{

printf("*** Error - undefined label '%s'
\n",reference labels[i]);

fprintf (assembler err,
"* Error - undefined label '%s'

\n",referencelabels[i]);
successflag=FALSE;

}

Close the source file.

fclose (fd);

Ciose the assembler error log file.

fclose (assembler.err);

31

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Take a core dump of the object module.

memorydump (memory, assemblymemorycounter);

if (success flag--FALSE)
printf ("The error messages were placed into the file '%s'.\n",

ASSEMBLERERRORLOG);

Return the success result of the assembly.

return (successflag);
}

32

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

13.4. Microcode Interpreter Code

"Well, I never heard it before," said the Mock Turtle;

"but is sounds uncommon nonsense.'

This section contains the code for the microcode interpreter. The function of the microcode
interpreter is to convert the microcode from the symbolic form it is written in to the form that
can be placed into the micro-memory.

#include <sys/types.h>
#include <sys/stat.h>
#include <ctype.h>
#include "defs.h"

load micro_programn int o_micro memory (micromemory, microops, file)
BOOLEAN micromemory [] (LENGTH OF MICROINSTRUCTIONS];
STRING *micro-ops [],file [];{

STRING tmp[300] ,tmp2 [300];
int i, j,m,n,micro memorycounter=0;
POINTER micro label names[MAXNUM OF MICRO LABELS];
int microlabe-l_targets[MAXNUM OF MICROLABELS];
int micro-reference locations[MAXNUM OF MICRO LABELS];
POINTER microreferencelabels[MAXNUM OF MICRO_LABELS];
int number of micro references=0;
int number of micro labels=0;
BOOLEAN successflag=TRUE;
STRING current word[LENGTHOF MICROINSTRUCTIONS+l];
FLAG continueminterpreting=TRUE, nodup, all numeric;

The names of the various registers that may be specified in the micro-'if statement.

static STRING *register-names[] = {
"i c 1",
"ix",
"lisp"o,

"X",

"accb","mbr",
"mar",
"foc",
"ii",
"zero-detect"

FILE *micro code,*fd,*load err;
extekn int globalfilelinenumber;

struct stat stbuf;
struct stat stbuf2;
STRING savefile[15];

strncpy (save file, file, 12);

33

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

strcat (save file, ".o") ;
state (file, &stbuf2);

if((stat(savefile,&stbuf) ý 0) && (stbuf.st mtime > stbuf2.stmtime)

{

printf ("The microcode has not changed since the last
interpretation. \n");

printf("Therefore, the old interpreted microcode will be used.\n");
printf("Reading the interpreted microcode from file

'%s'. \n\n", save file);
fflush (stdout) ;

fd=fopen(savefile, "r");

for (i=0;i<MICRO MEMORYLENGTH; i++){
for(j=0;J<LENGTHOF MICRO INSTRUCTIONS; j++)

micromemory[i] [j]=getc(fd);
getc (fd);

}
fclose (fd);
successflag=TRUE;
return (successflag);

}
else
{

global file line number=O;
loaderr=fopen(LOADERERRORLOG, "w");

printf ("loading microcode from file '%s' . . .",file);

micro code=fopen(file,"r");
if (mi cro_code=NULL)
{

printf("The microcode file '%s' can not be found. ",file);
printf(" Check name and try again.\n");
fprintf (loaderr,"The microcode file '%s' can not be found.

",file);
fprintf (loaderr," Check name and try again.\n");
return (FALSE);

}

Start interpreting the microcode.

while (continueinterpreting)
{

Get a microcode line.

Getline (tmp,microcode);

Print a dot to show a sign of life (as the micro-code interpretation may take a while).

34

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

fprintf (stdout, ""
fflush(stdout);

Initialize the current micro-word being assembled.

for (i=O; i<=NUMBER OF GATES; i++) current word[i]=MEMORYLOW;
current word[NUMBER OF GATES+I]=END OF STRING;
i=j=O;

Squeeze white-spaces out of the input-line.

for (i=O; i<strlen (tmp) ; i++)
if (whitespace (tmp(i])-=-FALSE)tmp[j++] =tmp[i];

tmp[J]=END OF STRING;

watch out for the 'end' of the micro-program.

if(strcmp(tmp,"end") =O)continueinterpreting=FALSE;
else
{

i=O;
while(tmp[i] !=':' && i<strlen(tmp))i++;

Does this line contain a label ?

if (tmp[i]=' :')
{

Yes, it does.

tmp[i]=ENDOFSTRING;
no__dup=TRUE;
j=O;

Make sure it is not a duplicate label so far.

while(j<number of micro-labels && no_dup)
nodup = no dup &&

strcmp(tmp,microlabelnames [j++]) !=O);

if (nodup)
{

It was unique, so save it away in the label table.

micro label names[number of micro-labels]=
strcpy (malloc (strlen (tmp) +1),tmp);

microlabeltargets[number of micro labels] =micromemorycounter;
number of micro labels++;
strcpy (tmp, tmp+i+l);

else
{

35

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Otherwise, generate an error.

success flag=FALSE;
printf(">>> error - duplicate micro-label '%s' on line

%d. \n",
tmp,globalfilelinenumber);

fprintf (load err,
">>> error - duplicate micro-label '%s' on line

%d. \n",
tmp,globalfilelinenumber);

strcpy (tmp,ttmp+i+l);
}

Is this a goto statement ?

if(tmp[O]='g' && tmp[l]-'o' && tmp[2]='t')
{

/* Yes, it is. */

if(tmpl[strlen(tmp)-1]-'; '))tmpstrlen(tmp)-l]=ENDOFSTRING;

Is the address numeric (absolute), or is it a label?

all numeric=TRUE;
for (i=4; i<strlen (tmp) ; i++)

allnumeric=allnumeric && isdigit(tmp[i]);

The address is numeric.

if (allnumeric)
{
num to binarystring(decstring_ to num(tmp+4),l10,tmp);
m=O;
for (n=16;n<=25;n++) currentword[n]=tmp[m++];
I
else

The address is a label.

{
J=number of microlabels-i;

Was the target label already encountered ?

while(strcmp(tmp+4,microlabelnames[jl) != 0 && j>O) j--;
if (j>=0)

{

Yesw it was.

num to binarystring (micro label targets [i j,i0, trap);m=0;
for (n=16;n<=25;n++) currentword[n]--tmp[m++];
}

36

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

else
{

Otherwise, save the target as an unresolved reference.

micro reference locations[number of microreferences]=
micro memory_counter;

micro reference labels[number of micro-references]=
strcpy (malloc (strlen (tmp) -3),tmp+4);

number-of microreferences++;
}
}

}
else

Is this an 'if' statement ?

if(! (tmp[0]-'i' && tmp[l]-'f')){

No, it is not.

while (strcmp (tmp,"") !=0)
{

i=0;

Make sure the line ends with ''.

while(tmp[i]!=';' && i<strlen(tmp))i++;
if(i<strlen(trap))tmp[i]=ENDOFSTRING;
else{
printf(

">>> error: missing ';' at end-of-line on line
%d. \n",

globalfile_linenumber);
fprintf (load~err,

">>> error: missing ';' at end-of-line on line
%d. \n",

global file line number);
success_flag=FALSE;

j=0;

Determine which micro-operation is it.

while(J<NUMBEROFGATES &&
strcmp(tmp,microopsl[j]) !=0){
Ij++;

if(j=--NUMBER OF-GATES)
{

t If not found, generate an error.

37

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

printf (
">>> error: undefined micro operation '%s'
,tmp,global file linenumber);

fprintf (loaderr,
">>> error: undefined micro operation '%s'

,tmp,global file linenumber);
success_flag=FALSE;-

else{
currentword[j+l]1--MEMORYHIGH;

I

on line %d.\n"

on line %d.\n"

But she could not help thinking to herself "What dreadful
nonsense we are talking!'

Get to the next micro-op.

if(strcmp(trap,"") !=O)strcpy(tmp,tnp+i+l);
}
currentword[0]=MEMORYHIGH;

}
else{

We have an 'if' statement.

current_word[0]=MEMORY_LOW;
strcpy (tnp, tmp+6);
i=O;

Look for the ',' separator.

while(i<strlen(tmp) && tmp[i] !=,,)i++;
if (iUstrlen (tmp))
{

No ' separator.

printf(
">>> error: 'if' statement syntax (no ',' found) on line %d.\n",

global file line number);
fprint f(load-err,

">>> error: 'if' statement syntax (no ',' found) on line %d.\n",
globalfile line number);

success flag=FALSE;
}
else{

tmp[j=i]=ENDOFSTRING;
i=0;

Determine which register is to be tested.

38

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

while (i<NUIMBER OF REGISTERS &&
strcmp (tmrp, register names [i) =0) i++;

if(i>=NUMBER OFREGISTERS)
{

printf(
">>> error: undefined register mnemonic

tmp,global file linenumber);
fprintf (load err,

">>> error: undefined register mnemonic

tmp,global file line number);
success_flag=FALSE;

else{

'%s' on line

'%s' on line

Set up the word to test the right register, or zero-detect.

if(i=9)current word[26]J=MEMORY HIGH;
else currentwor-dd[i+l]=MEMORYHIGH;}

strcpy (tmp,tmp+j+l);
i=O;

Look for the '' separator.

while(i<strlen(tmp) && tmp[i] !=') ')i++;
if(i=strlen(tmp))
{

printf(
">>> error: 'if' statement syntax (no ')') found on line %d.\n",
globalfile line number);

fprintf (load err,
">>> error: 'if' statement syntax (no ')') found on line %d.\n",
globalfilelinenumber);

success flag=FALSE;
I
else{

tmp[i]=ENDOFSTRING;

num to binarystring(decstring_,tonum(tmp),5,tmp2);

for(J=O;j<strlen(tmp2) ;J++) currentword[i0+j] --tmp2 [iJ];
currentword[15J--trap[i+2J;

Extract out the label.

strcpy (tmp,ttmp+i+ll);
j=O;
while(tmp[j] !=';' && J<strlen(tmp))j++;
if(j=strlen(tmp))
{
printf(

">>> error: missing ';' at end of line %d.\n",
globalfileline number);

fprintf (loaderr,

39

%d. \n",

%d. \n",

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

">>> error: missing ';' at end of line %d.\n",
global file linenumber);

success flag=FALSE;
}
else tmp[J]=ENDOFSTRING;
J=O;

Is the address numeric (absolute), or is it a label?

all numeric=TRUE;
for (i=O; i<strlen (tmp) ; i++)

all-numeric=allnumeric && isdigit(tmp[i]);

The address is numeric (absolute).

if (all-numeric)
{

num to binary string(decstring to num(tmp),10,tmp);
m=O;
for(n=l16;n<=25;n++)currentword[n]J=tmp[m++];
}
else

The address is a label.

{

Was the label encountered before ?

while(strcmp(tmp,microlabel_names[j]) != 0
&& J<number of micro labels)j++;

if(j<number of microlabels)
{

Yes, it was.

num to binarystring(micro labeltargets[j],I0,tmp);
m--O;
for(n=16;n<=25;n++) current word[n]=tmp[m++];
}

else
{

No, it was not, so save it away as an unresolved reference.

micro reference locations[number of micro-references]=
micromemory counter;

micro reference labels number of micro-references]=
strcpy (malloc (strlen (tmp) +1),tmp);

number-of micro references++;
}

}
}

40

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Place the assembled word into the micro-memory.

for(J=O;J<=LENGTH OF MICROINSTRUCTIONS; J++)
if (current word[j]•' 1')

micro memory [micromemorycounter] [j]=MEMORYHIGH;
else micro__memory[micro memory_counter] [J]=M]MORYLOW;

micro memory_counter++;
if (micro memorycounter >= MICROMEMORYLENGTH)
{

printf(">>> error: micro-program exceeds micro-memory
bounds. \n");

printf("Cannot continue with microcode loading: goodbye.\n");
fprintf (load err,

"»>>> error: micro-program exceeds micro-memory
bounds. \n");

fprintf (loaderr,
"Cannot continue with microcode loading: goodbye.\n");

goodbye (;}
}

I

Close the microcode file.

fclose microcodede;

Resolve all the unresolved label references. */

for (i=0;i<numberof micro references;i++)
{

Print a dot to show a sign of life (as the micro-code interpretation may take a while).

fprintf (stdout, ".");
fflush(stdout);

J=O;
while (strcmp(micro reference labels[i],microlabelnames[j]) != 0

&& J<number of micro labels)j++;
if (j<number of micro labels)
{

num to binarystring (micro labeltargets [j],l0, tmp);
m=0;
J--microreferencelocations [i];
for (n=16; n<=25; n++)micro memory[j [n] --tmp [m++];

I
elseI{-

Print error messages for labels which were not found to exist.

printf(">>> error: undefined micro-label '%s'. \n",
microreferencelabels[iJ);

fprintf(load err,"»>> error: undefined micro-label '%s'. \n",

41

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

}
I

micro reference labels[iJ);
success_flag=FALSE;

"It's too ridiculous!' cried Alice, losing all her patience
this time.

Dump the micro-memory onto a disk-file, for future reference.

if (success flag - TRUE){
saveinterpretedmicrocode (micro memory,MICRO MEMORYLENGTH, file);
micromemory_dump (micromemory,micromemorycounter) ;

Print interpretation dia nostics.

printf ("\n");
printf ("There are %d microcode instructions (maximum capacity is

%d).\n",
micro memory_counter,MICROMEMORYLENGTH);I

fclose(loaderr);

if (successflag==FALSE)
print ("The error messages were placed into the file '%s'.\n",

LOADERERRORLOG);

return(successflag);

micro memorydump (mi cro memory, prog. length)
BOOLEAN micro memory [] [LENGTHOF MICROINSTRUCTIONS];
LENGTH prog length;{

int i,j;
FILE *fd;
FLAG same;
BOOLEAN old line[LENGTH OF MICROINSTRUCTIONS];

printf ("dumping-microcode-to-disk");

fd=fopen (MICROCODEDUMPFILE, "w");
fprintf (fd, "\n ---------------- micro-memory-dump

\n") ;
for (i=0; i<prog length; i++)
{

if (i%10--0)

Print a dot to show a sign of life.

42

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

fprintf (stdout,".");
fflush(stdout);

I

for (j=0;J<l; J++)
if (micro memory[i] [J]='l')fprintf(fd,"l");

fprintf (fd," ") ;

for (j=l; j<ll; j++)
if (micro memory[i] [J] ='i')fprintf(fd,"l");

fprintf (fd," ") ;

for (j=ll; j<21; j++)
if (micro memory[iJ [j]=' ')fprintf(fd, "1");

fprintf(fd," ") ;

for(J=21; J<31; j++)
if (micro memory[iJ [9]j=' ')fprintf(fd, "i");

fprintf (fd," ") ;

for (j=31; J<41; j++)
if (micromemory[i] [J]=-'1')fprintf(fd,"1");

fprintf(fd," %d\n",i);

else fprintf (fd, "0") ;

else fprintf (fd, "0") ;

else fprintf (fd, "0");

else fprintf (fd, "0");

else fprintf (fd, "0");

I
fprintf (fd, .----------------------------

\n\n");
fclose (fd);

I

save interpretedmicrocode (micromemory,length,microcode file)
BOOLEAN micro memory[] [LENGTHOF MICROINSTRUCTIONS];
LENGTH length;
STRING microcodefile[];
{

int i,j;
FILE *fd;
STRING savefile[15],b[20];

strncpy (save file,microcodefile, 12);
strcat (save_file, ".o");

printf("\n saving the microcode in file '%s' ",save-file);
fflugh (stdout) ;

fd=fopen(savefile, "w");

for (i=0; i<length; i++)
{ if (i%10=0)

43

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

{
fprintf (stdout, ".");
fflush(stdout);
}
for(j=O;J<LENGTH OF MICROINSTRUCTIONS; j++)

if (micromemoryli] [j]=' ')fprintf (fd, "1") ; else
fprintf (fd, "\n")

}
fclose (fd);

I

44

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

1 3.5. Control Subsystem Code

"1 should like to have it explained," said the Mock
Turtle.

This section is in fact the hard-wired micro-programmed control subsystem. Execution of
the microcode is done here and here only. Execution of the microcode commences at micro
location 0 and proceeds logically until goto instructions alter the logic flow. The Microcode is
assumed to have been assembled and placed into the micro memory. Execution of the microcode
halts only after the microcode instruction 'start=off' has been executed.

As the microcode executes, individual instructions from the user's program will be fetched
from the main memory and interpreted. Appropriate gates will open and close, and the desired
effect will be achieved by having the corresponding micro operations take place. The types and
effects of the various micro operations are described in other sections.

#include "defs.h"

Execute (micro memory, memory, microops)
BOOLEAN micro memory [] [LENGTHOF MICROINSTRUCTIONS];
WORD memory [];
STRING *microops (];{

WINDOW display,microdisplay;
int suspend=FALSE, show=TRUE;
FLAG start=TRUE,ZERODETECT, goto,dontmodify;
REGISTER IC, IX, SP,X,ACC,MAR,MBR, OC, II, CSAR;
STRING CSBR [LENGTH OF MICROINSTRUCTIONS+ J];
BOOLEAN gates[NUMBER OFGATES+l];

The partitioning of the oates into clock-phase-groups.

static int phase_0_gates[] = {
1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16,17,18,19,37,38

static int phase_igates[] = {
20,21,22,23,24,25,26,27,28,29,30,31,32,33,39,40

static int phase_2_gates[J = {
34,35,36

BUS ADDER RIGHTBUS,ADDERLEFTBUS,ADDRESSBUS,DATABUS;
LATCH ADDER OUTPUT LATCH;

FLAG-zero detect;
int i, j,bitnum,testresult,CLOCK,foo;
FILE *tty;

STRING tmp[30O],pp_if[30];
FLAG DESCRIBE=TRUE, already_forked;
int pause=0;

45

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Initialize the window-world package.

initscr 0 ;

Define the display windows.

display = newwin(24,80,0,0);
micro-display = subwin (display, 9,50,14,0);

Initialize the display.

redraw (display,micro display);

Reset the various registers, gates, and buses.

CSAR=0;
ACC=MAR=MBR=OC=II=IC=IX=SP=X=0;
ADDER RIGHT BUS=ADDER LEFTBUS=ADDRESSBUS=DATA BUS=0;
ADDEROUTPUT LATCH=0;.
start=TRUE;
MAR=BEGINNING ASSEMBLY ADDRESS;
for (i=l; i<=NUMBER OF GATES; i++) gates (i] =CLOSED;

Commence execution of the microcode.

while (start=TRUE)
{

Fetch a micro-instruction from the micro-memory.

micro-fetch(micro memory,CSAR,CSBR);

CSAR++;

Is it a GATE or TEST instruction ?

if (decodemicroinstruction(CSBR) ý GATE)

It was a gate instruction, so start the clock ticking...

for (CLOCK=0; CLOCK<PHASESPERCLOCKCYCLE; CLOCK++)
I

Adder operates during the clock cycle P1.

if (CLOCK=l)
{

ADDER OUTPUT LATCH = (ADDERLEFTBUS + ADDER RIGHTBUS) &
eighteen bits;

if (ADDER OUTPUT LATCH < 0)ADDER OUTPUT LATCH=
ADDER OUTPUTLATCH & SIGN WORD;

Reset/Preset the zero-detect logic.

if (ADDER OUTPUTLATCH=0) ZERODETECT=TRUE;
else ZERODETECT=FALSE;

46

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

I

Open the appropriate gates.

if (CLOCK=O) for (i=0; i<sizeof (phase_0_gates)/4; i++)
if (CSBR[phase_0_gates [i]==MEMORY HIGH)

gates [phase_0_gates [i]] =OPEN;

if (CLOCK=l) for (i=O; i<sizeof (phase_1_gates)/4; i++)
if(CSBR[phase_1_gates[iJ]]=MEMORY HIGH)

gates [phase_l_gates [i]] =OPEN;

if (CLOCK=2) for (i=O; i<sizeof (phase 2 gates) /4; i++)
if(CSBR[phase_2_gates(iJ]==MEMORY_HIGH)

gates[phase_2_gates[i]]=OPEN;

Do the appropriate micro-operations according to which gates are open.

if (CLOCK=0)
{
if(gates[i]==OPEN)ADDER RIGHT_BUS=IC;
if(gates[2]==OPEN)ADDERLEFTBUS=IC;

if(gates[3]==OPEN)ADDER RIGHT BUS=IX;
if (gates [4] ==OPEN)ADDERLEFTBUS=IX;

if(gates[5]==OPEN)ADDER RIGHT BUS=SP;
if(gates[6]==OPEN)ADDERLEFTBUS=SP;

if(gates[7]==OPEN)ADDER RIGHT BUS=X;
if(gates[8]==OPEN)ADDERLEFTBUS=X;

if(gates[9]==OPEN)ADDERRIGHT_BUS=ACC;
if(gates[10]==OPEN)ADDER LEFT BUS=ACC;
if(gates([i1==OPEN)ADDERRIGHT BUS =

(-0) & eighteen bits;
if(gates[12]==OPEN)ADDER LEFT BUS = 0;
if(gates[l3]==OPEN)ADDER RIGHT BUS = 0;
if(gates[14]==OPEN)ADDERRIGHTBUS = 1;
if(gates[15]==OPEN)ADDER RIGHT BUS = SIGN WORD;
if(gates[16]==OPEN)MAR=MBR & ten bits;
if(gates[17]==OPEN)OC=(MBR >> 12) & six bits;
if(gates[18]==OPEN)II=(MBR >> 10) & two bits;
if(gates[19]==OPEN)ADDER LEFT BUS=MBR;
if (gates [37]==OPEN)ADDER LEFT BUS=

(-ADDER LEFT BUS) & eighteenbits;
if(gates[38]==OPEN LADDER RIGHT BUS=

(-ADDERRIGHT_BUS) & eighteenbits;
}
else
if (CLOCK=--)
{
if (gates [20] ==OPEN)ADDEROUTPUT LATCH=

(ADDER OUTPUT LATCH & 1) & eighteenbits;
if (gates [21] ==OPEN)ADDER OUTPUT LATCH=

(ADDER OUTPUT LATCH >> 1) & eighteenbits;
if (gates [22] ==OPEN-) DATA BUS=

(ADDEROUTPUTLATCH) & eighteenbits;

47

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

if(gates[23]==OPEN)ADDRESS BUS=
(ADDER OUTPUT_LATCH) & ten bits;

if(gates[24]==OPEN)DATA BUS=(MBR) & eighteenbits;
if(gates[40]==OPEN)DATA7BUS=(MAR)& ten bits;
if(gates[25]==OPEN)SP=(DATABUS) & ten--bits;
if(gates[26]==OPEN)X=DATABUS;
if(gates[27]==OPEN)X=18;
if(gates[28]==OPEN)ACC=DATA BUS;
if(gates[29]==OPEN)MAR=IC;
if(gates[30J==OPEN)IC=(DATA BUS) & ten bits;
if(gates[31]==OPEN)MAR=ADDRESSBUS;
if(gates[32]==OPEN)MBR=DATABUS;
if(gates[331==OPEN)IX=(DATABUS) & eighteenbits;
if(gates[39]==OPEN)X=10;
I
else
if (CLOCK=2)
{
if (gates [34] ==OPEN
if (gates [35]=OPEN
if (gates [36] ==OPEN
}

)MBR=(memory[MAR]) & eighteenbits;
)memory [MAR] =MBR;
)start=FALSE;

Update the display if we are supposed to do so.

if (show)
display_values (micromemory,memory, CLOCK, CSAR, CSBR, IC, IX,

SP,X,ACC,MAR,MBR,OC,II,DATABUS,ADDRESSBUS,

ADDER RIGHTBUS,ADDER LEFTBUS,ADDER OUTPUTLATCH,

gates, ! suspend, pause, GATE,microops, 0, display,
microdisplay);

If we are supposed to pause, time-out and accept a terminal input.

if (pause=2)

forkout (&start, &pause, &show,micromemory,memory, &CSAR, CSBR,

&IC, &IX, &SP, &X, &ACC, &MAR, &MBR, &OC, &II, &DATABUS,
&ADDRESSBUS, &ADDERRIGHTBUS, &ADDER LEFT-BUS,
display, micro display);

for (i=l; i<=NUMBER OFGATES; i++) gates [i] =CLOSED;

}
else{

The current microcode command was a TEST command. The variable ppjif contains thej
Iprint-form of the disassembeled micro instruction.

if (show)
{
CLOCK=0;
strcpy(ppif,"if bit(");
dontmodify=FALSE;

48

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

J=O;
go__to=FALSE;
for(i=10;i<=14;i++)tmp[j++]=CSBR[i];
tmp [J] =END OF STRING;
bitnum=binarystringtonum (tmp);

See which register is to be tested.

if (CSBR[l] -MEMORY_HIGH)
{

testresult=bit (IC,bitnum);
strcat (ppif, "ic,");I

else
if (CSBR[2] -MEMORY_HIGH)

(
testresult=bit (IX, bitnum);
strcat (ppif, "ix, ");}

else
if(CSBR[3]==MEMORY_HIGH)

{
testresult=bit (SP,bitnum);
strcat (ppif, "sp, ");}

else
if(CSBR[4]----MEMORY_HIGH)

{
testresult=bit (X, bitnum);
strcat (pp_if, "x, ");}

else
if (CSBR[5J] -MEMORYHIGH)

{
testresult=bit (ACC,bitnum);
strcat (ppif, "acc,");

I
else

if(CSBR[6]=-MEMORYHIGH)
{

test_result=bit (MBR,bitnum);
strcat (ppif, "mbr,");

}
else

if (CSBR[7] ==NEMORYHIGH)
{

testresult=bit (MAR, bitnum);
strcat (pp_if, "mar,");

}
else

if(CSBR[8]=MEMORY_HIGH)
{

testresult=bit (OC,bitnum);
strcat (pp_if, "oc,");

else
if(CSBR[9]==MEMORYHIGH)

49

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

{
test-result=bit (II,bitnum);
strcat (pp_if, "ii," 1);}

else
if (CSBR[26 -- MEMORY_HIGH)

{
testresult=bit (ZERODETECT,O);
strcpy(ppif,"if zero-detect then go to ");
dontmodify=TRUE;

I
else

f

This was an unconditional aoto.

goto=TRUE;
strcpy(ppif,"go to "));
dontmodify=TRUE;I

if (dontmodify=FALSE)
{

strcat(pp_if,num to decstring(bitnum,2,tmp));
strcat (pp if, ")=") ;
tmp[O]=CSBR[15];
tmp[l]=ENDOFSTRING;
strcat (ppif,tmp);
strcat (ppif," then go to ");

}
j=O;
for(i=16;i<=25;i++)tmp[j++]=CSBR[i];
tmp[j]=END OFSTRING;
foo=binarystring to_num (tmp);
strcat (ppif,num to dec string(foo,4,tmp));
strcat (pp if,";");

else
{
go to=FALSE;
j=0;
for(i=l0;i<=14;i++)tmp[j++]=CSBR[i];
tmp[j]=END OFSTRING;
bitnum=binarystringto num (tmp);

See which register is to be tested.

if (CSBR[l] ==ERYHIGH) testresult=bit (IC,bitnum);
else

if (CSBR[2] ==MEMORY_HIGH) test_result=bit (IX,bitnum);
else

if(CSBR[3]==MEMORY_HIGH) test_result=bit(SP,bitnum);
else

if(CSBR[4]==MEMORY_HIGH) testresult=bit(X,bitnum);
else

if (CSBR[5] ==MEMORYHIGH) testresult=bit (ACC,bitnum);
else

if (CSBR[6] ==MEMORY_HIGH) testresult=bit (MBR,bitnum);
else

50

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

if (CSBR[7] ==MEMORY_HIGH) testresult=bit (MAR,bitnum);
else

if(CSBR[8]==MEMORYHIGH) test_result=bit(OC,bitnum);
else

if (CSBR[9] JMEMORYHIGH) test-result=bit (II,bitnum);
else

if(CSBR[26J =MEMORYHIGH) test result=bit (ZERODETECT, 0);
else goto=TRUE;

j=0;
for(i=16;i<=25;i++)tmp[j++]=CSBR[i];
tmp [j] =END-OF STRING;
foo=binarystring tonum (tmp);}

Perform the actual test on the register.

if (((test result = TRUE) && (CSBR[15] = MEMORY HIGH)) I I
((test_result =--= FALSE) && (CSBR[15] == MEMORYLOW)) II

goto)
CSAR=foo;

"You don't know what you're talking about!' cried

Humpty Dumpty.

Update the display if we are supposed to do so.

alreadyforked=FALSE;

for (CLOCK=O; CLOCK<PHASES PER CLOCK CYCLE; CLOCK++)
{

if (show)

displayvalues (micromemory,memory, CLOCK, CSAR, CSBR, IC, IX,

SP,X,ACC,MAR,MBR,OC,II,DATABUS,ADDRESSBUS,

ADDER RIGHTBUS,ADDER LEFTBUS,ADDER OUTPUT-LATCH,

gates, ! suspend, pause, TEST,microops,pp_if, display,
microdisplay);

Pause and accept a terminal command if we are supposed to do so.
if (pause=2)

{

forkout (&start, &pause, &show,micromemory,memory, &CSAR, CSBR,

&IC, &IX, &SP, &X, &ACC, &MAR, &MBR, &OC, &II, &DATABUS,
&ADDRESS BUS, &ADDER RIGHTBUS, &ADDER LEFTBUS,
display,micro display);

already_forked=TRUE;

51

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

I
}

I

Pause and accept a terminal command if we are supposed to do so.

if (! already_forked)
if (pause=l)

forkout (&start, &pause, &show,micromemory,memory, &CSAR, CSBR,

&IC, &IX, &SP, &X, &ACC, &MAR, &MBR, &OC, &II, &DATABUS,
&ADDRESSBUS, &ADDER_RIGHTBUS, &ADDER LEFT-BUS,
display,micro display);

See if there are any input character in the buffer of stdin. This is the KEY for super-
interactivity: the program will go on about its business UNTIL it noticed that the user touched
ANY key (not necessarily the (return) key). It will then decide what to do based upon which
character was entered.

ioctl (0,FIONREAD, &suspend);

if (suspend>O)

forkout (&start, &pause, &show,micromemory,memory, &CSAR, CSBR,

&IC,&IX, &SP,&X,&ACC,&MAR,&MBR,&OC,&II,&DATABUS,
&ADDRESSBUS, &ADDERRIGHTBUS, &ADDER LEFTBUS,
display, micro display) ;

Itime Zero out the buses, as the are not latches and are not supposed to retain information °ve

ADDER RIGHT BUS=ADDER LEFT BUS=ADDRESS BUS=DATA BUS=0;

Update the display one last time.

displayvalues (micromemory, memory, CLOCK, CSAR, CSBR, IC, IX,

SP,X,ACC,MAR,MBR,OC,II,DATABUS,ADDRESSBUS,

ADDER RIGHTBUS,ADDER LEFTBUS,ADDEROUTPUTLATCH,
gates, 0,999, GATE,micro ops, 0, display,
micro-display);

Wait for one last command before finishing.

forkout (&start, &pause, &show,micromemory,memory, &CSAR, CSBR,

&IC, &IX, &SP, &X, &ACC, &MAR, &MBR, &OC, &II, &DATABUS,
&ADDRESSBUS, &ADDER RIGHTBUS, &ADDERLEFTBUS,
display, micro display);

52

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Close up the window-world package.

endwin () ;

Reset the terminal back into -raw and echo modes. Clear the display.

system("reset ; csh -f -c \"tset >& /dev/null\" ; clear ");
I

53

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

13.6. Display Functions Code

"What is the use of repeating all that stuff," the Mock
Turtle interrupted, "if you don't explain it as you go
on? its by far the most confusing thing I ever heard!"

This section contains various functions that are associated mostly with updating and
printing the display, as well as some functions that are used by the micro-programmed control
subsystem.

#include "defs.h"

This function fetches a micro instruction from the micro-memory.
which the instruction is fetched is specified by CSAR, while the resulting
into the CSBR buffer.

The location fromI
instruction is placedI

microfetch(micromemory, CSAR, CSBR)
BOOLEAN micromemory[] [LENGTHOF MICROINSTRUCTIONS];
REGISTER CSAR;
STRING CSBR[];
{

int i;

for (i=O; i<LENGTH OF MICRO INSTRUCTIONS; i++)
CSBR(i]--micromemory[CSAR] [i];

CSBR[i]=ENDOFSTRING;

This function decodes the fetched micro instruction and returns its type. This is veryI
simple to do, as there are only two types of instructions.

decode micro instruction(CSBR)
STRING CSBR[];{

if(CSBR[MICRO OP CODEBITPOSITION]=-MEMORYHIGH)return(GATE);
else return (TEST);

This function prints the value of a register/bus onto the display in both binary andi
Decimal form. A label for the field is also printed.

prettyprint (w, y, x, str,val,binlen, decp, simulate sign)
WINDOW w;
int x,y, binlen;
STRING str[];
REGISTER val;
FLAG decp,simulatesign;

int i;

54

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

STRING trap [WORDLENGTH+l];

wmove (w, y, x) ;
num to binary_string(val,binlen,trap);
if (simulate sign)if(val < 0)tmp[0]=MEMORYHIGH;

wprintw (w, "%s=%s=%-8d", str,ttmp,val);

This functions goes through the various different system components and prints their state
(i.e., value). Printing is done by calling a proper print function with the value and label of the
various fields.

di splayvalues (micro memory,memory, CLOCK, CSAR, CSBR, IC, IX, SP, X,ACC,MAR,MB
R,
OC, II, DATABUS,ADDRESSBUS,ADDERRIGHTBUS,ADDER LEFTBUS,ADDEROUTPUTL
ATCH,
gates, start,pause,microtype,micro_ops,mo, display, micro display)

BOOLEAN micro memory[] [LENGTH OF MICROINSTRUCTIONS];
WORD memory [];
REGISTER IC, IX,SP,X,ACC,MAR,MBR,OC,II,CSAR;
STRING CSBR[LENGTH OF MICRO INSTRUCTIONS+1 J,mo [];
BOOLEAN gates[NUMBER OF GATES];
BUS ADDER RIGHT BUS,XADDER_LEFTBUS,ADDRESSBUS,DATABUS;
LATCH ADDER OUTPUT LATCH;
int CLOCK, start,pause,microtype;
STRING *microops [1;
WINDOW display,micro display;
{

int i;

prettyprint (display, 2,3, "ACC",ACC,18,TRUE,TRUE);
prettyprint (display, 18, 53, "SP", SP, 10, TRUE, FALSE);
pretty_print (display, 20, 53, "IX",IX, 10,TRUE, FALSE);
pretty_print (display, 8,4, "IC",IC, 10,TRUE, FALSE);

prettyyrint (display,2,40, "DATA-BUS",DATABUS,18,TRUE, TRUE);
pretty_print (display, 4,37, "ADDRESS-BUS",ADDRESSBUS, 10, TRUE, TRUE);
pretty_print (display, 6,36, "ALU-LEFT-

BUS", ADDERLEFTBUS,18,TRUE,TRUE);
pretty_print (display, 8,35, "ALU-RIGHT-

BUS",ADDERRIGHTBUS,18,TRUE,TRUE);

wmove (display, 14,53);
wprintw (display, "CLOCK-PHASE=%d", CLOCK);

pretty_print (display, 6,3, "MAR",MAR, 10, TRUE, FALSE);
prettyprint(display,4,3,"MBR",MBR, 18,TRUE,TRUE);

wmove (display, 10,3);
for(i=l;i<=70;i++)wprintw(display," ");
wmove(display,I0,3);
wprintw(display,"open gates: ");
for (i=l;i<=NUMBER OFGATES;i++) if (gates [i]==OPEN) wprintw (display, "%d

",mi);wmove (display, 12, 3) ;

55

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

for(i=l;i<=150;i++)wprintw(display," ");
wmove (display, 12,79);
wprintw(display,"II");
wmove (display, 12,3);
wprintw (display, "micro-ops: ");
for (i=1;i<=NUMBER OF GATES;i++)

if (gates[i]==OPEN)wprintw (display, "%s; ",microops[i-l]);
if (mo)wprintw (display, "%s",mo);

wmove (display, 16, 53);
wprintw (display, "START=");
if (pause)wprintw (display, "off");
else wprintw(display,"on ");
if (pause=999) wprintw (display," system halted");
else

if(pause)wprintw(display," pausing");
else wprintw(display," UP

pretty_print (microdisplay,l,2, "OC",OC, 6, TRUE, FALSE);
prettyprint (micro display, 1, 19, "II",II,2,TRUE, FALSE);
prettyrint (micro display, 3,2, "CSAR", CSAR, 10, TRUE, FALSE);
pretty_print (micro display, 7,2, "X",X, 18,TRUE, TRUE);

wmove (micro display, 5,2);
wprintw (micro_display, "CSBR=%s", CSBR);

wmove (micro display, 7,33);
wprintw (microdisplay, "type=");
if (microtype=-GATE) wprintw (micro display, "GATE");
else wprintw(microdisplay, "TEST");

wrefresh (display);
wrefresh (micro display);

fflush (1);
I

"Is that all?" Alice timidly asked.

The following function allows the user to interactively change the contents of a
register/bus via a mini-window-editor that is implemented here. The usage of this mini-
window-editor will become obvious once the user issues the 'Values' command during the
execution phase of the program.

changereg (w, reg, y, x, len)
WINDOW w;
REGISTER *reg;
int y,x~len;
{

int kbit;
STRING tmp[20];

for (bit=len-l;bit>=0;bit--)
{

wmove (w, y, x+len-bit-i);

56

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

wrefresh (w) ;
k=getc (stdin);
if (k='1')
{

*reg = *reg I (01 << bit);
wmove (w, y, x) ;
wprintw (w, "%s=%-9d", num to binarystring (*reg, len,tmp),*reg);
wrefresh (w);}

if (k't')
{

*reg = *reg (01 << bit);
move (w,y, x);
wprintw (w, "%s=%-9d", num to binary_string (*reg, len, tmp), *reg);
wrefresh (w);

}
if (k='0')
{

*reg = *reg & -(01 << bit);
wmove (w,y,x);
wprintw (w, "%s=%-9d", num to binarystring (*reg, len,ttmp),*reg);
wrefresh (w);}

if (k='b') if (bit+l<len)bit=bit+2;
else bit++;
if(k='n')return (TRUE);
if(k='q')return (FALSE);

This function steps through the various registers/buses and enables the user to invoke al
Imini-window-editor on each.

change values (micro_memory,memory, CSAR,CSBR, IC, IX, SP, X,ACC,MAR,MBR, OC, II
F

DATABUS,ADDRESS_BUS,ADDERRIGHTBUS,ADDERLEFT_BUS,display,micro display
y)
BOOLEAN micro memory[] [LENGTHOF MICROINSTRUCTIONS];
WORD memory [];
REGISTER *IC, *IX, *SP, *X, *ACC, *MAR, *MBR, *OC, *II, *CSAR;
STRING CSBR[LENGTH OF MICROINSTRUCTIONS+l];
BUS *ADDER RIGHTBUS, *ADDERLEFTBUS, *ADDRESSBUS, *DATA BUS;
WINDOW display,microdisplay;
{

wmove (display, 23, 2);
wprintw (display, "0-1-Toggle-Backward-Forward-Next-Quit

-- ,);

wprinitw (display," ----------------------- ");

if (change_reg(display,ACC,2, 7,18) =FALSE)goto quit;
if (changereg(display,MBR, 4, 7,18) =FALSE)goto quit;
if(changereg(display,MAR, 6, 7,10)-FALSE)goto quit;
if (changereg(display,IC,8,7,i0)=FALSE)goto quit;

57

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

if (changereg(display,DATA_BUS,2, 49, 18)=FALSE)goto quit;
if (changereg(display,ADDRESSBUS, 4, 49,10)=FALSE)goto quit;
if (change reg(display,ADDER LEFTBUS, 6, 49,18) =FALSE)goto quit;
if (changereg (display,ADDERRIGHTBUS, 8,49,18) -FALSE) goto quit;

if (changereg (display, SP, 18, 56, 10) =FALSE) goto quit;
if (changereg(display,IX,20,56,10)=--FALSE)goto quit;
if (changereg (microdisplay,X, 7, 4, 18) --FALSE) goto quit;

quit:
wmove (display, 23, 2);
wprintw (display, "Pause-Continue-Stop-Quiet-Trace-Redraw-Values");
wprintw (display, "-Microcode-Object-Examine-Help-");
wrefresh (display);

This function dumps the contents of a specified number of main memory locations,IBeginning with location 0, to a specified file.

dump_memory (memory, len, file)
WORD memory [];
int len;
STRING file[];
{

int i,oldloc;
FILE *fd;
STRING tmplE[80],tmp2[80];
FLAG quiet=FALSE, first=TRUE;

fd=fopen (file, "w");
for (i=0; i<len; i++)
if((memory[i] = old loc)

&& ((i+l) < len)
&& (memory[i] = memory[i+l]){

if(! quiet && ! first)
fprintf(fd," (intermediate locations have the same value)\n");

quiet=TRUE;
}
else
{

fprintf(fd,"Location: %4d = %s Contents: %s = %d\n",
i, num to binarystring (i,ADDRESSLENGTH, tmpl),
num to binary string (memory [i] ,WORDLENGTH, tmp2) ,memory [i]);

old loc--memory[iJ;
quiet=FALSE;
first=FALSE;
I
fclose (fd);

"1 didn't know it," the Knight said, a shade of vexation
passing over his face.

58

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

This function prints to the display a set of directions to the usage of the program while iti
lis running. This is the on-line documentation.

print help ()
{

printf ("This is a computer simulation at the gate, register, and bus
\n") ;

printf ("level. The contents of the various registers and buses are\n") ;
printf ("displayed after the end of each clock phase, so the values

on\n") ;
printf ("the screen are always the most current. This program was\n");
printf ("designed to be very interactive. All commands consist ofa\n") ;
printf("single letter which in all cases is the first letter of

the\n");
printf ("command. \nA summary of commands follows:\n\n");
printf ("Pause - pause between clock cycles, and wait for a

command\n");
printf ("

the\n") ;
printf ("
printf ("Continue -
printf ("Stop

dump. \n") ;
printf ("Quite

display).\n");
printf ("Trace -

printf ("Redraw -

printf ("Values -

printf ("Microcode-
printf ("Object

program. \n") ;
printf("Examine -

printf ("Help
}

pause is two-level: a second pause will cause

machine to pause between clock phases.\n");
negate the last pause command.\n");

- halt the machine, and take a final memory

- do all things silently, (don't update the

negate the last quite command. \n");
clear the screen and redraw the display.\n");
change the contents of registers/buses.\n");
list the microcode.\n");

- list the object code of the assembled

list the contents of the entire memory.\n");
print this summary.\n\n");

This function reads in a single-letter-command from the stdin, and invokes thel
appropriate subroutines/actions according to the command.

forkout (start, pause, show,micromemory,memory, CSAR, CSBR, IC, IX, SP, X,ACC,M
AR,

MBR,OC,II,DATABUS,ADDRESS_BUS,ADDER RIGHTBUS,ADDERLEFTBUS,
display, micro di splay)

BOOLEAN micro memory [] [LENGTHOF MICROINSTRUCTIONS];
WORD memory [];
REGISTER *IC, *IX, *SP, *X, *ACC, *MAR, *MBR, *OC, *II, *CSAR;
STRING CSBR[LENGTH OF MICRO INSTRUCTIONS+l];
BUS *ADDER RIGHT BUS, ADDERLEFTBUS, *ADDRESSBUS, *DATA BUS;
int *pause,*start, *show;
WINDOW display,microdisplay;
{

int q;

q--getc (st din);
if(q = 's')*start=FALSE;
if(q = 'p')

59

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

if(*pause < 2)*pause = *pause + 1;
if(q= 'c')

if(*pause > 0)*pause = *pause - 1;
if(q = 'r')

redraw(display,microdisplay);
if (q -'im'{

system ("clear");
micromemorydump (micromemory,MICRO MEMORYLENGTH);
system(strcat ("more ",MICROCODEDUMP FILE));
printf (" (press return to continue) ");
getc (stdin);
redraw (display,micro_display);

}
if(q = 'e'
{

system ("clear");
dumpmemory (memory, MEMORYLENGTH, "memory");
system("more memory");
printf (" (press return to continue)");
getc (stdin);
redraw(display,microdisplay);

}
if(q -=h)
{

system ("clear");
printhelpo;
printf (" (press return to continue)");
getc (stdin);
redraw(display,microdisplay);

}
if(q 'O')
{

system ("clear");
system(strcat("more ",OBJECTDUMPFILE));
printf (" (press return to continue)");
getc (stdin) ;
redraw(display,microdisplay);

}
if(q = 'q')*show = FALSE;
if(q = 't')*show = TRUE;
if(q = 'v')changevalues(micromemory,memory,CSAR,CSBR,IC,IX,SP,X,

ACC,MAR,MBR,OC,II,DATABUS,ADDRESSBUS,

ADDERRIGHTBUS,ADDERLEFT_BUS,display,micro display);

This function sets the terminal mode to cbreak noecho (a key to super-program-control)j
land redraws the display.

redraw (display, micro display)
WINDOW display,micro display;
{

system ("stty cbreak -echo");
wclear (display);
wclear (micro display);

60

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

system ("clear");
box (display, ' I', '-');
box (micro display, 'I', '-');
wmove (display, 0,10);
wprintw (display, "Computer-Simulation-by--Gabriel-Robins");
wprintw (display, "--version-2-of-4/l/83");
wmove (micro display, 1,33);
wprintw(micro_display, "Micro Program");
wmove (microdisplay, 2,33);
wprintw (micro display, "Control Logic");
wmove (display, 23, 2) ;
wprintw (display, "Pause-Continue-Stop-Quiet-Trace-Redraw-Values-");
wprintw (display, "Microcode-Object-Examine-Help-");

wrefresh (display);
wrefresh (micro display);

61

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

13.7. Utility Functions Code

"There is nothing to what I could say if I chose,' the
Duchess replied, in a pleased tone.

This section defines various utility functions used by the rest of the program.

#include "defs. h"

This function raises one integer to the power of another, as C does not have a built-inI
function to do that.

power (x, n)
int x,n;
{

int i,p;

if (n=0) return (1);
p=l;
for (i=l;i<=n;++i)p=p*x;
return (p);

This function determines if a character is a white-space. A white-space is any character
that will not be noticed easily when printed at the display. Examples of white-spaces are
blanks, tabs, and carriage returns. The function returns a TRUE if the argument was a white-
space and FALSE otherwise. */

white space (c)
int c;{

if(c<'!' I1 c>'~')return(TRUE);
else return(FALSE);

This function gets one input line from the named stream and places it into the first
argument, which is assumed to be a buffer. This function will skip any line in the stream which
contain only white-spaces. Comment lines are also skipped, so comments are invisible to the
caller. Comments are assumed to be enclosed within curly braces, and may span several lines.

int global filelinenumber;

Getline (buff, stream)
char buff [];
FILE *stream;
{

extern int global file line number;

FLAG comment;
int i=O,c=O;
BOOLEAN tmp;

62

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

next:
c=getc (stream);
if(c=NEWLINE)globalfile-linenumber++;

if (C=EOF)
{
printf ("\n\n= > Fatal Error: End-Of-File was reached.\n");
printf ("Did you forget or misplace the 'end' statement?\n\n2");
exit (0);
}
if (C-'$')

while (getc (stream) !=NEWLINE);
global file linenumber++;
goto next;I
if (c=' }'){

comment=FALSE;
goto next;}

if(c=' {')
{

ccmment=TRUE;
goto next;

}
if (commentýTRUE) goto next;
else if(c!=NEWLINE){

buff [i++] =c;
goto next;}

buff[i]='\0';
tmp=TRUE;
for (i=0; i<strlen (buff) ; i++) tmrp=tmp&&white_space (buff [i]);
if (tmp) Getline (buff, stream);

This function returns the Nth bit out of a byte or a word. It is used heavily by the control
isubsystem of the simulated machine.

bit (reg, bitposition)
REGISTER reg;
int bitposition;{

return((reg >> bit-position) & 01);

This function converts a binary-encoded value to a string consisting of the characters '1'j
land 0' of the specified length. The result is placed into the named buffer. I

num to binary_string(num,length of resulting string,buf)
int num,lengthofresulting_string;
STRING buf [];
{

int i;

63

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

for (i=O; i<length of resulting string; i++){
if(num%2 = 0) buf[length ofresulting string-l-i]='0';
else buf [length of resultingstring-l-i]='i';
num=(int) (num/2);

}
buf[lengthofresulting string]=ENDOFSTRING;
return((int)buf);

This function converts a binary-encoded value into a string consisting of the characters '0'IIthru '9 of the specified length. The result is placed into the named buffer. I

num to decstring(num,length of resulting string,buf)
int num,lengthof resultingstring;
STRING buf [];
{

int i;

for (i=0; i<length ofresulting string; i++){
buf [length of resultingstring-l-i] = (num%10) +48;
num= (int) (num/10);

}
buf[lengthofresulting string]=END OF STRING;
return((int)buf);

This function parses an input line gotten by the assembler and determines which are thel
Label, address, and opcode fields. It places the three results into the three named buffers.

Parse (buff, label, opcode, address)
char buff[],label[],opcode[],address[];
{

int i=0, ind=O;

while (whitespace (buff [i]) && i<strlen (buff)) i++;
if (i<ASSEMBLER LABEL COLUMN)

while (!white space (buff[i]) && i<strlen(buff) &&
ind<MAXLENGTH OF LABELFIELD)

label [ind++]=buff[i++];
label [ind]=ENDOFSTRING;
ind=O;
while (white-space (buff [i]) && i<strlen (buff)) i++;
if(i<ASSEMBLEROPCODECOLUMN)

while (!whitespace (buff [i]) && i<strlen (buff)
&& ind<MAXLENGTHOF _OPCODEFIELD)

opcode [ind++] =buff [i++];
opcode[ind]=ENDOFSTRING;
ind=Q;
while (white-space (buff [i]) && i<strlen (buff)) i++;
if (i<ASSEMBLER ADDRESS-COLUMN)

while (!white_space (buff[i]) && i<strlen (buff)
&& ind<MAX LENGTH OF ADDRESSFIELD)

address [ind++] =buff [i++]J;
address[ind]=ENDOFSTRING;

64

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

I

"Tif I'd meant that, I'd have said it," said Humpty
Dumpty.

This function converts a string representing a number in decimal into its binary-encodedI
Form (int).

decstring to_num (str)
STRING str[>];{

STRING trap[80];
int ans=O,i;
BOOLEAN neg;

if (str [0 ='-'){
neg=TRUE;
strcpy (tmp, str+l);}

else
{

neg=FALSE;
strcpy (tmp, str);}

for (i=O;i<strlen(trap) ;i++)ans=ans+power (I0,i) * (tmp[strlen(tmp) -l-i] -

48);
if (neg) ans= (-ans) +1;
return(ans & eighteenbits);

}

This function converts a string that represent a number in binary into its binary-coded
Iform (int).

binarystring to num (str)
STRING str[];
{

int ans=O,i;

for (i=O; i<strlen (str) ; i++) ans=ans+power (2, i) * (str [strlen (str) -l-i] -

48);
return (ans);}

This function dumps the contents of the main memory up to the specified location into aIwell-known file. I

memorydump (memory, highest)
WORD memory [];
int highest;
{

int i,j;
FILE *fd;

fd=fopen(OBJECTDUMPFILE, "w");

65

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

fprintf (fd," ----------------- memory-dump
\n11) ;

for (i=0; i<=highest; i++)
{

fprintf (fd, "loc %d: ", i);
fprintf(fd, "opcode=' ");
for (J=17; J>ll; j--)

if (bit (memory[i], j)) fprintf (fd, "1");
else fprintf (fd, "0"));

fprintf (fd,"' indirection-bit="');
if (bit (memory [i] ,1l)) fprintf (fd, "1");
else fprintf (fd, "0") ;
fprintf (fd, "' index-bit="');
if (bit (memory [i],1i)) fprintf (fd, "1");
else fprintf(fd,"0")¶;
fprintf (fd,"' address="');
for (J=9; J>=0; j--)

if (bit (memory[i], j)) fprintf (fd, "1");
else fprintf (fd, "0");

fprintf(fd, "' \n");
I
fprintf (fd," -- \n\n");
fclose (fd);

grab mnemonics (opcodes, file)
STRING *opcodes[],file[];
{

int t,tt, i, J, Jj;
FILE *fd;
STRING buf[300];
FLAG cont;
STRING *malloc(;

printf("Trying to read the assembler mnemonics from the file
'%s'.\n",file);

fd=fopen (file, "r");
if (fd=NULL)
{
printf("The mnemonics file can not be found. Goodbye.\n");
exit (0);
I
cont=TRUE;
i=0;

while (cont)
{

Getline (buf, fd);

if (buf [0] !='e')
{
tt=0;
for (t=O;t<strlen (buf) ;t++)

if (whitespace (buf [ti)=FALSE)buf[tt++]=buf[t];
buf [tt] =END OFSTRING;

66

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

j=O;
while(buf[j] != DOUBLEQUOTE) J++;
j++;JJ=J;
while(buf[jj] != DOUBLEQUOTE) jj++;
buf[jj]=ENDOFSTRING;
opcodes[i]=malloc (strlen(buf+j)+i);
strcpy (opcodes [i] ,buf+j);

i++;
while(buf[jj] != DOUBLEQUOTE)jj++;
jj++;

J=jj;
while(buf[j] != DOUBLEQUOTE) j++;
buf[j]=ENDOFSTRING;
opcodes [i]=malloc (strlen (buf+jj) +1);
strcpy(opcodes[i] ,buf+jj);
i++;

else cont=FALSE;
I
printf("%d assembler mnemonics were successfully read.\n",i/2);

return (i/2);

I

67

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

13.8. Makefile Shell Script Code

S. No, it'll never do to ask: perhaps I shall see it
written up somewhere."

emula: fns.o assembler.o display.o execute.o load.o main.o defs.h
cc fns.o assembler.o display.o execute.o load.o main.o \

-icurses -itermcap -ig ; mv a.out emula

fns.o: fns.c defs.h
cc -c fns.c

assembler.o: assembler.c defs.h
cc -c assembler.c

display.o: display.c defs.h
cc -c display.c

execute.o: execute.c defs.h
cc -c execute.c

load.o: load.c defs.h
cc -c load.c

main.o: main.c defs.h
cc -c main.c

68

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

1 4. Usage Examples

"Why did you call him Tortoise, if he wasn't one?"
Alice asked. "We called him Tortoise because he taught
us," said the Mock Turtle angrily.

14.1. Sample Micro-program

"Well! I've often seen a cat without a grin,' thought
Alice; "but a grin without a cat! Its the most curious
thing I ever saw in my whole life!"

This section contains the default microcode for the simulated machine:

{ initialize the instruction counter and stack pointer to 0 }

alu-left=O ; alu-right=O ; data-bus=alu-output ; ic=data-bus; sp=data-
bus;

{ fetch a macro-instruction from the main memory }

fetch: mar=ic; mbr=mem(mar);

{ transfer the opcode and the indexing and indirection flags and
increment the instruction counter }

oc=mbr; ii--mbr; mar--mbr; alu-left=ic; alu-right=l; data-bus=alu-output;$
ic=data-bus;

{ the following section is a giant 'switch' construct, that decodes the
64
possible opcodes and branches to the appropriate place for the execution
of the corresponding machine instruction I

0-to-63: if bit(oc,5)=l then goto 32-to-63;
0-to-31: if bit(oc,4)=l then goto 16-to-31;
0-to-15: if bit(oc,3)=l then goto 8-to-15;
0-to-7: if bit (oc,2)=l then goto 4-to-7;
0-to-3: if bit(oc,l)=l then goto 2-to-3;
0-to-l: if bit(oc,O)=l then goto 1-to-l;

{ nop - no operation }
O-to-0: goto fetch;

S ---}
(add - add memory to register }

--

I see if this instruction requires indexing I

l-to-l: if bit (ii, O)=0 then goto 1-to-l-no-indexing;

69

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

I preform the indexing }

data-bus=mar; x=data-bus;
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-

bus;

{ see if this instruction requires indirection }

1-to-l-no-indexing: if bit(ii,l)=O then goto 1-to-l-no-indirection;

{ perform the indirection }

mbr-mem (mar);
mar=mbr;

{ fetch the data from memory }

1-to-l-no-indirection: mbr=mem(mar);

alu-left--mbr; alu-right=acc; data-bus=alu-output; acc=data-bus;
goto fetch;

2-to-3: if bit(oc,O)=1 then goto 3-to-3;

{ sub - subtract memory from register }

{ see if this instruction requires indexing }

2-to-2: if bit(ii,O)=O then goto 2-to-2-no-indexing;

{ preform the indexing }

data-bus=mar; x=data-bus;
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-

bus;

{ see if this instruction requires indirection }

2-to-2-no-indexing: if bit (ii,I)=O then goto 2-to-2-no-indirection;

{ perform the indirection }

mbr=mem (mar);
mar-mbr;

{ fetch the data from memory }

2-to-2-no-indirection: mbr=mem(mar);

alu-left=mbr; alu-right=O; invert-left-alu; data-bus=alu-output; x=data-
bus;

alu-left=x; alu-right=l; data-bus=alu-output; x=data-bus;
alu-left=x; alu-right=acc; data-bus=alu-output; acc=data-bus;
goto fetch;

70

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

{---}
{ ida - load memory into register a I

{--

{ see if this instruction requires indexing }

3-to-3: if bit (ii,O)=O then goto 3-to-3-no-indexing;

{ preform the indexing)

data-bus--mar; x=data-bus;
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-

bus;

{ see if this instruction requires indirection }

3-to-3-no-indexing: if bit (ii,l)=O then goto 3-to-3-no-indirection;

{ perform the indirection }

mbr=mem (mar);
mar--mbr;

{ fetch the data from memory }

3-to-3-no-indirection: mbr--mem(mar);

data-bus--mbr; acc=data-bus;
goto fetch;

4-to-7: if bit(oc,l)=l then goto 6-to-7;
4-to-5: if bit(oc,O)=i then goto 5-to-5;

{ ---
{ sta - store register a into memory)

{ ---

{ see if this instruction requires indexing)

4-to-4: if bit(ii,O)=O then goto 4-to-4-no-indexing;

{ preform the indexing)

data-bus=mar; x=data-bus;
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-

bus;

{ see if this instruction requires indirection I

4-to-4-no-indexing: if bit(ii,l)=O then goto 4-to-4-no-indirection;

{ perform the indirection }

mbr=mem (mar);
mar=mbr;

71

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid Gabriel Robins

{ place the data into memory }

4-to-4-no-indirection: alu-left=acc; alu-right-=O; data-bus=alu-output;
$

mbr=data-bus; mem (mar) --mbr;
goto fetch;

{---}
{ incr - increment register }

5-to-5: if bit (mar,O)=O then goto incr-acc-or-ix;
if bit(mar,l)=O then goto incr-sp;
alu-left=ic; alu-right=l; data-bus=alu-output; ic=data-bus;
goto fetch;

incr-sp: alu-left=sp; alu-right=l; data-bus=alu-output; sp=data-bus;
goto fetch;

incr-acc-or-ix: if bit(mar,l)=O then goto incr-acc;
alu-left=ix; alu-right=l; data-bus=alu-output; ix=data-bus;
goto fetch;

incr-acc: alu-left=acc; alu-right=l; data-bus=alu-output; acc=data-bus;
goto fetch;

6-to-7: if bit(oc,O)=l then goto 7-to-7;

--}
{ decr - decrement register }

{---}

6-to-6: if bit(mar,O)=O then goto decr-acc-or-ix;
if bit(mar,l)=O then goto decr-sp;
alu-left=ic; alu-right=-l; data-bus=alu-output; ic=data-bus;
goto fetch;

decr-sp: alu-left=sp; alu-right=-l; data-bus=alu-output; sp=data-bus;
goto fetch;

decr-acc-or-ix: if bit(mar,l)=O then goto decr-acc;
alu-left=ix; alu-right=-l; data-bus=alu-output; ix=data-bus;
goto fetch;

decr-acc: alu-left=acc; alu-right=-l; data-bus=alu-output; acc=data-bus;
goto fetch;

{---
{ addai - add to register a immediate }

7-to-7: data-bus--mar; x=data-bus;
alu-left=x; alu-right=acc; data-bus=alu-output; acc=data-bus;

-goto fetch;

8-to-15: if bit(oc,2)=l then goto 12-to-15;
8-to-li: if bit(oc,l)=l then goto 10-to-li;
8-to-9: if bit(oc,O)=l then goto 9-to-9;

72

An Interactive Gate-Level Simulator as an Educational Aid Gabriel Robins

{--- }
{ subai - subtract from register a immediate }

{---}

8-to-8: data-bus--mar; x=data-bus;
alu-left=x; alu-right=O; invert-left-alu; data-bus=alu-output; x=data-
bus;

alu-left=x; alu-right=l; data-bus=alu-output; x=data-bus;
alu-left=x; alu-right=acc; data-bus=alu-output; acc=data-bus;
goto fetch;

{ addixi - add to register ix immediate }

9-to-9: data-bus=mar; x=data-bus;
alu-left=x; alu-right=ix; data-bus=alu-output; ix=data-bus;
goto fetch;

10-to-li: if bit(oc,O)=l then goto 11-to-il;

{ subixi - subtract from register ix immediate }

lO-to-lO: data-bus=mar; x=data-bus;
alu-left=x; alu-right=O; invert-left-alu; data-bus=alu-output; x=data-
bus;

alu-left=x; alu-right=l; data-bus=alu-output; x=data-bus;
alu-left=x; alu-right=ix; data-bus=alu-output; ix=data-bus;
goto fetch;

{ addspi - add to register sp immediate }

11-to-ll: data-bus=mar; x=data-bus;
alu-left=x; alu-right=sp; data-bus=alu-output; sp=data-bus;
goto fetch;

12-to-15: if bit(oc,l)=l then goto 14-to-15;
12-to-13: if bit(oc,O)=l then goto 13-to-13;

"But she said a great deal more than that!" the White
Queen moaned, wringing her hands, 0Oh, ever so much
more than that!"

{---
{ subspi - subtract from register sp immediate }

{---}

12-to-12: data-bus=mar; x-data-bus;
alu-left=x; alu-right=O; invert-left-alu; data-bus=alu-output; x=data-

73

An Interactive Gate-Level Simulator as an Educational Aid Gabriel Robins

bus;
alu-left=x; alu-right-1; data-bus=alu-output; x=data-bus;
alu-left=x; alu-right=sp; data-bus=alu-output; sp=data-bus;
goto fetch;

{ --- }
{ addar - add register to acc }

13-to-13: if bit(mar,O)=O then goto addar-acc-or-ix;
if bit(mar,l)=O then goto addar-sp;
alu-left=acc; alu-right=ic; data-bus=alu-output; acc=data-bus;
goto fetch;

addar-sp: alu-left=acc; alu-right=sp; data-bus=alu-output; acc=data-bus;
goto fetch;

addar-acc-or-ix: if bit(mar,l)=O then goto addar-acc;
alu-left=acc; alu-right=ix; data-bus=alu-output; acc=data-bus;
goto fetch;

addar-acc: alu-left=acc; alu-right=acc; data-bus=alu-output; acc=data-
bus;

goto fetch;

14-to-15: if bit(oc,O)=l then goto 15-to-15;

{---}
{ subar - subtract register from acc }

{---}

14-to-14: if bit(mar,O)=0 then goto subar-acc-or-ix;
if bit(mar,l)=O then goto a-sp;

alu-left=ic; alu-right=O; invert-left-alu; data-bus=alu-output; x=data-
bus;

alu-left=x; alu-right=l; data-bus=alu-output; x=data-bus;
alu-left=acc; alu-right=x; data-bus=alu-output; acc=data-bus;
goto fetch;

a-sp: alu-left=sp; alu-right=O; invert-left-alu; data-bus=alu-output; x=data-
bus;

alu-left=x; alu-right=l; data-bus=alu-output; x=data-bus;
alu-left=acc; alu-right=x; data-bus=alu-output; acc=data-bus;
goto fetch;

subar-acc-or-ix: if bit(mar,i)=O then goto subar-acc;
alu-left=ix; alu-right=O; invert-left-alu; data-bus=alu-output; x=data-
bus;

alu-left=x; alu-right=l; data-bus=alu-output; x=data-bus;
alu-left=acc; alu-right=x; data-bus=alu-output; acc=data-bus;
goto fetch;

subar-acc: alu-left=O; alu-right=O; data-bus=alu-output; acc=data-bus;
goto fetch;

{--
{ addixr - add register to ix }

{ --- }

15-to-15: if bit (mar,O)=O then goto addixr-acc-or-ix;
if bit(mar,l)=O then goto addixr-sp;

74

An Interactive Gate-Level Simulator as an Educational Aid

alu-left=ix; alu-right=ic; data-bus=alu-output; ix=data-bus;
goto fetch;

addixr-sp: alu-left=ix; alu-right=sp; data-bus=alu-output; ix-data-bus;
goto fetch;

addixr-acc-or-ix: if bit(mar,l)=O then goto addixr-acc;
alu-left=ix; alu-right=ix; data-bus=alu-output; ix=data-bus;
goto fetch;

addixr-acc: alu-left=ix; alu-right=acc; data-bus=alu-output; ix=data-
bus;

goto fetch;

16-to-31: if bit(oc,3)=l then goto 24-to-31;
16-to-23: if bit(oc,2)=l then goto 20-to-23;
16-to-19: if bit(oc,l)=l then goto 18-to-19;
16-to-17: if bit(oc,O)=l then goto 17-to-17;

{ subixr - subtract register from ix }
{---}

16-to-16: if bit (mar, O)=O then goto subixr-acc-or-ix;
if bit(mar,l)=O then goto subixr-sp;

alu-left=ic; alu-right=O; invert-left-alu; data-bus=alu-output; x=data-
bus;

alu-left=x; alu-right=l; data-bus=alu-output; x=data-bus;
alu-left=ix; alu-right=x; data-bus=alu-output; ix=data-bus;
goto fetch;

subixr-sp:alu-left=sp; alu-right=O; invert-left-alu; data-bus=alu-
output; $

x=data-bus;
alu-left=x; alu-right=l; data-bus=alu-output; x=data-bus;
alu-left=ix; alu-right=x; data-bus=alu-output; ix=data-bus;
goto fetch;

subixr-acc-or-ix: if bit (mar,i)=O then goto subixr-acc;
alu-right=O; data-bus=alu-output; ix=data-bus;
goto fetch;

subixr-acc: alu-left=acc; alu-right=O; invert-left-alu; $
data-bus=alu-output; x=data-bus;

alu-left=x; alu-right=l; data-bus=alu-output; x=data-bus;
alu-left=ix; alu-right=x; data-bus=alu-output; ix=data-bus;
goto fetch;

{ idar - load a with a register }

17-to-17: if bit(mar,O)=O then goto ldar-acc-or-ix;
if bit (mar,l)=O then goto ldar-sp;
alu-left=O; alu-right=ic; data-bus=alu-output; acc=data-bus;

"goto fetch;
idar-sp: alu-left=O; alu-right=sp; data-bus=alu-output; acc-data-bus;

goto fetch;
idar-acc-or-ix: if bit(mar,l)=O then goto fetch;

alu-left=O; alu-right=ix; data-bus=alu-output; acc=data-bus;
goto fetch;

75

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid Gabriel Robins

18-to-19: if bit(oc,O)=l then goto 19-to-19;

{ --
{ idixr - load ix with register)

--

18-to-18: if bit (mar,O)=O then goto ldixr-acc-or-ix;
if bit (mar, l)=O then goto ldar-sp;
alu-left=O; alu-right=ic; data-bus=alu-output; ix=data-bus;
goto fetch;

ldixr-sp: alu-left=O; alu-right=sp; data-bus=alu-output; ix=data-bus;
goto fetch;

ldixr-acc-or-ix: if bit(mar,l)=O then goto ldixr-acc;
goto fetch;

ldixr-acc: alu-left=O; alu-right=acc; data-bus=alu-output; ix=data-bus;
goto fetch;

{ ldicr - load ic with register I
---I

19-to-19: if bit(mar,O)=O then goto ldicr-acc-or-ix;
if bit(mar,l)=O then goto ldar-sp;
goto fetch;

ldicr-sp: alu-left=O; alu-right=sp; data-bus=alu-output; ic=data-bus;
goto fetch;

ldicr-acc-or-ix: if bit(mar,l)=O then goto ldicr-acc;
alu-left=O; alu-right=ix; data-bus=alu-output; ic=data-bus;
goto fetch;

ldicr-acc: alu-left=O; alu-right=acc; data-bus=alu-output; ic=data-bus;
goto fetch;

20-to-23: if bit(oc,l)=l then goto 22-to-23;
20-to-21: if bit(oc,O)=l then goto 21-to-21;

{--
{ inva - invert acc }

20-to-20: alu-left=acc; alu-right=O; invert-left-alu; data-bus=alu-
output; $

acc=data-bus;
goto fetch;

{---
{ invix - invert ix }

{--

21-to-21: alu-left=ix; alu-right=O; invert-left-alu; data-bus=alu-
output; $

ix=data-bus;
goto fetch;

22-to-23: if bit(oc,O)=l then goto 23-to-23;

76

An Interactive Gate-Level Simulator as an Educational Aid Gabriel Robins

{---}
{ anda - and acc with memory }

--- }

{ see if this instruction requires indexing)

22-to-22: if bit(ii,O)=O then goto 22-to-22-no-indexing;

{ preform the indexing I

data-bus--mar; x=data-bus;
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-

bus;

{ see if this instruction requires indirection }

22-to-22-no-indexing: if bit (ii,l)=O then goto 22-to-22-no-indirection;

{ perform the indirection }

mbr=mem (mar);
mar--mbr;

{ fetch the data from memory }

22-to-22-no-indirection: mbr=mem(mar);

x=18;
anda-continue: if bit(mbr,O)=O then goto anda-next;

if bit(acc,O)=O then goto anda-next;
alu-left=acc; alu-right=O; right-shift; data-bus=alu-output; acc=data-
bus;

alu-left=acc; alu-right=sign; data-bus=alu-output; acc=data-bus;
goto anda-skip;

anda-next: alu-left=acc; alu-right=O; right-shift; data-bus=alu-output;
$

acc-data-bus;
anda-skip: alu-left=mbr; alu-right=O; right-shift; data-bus=alu-output;$

mbr--data-bus;
alu-left=x; alu-right=-1; data-bus=alu-output; x=data-bus;
if bit(zero-detect,O)=O then go to anda-continue;
goto fetch;

The Red Queen said to Alice 'Always speak the truth -
think before you speak - and write it down
afterwards."

{---}
{ ora - or acc with memory }

{ --- }

{ see if this instruction requires indexing I

77

An Interactive Gate-Level Simulator as an Educational Aid

23-to-23: if bit (ii,O)=O then goto 23-to-23-no-indexing;

{ preform the indexing }

data-bus--mar; x=data-bus;
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-

bus;

{ see if this instruction requires indirection }

23-to-23-no-indexing: if bit(ii,I)=O then goto 23-to-23-no-indirection;

{ perform the indirection }

mbr=mem (mar);
mar-mbr;

{ fetch the data from memory }

23-to-23-no-indirection: mbr=mem(mar);

x=18;
ora-continue: if bit(mbr,O)=i then goto ora-ok;

if bit (acc, O)=1 then goto ora-ok;
go to ora-next;

ora-ok: alu-left=acc; alu-right=O; right-shift; data-bus=alu-output;
$

acc=data-bus;
alu-left=acc; alu-right=sign; data-bus=alu-output; acc=data-bus;
goto ora-skip;

ora-next: alu-left=acc; alu-right=O; right-shift; data-bus=alu-output;
$

acc=data-bus;
ora-skip: alu-left=mbr; alu-right=O; right-shift; data-bus=alu-output;
$

mbr=data-bus;
alu-left=x; alu-right=-1; data-bus=alu-output; x=data-bus;
if bit(zero-detect, O)=O then go to ora-continue;
goto fetch;

24-to-31: if bit(oc,2)=l then goto 28-to-31;
24-to-27: if bit(oc,l)=l then goto 26-to-27;
24-to-25: if bit(oc,O)=l then goto 25-to-25;

{---}
{ xora - xor acc with memory }

{---}

"-{ see if this instruction requires indexing }

24-to-24: if bit(ii,O)=O then goto 24-to-24-no-indexing;

{ preform the indexing }

data-bus=mar; x=data-bus;

78

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-
bus;

{ see if this instruction requires indirection }

24-to-24-no-indexing: if bit (ii,l)=O then goto 24-to-24-no-indirection;

{ perform the indirection }

mbr=mem (mar);
mar-mbr;

{ fetch the data from memory }

24-to-24-no-indirection: mbr=mem(mar);

x=18;
xora-continue: if bit(mbr,O)=l then goto xora-one;

if bit(accO)=l then goto xora-ok;
goto xora-next;

xora-one: if bit(acc,O)=O then goto xora-ok;
goto xora-next;

xora-ok: alu-left=acc; alu-right=O; right-shift; data-bus=alu-output; $
acc--data-bus;

alu-left=acc; alu-right=sign; data-bus=alu-output; acc=data-bus;
goto xora-skip;

xora-next: alu-left=acc; alu-right=O; right-shift; data-bus=alu-output;
$

acc=data-bus;
xora-skip: alu-left=mbr; alu-right=O; right-shift; data-bus=alu-output;$

mbr=data-bus;
alu-left=x; alu-right=-l; data-bus=alu-output; x=data-bus;
if bit (zero-detect, O)=O then go to xora-continue;
goto fetch;

"But what am I to do?n said Alice.
"Anything you like," said the Footman, and began

whistling.

{ rsfta - right shift acc }

25-to-25: alu-left=acc; alu-right=O; right-shift; data-bus=alu-output;
$

acc=data-bus;
goto fetch;

26-to-27: if bit(oc,O)=l then goto 27-to-27;

{- ---
{ lsfta - left shift acc }

{ --

79

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

26-to-26: alu-left=acc; alu-right=O; left-shift; data-bus=alu-output; $
acc=data-bus;

goto fetch;

---}
{ jmp - jump }

---}

27-to-27: data-bus--mar; ic=data-bus;
goto fetch;

28-to-31: if bit(oc,l)=l then goto 30-to-31;
28-to-29: if bit(oc,O)=l then goto 29-to-29;

{---
{ jaz - jump if acc is zero }

{---}

28-to-28: alu-left=acc; alu-right=l; data-bus=alu-output; acc=data-bus;
if bit (zero-detect,O)=l then goto fetch;
data-bus=mar; ic=data-bus;
goto fetch;

-- }
{ janz - jump if acc is not zero I

{--

29-to-29: alu-left=acc; alu-right=O; data-bus=alu-output; acc-data-bus;
if bit(zero-detect,O)=l then goto fetch;
data-bus--mar; ic=data-bus;
goto fetch;

30-to-31: if bit(oc,O)=l then goto 31-to-31;

{---}
{ jixz - jump if ix is zero }

{--

30-to-30: alu-left=ix; alu-right=O; data-bus=alu-output; ix=data-bus;
if bit(zero-detect, O)=O then goto fetch;
data-bus=mar; ic=data-bus;
goto fetch;

{ --
{ jixnz - jump is ix is not zero I

{ --- }

31-to-31: alu-left=ix; alu-right=O; data-bus=alu-output; ix=data-bus;
if bit(zero-detect,O)=l then goto fetch;
data-bus=mar; ic=data-bus;
goto fetch;

80

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

32-to-63: if bit(oc,4)=l then goto 48-to-63;
32-to-47: if bit(oc,3)=l then goto 40-to-47;
32-to-39: if bit(oc,2)=l then goto 36-to-39;
32-to-35: if bit(oc,l)=l then goto 34-to-35;
32-to-33: if bit(oc,O)=l then goto 33-to-33;

{---}
{ call - call a subroutine }

{---}

32-to-32: data-bus--mar; x=data-bus;
alu-left=sp; alu-right=-l; data-bus=alu-output; address-bus=alu-output;$

sp=data-bus; mar=address-bus;
alu-left=ic; alu-right=O; data-bus=alu-output; mbr=data-bus; $

mem (mar) =mbr;
alu-left=x; alu-right=O; data-bus=alu-output; ic=data-bus;
goto fetch;

--}
{ ret - return to caller }

--- }

33-to-33: alu-left=sp; alu-right=O; address-bus=alu-output; $
mar=address-bus; mbr=mem (mar);

data-bus--mbr; ic=data-bus;
alu-left=sp; alu-right=l; data-bus=alu-output; sp=data-bus;
goto fetch;

34-to-35: if bit(oc,O)=l then goto 35-to-35;

{ --- }
{ pusha - push acc onto stack }

--- }

34-to-34: alu-left=acc; alu-right=O; data-bus=alu-output; mbr=data-bus;
alu-left=sp; alu-right=-l; data-bus=alu-output; $

address-bus=alu-output; mar=address-bus; sp=data-bus;
$

mem (mar) --mbr;
goto fetch;

{ --- }
{ popa - pop acc from stack }

{ --

35-to-35: alu-left=sp; alu-right=O; address-bus=alu-output; $
mar=address-bus; mbr=mem (mar);

data-bus=mbr; acc=data-bus;
alu-left=sp; alu-right=l; data-bus=alu-output; sp=data-bus;
goto fetch;

36-to-39: if bit(oc,l)=l then goto 38-to-39;

81

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

36-to-37: if bit(oc,O)=l then goto 37-to-37;

--}
{ zeroa - zero out the acc }

--

36-to-36: alu-left=O; alu-right=O; data-bus=alu-output; acc=data-bus;
goto fetch;

{--
{ idal - load acc immediate }

{---}

37-to-37: data-bus=mar; acc-data-bus;
goto fetch;

{--
{ opcodes 388 thru 62 are not currently used.
{---}

38-to-39: if bit(oc,O)=l then goto 39-to-39;
38-to-38: { opcode 38 } goto fetch;

39-to-39: { opcode 39) goto fetch;

40-to-47: if bit(oc,2)=l then goto 44-to-47;
40-to-43: if bit(oc,l)=l then goto 42-to-43;
40-to-41: if bit(oc,O)=l then goto 41-to-41;
40-to-40: { opcode 40 1 goto fetch;

41-to-41: { opcode 41 1 goto fetch;

42-to-43: if bit(oc,O)=l then goto 43-to-43;
42-to-42: { opcode 42) goto fetch;

43-to-43: { opcode 43) goto fetch;

44-to-47: if bit(oc,l)=l then goto 46-to-47;
44-to-45: if bit(oc,O)=l then goto 45-to-45;
44-to-44: { opcode 44 1 goto fetch;

45-to-45: { opcode 45 } goto fetch;

46-to-47: if bit(oc,O)=l then goto 47-to-47;
46-to-46: { opcode 46 1 goto fetch;

47-to-47: { opcode 47 } goto fetch;

48-to-63: if bit(oc,3)=l then goto 56-to-63;
48-to-55: if bit(oc,2)=l then goto 52-to-55;
48-to-51: if bit(oc,l)=l then goto 50-to-51;
48-to-49: if bit(oc,O)=1 then goto 49-to-49;
48-to-48: { opcode 48 1 goto fetch;

49-to-49: { opcode 49 } goto fetch;

82

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

50-to-51:
50-to-50:

51-to-51:

52-to-55:
52-to-53:
52-to-52:

53-to-53:

54-to-55:
54-to-54:

55-to-55:

56-to-63:
56-to-59:
56-to-57:
56-to-56:

57-to-57:

58-to-59:
58-to-58:

59-to-59:

60-to-63:
60-to-61:
60-to-60:

61-to-61:
62-to-63:
62-to-62:

if bit(oc,O)=1 then goto 51-to-51;
{ opcode 50) goto fetch;

{ opcode 51) goto fetch;

if bit (oc,l)=- then goto 54-to-55;
if bit(oc,O)=l then goto 53-to-53;
{ opcode 52 } goto fetch;

{ opcode 53 1 goto fetch;

if bit(oc,O)=l then goto 55-to-55;
{ opcode 54 } goto fetch;

{ opcode 55 } goto fetch;

if bit(oc,2)=l then goto 60-to-63;
if bit(oc,l)=l then goto 58-to-59;
if bit(oc,O)=- then goto 57-to-57;
{ opcode 56 } goto fetch;

{ opcode 57 } goto fetch;

if bit(oc,0)=i then goto 59-to-59;
{ opcode 58) goto fetch;

{ opcode 59 } goto fetch;

if bit(oc,l)=l then goto 62-to-63;
if bit(oc,0)=I then goto 61-to-61;
{ opcode 60) goto fetch;

{ opcode 61) goto fetch;
if bit (oc, 0)=1 then goto 63-to-63;
{ opcode 62 } goto fetch;

"Irs a fabulous monster!" the Unicorn cried out, before
Alice could reply.

--- }
I hlt - halt the machine I

-- }

63-to-63: start=off;
goto fetch;

end

83

Nw

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Sample Mnemonics

"Must a name mean something?" Alice asked doubtfully.

no operation */
add memory to register acc */
subtract memory from register acc */
load memory into register acc */
store register acc into memory */
increment register */
decrement register */
add to register acc immediate */
subtract from register acc immediate */
add to ix immediate */
subtract from ix immediate */
add to sp immediate */
subtract from sp immediate */
add register to acc */
subtract register from acc */
add register to ix */
subtract register from ix */
load acc with register */
load ix with register */
load ic with register */

/* 0
/* 1
/* 2
/* 3
/* 4
/* 5
/* 6
/* 7
/* 8
/* 9
/*10
/*11
/*12
/*13
/*14
/*15
/*16
/*17
/*18
/*19
/*20
/*21
/*22
/*23
/*24
/*25
/*26
/*27
/*28
/*29
/*30
/*31
/*32
/*33
/*34
/*35
/*36
/*37
/*63
end

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

*1
*1
*1

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

"nop" ,
"add",
"sub",
"ida",
"staff,
"incr",
"decr",
"addai",
"subai",
"addixi",
"subixi",
"addspi",
"subspi",
"addar",
"subar",
"addixr",
"subixr",
"idar",
"ldixr",
"idicr",
"inva",
"invix",
"anda",
"ora"l,
"xora",
"rsfta",
"llsfta","Ifjmp",
"Jaz",
"Janz",
"Jixz",
"jixnz",
"call",
"ret",
"pusha ",
"popa",
"zeroa",
"Idai",
"hlt",

84

14.2.

"000000",
"000001",
"000010",
"000011",
"000100",
"000101",
"000110",
"000111",
"001000",
"001001",
"001010",
"001011",
"001100",
"001101",
"001110",
"001111",
"010000"-,
"010001",
"010010",
"010011",
"010100",
"010101",
"010110",
"010111",
"011000",
"011001",
"011010",
"011011",
"011100",
"011101",
"011110",
"011111",
"100000",
"100001",
"100010",
"100011",
"-100100",
"100101",
"111111",

1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*

return to caller */
push register acc onto stack */
pop acc from stack */
zero out the acc */
load acc immediate */
halt the machine */

invert acc */
invert ix */
and acc with memory *1
or acc with memory */
xor acc with memory */
right shift acc */
left shift acc */
jump */
jump if acc is zero */
jump if acc is not zer
jump if ix is zero */
jump if ix is not zero
call a subroutine */

o */

*/

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Sample Assembly Program

"It's too late to correct i4' said the Red Queen: 'When
you've once said a thing, that fixes it, and you must
take the consequences."

{ This program generates the first 25 Fibonacci numbers and places them
in an array in memory locations 50 thru 74 }

max equ 25 { number of Fibonacci numbers we want }
array equ 50 { array begins at 50 }
acc equ 0 { defines the accumulator }
ix equ 2 { defines the index register }

call init

lda -2 ()
add -0()
sta 0 ()
incr ix
ldai array
addai max

subar ix
janz fibo
hlt

org 100

ldai array
ldixr acc
ldai 1
sta 0()
incr ix
sta 0()
incr ix
ret

{ initialize }

{ get the Nth-2 Fibonacci number }
{ add to it the Nth-i Fibonacci number }
{ store the result into the array }
{ increment the index I
{}{}{ see if we have enough Fibonacci numbers

{}
{ if not, go generate some more }
{ stop the machine }

{ place the routine starting at loc 100 }

{ initialize the array index I

{ set the 1st Fibonacci number manually }

{
{
{

set the 2nd Fibonacci number manually }
set the array pointer to the 3rd element }
return to the caller I

{ end of assembly }

85

14.3.

fibo

I

init

end

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

14.4. Interpreted Microcode Dump

"Its long," said the Knight, *but it's very, very
beautifuL"

---------------- micro-memory-dump----------------
1 0000000000 0110000000 0100100001 0000000000 0
1 0000000000 0000000000 0000000010 0001000000 1
1 0100000000 0001011100 0100000001 0000000000 2
0 0000000100 0101101001 0000000000 0000000000 3
0 0000000100 0100100100 0111100000 0000000000 4
0 0000000100 0011100010 0110000000 0000000000 5
0 0000000100 0010100001 0100000000 0000000000 6
0 0000000100 0001100000 1001100000 0000000000 7
0 0000000100 0000100000 0101000000 0000000000 8
0 0000000000 0000000000 0000100000 0000000000 9
0 0000000010 0000000000 0110100000 0000000000 10
1 0000000000 0000000000 0000010000 0000000001 11
1 0010000100 0000000000 0010000000 1000000000 12
0 0000000010 0001000000 1000000000 0000000000 13
1 0000000000 0000000000 0000000000 0001000000 14
1 0000000000 0000010000 0000000000 0000000000 15
1 0000000000 0000000000 0000000000 0001000000 16
1 0000000010 0000000010 0100000100 0000000000 17
0 0000000000 0000000000 0000100000 0000000000 18
0 0000000100 0000100000 1111100000 0000000000 19
0 0000000010 0000000000 1011100000 0000000000 20
1 0000000000 0000000000 0000010000 0000000001 21
1 0010000100 0000000000 0010000000 1000000000 22
0 0000000010 0001000000 1101000000 0000000000 23
1 0000000000 0000000000 0000000000 0001000000 24
1 0000000000 0000010000 0000000000 0000000000 25
1 0000000000 0000000000 0000000000 0001000000 26
1 0000000000 0010000010 0100010000 0000001000 27
1 0000000100 0001000000 0100010000 0000000000 28
1 0000000110 0000000000 0100000100 0000000000 29
0 0000000000 0000000000 0000100000 0000000000 30
0 0000000010 0000000001 0001000000 0000000000 31
1 0000000000 0000000000 0000010000 0000000001 32
1 0010000100 0000000000 0010000000 1000000000 33
0 0000000010 0001000001 0010100000 0000000000 34
1 0000000000 0000000000 0000000000 0001000000 35
1 0000000000 0000010000 0000000000 0000000000 36
1 0000000000 0000000000 0000000000 0001000000 37
1 0000000000 0000000000 0001000100 0000000000 38
0 0000000000 0000000000 0000100000 0000000000 39
0 0000000100 0001100001 1110100000 0000000000 40
0 0000000100 0000100001 1001000000 0000000000 41
0 0000000010 0000000001 0110100000 0000000000 42
1 0000000000 0000000000 0000010000 0000000001 43
1 0010000100 0000000000 0010000000 1000000000 44
0 0000000010 0001000001 1000000000 0000000000 45
1 0000000000 0000000000 0000000000 0001000000 46
1 0000000000 0000010000 0000000000 0000000000 47

86

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

0000000001
0000000000
0000001000
0000001000
0100000000
0000000000
0000010000
0000000000
0000001000
0001000000
0000000000
0000000001
0000000000
0000000100
0000001000
0000001000
0100000000
0000000000
0000010000
0000000000
0000001000
0001000000
0000000000
0000000001
0000000000
0000000000
0000000110
0000000000
0000000100
0000000100
0000000100
0000000000
0000000100
0000000100
0000000110
0000000000
0000000000
0010000100
0000000000
0000000100
0000000000
0000000100
0000000100
0010000100
0000000000
0000000000
0000100100
0000000000
0000000100
0000000100
0000000000
0000000100
0000000100
0000100100
0000000000
0000001000
0000001000
1000000001

0010000000
0000000000
0000000001
0001000001
0001000000
0000000000
0001000000
0000000000
0001000001
0001000000
0000000000
0001000000
0000000000
0000100010
0000000010
0001000010
1000000000
0000000000
1000000000
0000000000
0001000010
1000000000
0000000000
1000000000
0000000000
0000000000
0000000000
0000000000
0010100011
0001100010
0000100010
0000000000
0010000000
0001000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000100010
0000000000
0010000000
0001000000
0000000000
0000000000
0000000000
0000000000
0000000000
0001100011
0000100011
0000000000
0010000000
0001000000
0000000000
0000000000
0000000011
0001000011
0000000000

0100000000
0000100000
1100000000
1011000000
0100000001
0000100000
0100100000
0000100000
1101100000
0100000000
0000100000
0100000100
0000100000
0100100000
0010000000
0001000000
0100000001
0000100000
0100100000
0000100000
0011100000
0100000000
0000100000
0100000100
0000100000
0000010000
0100000100
0000100000
0000000000
1011100000
1010000000
0000010000
0100010000
0100010000
0100000100
0000100000
0000010000
0100000000
0000100000
1110100000
0000010000
0100010000
0100010000
0100000000
0000100000
0000010000
0100100000
0000100000
1001000000
0011100000
0000010000
0100010000
0100010000
0100100000
0000100000
0110100000
0101100000
0100000100

0100100000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0010000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0010000000
0000000000
0000000000
0000000000
0000000001
0000000000
0000000000
0000000000
0000000000
0000000000
0000000001
0000001000
0000000000
0000000000
0000000000
0000000001
0010000000
0000000000
0000000000
0000000001
0000001000
0000000000
0010000000
0000000000
0000000001
0000000000
0000000000
0000000000
0000000000
0000000001
0000001000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

87

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

0000000000
0000100001
0000000000
0000001000
0010000001
0000000000
0000000011
0000000000
0000000100
0000001000
0000001000
0100000000
0000000100
00000010000
00000100000
00000100100
00000001001
00000010000
00000010000
00010001000
00010000100
00000001001
00000010000
0000000000
0000000000
00000010000
0000001000
1001000000
0000000000
0001100000
0000000000
0000001000
0011000000
0000000000
0001000010
0000000000
0000000100
0000000100
0000000100
0000000100
0000001000
0000001000
0100000000
0000000100
0001001000
0000000000
0000010000
0000000100
0001001000
0000000000
0000001000
0000000000
0000000000
0000000001
0000000100
0001001000
0000000000

0000000000
0000000000
0000000000
0001000011
0000000000
0000000000
0000000000
0000000000
0000100100
0000000011
0001000011
0010000000
0001000000
0000000000
0000000000
0010000000
0001000000
0000000000
0000000000
0001000100
0010000000
0001000000
0000000000
0000000000
0110000000
0000000000
000000100
0001000100
0000000000
0000000000
0000000000
0000000000
0001000100
0000000000
0000000000
0000000000
0000000000
0O11100111
0010100110
0001100101
0000100101
0000000100
0001000100
0010000000
0001000000
0000000000
0000000000
0010000000
0001000000
0000000000
0000000000
0001000101
0010000000
0000000000
0010000000
0001000000
0000000000
0000000000

0000100000
0100000100
0000100000
1000000000
0100000100
0000100000
0100000100
0000100000
0010000000
1110100000
1100100000
0100010000
0100010000
0100000100
0000100000
0100010000
0100010000
0100000100
0000100000
0001000000
0100010000
0100010000
0100000100
0000100000
0100000100
0000100000
0101000000
0100000000
0100000000
0000100000
0100000000
0000100000
0110100000
0100000000
0000100000
0100000000
0000100000
0111000000
0001000000
0110100000
0010000000
1110100000
1100100000
0100010000
0100010000
0100000000
0000100000
0100010000
0100010000
0100000000
0000100000
0000000000
0100000000
0000100000
0100010000
0100010000
0100000000
0000100000

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000001000
0000000000
0000000000
0000000000
0000001000
0000000000
0000000000
0000000000
0000000000
0000001000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0010000000
0000000000
0010000000
0000000000
0000000000
0010000000
0000000000
0010000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000001000
0000000000
0010000000
0000000000
0000001000
0000000000
0010000000
0000000000
0000000000
0010000000
0000000000
0000001000
0000000000
0010000000
0000000000

88

F

106
107
108
109
110
ill
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

0000001000
0000001000
1000000000
0000000000
0000100000
0000000000

0000000101
0001000101
0100000000
0000000000
0100000000
0000000000

0101000000
0100000000
o100000100
o000100000
0100000100
0000100000

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

"TAnd thick and fast they came at last, and more, and
more, and more'

0000001000
0010000000
0000000000
0000000100
0000001000
0000001000
1000000000
0000000000
0000100000
0000000000
0000001000
0000000000
0000000010
0000000000
0000001000
0000001000
0000000000
0000100000
0000000000
0000001000
0010000000
0000000000
0000000010
0000000000
0000000100
0000000100
0000000001
0000000000
0001000000
0000000000
0000000100
0000000010
0000000000
0010000100
0000000010
0000000000
0000000000
0000000000
0000000000
0000010000
0000100000
0000000001
0000000001
0000000000
0000000001
0000000000

0001000000
0100000000
0000000000
0000100101
0000000101
0001000101
0100000000
0000000000
0100000000
0000000000
0001000101
0000000000
0100000000
0000000000
0000000101
0001000101
0000000000
0100000000
0000000000
0001000110
0100000000
0000000000
0100000000
0000000000
0001100110
0000100110
0010000000
0000000000
0010000000
0000000000
0000100110
0000000110
0000000000
0000000000
0001000110
0000000000
0000010000
00000600000
0000000000
0000000110
0000000110
0010000000
0000100000
0000000000
0010000000
0010000010

0000100000
0100000100
0000100000
1100000000
1010000000
0100000000
0100000000
0000100000
0100000000
0000100000
1011000000
0000100000
0100000000
0000100000
1110100000
0100000000
0000100000
0100000001
0000100000
0000000000
0100000001
0000100000
0100000001
0000100000
0100000000
0011000000
0100000100
0000100000
0100000000
0000100000
1101100000
0110000000
0000010000
0010000000
0111100000
0000000000
0000000000
0000000000
0000001000
1011000000
1011000000
1100000100
0100000100
0000100000
1100000100
1100000000

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0010000000
0000000000
0010000000
0000000000
0000000000
0000000000
0010000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000001000
0000000000
0010001000
0000000000
0000000000
0000000000
0000000001
1000000000
0000000000
0001000000
0000000000
0001000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0100000000

89

.0
0
1
0
1
0

164
165
166
167
168
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

0000000100
0000000000
0000000000
0000000010
0000000000
0010000100
0000000010
0000000000
0000000000
0000000000
0000000000
0000010000
0000100000
0000000000
0000000001
0000000001
0000000000
0000000001
0000000000
0000000100
0000000000
0000000000
0000000100
0000000100
0000000100
0000000010
0000000000
0010000100
0000000010
0000000000
0000000000
0000000000
0000000000
0000010000
0000100000
0000000000
0000100000
0000000000
0000000001
0000000001
0000000000
0000000001
0000000000
0000000100
0000000000
0000000000
0000000001
0000000000
0000000100
0000000001
0000000000
0000000000
0000000000
0000000100
ooooooo100
0000000001
0000000000
0000000000

1000000000
0000000110
0000000000
0000000110
0000000000
0000000000
0001000111
0000000000
0000010000
0000000000
0000000000
0000100111
0000100111
0000000000
0010000000
0000100000
0000000000
0010000000
0010000010
1000000000
0000000111
0000000000
0010101000
0001101000
0000101000
0000000111
0000000000
0000000000
0001000111
0000000000
0000010000
0000000000
0000000000
0000100111
0000100111
0000000000
0000000111
0000000000
0010000000
0000100000
0000000000
0010000000
0010000010
1000000000
0000000111
0000000000
0010000000
0000000000
0000101000
0010000001
0000000000
0000000000
0000000000
0001101000
0000101000
0001000000
0000100000
0000000000

0100010000
1000110000
0000100000
1111000000
0000010000
0010000000
0000100000
0000000000
0000000000
0000000000
0000001000
0011000000
0011000000
0000100000
1100000100
0100000100
0000100000
1100000100
1100000000
0100010000
0001110000
0000100000
0110100000
0100000000
0011000000
1010000000
0000010000
0010000000
1011100000
0000000000
0000000000
0000000000
0000001000
1110000000
1111000000
0000100000
1111000000
0000100000
1100000100
0100000100
0000100000
1100000100
1100000000
0100010000
1100110000
0000100000
1100000100
0000100000
0101100000
0100000100
0000100000
0000000001
0000100000
1011100000
1001100000
0100000100
0000110000
0000000001

0000000000
0000000000
0000000000
0000000000
0000000001
1000000000
0000000000
0001000000
0000000000
0001000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0100000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000001
1000000000
0000000000
0001000000
0000000000
0001000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0100000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000001
0000000000
0000000000
o0000000000
0000000000
0000000000
0000000001

90

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

0000000000
0000000001
0000000000
0000000000
0000000000
0000000100
0001000000
0000000000
0000000000
0000000000
0001000000
0000000000
0000000000
0000000000
0000000100
0000000100
0000000100
0000000100
0000000100
0000000000
0000010000
0100000000
0000000100
0000000000
0000010000
0000000000
0000010000
0000000000
0000000100
0000000001
0000010000
0000000000
0000010000
0000000000
0000010000
0000000000
0000000100
0000000100
0000000000
0000000000
0000000000
0000000000
0000000100
0000000000
0000000000
0000000100
0000000100
0000000100
0000000000
0000000000
0000000100
0000000000
0000000000
0000000100
0000000100
0000000000
0000000000
0000000100

0000000000
0010000000
0000100000
0000000000
0000000000
0000101000
0010000000
0000000000
0000000000
0000000000
0010000000
0000100000
0000000000
0000000000
0100101010
0011101001
0010101001
0001101001
0000101001
0000000000
1000000000
0010000000
0010000000
0000000000
0010000000
0000000000
0001000000
0000000000
0000101001
0010000000
1000000000
0000000000
0010000000
0000000000
0001000000
0000000000
0001101001
0000101001
0110000000
0000000000
0000000000
0000000000
0000101001
0000000000
0000000000
0010101010
0001101010
0000101010
0000000000
0000000000
0000101010
0000000000
0000000000
0001101010
0000101010
0000000000
0000000000
0000101010

0000100000
0100000100
0000110000
0000000001
0000100000
1110000000
0100000000
0000110000
0000000001
0000100000
0100000000
0000110000
0000000001
0000100000
0111000000
1111100000
1011000000
0111000000
0101000000
0000010000
0110100000
0100000000
0100000001
0000100000
0010000000
0001000001
0100100000
0000100000
1001000000
0100000000
0110100000
0000100000
0010000000
0001000100
0100100000
0000100000
1110000000
1101000000
0100000100
0000100000
0000000100
0000100000
1111000000
0000100000
0000100000
0011100000
0010000000
0001100000
0000100000
0000100000
0011000000
0000100000
0000100000
0101100000
0101000000
0000100000
0000100000
0110100000

0000000000
0000000000
0000000000
0000000001
0000000000
0000000000
0010000000
0000000000
0000000001
0000000000
0010000000
0000000000
0000000001
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000001
1000000000
0100100000
0000000000
0000000000
1001000000
0000000000
0000000000
0000000000
0000000000
0100000000
1000100000
0000000000
1001000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000001
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

91

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

0000000000
0000000000
0000000100
0000000100
0000000100
0000000100
0000000000
0000000000
0000000100
0000000000
0000000000
0000000100
0000000100
0000000000
0000000000
0000000100
0000000000
0000000000
0000000100
0000000100
0000000100
0000000000
0000000000
0000000100
0000000000
0000000000
0000000100
0000000100
0Q00000000
0000000000
0000000100
0000000000
0000000000
0000000000

0000000000
0000000000
0011101010
0010101010
0001101010
0000101010
0000000000
0000000000
0000101010
0000000000
0000000000
0001101010
0000101010
0000000000
0000000000
0000101010
0000000000
0000000000
0010101011
0001101011
0000101011
0000000000
0000000000
0000101011
0000000000
0000000000
0001101011
0000101011
0000000000
0000000000
0000101011
0000000000
0000000000
0000000000

0000100000
0000100000
1111000000
1011100000
1010000000
1001100000
0000100000
0000100000
1011000000
0000100000
0000100000
1101100000
1101000000
0000100000
0000100000
1110100000
0000100000
0000100000
0011000000
0001100000
0001000000
0000100000
0000100000
0010100000
0000100000
0000100000
0101000000
0100100000
0000100000
0000100000
0110000000
0000100000
0000000000
0000100000

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000010000
0000000000

92

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

Alice was just beginning to say 'There's a mistake
somewhere-'

Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:

0
1
2
3
4
5
6
7
8
9
10

(intermediate
Location: 49 =
Location: 50 =
Location: 51 =
Location: 52 =
Location: 53 =
Location: 54 =
Location: 55 =
Location: 56 =
Location: 57 =
Location: 58 =
Location: 59 =
Location: 60 =
Location: 61 =
Location: 62 =
Location: 63 =
Location: 64 =
Location: 65 =
Location: 66 =
Location: 67 =
Location: 68 =
Location: 69 =
Location: 70 =

(intermediate
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:

99
100
101
102
103
104
105
106
107
108

(intermediate
Location: 1022 =
Location: 1023 =

0000000000
0000000001
0000000010
0000000011
0000000100
0000000101
0000000110
0000000111
0000001000
0000001001
0000001010
locations have
0000110001
0000110010
0000110011
0000110100
0000110101
0000110110
0000110111
0000111000
0000111001
0000111010
0000111011
0000111100
0000111101
0000111110
0000111111
0001000000
0001000001
0001000010
0001000011
0001000100
0001000101
0001000110
locations have
0001100011
0001100100
0001100101
0001100110
0001100111
0001101000
0001101001
0001101010
0001101011
0001101100
locations have
1111111110
1111111111

Contents:
Contents:
Contents:
Contents:
Contents:
Contents:
Contents:
Contents:
Contents:
Contents:
Contents:

100000000001100100
000011011111111110
000001011111111111
000100010000000000
000101000000000010
100101000000110010
000111000000011001
001110000000000010
011101000000000001
111111000000000000
000000000000000000

1*6:
1'
2
21

5'
1:
2
0

the same value)
Contents: 000000000000000000 = 0
Contents: 000000000000000001 = 1
Contents: 000000000000000001 = 1
Contents: 000000000000000010 = 2
Contents: 000000000000000011 = 3
Contents: 000000000000000101 = 5
Contents: 000000000000001000 = 8
Contents: 000000000000001101 = 1.
Contents: 000000000000010101 = 2:
Contents: 000000000000100010 = 3.
Contents: 000000000000110111 = 5.
Contents: 000000000001011001 = 8
Contents: 000000000010010000 = 1
Contents: 000000000011101001 = 2.
Contents: 000000000101111001 = 3
Contents: 000000001001100010 = 6:
Contents: 000000001111011011 = 9.
Contents: 000000011000111101 = 1I
Contents: 000000101000011000 = 2
Contents: 000001000001010101 = 4
Contents: 000001101001101101 = 6
Contents: 000000000000000000 = 0

the same value)
Contents: 000000000000000000 = 0
Contents: 100101000000110010 = 1
Contents: 010010000000000000 = 7
Contents: 100101000000000001 = 1
Contents: 000100010000000000 = 1
Contents: 000101000000000010 = 2
Contents: 000100010000000000 = 1
Contents: 000101000000000010 = 2'
Contents: 100001000000000000 = 1
Contents: 000000000000000000 = 0

the same value)
Contents: 000000000000000000 = 0
Contents: 000000000000000001 = 1

31172
4334
143
7408
0482
51602
8697
7346
18785
58048

3
1
4
5
9
44
33
77
10
87
597
584
181
765

51602
3728
51553
7408
0482
7408
0482
35168

93

14.5. Main Memory Dump

Gabriel Robins

An Interactive Gate-Level Simulator as an Educational Aid

1 5. Appendix II: The Simulated Hardware Diagram

"It's very provoking.' Humpty Dumpty said after a long
silence.

94

Gabriel Robins

Main Memory

1024 Words
x

18 bits each

Micro-store
512 Words

X 41 Bits each

Bus (left)

G9

Gate Legend (by clock phase)

Right
Shift

0- Phase 0 gates

0- Phase I gates

0- Phase 3 gates
L

w

An Interactive Gate-Level Simulator as an Educational Aid Gabriel Robins

1 6. Table of Contents

"Yes, / think you better leave off,' said the Gryphon,
and Alice was only too glad to do so.

1 Abstract ... 1
2 Introduction .. 1
3 Overview .. 2
4 The Hardware .. 2

4.1 registers ... 2
4.2 Buses .. 3
4.3 Gates ... 4
4.4 Memory ... 5
4.5 Inverters .. 5
4.6 Adder ... 5
4.7 Shifter ... 5
4.8 Zero-detect logic ... 6
4.9 The Control Subsystem .. 6

4.9.1 The M icro-m emory ... 6
4.9.2 M icro-registers ... 6
4.9.3 Control Logic .. 6
4.9.4 Start Toggle ... 7
4.9.5 Clock ... 7
4.9.6 M icro-Instruction Form at .. 7

5 The Assembly Language .. 8
5.1 Mnemonics .. 8
5.2 Stack ... 10
5.3 Instruction Form at ... 1 0
5.4 Syntax ... 1 0

6 The M icrocode Interpreter ... 1 2
6.1 Syntax ... 12

7 The User Interface .. 1 4
7.1 Screen format ... 14
7.2 The interaction W ith the User .. 1 5
7.3 The Com mands ... 15
7.4 Error Handling ... 1 6
7.5 Special Files ... 1 7

8 Invoking the Sim ulator ... 1 8
9 The Implementation .. 1 9
10 Sum m ary ... 19
11 .1..... Acknowledgements .. 1 9
12 Bibliography .. 20
13 Appendix I: The Annotated Source Code .. 2 1

13.1 Global Definitions Code .. 2 1
13.2 The Main Program Code .. 23
13.3 Assembler Code ... 27
13.4 M icrocode Interpreter Code ... 33
13.5 Control Subsystem Code ... 45
13.6 Display Functions Code .. 54
13.7 Utility Functions Code .. 62
13.8 Makefile Shell Script Code ... 68

96

An Interactive Gate-Level Simulator as an Educational Aid Gabriel Robins

14 Usage Examples .. 69
14.1 Sample Micro-program ... 69
14.2 Sample Mnemonics .. 84
14.3 Sample Assembly Program ... 85
14.4 Interpreted Microcode Dump ... 86
14.5 Main Memory Dump .. 93

15 Appendix I1: The Simulated Hardware Diagram ... 94
16 Table of Contents .. 96

97

An Interactive Gate-Level Simulator as an Educational Aid

"aThe name of the song is called 'Haddock's Eyes."
"Oh, that's the name of the song, is it?* Alice said, trying to feel interested.
"No, you don' understand,' the Knight said, looking a little vexed. 'That's what the name is

called. The name really is The Aged Aged Man."
"Then I ought to have said T'hat's what the eong is called'?' Alice corrected herself.
"No you oughtn't: that's quite another thing! The eong is called Ways and Means': but that's

only what its called, you know!"
"Well, what is the song then?' said Alice, who was by this time completely bewildered.
"I was coming to that,' the Knight said. 'The song really Is A-sitting On A Gate. and the

tune's my own invention.,

98

Gabriel Robins

