
ISI Reprint Series

ISIIRS-88-210

June 1988

University
of Southern

California

Gabriel Robins

Applications of the ISI Grapher

Reprinted from
Proceedings of the Artificial Intelligence and

Advanced Computer Technology Conference,
held May 4-6, 1988 in Long Beach, California.

INFORMATION
SCIENCES -41

INSTITUTE] 213/822-1511
-IE ,4 4676 Admiralty Way/Marina del Rey/California 90292-6695

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
ia REPORT SECURITY CLASSIFICATION b. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

This document is approved for public release,
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ISI/RS-88-210

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

USC/Information Sciences Institute (if applicable) ---------------

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

4676 Admiralty Way
Marina del Rey, CA 90292

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

DARPA

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22210 ELEMENT NO. NO. NO. ACCESSION NO.

SI

11 TITLE (Include Security Classification)

Applications of the ISI Grapher [Unclassified]

12. PERSONAL AUTHOR(S) Robins, Gabriel

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month,Day) !s. PAGE COUNT 32
Research Report I FROM TO 1988, June 7

16 SUPPLEMENTARY NOTATION

Reprinted from Proceedings of the Artificial Intelligence and Advanced Computer Technology
Conference, held May 4-6 1988 in Lon Beach, California.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP artificial intelligence tools, graph algorithms, graphs, intelligent systems,
09 02 ISI Grapher, layout algorithms, user interfaces

19, ABSTRACT (Continue on reverse if necessary and identify by block number)

This report describes various end-user applications that were built using the ISI Grapher, a portable
software tool for displaying graphs pictorially. This report enumerates current research projects that
already utilize the ISI Grapher, and also outlines several general domains where a grapher would be
of considerable benefit.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

1UNCLASSIFIED/UNLIMITED ,3 SAME AS RPT. 0 DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL Sheila Coyazo 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Victor Brown 213-822-1511
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.

All other editions are obsolete.
SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

ISI Reprint Series

ISIIRS-88-210

June1988

University

of Southern

California

Gabriel Robins

Applications of the ISI Grapher

Reprinted from
Proceedings of the Artificial Intelligence and

Advanced Computer Technology Conference,
held May4-6, 1988 in Long Beach, California.

INFORMATION
SCIENCES23/2111

INSTITUTE
2131822-1511

4676 Admiralty Way/Marina del Rey/California 90292-6695

This research is supported by the Defense Advanced Research Projects Agency under Contract No. MDA903 81 C 0335. Views
and conclusions contained in this report are the author's and should not be interpreted as representing the official opinion or
policy of DARPA, the U.S. Government, or any person or agency connected with them.

. 0 .. e%... ...

ISI Reprint Series

This report is one in a series of reprints of articles and papers written by ISI

research staff and published in professional journals and conference

proceedings. For a complete list of ISI reports, write to

Document Distribution
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
USA

Applications of the ISI Grapher

Information Sciences Institute
4676 Admiralty Way

Marina Del Rey, Ca, 90292-6695, U.S.A.

Abstract

We describe various end-user applications that were built using the ISI Grapher, a
portable software tool for displaying graphs pictorially. We enumerate numerous current
research projects that already utilize the ISI Grapher, and also outline several general domains
where a grapher would be of considerable benefit.

1 . Introduction

[Robins, 1987] demonstrated that the ability to interactively display and manipulate
arbitrary directed graphs could greatly enhance end-user productivity, both quantitatively and
qualitatively, and developed a practical linear-time algorithm for laying out graphs. [Robins,
1988] described the implementation and usage of the ISI Grapher, a portable tool for displaying
graphs pictorially. The salient features of the ISI Grapher are its speed, portability,
extensibility, and versatility.

Over the past year we received several hundreds of requests for the ISI Grapher from
companies and universities worldwide, illustrating the substantial demand for such a tool in
both industry and the research community. The ISI Grapher currently runs on several different
kinds of workstations (including Symbolics, TI Explorers, SUNs, HP Bobcats, Apollos, and the
Apple Macintosh II), and is also available commercially through ExperTelligence Inc.

This paper describes numerous current research projects that already utilize the ISI
Grapher, and outline several additional domains where a grapher would be of considerable
benefit. Throughout this paper, the term user denotes a person who is using the ISI Grapher (or
who is using some application that is built on top of the ISI Grapher, such as the NIKL/LOOM
Browser.) On the other hand, the term application-builder will be used to denote a person who
is actually building an application using the ISI Grapher as a foundation.

Section 2 summarizes the ISI Grapher, its implementation, and its usage. Section 3
presents several existing applications already built on top of the ISI Grapher. In Section 4 we
describe in further detail some methods of customizing the ISI Grapher for particular

Reprinted from the proceedings of the Artificial Intelligence and Advanced Computer Technology Conference, Long
Beach, California, May, 1988.

Applications of the ISI Grapher

applications. Sections 5 and 6 describe some current research efforts, both at Information
Sciences Institute and elsewhere, that already use the ISI Grapher in prototype systems. Section
7 describes additional potential application areas that could greatly benefit from the usage of a
grapher. Section 8 describes other existing graphers and related research. Finally, Section 9
gives instructions on how to obtain the IS[Grapher program itself.

2. Overview of the ISI Grapher

The ISI Grapher is invoked at the top-level by calling the function graph-lattice with a
list of roots/options and a "sons-function". This provides a means for the ISI Grapher to infer
the complete description of the graph by recursively calling the sons-function on the roots and
their descendents. Next, a reasonable graphical layout is computed for the graph by mapping its
nodes onto lattice points in the plane and the resulting diagram is presented on the display.
Various mouse sensitivity and functionality is automatically provided for, creating a versatile
and user-friendly browsing environment.

For example, suppose our graph is {(a,b),(a,c),(b,d)}, our root is {a}, and our sons-
function is given by:

(defun components (x)
(cond ((eq x 'water) (list 'hydrogen 'oxygen))

((eq x 'hydrogen) (list 'electron 'proton))
((eq x 'proton) (list 'up-quark 'down-quark))
(t NIL)))

Note that the sons-function returns NIL if and only if the given node is a leaf in the graph
(that is, the given node has no children). The call (graph-lattice 'water 'components) would
produce the following:

The function graph-lattice also accepts an optional layout-flag argument which may
be either 'tree or 'lattice. 'tree means the graph will be displayed as a pure tree, regardless
of its structure (in case there are cycles, they will be "broken" for displaying purposes by the
introduction of "stub" nodes), while 'lattice means that all the cross-edges in the graph will
actually appear in the drawing. For example, if this flag is 'tree the graph {(a,b),(b,c),(c,a)}
which appears as follows:

Stone scissors Paper

2

Gabriel Robins

Applications of the ISI Grapher

will actually be displayed as follows:

where "St•ofl" represents the same graph node as "Stone". That is, the graph node
represented by "Stone" is displayed twice (with an obvious notation that this has occurred, such
as the usage of a distinctive font; this is automatically provided for by the ISI Grapher and may
also be controlled by the application-builder). It is also possible to display the given graph so
that the cross-edges are all displayed as they occur in the graph, with nodes properly displaced
horizontally so that all edges are directed from left to right. If the graph contains any directed
cycles, they are automatically broken as described above.

The first argument to graph-lattice may in fact be a command list that allows the user
to precisely select the subset of the graph to be processed. Options include various set-
theoretic operations on the nodes of the graph, and the ability to graph nodes below the given
one, nodes above the given one, nodes not below the given one, and so on. The "search-depth"
(e.g., a cutoff-depth) may be also specified, allowing the graphing of only the nodes that are not
more than a given distance away from a specified node in the graph. Once a graph has been
layed-out and is displayed in a window, various commands are available from the main command
menu.

The time required by the ISI Grapher to layout a graph is linearly proportional to the size
of the graph; that is, the asymptotic time (and space) complexity of the layout algorithm for a
graph G=(V,E) is O(IVI + IEl), where IVI is the size of the node set, and IEl is the size of the
edge set. Moreover, the constant of proportionality in this linear relation is relatively small,
yielding both a theoretical optimum as well as practical efficiency. In benchmark runs, speeds
of over 2,500 nodes per real-time minute have been achieved by the ISI Grapher when running
on a Symbolics workstation. This efficiency is rather striking considering that it can be shown
that under some simple esthetic assumptions, "optimal" layout becomes NP-hard, even to
within a small bounded approximation [Supowit and Reingold, 1983].

The layout algorithm employed by the ISI Grapher exhibits an interesting symmetry:
layout is performed independently in the X and Y directions. The X coordinates (of the nodes in
the layout) are computed, and then the Y coordinates are computed without referring to the
value of any of the X coordinates. This property implies a certain logical "orthogonality" in the
treatment of the two planar dimensions, and is the source of the simplicity of the layout
algorithm, the heart of which occupies less than two pages of code.

The Y coordinates of a node N are computed as follows: if N is a leaf node (that is, if N has
no children in the graph), its Y coordinate is selected so that it is as close as possible to, but
does not overlap any previously layed out node. If N has children, their Y coordinates are
computed first, and then N's Y coordinate is set to be the arithmetic average of the Y coordinates
of N's children. Note that the second rule implies depth-first recursion, which is indeed how
the algorithm is implemented. The Y-direction layout is sensitive to the heights of the objects
being displayed. On the other hand, the Y-direction layout is completely oblivious to the X-
coordinate values.

Similarly, the X coordinates of a node N are computed as follows: if N is a root node (that
is, if N has no parents in the graph), its X coordinate is set to zero. If N has parents, their X

3

Gabriel Robins

Applications of the ISI Grapher

coordinates are computed, and then N's X coordinate is set to be some fixed amount larger than
the maximum of the X coordinates of N's parents. Again, note that this implies depth-first
recursion. The X-direction layout is sensitive to the lengths of the objects being displayed, and
is completely oblivious to the Y-coordinate values.

For the sake of completeness, we specify the X and Y layout algorithms more formally. The
layout algorithm for the Y coordinates is specified as follows:

For N in Nodes do Y[N] := 0;
Last-y := 0;
For N in Roots(G) do Layout-Y(N);

Procedure Layoul-Y(N);
begin
if Y[N] = 0 then /* N was not yet layed-out *1

If N has any unlayed-out children then
begin /* layout the children first. */
for C in Children(N) do Layout-Y(C);
Y[N] := average-Y(Children(N));

end;

end
else begin

Y[N] := Last-y + Height(N);
Last-Y := Y[N];
end;

/* layout a leaf. */

/* of procedure Layout-Y */

The layout algorithm for the X coordinates is specified as follows:

For N in Nodes do X[N] := 0;
For N in Leaves(G) do Layout-X(N);

Procedure Layout-X(N);
begin
if X[N] = 0 then /* N was not yet layed-out. */

If N has parents then
begin /* layout the parents first. */
for C in Parents(N) do Layout-X(C);
X[N] := Max{X[i] + Width(i) I i in Parents(N)} + constant;
end

end; /* of procedure Layout-X */

The ISI Grapher maintains various data structures for each graph that it processed. In
particular, each node and edge of the graph is represented as an instance of a LISP record
structure. Nodes structures point to both their parents and children. The Grapher maintains
several hash tables that serve to map between node names and the corresponding data structures.
Application builders should remember that their code should leave these various data structures
in a consistent state, and are advised to use whenever possible the provided built-in functions
for such manipulations.

Once a graph has been layed-out and is displayed in a window, various commands are
available from the main command menu. Many other functions are also available for the
application-builder's use. When the mouse points to a node in an active Grapher window, that

4

Gabriel Robins

Applications of the ISI Grapher

node becomes highlighted and various additional commands from the main command menu become
available and operate with respect to that node. For example, if a node is selected (highlighted)
and the command "delete-node" is issued by selecting the corresponding menu item, that node
will be removed from the graph and the window will be redrawn. Figure 1 is an example of an
ISI Grapher display, depicting the ExperTelligence class system. The entire graph is visible on
the right, while the highlighted section is magnified and displayed on the left.

To provide for its portability, the ISI Grapher code is divided into two main modules. The
first and largest module consists of pure Common LISP code; this code is responsible for all the
layout, control, and data-structure manipulation algorithms. The second module is
substantially smaller, and consists of numerous low-level primitive calls that are quite likely
to be implementation-dependent. The intent here is that when the ISI Grapher is to be ported to
another (Common LISP) environment, only the second module should require modification. In
order to further minimize porting efforts, the calls from code in the first module to functions in
the second module were designed to be as generic as possible.

In summary, if a new environment has a window-system that supports a reasonable set of
window and graphics primitives (such as open-window, draw-line, print-string, etc.), then
porting the ISI Grapher to this new environment or machine should require a minimal coding
effort, probably all of which would be confined to the second section of the ISI Grapher code. The
ISI Grapher has also been ported to X, a standard portable window system environment
implemented by a group at MIT; this means that porting the ISI Grapher to a system that
supports both Common LISP and X Windows should indeed be trivial.

3. Simple Applications of the ISI Grapher

We now describe the various applications that are built on top of the ISI Grapher:

The List Grapher - This application displays the natural correspondence between lists and
trees, by taking the CAR of the list to be the root and the CDR to be the list of children,
recursively. This provides an easy means of quickly obtaining large or complex graphs. For
example, the following call would produce the graph in Figure 2.

(graph-list
'(device

(computing-device
(analog-computer slide-rule wind-tunnel)
(digital-computer super-computer micro-computer))

(electrical-device super-computer micro-computer radio)
mouse-trap)))

The Flavor Grapher - This application displays the interdependencies between flavors in
flavor-based LISP environments (such as on Symbolics or TI workstations). Nodes represent
flavor names, and edges mean "depends on." This type of a diagram could be quite useful in LISP
software development. For example, the call:

(graph-flavor 'tv:window 'lattice)

would graph (as a lattice) all the flavors that depend on the tv:window flavor.

5

Gabriel Robins

Applications of the ISI Grapher

Figure 1: The ExperTelligence class hierarchy.

The Package Grapher - This application produces a graph of the package interdependencies
between a package and all packages that use it, where nodes represent packages and edges
represent package inheritance. An example of a call is:

(graph-package "global")

6

I CONTR

Gabriel Robins

Applications of the ISI Grapher

Figure 2: An example of the List Grapher.

The Divisors Grapher - This application displays the divisibility graph of a given integer;
that is, all the divisors of an integer are represented by nodes, where an edge between two nodes
means "is divisible by." This is also a quick method to produce large graphs. For example, the
following call would produce the graph in Figure 3:

(graph-divisors 360 'lattice)

Listener
NIL
? (graph-divisors 360
NIL

lattiCe)

Figure 3: The integer divisors of 360.

7

120JM Graph below 360_____

72 812 6Jr 37
36 18 9-7

40 20 105

P(180-90 45

iDSample Hie~rarchyt Pj-

...................... F12-1

Gabriel Robins

Applications of the ISI Grapher

The NIKL Browser - This application is a browsing tool for NIKL networks. NIKL is a state-
of-the-art, classification-based knowledge representation language, developed jointly by ISI
and BBN. In NIKL, concepts are ordered by logical subsumption and it is often desirable to sec a
picture of a NIKL taxonomic network. For example, Figure 4 depicts a typical medium-sized
NIKL taxonomy.

Tew WBN Naval NModl

\CONSCIOUSBEI NG<COMPUTERC CUBN 'PERSON

_,,COMPUTER
ACTIYEENTITY.E- PERSONORGANIZATION

SIGNAL
PARAMETERIZED.ENTITY- CHART
FUEL--JP-5

F RES H.0OBJECT<CON~TEXT
n r n% nre

DISPLAYABLE.OBJECT

Z U LU.TI ME- RELATI VE.Z U L U.TI ME

YEAR.IN.TI MEFISCAL.YEARtl""• "" •""-CALEN DA R.Y EAR

tTI ME.OF.DAY-- D TE.T I ME.GR OUP
1 PRESENT-TODRY

7, PAST-.- YESTERDAY
RELATIYE.TI ME- NOW

N EXT
'FUTURE

Q U RTE R IN.TI ME<FISCAL.QiUAPT ER
_IME QUARTER.IN.TIME<CALENDAR.QUARTER

MONTH
EMPLOYMENT.PERIOD

/ WEDNESDAY

(ED.TRACK
ALERT
AREA
READI NESS.SUMMARY
OVERLAY

< HOOK ED .T RACK
HOOK- HOOKED.POSIT

N- HOOKED.PORT
CHART

Figure 4: A typical medium-sized NIKL taxonomy.

3.1. The List Grapher Revisited

To illustrate how an application may be concisely and easily built on top of the ISI
Grapher, we provide the complete code for the List Grapher application:

8

N

Gabriel Robins

Applications of the ISI Grapher

(defvar sons-table)

(defun sons (nodes)
(if (atom nodes) (setq nodes (list nodes)))
(mapcan #'(lambda (i) (gethash i sons-table)) nodes))

(defun search-sons (lattice)
(if (or (null lattice) (not (listp lattice)))

(return-from search-sons nil))
(puthash (car lattice)

(mapcar #'(lambda (x) (if (listp x) (car x) x))
(cdr lattice))

sons-table)
(mapcar #'search-sons lattice))

(defun graph-list (the-list (layout-style 'tree))
(setq sons-table (make-hash-table)
(search-sons the-list)
(graph-lattice (car the-list) 'sons layout-style))

This code consists of some simple preprocessing during which the nodes and their children
are stored in a hash table for fast future reference; this relationship is computed according to
the recursive rule that the CAR of a list is the root while the CDR is the list of children. Once
this relation has been computed, all that needs to be done is to call the ISI Grapher function
araph-lattice, and the corresponding graph will be computed, layed-out, and displayed.
Other IS[Grapher applications are also as concise and easily specifiable as this application.

4. Application-building

It is possible for the application-builder to define new functionality and customize the
menus of the ISI Grapher. In addition, several basic Grapher operations may be controlled via
the specification of alternate functions for performing these tasks. These operations include the
drawing of nodes and edges, the selections of fonts, the determination of print-names, pretty-
printing, and highlighting operations. Standard definitions are provided for these operations if
the application-builder chooses not to override them.

For example, the default method of highlighting a graph node when the cursor points to it
on the screen is to invert a solid rectangle of bits over the node. Suppose that the user is not
satisfied with this mode of highlighting and would like to have thin boxes drawn around
highlighted nodes instead. He may write a highlighting function that does exactly that, and tell
the Grapher to use that function whenever a node needs to be highlighted.

As another example, suppose the user is not satisfied with the way nodes are displayed on
the screen; ordinarily nodes are displayed on the screen by printing their ASCII print-names at
their corresponding screen location. If the user would prefer that some specialized icon be
displayed instead, he may then specify his icon-displaying function as the normal node-painting
function; from then on, whenever a node needs to be displayed on the screen, that function will
be called upon, thus achieving the desired effect.

9

Gabriel Robins

Applications of the IS[Grapher

Figure 5: Changing node display characteristics.

When the application-builder supplies his own function for performing a particular task
category, that function must externally mimic the semantics for that task. In particular, the
application-builder's function must have the same number (and type) of arguments (and
returned value) as the default function for that category. For example, if the application-
builder defines a new font-function, it must accept two arguments, a node object and a window,
and return a font. How the returned font is selected (or whether it indeed depends on the input at
all), is a decision left entirely to the application-builder. The application-builder must
exercise some care therefore, in designing his replacement functions; for example, in most
applications, the unhighlight-function should "undo" what the highlighting-function does, etc.
The Grapher cannot determine whether the application-builder has provided a consistent (or
even a useful) set of functions.

Much of this functionality can be invoked from the command menus; for example, Figure 5
shows how the manner in which nodes are displayed may be controlled via menus/dialogues, and
similarly for fonts, as shown in Figure 6. After both the display and font styles have been
changed by the user, the display may acquire the style of Figure 7. Figure 8 depicts a NIKL
taxonomy drawn as a lattice, where numerous cross-edges are visible; when graphs become
dense (in the sense that the ratio of edges to vertices is high) experience has shown that it is
preferable to display them as trees.

10

Pensize: -Frame Style: -

0 5 @® Rectangle
0 None

-Pen Pattern:

As Nodes Appear: Vertical
Spacing:

EJ---- ----------------------------------
----1J -----------------

Cancel OK

Gabriel Robins

Applications of the ISI Grapher

-Font Size: -

-Font Style: -

[J Plain

E Bold

E] Italic

I- Outline

I-l Shadow

-As it appears:

New York
Memory used by all currently
loaded fonts: 43958.

Cancel L OK

Figure 6: Changing display fonts and styles.

5. Specific Projects Which Use the ISl Grapher

This section describes various current research projects at Information Sciences Institute
that have used the ISI Grapher in the implementation of prototype systems.

5. 1. Integrated Interfaces

A wide variety of user interface modes and media are available for modern computer
systems. The Integrated Interfaces project, headed by Dr. Norman Sondheimer, is engaged in
research that allows users to choose among functionally equivalent methods on input while the
system distributes display responsibilities to a variety of different output methods. This
project uses natural language understanding and generation, graphic input and output, command
language interaction, menus, icons, forms, multiple windows, keyboard, mouse, and eventually
speech. They are developing a generic user interface technology with clear separation between
the interface system, device support software, and application software systems.

This approach combines artificial intelligence technology and human factors, and employs
a knowledge-based software architecture for the system. The knowledge base describes the
capabilities of the input and output devices, and the input and output requirements of the
application software systems. Al reasoning is used to analyze input in the context of a multi-
media and multi-mode dialog. Al planning is used to assign output demands to the most
appropriate mix of different media and modes. The knowledge about the structure of the rules
used in planning and hence the form and behavior of the interface is based on a series of human
factors experiments.

11

ront Name:

Geneva
Helvetica
Monaco
'Ne Yor

Gabriel Robins

P -- I IL I__ __

Applications of the ISI Grapher

The ISI Grapher is used in this project as a fundamental display mode. Various relations
among the components of the domain may be displayed pictorially and manipulated using the SI
Grapher.

Ih

Figure 7: An example of using a bigger font and thicker boxes/lines.

5.2. Natural Language and Text Generation

This project, headed by Dr. Bill Mann, explores new technology for expressing computer-
internal information in sentences and paragraphs of English text. Many systems require
information output that is flexible, understandable, and precise; canned text is inflexible and
often misleading. The objective of this research is to develop autonomous English generation
technology with a focus on in-context multi-sentence generation. This technology has
fundamental applications in building English-out, English-in human-computer interfaces to
computer software systems such as database and expert systems.

The text generation system is called PENMAN, and is based on the design described in
[Mann]. The major components of PENMAN include a sentence generator and several text
planning modules. The sentence generator uses a large systemic-functional grammar of English

12

Gabriel Robins

Applications of the IS[Grapher

(the grammar is called NIGEL [Mann, and Matthiessen]). The text planning modules are based on
Rhetorical Structure Theory (RST) [Mann, and Thompson]. The inputs to PENMAN are
expressed in a meaning representation language (Penman-MRL) which is a special variety of
the first order predicate calculus. The terms of Penman-MRL are interpreted in the context of a
taxonomic representation of knowledge about the subject matter [Sondheimer, and Nebel]. This
research in text generation involves active interaction between Al specialists and linguists. In
addition to the text generation system itself, the project has produced significant results in the
study of text structure and an experimental parsing program based on the same systemic-
functional grammar [Kasper].

Figure 8: An example of a NIKL taxonomy drawn as a lattice.

The ISI grapher has proved to be a very useful tool for displaying several types of
structures that are produced in the PENMAN system. It is used to browse through large data
structures that define grammars and lexicons, and to display several kinds of structures that
are produced as results of generating or parsing text. Four specific applications of the grapher
will be briefly described in this section: the grammatical system network browser, a word class
hierarchy editor, the display of sentence structures, and the display of text structures.

Grammatical System Network Browser: A systemic-functional grammar is organized into
a network of interdependent choices of grammatical features. It is often helpful for a maintainer
or user of the grammar to browse through this network, first looking at its overall
organization, and then displaying information about a particular portion of the network. By
providing an interface to application-defined functions on nodes of the graph, the ISI grapher is

13

Gabriel Robins

Applications of the ISI Grapher

well suited to this application. This browsing facility is quite similar to the NIKL'LOOM
browser, another application built on top of the ISI grapher, described elsewhere in this paper.

Word Class Hierarchy Editor: The ISI grapher is also used as a browser of a hierarchy of
word classes that are used in defining lexical items to be used by the PENMAN system [Cumming
& Albano 861. In addition to browsing through the existing word classes, the word class
hierarchy editor also provides functions for adding and modifying word classes.

Display of Sentence Structures: Systemic grammars describe the functional roles of
sentence constituents in addition to their structure. It is common for a single constituent to fill
several functional roles simultaneously. Thus, it is very helpful to have a tool that displays
these functional structures explicitly as a graph, so that shared structures can be observed.
This type of graph is displayed as the result of parsing a sentence, and may also be displayed
after generating a sentence to observe how the sentence was constructed. A sample graph of the
functional structure of a sentence is shown in Figure 9.

LILII. n3nsaet
HING - document

create

"AGENTMARKER-BY
- /

AG ENT /ACTO R <--fA"E7- new

Figure 9: Sentence structure of "This document was created by a new computer."

Display of Text Structures: The overall organization of a text is planned by a module of
PENMAN that builds structures spanning many sentences [Hovy]. The ISI grapher is used here
to display these text structures and show the relations that exist between different sentences of
a text.

In all of these applications the automatic layout and ease of scrolling over large graphs
saves considerable time to developers and users of our natural language processing programs.

5.3. A Single Interface to Multiple-Systems (SIMS)

This project, headed by Dr. Norman Sondheimer, is pursuing a line of research that allows
independently developed computing systems to be seen as a single, consistent whole. Just as
distributed databases allow both the end-user and the application developer to see a set of

14

Gabriel Robins

Applications of the ISI Grapher

independent data bases as a single system, the goal here is to produce a component that allows
end-users and programmers to see a set of independent systems as a single system.

SIMS supports both a uniform view of data and a uniform view of computer services.
This enables a system to satisfy a request, divide up requests that require more than one system
to perform them, and consider alternative services if a system fails to satisfy a request. The
key is Model-Mediated Interaction, an approach utilizing a knowledge-base which models the
data structures and capabilities of the component systems. When application programmers wish
to add functionality to the underlying system, they can see what functionality already exists and
where their new system fits. A planner is being built to use these rules.

When an end-user presents a request, our system puts it into a form that the planner can
evaluate to produce a series of commands to the component systems that satisfies the request. In
addition, since several translations may exist, the system monitors the execution of the requests
and may attempt recovery from failure. The same mechanism can be used to support program
invocation of services.

The approach described here is dynamic in that SIMS determines which server will satisfy
the request when the task is defined. SIMS performs logical integration, where the servers
remain separate, but a common model makes them appear as if they were providing a single
virtual service. Logical and dynamic integration allow the system of which SIMS is a part to be
more easily designed and maintained. The ISI Grapher is being used in SIMS as an alternate
method of display and interaction.

5.4. Classification-based Knowledge Representation

This project, headed by Dr. Robert MacGregor, is developing a state-of-the-art knowledge
representation system, as well as a set of tools that would aid the process of constructing large
knowledge bases. In the past, nearly every project with a need for a knowledge base has
generated its own knowledge representation system. This has resulted in duplicate efforts,
diversions caused by the construction and debugging of the knowledge representation system, and
idiosyncratic knowledge bases that cannot be shared or reused. A major goal of this project is to
provide a widely available and reusable knowledge representation system, and to validate it
through application in a wide range of projects, including intelligent interfaces, expert
systems, and natural language.

A usable knowledge representation system can have as dramatic an impact on the knowledge
processing community as data bases have had on the information processing community. This
effort is based on our previous work in defining and implementing the KL-ONE and NIKL
knowledge representation systems [Robins, 1986; Kaczmarek, Bates, and Robins, 1986]. Our
experience with building knowledge-based systems has led us to concentrate on the following
features: expressiveness, well-defined semantics, and domain-independent reasoning and
acquisition facilities.

Our new knowledge representation system is called Loom, and it features richer semantics
and more powerful forms of inference than its predecessors; it is especially designed to work in
tandem with other systems [Mac Gregor and Bates, 1987]. Loom provides the foundation for
further research in knowledge representation; we will be developing tools and methodologies for
constructing programs and knowledge bases which can be easily modified and extended, and
which can be shared by multiple applications.

One research goal is to develop a language that will allow users to do most of their
programming entirely within the environment of a knowledge representation system. A second

15

Gabriel Robins

Applications of the ISI Grapher

research direction takes a knowledge-based approach to knowledge base construction wherein
the acquisition process itself is modelled. This work will lead to the formulation of expert
systems which can assist users in the model-building process.

In the NIKL/LOOM knowledge representation system, concepts are ordered by logical
subsumption. NIKL/LOOM taxonomies often become quite large, containing thousands of nodes
and edges. It is therefore very desirable to see a picture of a NIKL taxonomic network, rather
than to inspect the equivalent formal syntactical specification, and it is indeed in the context of
the NIKL project that the ISI Grapher was initially born. Users have reported enormous time
savings in using the ISI Grapher to construct and debug NIKL taxonomies. The application that
graphs NIKL taxonomies is called the NIKL Browser and is described in more detail earlier in
this document.

5.5. FAST Workstation Project

The FAST Project, headed by Dr. Robert Gurfield and Dr. Robert Neches, seeks to
demonstrate a model of electronic commerce [Neches, 1987]. It is divided into two sub-
projects: the FAST Broker and the FAST Workstation. The FAST Broker project focuses on
utilization of rapid electronic networks to speed communications between DoD and DARPA
buyers of electronic parts and the vendors of such parts. The FAST Workstation project focuses
on the development of user and software interfaces to enable human participants in the process
to easily integrate and engage in transactions with the system.

One of the immediate goals of the FAST Workstation effort is to provide a package of
flexible, generic software tools to aid in the procurement process. BACKBORD (Browsing Aid
Complementing Knowledge Bases Or Data Bases) [Neches, DeBellis, and Yen, 1988] is an
instance of such a tool. It is an intelligent interface for databases and knowledge bases, modeled
after a psychological theory of human information retrieval called retrieval by reformulation.
On top of this shell are built specific applications such as database and knowledge base
browsers, an interface for the creation and attachment of notes to objects in a knowledge base,
and an interface for the creation of mail messages from a parts buyer to the FAST Broker.

The ISI Grapher is used in BACKBORD to graphically display sections of the knowledge base
hierarchy, and to choose values from the graphical display. For example, when creating a note,
the user can view the hierarchy of note types and choose a value from the hierarchy as the type
of note to create.

5.6. Diagnostic Expert Systems

This project, headed by Dr. Len Friedman, is developing a domain-independent expert
system for diagnosis. It already performs state-of-the-art trouble-shooting of faults in
domains as diverse as spacecraft science instruments, avionic equipment, and aircraft turbine
engines. Research is being undertaken to increase its power and adaptiveness in several areas:
learning, assumptions, multiple model consistency, and explanation.

In particular, research is being undertaken to emulate human performance in learning of
diagnostic groups, learning when and what to measure, learning significance of cues and "danger
signals", and learning to specify diagnostic mode calls. A major goal of this research is to
improve the efficiency with which searches are made to reach diagnoses. The plan is to modify
the knowledge bases between diagnostic sessions, using the NIKL/LOOM classifier as a pattern
matcher and decision maker.

Deep diagnosis depends on the use of functional models at increasing levels of detail. This

16

Gabriel Robins

Applications of the ISI Grapher

project has undertaken to specify automatic and general ways for the system to verify whether
measurements made at a lower level are consistent with all hypotheses made at higher levels
within a specific model. If there is inconsistency, the system searches for ways to select the set
of models that are maximally consistent with the available evidence.

Maintaining such model consistency implies that we can move up and down the hierarchy of
models by some means such as a web of concepts and relations linking the models. We can do this
with the NIKL/LOOM knowledge representation scheme. The ability to find higher-level models
from which the current model derives means that we can find justifications or explanations at a
higher semantic level. Similarly, we can descend to lower levels for a more detailed explanation
when needed. This enables the system to provide explanations that are more than simple
execution traces.

The ISI Grapher is used in this project as a browser for NIKLILOOM, the underlying
knowledge representation language used by this expert system. Moreover, the ISI Grapher can
also be used here to dynamically display search trees and decision hierarchies, perhaps
interacting with the user to aid the search. Finally, various relationships between the
components (e.g., transistors, chips, wires, turbine blades, fuel lines, etc.) of the domain being
analyzed may be visually depicted.

5.7. The Soar Project

The Soar project attempts to build a system capable of general intelligent behavior [Laird,
1987]. It will be capable of working on a broad range of tasks, from highly routine to
extremely difficult open-ended problems. Currently Soar is capable of employing the full range
of problem-solving methods and representations required for these tasks, and is capable of
learning about various aspects of the tasks and its performance on them. The research approach
is to focus on understanding what mechanisms are necessary for intelligent behavior and how
they work together to form a general cognitive architecture. Soar [Laird, 1986] consists of five
components: (1) a long-term recognition memory (productions), (2) a short-term working
memory, (3) a decision procedure, (4) a subgoal generator, and (5) an experience-based
learning mechanism (chunking).

Since a search (for a solution) through an abstract space (of possibilities) is logically
equivalent to traversing a directed graph, the progress of the search at any intermediate point
in the problem-solving process may be depicted by a suitably-trimmed graph. In situations
when the search is to be user-directed, the possible choices for the next-alternative-to-try
may be pictorially presented to the user by means of a graph. Both of these are natural cases
where a grapher may be useful.

Soar has been applied to a wide range of tasks (from simple puzzles to complex knowledge-
intensive tasks), problem solving methods, and learning capabilities [Steier, et al, 1987].
Current work is focused on the development of an I/O capability, a range of knowledge-intensive
systems (medical diagnosis, algorithm design, etc.), various aspects of learning from the
outside (advice taking, task acquisition, and the acquisition of declarative knowledge), recovery
from incorrect knowledge, problem solving methods (abstraction, progressive deepening, etc.),
production-system implementation techniques (both software algorithms and parallel
hardware), and cognitive modeling. The Soar project is being conducted in collaboration with
researchers at a number of other sites, particularly Carnegie-Mellon University, Stanford
University, and the University of Michigan; the principal SOAR researcher at ISI is Paul
Rosenbloom.

17

Gabriel Robins

Applications of the ISI Grapher

5.8. Knowledge-Based Specification Assistant

Another research effort, performed in the context of the KBSA project (Knowledge Based
Specification Assistant), focuses on converting declaratively stated system behaviors (e.g.,
system specifications written in GIST,) into a procedural form. This makes the specifications
more understandable because the global constraints become localized and a cognitively different
yet behaviorally equivalent view of the constraints becomes available. Furthermore, this
conversion renders the specifications amenable to visual presentation and manipulation. The
resulting form is presented as flow graphs where nodes represent actions (events), pre- and
post conditions, and case branches, while edges represent enablements and disablements, a
natural application for the ISI Grapher.

6. Outside Projects Using the ISI Grapher

In this section we describe various current research projects outside ISI that have used
the ISI Grapher in their implementation of various prototype systems.

6.1. CMU's Theo Project

Theo is a software framework to support development of self-modifying problem solving
systems. The Theo project, headed by Dr. Tom Mitchell of CMU, provides a frame-based
representation language, representation of slots in terms of frames, automatic inference of slot
values upon demand, maintenance of explanations for all inferred slot values, a learning
mechanism that forms efficient inference methods from these explanations, and automatic
learning of control information to infer slot values.

The ISI Grapher has been modified at CMU to run under the X Window System. This
modified form of the ISI Grapher will be used as a user interface into the Theo system. The ISI
Grapher would graphically present the various hierarchies that Theo maintains. This would be
particularly useful in tracing the inference of a particular slot value, or in pointing out errors
in knowledge base development. Both cases are currently tracked down by searching through
file references. Access to editors that allow modification to any particular frame currently in
the system, as well as changing hierarchy links and creation of new frames are also being
considered. The IS[Grapher helps to streamline the user interface in performing all of these
tasks.

6.2. Legal Precedent Browser

A researcher working on a dissertation within the legal profession used the ISI Grapher to
display graphs depicting precedence among court cases. In this application, nodes represented
trials and judicial decisions, while edges represented instances where the judge based the
decision on a legal precedent established in a past court trial. This scheme proved quite useful
in analyzing in an interactive fashion the interdependence among a large set of legal decisions.

6.3. The Wisdom Project

TA Triumph Adler AG, a major German manufacturer of business machines and computers,
is currently undertaking Germany's largest joint research project in the area of office
automation, the WISDOM project (Knowledge Based System for Office Communication: Document
Processing, Organization, Man-Computer Communication). This research effort, carried out
jointly with German universities (Universitaet Stuttgart, Technische Universitaet Muenchen)

18

Gabriel Robins

Applications of the ISI Grapher

and research laboratories (Fraunhofer Gesellschaft IAO, Gesellschaft fuer Mathematik und
Datenverarbeitung) is developing and applying knowledge-based techniques in filing and
retrieval of documents, cooperative office procedures, and user interfaces.

A major objective of this research effort is to develop a knowledge representation
paradigm, especially for certain defined sub-domains in the context of an office (for example,
modeling organizations, semantic structure of combined text, graphics and natural language,
documents, etc.) The theoretical aspects of the work entail issues of knowledge representation,
knowledge acquisition, and the architecture of expert systems.

Implementation activities concentrate on the LUIGI knowledge representation system and
various related tools. These tools include the LUIGI Knowledge Editor (LUKE) for the acquisition
and maintenance of knowledge bases. LUKE consists of various instantiable sub-editors for each
knowledge kind (e.g., instances, affairs, relations between objects). These sub-editors coexist
in a multiple-process and multiple-window environment and communicate between each other
over a blackboard. This architecture allows structured design of sub-editors and provides
incremental extensibility in LUKE. The ISI Grapher is used within this framework for
displaying the contents of the knowledge base graphically, and also allowing their manipulation
via mouse and menu interaction.

6.4. JPL's Telerobot Flight Servicer

The Telerobot system at the Jet Propulsion Laboratory (JPL) incorporates both
teleoperated and autonomous aspects of robotic control in a satellite servicing domain and will
facilitate, through basic research, the design of a Telerobot Flight Servicer (TFS) for the
1990's. The current autonomous design strategy for the Telerobot includes a high-level
planner that develops a task sequence for the repair or replacement of parts based on the
structural dependencies between satellite components. In order to create a potentially
successful plan, the task planner must be able to obtain information on the availability of
manipulator trajectories which satisfy the requirement for collision-free movement in a
cluttered workspace. Automated servicing plans may fail due to collisions with workspace
objects or the violation of kinematic or dynamic constraints on manipulator motion.

Audrey is an interactive simulation and spatial planning environment currently under
development at the JPL Sequence Automation Research Group. It will allow the Task Planner to
verify the integrity of a plan by querying a software system, which contains information on
object spatial locations and models of the PUMA 560 manipulator and kinematics. Audrey allows
a user to directly manipulate graphics representations of objects in the satellite world and
investigate potential problem areas in an automated servicing plan. Audrey also simulates
motions and reports on spatial information at the command of the Task Planner. At the present
stage of development, Audrey includes complete forward and inverse kinematic solutions for the
manipulators, near real-time collision detection, and accurate geometric models for objects in
the workspace.

The Telerobot Project requires methods that allow a user to manipulate complex nets and
indicate choices by clicking on net nodes and edges (links between nodes). Such a facility would
serve as an user interface to large graphs representing spatial information.

6.5. Nokia's DMG System

Nokia Inc. is developing a system for modelling and generating diagnostic networks, which
is named DMG [Lounamma, Nurminen, and Tyrvainen]. The generation is based on a structural
model of a device and about available diagnostic tests. Additional information regarding test

19

Gabriel Robins

Applications of the ISI Grapher

costs, fault probabilities, and fault types can be used to minimize the average testing effort.
This system can be used in a CAD environment to ensure that testability issues are considered in
the product development phase.

DMG contains a graph editor, which is built as an application on top of the ISI Grapher. It
is used to display and modify diagnostic networks. Such networks consist of interrelated
flavors, and often require editing and debugging; the ISI Grapher greatly facilitates these tasks.
The main command menu of the ISI Grapher was customized for this application by adding to it
several editing commands that act upon the nodes/flavors of the network. Operators that
require two node arguments were implemented by clicking-and-saving the arguments into some
variable (using a menu command) and then executing the operator (using another menu
command). The Nokia group also ported the ISI Grapher onto Apollo workstations; they reported
that the port was relatively smooth and took a couple of weeks, including the changes and
modifications that they needed to implement in order to fully adapt the ISI Grapher for use
within the DMG system.

6.6. Alcoa's Document Management System

Alcoa Inc. is developing EGADS (Electronic Guidance and Documentation System), a system
that manages documentation for a rolling mill [Van Sickel, Sierzega, Herring, and Frund].
Hardware and software supplied by various vendors is integrated with specialized user
interfaces to allow a diverse group of users to access the documentation based on immediate need.
Combining video-disk technology with the Hypertext paradigm, the final database is expected to
span some 30,000 pages of text, pictures, and diagrams.

The hierarchical structure of the text/documentation induces a natural directed graph on
the database. Users often find it helpful to navigate through the information in a hierarchical
fashion; seeing a "picture" of the hierarchy graph is these situations is extremely helpful to the
user. When the information is originally entered into the system, these structure trees are
built and filled with information incrementally. Users may browse through the documentation
by navigating through these families of trees, by keywords, topic lists, or some other ordering.
Originally the EGADS system used an ad hoc grapher, but when Alcoa learned of the ISI Grapher,
they decided to substitute it into their system, primarily due to its portability and speed.

6.7. IAIMS: Integrated Academic Information Management System

As part of a project to create an IAIMS (Integrated Academic Information Management
System) funded in part by the National Library of Medicine, the Baylor College of Medicine is
developing a technologic framework for task coordination and information sharing in biomedical
work groups. This framework is called the Virtual Notebook to suggest a technologically extended
analog of the ordinary laboratory notebook. The principal features of the Virtual Notebook are: a
procedure for facilitating task assignment and coordination in the group, a mechanism for
sharing ideas among members of the group, automatic procedures for importing relevant
information into the group from external sources such as libraries, and an integration of these
functions through the use of a few common representational concepts, notably the Hypertext
paradigm.

IAIMS will use the ISI Grapher as a graphical tree browser for viewing and navigating the
collection of information nodes in the Hypertext component of our Virtual Notebook System, as
well as an interface tool to represent various structured vocabularies available in the Virtual
Notebook. The most notable of these is the MeSH (Medical Subject Heading) vocabulary of about
18,000 terms maintained by the National Library of Medicine. Within the tree representation
of a vocabulary, the user will be able to explore its hierarchy and select terms for use within

20

Gabriel Robins

Applications of the ISI Grapher

queries to various data bases available to the system.

6.8. University of Nuernberg' FORK System

The goals of the FORK system are the implementation of a primarily object-oriented
knowledge representation system and its application to the design and fault diagnosis of
technical systems [Beckstein, Goerz, and Tielemann]. Whereas the kernel of the FORK
knowledge representation system is completely object-oriented, the system as a whole
integrates a variety of different programming styles. Via an extension for rule-oriented
programming, the expressive power of the FORK system is greater than that of LOOPS. As an
application of the rule-oriented component, a constraint language has been implemented,
which plays an important role in our approach to the design and fault diagnosis of technical
systems. The ISI Grapher is used in the FORK system to display, browse though, and manipulate
flavor and object hierarchies.

7. Additional General Application Areas

This section describes additional potential application areas that could greatly benefit from
the usage of a grapher.

7.1. Idea Outliners

Tables of contents, indexes, and outlines (such as the ones manipulated by idea-
processors) are all naturally occurring hierarchies that would serve as excellent targets for
building applications using a grapher. In fact, ExperTelligence Inc. has already produced a
Grapher application that converts a textual outline into a graph; tabs are used in the text to
specify the "level" of a piece of text in the hierarchy. This allows users to get a better feel for
the structure of their documents and papers.

7.2. Databases

Many databases are hierarchical in nature, and would thus admit the use of a grapher quite
naturally. The ISI Grapher could be used to provide an alternate front-end to a relational
database, depicting pictorially the relations between the database objects; certain relations
would become more apparent when displayed pictorially. This may prove to be of considerable
benefit in many environments.

7.3. Hypercard

Apple's recently introduced Hypercard information management system is fundamentally
hierarchical. In Hypercard, users navigate through a set of "stacks," each containing "cards"
(pieces of information) and pointers to other stacks/cards, inducing a directed graph.
Hypercard users often lose track of his global location in the hierarchy of stacks/cards. The ISI
Grapher could easily be tailored to discern and display a given Hypercard hierarchy, providing
the user with a global picture that will assist in navigation through a complex set of stacks. Of
course a grapher could be built entirely within Hypercard using the Hypertalk language, but
such a task would involve considerable re-implementation effort.

21

Gabriel Robins

Applications of the ISI Grapher

7.4. Bibliographical Citations

The relation of bibliographical citation gives rise to a natural partial order. Indeed the set
of references to all the technical papers ever written thus induces a directed graph upon these
references, where nodes represent publications and edges represent the relation "is referring
to" or "cites." It is often desirable to inspect or navigate through this graph; indeed this is an
integral (and time-consuming) part of normal research. A grapher would be an obvious asset
in this situation.

7.5. Algorithm Animation

Recently Bob Sedgewick devised a system to animate algorithms [Brown and Sedgewick].
Users of this system program algorithms while using certain conventions to instruct the system
in how to dynamically depict the execution graphically. Once execution commences, the user
sees a "picture" of his algorithm in action, an often enlightening experience. This would also be
an ideal area to apply a grapher, since graphs (and in particular trees) are some of the most
common of data structures manipulated by programs. For example, in a balanced-tree data
structure scheme, the changing tree may be dynamically displayed during run-time, yielding a
pictorial depiction of the current structure of the tree.

7.6. Academic Genealogy

In a recent issue of the ACM SIGACT (Association of Computing Machinery's Special
Interest Group on Automata and Computational Theory), David Johnson published an extensive
list of the most renowned computer scientists and their academic advisors [Johnson]. The
advisor/advisee relation naturally gives rise to a directed (and hopefully acyclic) graph; it
would be amusing to display and browse through this information using the ISI Grapher.
Naturally, real family trees could also be presented using a grapher.

7.7. Object-Oriented Environments

In object-oriented programming environments, various system entities are modelled as
objects that posses certain behaviors and to which various "messages" can be sent. Such a set of
objects is typically arranged in a hierarchy that denotes a particular partial order among the
objects with respect to inheritance of certain properties and methods. When a new object is
created it must be added into a specific place in the object hierarchy, and when such a hierarchy
is built and debugged, it becomes important (but difficult) to keep track of the relationships
among the entities in the hierarchy. From this point of view, the situation here parallels that of
the knowledge representation scenario and could therefore greatly benefit from pictorially
depicting these relationships, alleviating various editing operations on the partial order
described here.

7.8. Program Structure, Function Call Hierarchies, and Debuggers

In a programming environment, lexical scoping of program code within other pieces of
code impose a natural partial order with respect to containment of the various routines or
functions of the software system being developed/debugged. Given a function, it is often of
interest to the programmer to know which functions call it, so that each of those may be edited
in turn. Conversely, the programmer may want to know which functions are called by a
particular function, for similar purposes. A primitive facility of this type, called Masterscope,
was included in the Xerox InterLISP-D system in the early 1980's.

22

Gabriel Robins

Applications of the ISI Grapher

If the various functions (or any other "units" of code) as well as their relationship to one
another were represented as a directed graph, it would be much easier to obtain this
information and systematically edit many functions in succession without loosing track of the
complex sequence of necessary edits. Suppose that instead of representing static lexical scoping,
one would graph a dynamic (run-time) calling sequence; it is not difficult to imagine that such a
facility could be used as an interactive visual debugger and would greatly facilitate certain
debugging situations. For example, the programmer may wish to single-step through the
hierarchy of function calls and keep the growing tree of function-calls visible; this tree would
correspond to the sequence of function calls induced by the progressing computation.

7.9. File Systems

Most file system are hierarchical in design, where directories can recursively contain
files and other directories. If files are considered as nodes and the directory containment is
relation is considered as edges, a file system naturally gives rise to a directed acyclic graph.
There are numerous situations where it would be desirable to visually observe a picture of this
graph and be able to manipulate the files/directories by operating on this graph (using the
mouse.) For example, this scheme would save considerable time and error in moving files and
directories around, an operation that typically requires memorizing and typing long path names.

7.10. Visual Programming

Many computer manufacturers have made their user interfaces highly visual,
incorporating windows, icons, menus, and bitmaps as an integral part of the operating system
itself; the most well-known example of this design philosophy today is the Apple MacIntosh. A
large and diverse number of research projects around the world have continued to develop these
ideas, and indeed these efforts collectively constitute a substantial and rapidly growing area of
research called visual programming.

Research in visual programming has produced systems where actual programming of the
machine is carried out in a visual manner, and rather than type in code, icons are dragged,
objects are clicked, and various entities can be grouped, ordered and connected mainly via mouse
interaction. An example of such a prototype system is called HI-VISUAL and was presented in
the 1987 Workshop on Visual Programming in Linkoping, Sweden [Hirakawa, Iwata, Yoshimoto,
Tanaka, and Ichikawa, 1987]. It is clear that a grapher would integrate very nicely into such
an environment.

8. Other Graphers and Related Work

A notable effort to produce a graph browser called Grab was introduced in [Meyer] and
further developed in [Rowe, et al, 1987], where a system to visually display graphs was
implemented. Unfortunately for Al researchers, it was written in C. An additional problem was
the usage of numerous time-consuming heuristics (to optimize edge-crossings, for example),
rendering the system very slow when laying out large graphs.

Another scheme for drawing graphs is proposed in [Lipton, North, and Sandberg, 1985].
To draw a graph, this scheme entails detecting and exploiting various properties of the given
graph with respect to symmetry and the induced automorphism group. While possessing some
mathematical elegance, such a scheme can hardly be expected to yield an efficient
implementation. It is recognized that systems which run very slowly but optimize layouts to
some degree have their applications, but for our purposes, we regard speed as having paramount
importance: users are not likely to tolerate layout times measured in hours.

23

Gabriel Robins

Applications of the ISI Grapher

An experimental graph-layout system was produced by the Symbolics Corporation in early
1985 for internal use. However, its heavy dependence on flavors and other specialized
Symbolics features, has made it completely non-portable. Additionally, this system used so
much space, that attempting to use it on a graph with more than a couple of hundred nodes would
typically lead to hopeless disk thrashing (due to massive swapping). In contrast, the ISI
Grapher has been successfully used on graphs of up to 25,000 nodes without incident.

In the University of Karlsruhe, West Germany, a knowledge-based graphical editor named
EDGE has been developed [Tichy and Ward, 1987] and extended to handle various types of
specialized graphs such as Pert charts [Tichy and Newbery, 1987]. This system offers several
interesting capabilities such as zooming and ability to specify hierarchical abstract graphs,
where certain subgraphs may be treated as individual units.

David Harel of the Weizmann Institute of Science has developed an extensive methodology to
model, design, analyze, and display complex systems [Harel]. This impressive methodology,
called statecharts and higraphs, was implemented in a commercial system called Statement1 and
is currently being marketed by Ad Cad, Inc [Ad Cad]. Statements is a very large and versatile
package, retailing in the low five-figures; it allows the specification of the structure and
semantics of arbitrary systems, and allows analysis of system behavior under numerous
conditions, as well as automatic checking of certain correctness and consistency properties. The
system entities that may be modelled using the statechart paradigm within Statement1 include
states, events, conditions, transitions, actions, activities, signals, variables, modules, and
channels.

Various other schemes to layout trees were proposed previously, such as the ones in
Reingold and Tilford [1981], Vaucher [1980], and Wetherell and Shannon [1979]. The
earliest similar implementation of a grapher the author is aware of is the Xerox InterLISP-D
grapher, running on the Xerox 1100 series workstations in the late 1970's. A very extensive
annotated bibliography of graph layout algorithms is given in [Eades and Tamassia]; a
particularly large body of research has been devoted to recognizing and graphing planar graphs.

9. Obtaining the sources

The ISI Grapher currently runs on several different kinds of workstations, including
Symbolics, TI Explorers, SUNs, HP Bobcats, Apollo workstations, and the Macintosh II.
Information regarding the ISI Grapher as well as the source code may be obtained by contacting
the author: Gabriel Robins, USC/Information Sciences Institute, 4676 Admiralty Way, Marina
del Rey, California, 90292-6695, U.S.A., ARPAnet address GABRIEL@VAXB.ISI.EDU. Other
papers regarding the grapher are also available upon request [Robins, 1987] [Robins, 1988].
To obtain the Macintosh implementation (among others), contact ExperTelligence Inc., 5638
Hollister Avenue, 3rd Floor, Goleta, California 93117, U.S.A., (805) 967-1797.

1 0. Summary

We described how various end-user applications are built based on the ISI Grapher, and
illustrated the process of application-building via several examples of existing Grapher-based
applications. Next we summarized numerous current research projects which already utilize
the ISI Grapher in prototype systems. Finally we enumerated various broad application areas
that would greatly benefit from the introduction of a tool such as the ISI Grapher.

24

Gabriel Robins

Applications of the ISI Grapher

1 1. Acknowledgements

I owe Ron Ohlander many thanks for his solid support and leadership throughout the ISI
Grapher effort. I would like to thank the following individuals for providing me with specific
information regarding their projects: Norm Sondhelmer, Bill Mann, Bob Mac Gregor,
Bob Neches, Len Friedman, Paul Rosenbloom, Bob Kasper, Ray Bates, Chin Chee,
Kai Yue, Mike DeBellis, G. Streck, David Mittman, Pasi Tyrvainen, Andrew
Burger, and John Allen. Special thanks go to Dennison Bollay, John Forge, and Dean
Ritz of ExperTelligence Inc. for finding the initiative to port the ISI Grapher to the Macintosh
under the ExperCommon Lisp® system, and undertaking to market the resulting product. It is
due to their energy and efforts that the ISI Grapher is now commercially available to the public,
the first tool of its kind to run on any personal computer. Doug Johnson and Mark Watson
deserve thanks for porting the ISI Grapher to Allegro Coral LISP®. James Laurus deserves
credit for porting the ISI Grapher to SUNs under Franz and X, Chin Chee has patiently ported
the Grapher onto HP Bobcats, and the Nokia group have undertaken ports of the Grapher to
Apollo workstations; I thank them all. I also thank Larry Friedman for his help with the
typesetting. Special Thanks go to Victor Brown for his very professional assistance
throughout the proofreading and publication process.

12. Bibliography

Ad Cad, Inc., The Languages of Statement1, Cambridge, MA, July, 1986.

Ad Cad, Inc., Statement1 User's Guide., Cambridge, MA, August, 1986.

Cumming, S., and Albano, R., A Guide to Lexical Acquisition in the JANUS System,
USC/Information Sciences Institute, Marina Del Rey, CA, Technical Report ISI/RR-85-162,
1986.

Beckstein, C., Goerz, G., and Tielemann, M., FORK: A System for Obiect- and Rule-Oriented
Programming, University of Erlangen-Nuernberg, Germany.

Brown, M., and Sedgewick, R., A System for Algorithm Animation, SIGGRAPH '84 Conference
Proceedings, Minneapolis, Minnesota, Vol. 18, No. 3, pp. 177-186, July 23-27, 1984.

Eades, P., and Tamassia, R., Algorithms for Graph Drawing: an Annotated Bibliography,
Technical Report No. 82, University of Queensland, Australia, July, 1987.

Harel, D., Statecharts: A Visual Approach to Complex Systems, CS86-02, The Weizmann
Institute of Science, Rehovot, Israel, March, 1986, (also appearing in Science of Computer
Progrmnmiag.)

Hirakawa, M., Iwata, S., Yoshimoto, I., Tanaka, M., & Ichikawa, T., HI-VISUAL Iconic
Programming. Workshop on Visual Languages, Linkoping, Sweden, August 18-21, 1987.

Hovy, E., Planning Coherent Multisentential Text, Proceedings of the 26th Annual Meeting of the
Association for Computational Linguistics Buffalo, New York, June, 1988.

Johnson, D., Genealogy of Computer Science, Association of Computing Machinery, Newsletter of
the Special Interest Group on Automata and Computational Theory.

25

Gabriel Robins

Applications of the ISI Grapher

Kaczmarek, T., Mark, W., & Wilczynski, D., The CUE Proiect, Proceedings of SoftFair, July,
1983.

Kaczmarek, T., Bates, R., and Robins, G., Recents development in NIKL, AAAI, Proceedings of the
Fifth National Conference on Artificial Intelligence, August, 1986.

Kasper, R., An Experimental Parser for Systemic Grammars, Proceedings of the 12th
International Conference on Computational Linguistics, Budapest: August, 1988 (also available
as USC/Information Sciences Institute Reprint RS-88-212).

Laird, J., Soar User's Manual (Version 4), Technical Report ISL-15, Xerox Palo Alto Research
Center, 1986.

Laird, J., Newell, A., & Rosenbloom, P., Soar: An Architecture for General Intelligence,
Artificial Intelligence, Vol. 33, pp. 1-64, 1987.

Lipton, R., North, S., & Sandberg, J., A Method for Drawing Graohs, ACM Computational
Geometry Conference Proceedings, pp. 153-160, June, 1985.

Lounamma, P., Nurminen, J., and Tyrvainen, P., DMG - A System for Diagnostic Modelling and
Generation, Nokia Research Center, Helsinki, Finland, March 1988.

Mac Gregor, R., & Bates, R., The LOOM Knowledge Representation Language, Proceedings of the
Knowledge-Based Systems Workshop, St. Louis Missouri, April 21-23, 1987.

Mann, W., An Overview of the Penman Text Generation System, Proceedings of the National
Conference on Artificial Intelligence, pp. 261-265, August, 1983.

Mann, W., and Matthiessen, C., Nigel: a systemic grammar for text generation, Benson, R., &
Greaves, J. (Eds.). Systemic Perspectives on Discourse: Selected Theoretical Papers from the
Ninth International Systemic Workshop. Norwood, NJ: Ablex, 1985 (also available as
USC/Information Sciences Institute, Technical Report ISI/RR-83-105, 1983).

Mann, W., and Thompson, S., Rhetorical Structure Theory: A Theory of Text Organization, In The
Structure of Discourse, Edited by Livia Polanyi, Ablex, Norwood, N.J., ISI/RS-87-190, 1988.

Meyer, C., A Browser for Directed Graphs. Technical Report, Department of Electrical
Engineering and Computer Science, University of California, Berkeley.

Mittman, D., AUDREY: An Interactive Simulation and Spatial Planning Environment for the NASA
Telerobot System, Proceedings of the Artificial Intelligence and Advanced Computer Technology
Conference, Long Beach, California, May, 1988.

Neches, R., FAST Workstation Proiect Overview, Technical Report, USC/Information Sciences
Institute, December, 1987.

Neches, R., DeBellis, M., & Yen, J., BACKBORD: Beyond Retrieval by Reformulation,
Proceedings of the Workshop on Architectures for Intelligent Interfaces: Elements and
Prototypes, Monterey, CA, March, 1988.

Reingold, E., & Tilford, J., Tidier Drawing of Trees, IEEE Transactions on Software Engineering,

26

Gabriel Robins

Applications of the ISl Grapher

SE-7, no. 2, pp. 223-28, March, 1981.

Robins, G., The NIKL Manual, Intelligent Systems Division Report, USC/Information Sciences
Institute, April, 1986.

Robins, G., The ISI Grapher: A Portable Tool for Displayina Graphs Pictorially, Invited Talk in
Symboliikka '87, Helsinki, Finland, August, 17-18, 1987, (reprinted in Multicomputer
Vision, Levialdi, S., Chapter 12, Academic Press, London, 1988).

Robins, G., The ISI Grapher Manual, ISI Technical Manual/Report ISI/TM-88-197,
USC/Information Sciences Institute, Marina Del Rey, February, 1988.

Rowe, L., Davis, M., Messinger, E., Meyer, C., Spirakis, C., & Tuam, A., A Browser for
Directed Graphs, Software - Practice and Experience, Vol. 17(1), pp. 61-76, January,1987.

Sondheimer, N., and Nebel, B., A Logical-Form and Knowledge-Base Design for Natural
Language Generation, Proceedings of the National Conference on Artificial Intelligence,
Philadelphia, August, 1986.

Steier, D., Laird, J., Newell, A., Rosenbloom, P., Flynn, R., Golding, A., Polk, T., Shivers, 0.,
Unruh, A., & Yost, G. R., Varieties of Learning in Soar: 1987, Proceedings of the Fourth
International Workshop on Machine Learning, Edited by P. Langley, Morgan Kaufmann
Publishers, Inc., Los Altos, CA, 1987.

Supowit, K., & Reingold, E., The Complexity of Drawing Trees Nicely, Acta Informatica, Vol.
18, pp. 377-392, 1983.

Tichy, W., & Ward, B., A Knowledge-Based Graphical Editor, Technical Report, Universitat
Karlsruhe, Fakultat Fur Informatik, Germany, January, 1987.

Tichy, W., & Newbery, F. Knowledge-Based Editors for Directed Graphs, First European
Software Engineering Conference, De Strasbourg, France, September 9-11, 1987.

Van Sickel, P., Sierzega, K., Herring, C., and Frund, J., Documentation Management for Large
Systems of Equipment, Aluminum Company of America, Alcoa Technical Center, Alcoa Center,
PA, February, 1988.

Vaucher, J., Pretty-Printing of Trees., Software - Practice and Experience, 10, pp. 553-561,
1980.

Wetherell, C., & Shannon, A., Tidy Drawing of Trees, IEEE Transaction on Software
Engineering, 5, pp. 514-520, September, 1979.

27

Gabriel Robins

INFORMATION
SCIENCES

INSTITUTE 7LQ L 4676 Admiralty Way/Marina del Rey/California 90292-6695

