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Abstract-Chemical-mechanical polishing (CMP) and other
manufacturing steps in very deep submicron very large scale
integration have varying effects on device and interconnect fea-
tures, depending on local characteristics of the layout. To improve
manufacturability and performance predictability, the authors
seek to make a layout uniform with respect to prescribed density
criteria, by inserting "area fill" geometries into the layout. In this
paper, they make the following contributions. First, the authors
define the flat, hierarchical, and multiple-layer filling problems,
along with a unified density model description. Secondly, for the
flat filling problem, they summarize current linear programming
approaches with two different objectives, i.e., the Min-Var
and Min-Fill objectives. They then propose several new Monte
Carlo-based filling methods with fast dynamic data structures.
Thirdly, they give practical iterated methods for layout density
control for CMP uniformity based on linear programming, Monte
Carlo, and greedy algorithms. Fourthly, to address the large
data volume and inherent lack of scalability of flat layout density
control, the authors propose practical methods for hierarchical
layout density control. These methods smoothly trade off runtime,
solution quality, and output data volume. Finally, they extend
the linear programming approaches and present new Monte
Carlo-based methods for the multiple-layer filling problem. Com-
parisons with previous filling methods show the advantages of the
new iterated Monte Carlo and iterated greedy methods for both
flat and hierarchical layouts and for both density models (spatial
density and effective density). The authors achieve near-optimal
filling for flat layouts with respect to each of these objectives.
Their experiments indicate that the hybrid hierarchical filling ap-
proach is efficient, scalable, accurate, and highly competitive with
existing methods (e.g., linear programming-based techniques) for
hierarchical layouts.

Index Terms-Area fill, chemical-mechanical polishing, hierar-
chical layout, layout density control, layout planarization, Monte
Carlo methods.

I. INTRODUCTION

A S PREDICTED by the Semiconductor Industry Associ-
Aation's Technology Roadmap [21], very large scale inte-
gration (VLSI) technology has entered deep submicron regimes,
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where the manufacturing process increasingly constrains phys-
ical layout design and verification [16]. Many process layers,
including diffusion and thin-ox, have associated density rules
that are satisfied by postprocessing steps which add area fill ge-
ometries to the layout. Historically, only foundries or special-
ized technology computer-aided design (TCAD) tool compa-
nies performed the layout postprocessing necessary to achieve
layout uniformity. Today, however, electronic computer-aided
design (ECAD) tools for physical design and verification cannot
remain oblivious to such postprocessing phases.

Literature on area fill has focused on chemical-mechanical
polishing (CMP) of spin-on glass (SOG) interlayer dielectrics
(ILD) [14], [18], [27]. Postpolish ILD thickness variation is
kept within acceptable limits by controlling local feature den-
sity, relative to a process-specific "window size" (on the order
of 1-3 mm), that depends on CMP pad material, slurry compo-
sition, and other factors [7].I

Application of area fill to device layers (diffusion, poly,
thin-ox) is equally (or even more) critical. Isolated transistors
are susceptible to contact overetch in reactive ion etch (RIE)
process steps, which results in leakage. Chemical vapor deposi-
tion (CVD) steps are also subject to iso-dense variations. CVD
and etch process variation are particularly troublesome with
respect to today's lightly doped drain (LDD) device properties.
The bottom-line performance effects of these process varia-
tions are well known, e.g., Garofalo et al. [8] document 10%
variation in interline capacitance resulting from 5% variation
in linewidth and 12% error in ring oscillator frequency solely
from proximity effects. At the same time, it is also well known
that the uniformity of feature density obtained via area fill
can mitigate macroscopic process proximity effects such as
contact etch variation in reactive ion etch, and nonuniformity
of chemical vapor deposition.

With respect to the potential negative effects of area fill
insertion, certainly the fill geometries can affect interconnect
capacitance, signal delay, and crosstalk. The exact change in
interconnect capacitance depends mainly on the size of the
fill geometries and proximity to interconnect lines. However,
Grobman et al. have recently given detailed experimental
data [10] pointing out that capacitance of dense lines is not
significantly affected by floating fill geometries on neigh-
boring layers, since this capacitance is mostly dominated
by same-layer neighbor coupling. Furthermore, smaller fill
geometries reduce crosstalk to distant neighbors and lead to a
smaller increase in total capacitance. The conclusion from such
analyses is that the first-order performance concern remains to

'We observe that the 1999 International Technology Roadmap for Semicon-
ductors [22] added copper interconnect dishing to the fundamental roadmap pa-
rameters for Interconnect. (The 2000 ITRS also added copper interconnect thin-
ning in CMP to the fundamental parameters.) Density-mediated process varia-
tion has therefore become a first-order concern for interconnects.
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improve planarization and uniformity of geometry via area fill
insertion.

Finally, we note that current industry tools appear to be slow
in handling detailed physical models of CMP, such as those ad-
dressed by our work. To the best of our knowledge, most current
industrial tools such as Cadence Assura 2.0 perform fill inser-
tion as part of physical verification, using rule-based methods.
The underlying geometry engines are tuned to Boolean oper-
ations on layout layers and to local (e.g., width/spacing rule)
checks. A typical use of such infrastructure is to simply insert
area fill geometries to increase local density wherever there exist
large enough slack areas. This is usually done with Boolean op-
erations to find the slack areas and fill them with geometries of
a prescribed density. The main problem with this method is that
the spread between minimum and maximum densities is usu-
ally fairly large, and it is unclear how the fill insertion approach
is related to known analytical models for the relationship be-
tween local density and ILD thickness. Comparisons with in-
dustry tools have not been possible, as no commercial tools of
which we are aware offer hierarchical fill insertion capability,
and the related methods of [25] are Motorola-internal and not
publicly available [9].

A. Organization of the Paper

The remainder of our paper reviews the range of local den-
sity models and density control objectives, then proposes sev-
eral new approaches to a flat and hierarchical density control
for CMP. Section II defines the single-layer filling problem for
both flat and hierarchical layouts. Both formulations are based
on the practical industry standard fixed dissection density anal-
ysis regime [12]. Relevant objectives include the Min-Var and
Min-Fill objectives. Though hierarchical filling can speed up
verification of filled layout and decrease data volume, there is
an obvious conflict between honoring the layout hierarchy and
achieving high-quality filling results. The filling problem for
multiple-layer layouts is then discussed, where the cumulative
density effect is considered. Section III gives a unified descrip-
tion of existing models for density calculation for CMP. We re-
view a standard model for oxide planarization via CMP and de-
scribe spatial local density and effective local density models.
Section IV first reviews several linear programming (LP)-based
approaches that determine the optimal fill amounts to be inserted
into the layout, with respect to the Min-Var and Min-Fill ob-
jectives. Then, because LP approaches tend to require too much
memory in practice, we propose new Monte Carlo-based ap-
proaches for flat filling, which are as accurate and yet faster
than LP approaches. Section V analyzes the difficulties inherent
in hierarchical filling, as well as the reasons why the LP ap-
proach is sometimes inapplicable. We then propose anew Monte
Carlo filling approach and a hybrid hierarchical/flat filling ap-
proach which is scalable, efficient, and highly competitive with
flat filling. Section VI discusses the extensions of LP and Monte
Carlo approaches to a multiple layer model. Sections VII and
VIII describe our implementation testbed and computational ex-
perience, and Section IX concludes with directions for future
research.
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II. THE FILLING PROBLEM

Layout density control consists of two phases: density
analysis and fill synthesis. Density analysis determines the area
available for filling. Fill synthesis then computes the amount
of fill feature area which should be added into each part of
the layout in order to achieve uniformity, then generates the
required fill geometries. In this paper, we address the main
problem of the area fill synthesis phase.

A. Flat Filling

Given a design rule-correct layout in an n x n layout region,
along with a window size w < n, and upper (U) and lower
(L) bounds on the feature density in any window, add area fill
geometries to create afilled layout such that either:

* (Min-Var Objective) the variation in window density (i.e.,
maximum window density minus minimum window den-
sity) is minimized while the window density does not ex-
ceed the given upper bound U; or

* (Min-Fill Objective) the number of inserted fill geome-
tries is minimized while the density of any window re-
mains in the given range (L, UJ).

The Min-Var objective, introduced in [12], captures the "man-
ufacturing side" of fill synthesis, which seeks the most uniform
density distribution possible. The Min-Fill objective, recently
proposed in [25], models the "design side" in that it seeks to
minimize the coupling capacitance and the uncertainty caused
by filling. Algorithms for filling flat designs can be classified
into two categories: linear-programming (LP)-based approaches
[12], [25], and Monte Carlo-based methods [4], [5].

B. Hierarchical Filling

Hierarchy arises in both custom and semicustom design
flows. In custom design, hierarchy is used mostly for stream-
lining the management and the decomposition of the design
problem. In semicustom design, hierarchy is associated more
with reuse of standard cells, whose layouts include device
layers and local interconnect, or IP blocks. The key observation
is that hierarchical designs become difficult to verify when
flattened. Hence, hierarchical filling can enable simpler and
faster verification of the filled layout, since verification can
still follow the structure of the original hierarchy. Hierarchical
filling can also decrease data volume for standard-cell designs.
(In general, data volume is a big issue for area fill since a filling
solution can consist of many millions of tiny geometries.)
Thus, hierarchical fill generation is an emerging requirement
for future commercial EDA tools [20].

Our present work investigates approaches and tradeoffs
inherent in filling master cells rather than just individual
instances. We consider hierarchical filling as a postprocessing
step performed (on device layers) after placement. When router
access to local interconnect (salicide) and Ml layer is strongly
restricted,2 then hierarchical filling may be performed after
routing as well. Hierarchical filling entails obvious complex
constraints.

2For example, Cadence and Avant! gridded routers are often restricted to well-
defined pin availabilities at points of the routing grid.
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Eig. 1. The types of interactions or interferences with master cells.

* When area fill is inserted into a master cell, it must satisfy
density constraints in all contexts for instantiations of the
master.

* There are many interactions or interferences at master
cell boundaries and at distinct levels of the hierarchy (see
Fig. 1).

* Solution quality in terms of either the Min-Var or Min-Fill
objective will be worse for hierarchical solutions than flat
solutions, because the former are more constrained.

* The number of constraints for LP-based hierarchical
filling explodes combinatorially for the known LP-for-
mulations, rendering unusable the linear programming
techniques which have been successful for flat filling
[12], [25].

The filling problem for hierarchical (standard-cell) layouts is
similar to its counterpart for flat layouts, except that the hierar-
chical structure of master cells must be preserved, i.e., the same
filling geometry is simultaneously added to all instances of the
same master cell. Here, we assume that we can fill the slack (i.e.,
free) area of each master cell independently and uniformly.

The Hierarchical FillingProblem: Solve the Filling Problem
for a given standard-cell layout so that:

* filling geometries are added only to master cells;
* each cell of the filled layout is a filled version of the cor-

responding original master cell;
* the increase in (hierarchical) layout data volume does not

exceed a given threshold.

C. Multiple-Layer Filling

In the layout with multiple layers, each layer except the
bottom one cannot assume a perfectly flat starting surface.
Thus, independently filling each layer optimally may not
achieve an acceptable planarization for the top layers as layers
are stacked during the manufacturing process.

The Multiple-Layer Filling Problem: Solve the Filling
Problem for a given multiple-layer layout so that either:

* (Min-Var Objective) the sum of variations in window den-
sity on each layer is minimized, or the variance of varia-
tions in window density on each layer is minimized; or

* (Min-Fill Objective) the number of inserted fill geome-
tries is minimized while the density of any window re-
mains in the given range (Lk, Uk) for each layer k.

III. A UNIFIED DESCRIPTION OF LAYOUT DENSITY

MODELS FOR CMP

Several models for oxide planarization via CMP are reviewed
in [18]. In particular, the accurate and well-accepted model of
[23] is neither computationally expensive nor difficult to cali-
brate. In this model, the interlevel dielectric thickness z at loca-
tion (x, y) is calculated as

Zo
z = z

zo

Kit t < (pozi)/Ki (1)

z -Kit + po(x, y)zl, t > (pozi)lKi

where Ki is the blanket polish rate, zo is the height of oxide
deposition, z1 is the height of existing features, t is the polish
time, and po is the initial pattern density. The crucial element
of the model is the determination of the effective initial pattern
density p(x, y). In this section, we give a unified approach to
two different definitions of pattern density studied in [12] and
[25], respectively. This unification will allow us to exploit the
same methods for layout density control for both pattern density
definitions.

The pattern density in (xI y) is a local property and therefore
depends on spatial pattern density within some close range of
the point (x, y). This local property may be captured by intro-
ducing (for a certain w) a w x w-window W centered at (x, y),
and assuming that p(x, y) depends only on the pattern density
distribution in W.

To make the filling problem more tractable, a standard in-
dustry practice is to consider only a finite set of layout windows.
Bounding the effective density in a fixed set of w x w windows
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Eig. 2. The layout is partitioned using r
2 

(r = 4 in this example) distinct
dissections (each with window size w x w) into (nr/w) x (nr/w) tiles. Each
dark-bordered w x w window consists of r

2 
tiles.

can incur substantial error, since other windows could still vio-
late the density bounds. 3 A common industry practice is to en-
force density bounds in 772 overlappingfixed dissections, where
r determines the "phase shift" w/ r by which the dissections are
offset from each other. In other words, to help control layout
density in arbitrary windows, density bounds are enforced only
for windows of the fixed r dissection (see Fig. 2), which par-
titions the n x n-layout into tiles Tij, then covers the layout
by w x w-windows Wij, i, j = 1, ... , (nr/w) -1, such that
each window WiVj consists of r72 tiles Tkl, k = i, . .. , i + r -1,

I = j, . . ., j + r -1. Note that windows are "wrapped around"
the layout, e.g., a window that overlaps with the upper edge of
the layout also contains tiles on the bottom of the layout. This is
not only convenient, but also reflects the fact that layout density
at the edge of one die may affect the manufacturing of the die's
neighbors on the wafer.

We seek to understand how the effective density depends on
the spatial pattern density distribution in a window. The sim-
plest model for p(xI y) is the local area feature density, i.e., the
window density is simply equal to the sum

i+r-1 j+r-1

p(Wij)= E E area(Tk) (2)
k=i l=j

where area(Tkl ) denotes the original layout area of the tile Tk l.
This model is due to [12], which solved the filling problem using
linear programming.

A more accurate model considers the deformation of the pol-
ishing pad during the CMP process [7], where the effective
local density p(x, y) is calculated as the sum of weighted spa-
tial pattern densities within the window, relative to an elliptical
weighting function

with experimentally determined constants co, c1 , and c2 [25].
The discretized effective local pattern density p for a window
Wij in the fixed-dissection regime (henceforth referred to as
effective window density) is

\ ~i+r'-1
ie p(Wij) = E

k-i

j+ri1

E
i-i

area(Tk,)

f (k -(i + r/2), 1- (j + r/2)) (4)

where the arguments of the elliptical weighting function f are
the x and y distances of the tile Tkl from the center of the
window Wij.

IV. FILL SYNTHESIS FOR FLAT LAYOUTS

A. Linear Programming Approaches

The LP approach seeks the optimum fill area pij to be inserted
into each tile Tij. The fill area Pij cannot exceed slack(Tij),
which is the area available for filling inside the tile Tij com-
puted during density analysis. The first LP formulation for the
Min-Var objective is [12]

Maximize: M

Subject to:
>=

Pijiu i j =U~...,W

Pij <slack(T;j)

i+±1

s=i

1

iir
i, j =O ..._-

w

(5)

(6)1

j+1-1

Ppt < aij (U. * -areaij),
t=j

i, j = 0, ... ,
w

i+r-1 j+-1

M- E ES=i t=J,

r + 1 (7)

i+r-1 j+r-1

area(Tt) + E E Ast,
8=i t=j

i, j =0,.._, - 7+ 1ii (8)

where aij = 0 if areaij > I- w2 and = 1, otherwise.
Constraints (5) imply that we can only add features to, but

cannot delete features from, any tile. The slack constraints (6)
are computed for each tile: if a tile Tij is originally overfilled,
then we set slack(T) = 0. The values of pij from the LP solu-
tion indicate the fill amount to be inserted into each tile Tij. The
constraints (7) ensure that no window can have density more
than U after filling, unless it was initially overfilled. Inequalities
(8) imply that the auxiliary variable M is a lower bound on all
window areas which include the original feature areas area(Tlt )
and the fill areas p t. The linear program seeks to maximize M,
thus achieving the Min-Var objective.

A followup work [25] proposed the Min-Fill objective, along
with a Ranged Variation LP

f (x, y) = co exp [c1 (x 2 ±+ y2 )c2] (3)

3
The analysis in [12] bounds the error that results from considering only a

finite number of windows, versus considering all possible windows.

Minimize: E Pij
S j i, j
Subject to:
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Fig. 3. The Monte Carlo-based filling algorithm.

ni.Pij> ij =0,...,- -1

pij < slack(Tij) i, j 0, ... ,-

L < po(i, j) < U i,j 1, ... ,
w

Here, p0 (i, j) is the effective density of tile Tij; L
minimum and maximum tile effective densities, rc

We also note a variant LP for the Min-Var obje
target window density M (instead of an upper bour
density), we minimize the variability budget E

Minimize: E

Subject to:

0 <p(Tij) < slack(Tij)

M -E/2 <p(Tj)<M+ E/2 i, j=1,...,

B. New Monte Carlo and Greedy Approaches

1) Min-Var Objective: The number of varia
number of constraints in the linear program descril
both O((nr/w)2 ). Although the LP solution is o
several drawbacks. First, solving a very large line.
too time consuming (expected runtimes are O( v3

the number of variables in the LP). Second, an opt
for an r dissection is not necessarily an optimal
e.g., a 277 dissection and may also result in a
window density variation (i.e., density variation
dows, not only over the fixed-r dissection). Thi
is another source of errors in LP formulations; ,
size is sufficiently small, the problem becomes a
integer programming, and rounding errors become

(9) Monte Carlo Approaches: Here we consider new ap-
proaches to the Filling Problem based on the Monte Carlo

1 (10) paradigm. Our goal is to develop a method with significantly
better scaling properties than the LP formulation, without

-1 (1) incurring a serious loss of solution quality. Our approaches can
transparently handle both the spatial pattern density model as

and UJ are the well as the effective pattern density model.
respectively. The Min-Var Monte Carlo algorithm (see Fig. 3) randomly
ctive: given a chooses a tile and increments its content (i.e., spatial/effective

id on window density) by a prescribed fill amount. The probability of choosing
a particular tile Tij is referred as the priority of that tile. The
iteration ends when either the sum of priorities of tiles is equal
to zero, or when no tile's slack area is left.

Priorities: The Monte Carlo methods considered in this

(12) paper randomly choose a tile and increment its contents (i.e.,
area density) by a prescribed fill amount. The probability of

-- 1. (13) choosing a particular tile Tij defines the priority of that tile.
W The priority of a tile may depend on the density of the windows

containing that tile, or else be independent of the window
density. Note that the priority of a tile is zero if it belongs to a

bles and the window which has already achieved the density upper bound

bed above are U and is "locked" (see below).
ptimal, it has We consider three different methods of computing tile fill pri-
ar program is orities. The first method does not take into account the density
), where v is of the windows containing the tile. We call this the slack pri-
imal solution ority, because it sets the priority to be equal to the slack of the
I solution for tile. Intuitively, this means that we select a tile with probability
high floating proportional to its empty area, i.e., the choice of any available
over all win- legal position of a fill geometry is uniform and independent. In
ird, rounding order to take into account the density of windows we consider

when the tile two more alternatives:

n instance of * maximal priority of the tile Tij is proportional to U-
crucial. MaxWin(Tij);

Monte-Carlo Filling Algorithm
Input: n x n layout,

fixed r-dissection into tiles Tij, i, j = ,... - 1,
slack(T1 j) = slack of tile Tij,
area(W1 j) = area of w x w window Wij,
unit fill = unit filling area, and
U = upper bound on w x w window area.

Output: filled layout
1. For each tile T initialize
2. insert in(T) = 0
3. priority(T) = f(Uslack(T),MaxWin(T))
4. While the sum of tile priorities is positive Do
5. Select a random tile T according to priorities
6. insert-in(T) = insert-in(T) + 1; slack(T) = slack(T) - unit-fill
7. If slack(T) < unit-fill Then priority(T) = 0
8. Else priority(T) = priority(T) - unitf ill
9. For each window W containing T Do
10. area(W) = area(W) + unit fill
11. For each tile T' E W Do
12. Update priority(T') according to area(W)
13. For each tile T Do
14. Randomly perturb sequence of grid positions: random(i) = 1,... ,slack(T)/unitjfill
15. For i = 1,...,insert in(T) Do
16. Insert a unit-fill geometry into the random(i)th grid position
17. Output the filled layout

1 136
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minimal priority of the tile Tij is proportional to lJ-
MinWin1(Tij );

where MaxWin(Tij) and MinWin(Tij) are the maximum
and minimum densities over all windows containing Tij,
respectively.

The intuition behind the maximal priority is to first insert fill
into tiles for which the upper density U is less likely to con-
strain the filling. In other words, we want to insert as much fill
as possible before all tiles either exhaust their slack, or belong
to a window with density U. On the other hand, the minimal
priority scheme ensures a preference toward tiles which belong
to the most underfilled windows. Thus, each such insertion of
a filling geometry increases the current minimum window den-
sity with higher probability. The Monte Carlo algorithm with
this minimal priority scheme can be viewed as a randomized
greedy algorithm for solving the linear program [see (5)-(8)].

We may further increase the relative probabilities of selecting
tiles with relatively higher (minimal or maximal) priorities.
This is easily accomplished, e.g., by raising priorities to the
power of 2 or 4 before normalizing them. Raising priorities to a
higher power brings the Monte Carlo algorithm even closer to
the greedy algorithm (which fills tiles in a deterministic order).

Updating the Priorities: Regardless of which priority
scheme is used, it is essential to update the priority of tiles
which belong to locked windows (i.e., windows with density
U). Thus, when newly added fill causes a window to reach its
maximum allowable density, all tiles in that window should be
removed from the prioritization scheme, since they cannot be
assigned any more fill. We propose two heuristic schedules for
updating tile priorities after each fill geometry insertion. In the
context of Fig. 3, these are:

Hi) update the priorities of all affected tiles, i.e., execute all
lines in the algorithm shown in Fig. 3;

H2) update the priorities only of tiles which belong to locked
windows, i.e., in the algorithm of Fig. 3, omit Line 8
and execute the loop at Lines 11-12 only if window W
achieves the maximum density U.

The above discussion implies that the underlying data
structures must support two distinct operations, namely, pri-
ority-based tile selection and the efficient updating of priorities.
One simple way of implementing tile selection is to: 1) arrange
tiles in a one-dimensional array Ti, i 1..., k; 2) create
a list of sums of priorities So = 0, S1 , ... , Sk, such that
Si+, = Si + priority(Ti); and 3) choose a random number in
the range (0, SO) which will belong to some subinterval (Si 1,
Si) corresponding to selection of the tile Ti. Such tile selection
is very fast, but unfortunately priority updating requires 0(k)
time on average. We recommend the quadrisection approach
which recursively partitions the design into four quadrants and
maintains the sum of priorities of all tiles in each quadrant. The
runtime of our data structure is 0(log k) per insertion.4 Since
heuristic schedule H2) updates priorities only once (i.e., when

4First, we select a random number R between 0 and the sum of all priorities.
If R is greater than the priority of the first quadrant q1 , then we set R = R -

q1 and so on, until R < qi. We then repeat this process recursively for all
sub-quadrants of qi. Finally, after at most O(log A) recursive steps, we will

find the tile in which to insert fill. Priority updating can be done within the same
time complexity, using a bottom-up approach.
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Fig. 4. The Monte Carlo algorithm for the Fill-Deletion problem deletes fill
geometries from randomly chosen unlocked tiles (i.e., tiles which still have
filling geometries, but which belong to windows, having density greater than
L).

the window containing a tile is locked), the average insertion
time will be much smaller for H2) than for Hi) (see Table II).

Filling Schedule: A third family of implementation design
choices depends on how many filling geometries may be in-
serted into a tile per iteration. We compare two alternatives:
1) insert into a tile Tij a single fill geometry per iteration or
2) insert the maximum possible number of fill geometries which
is min{U -MaxWin(Tij), slack(Tij)}.

Greedy Approaches: A variant of the Monte Carlo approach
is the deterministic Greedy algorithm. At each step the Min-Var
Greedy algorithm adds the maximum possible amount of fill
into a tile with the highest priority, i.e., at each step a tile with
the highest priority is locked. The performance of the Min-Var
Greedy algorithm is illustrated in Table IV. Greedy run times are
slightly higher than Monte Carlo run times, due to the necessity
of finding highest priority rather than random tiles.

2) Min-Fill Objective: In the presence of two objectives, a
natural strategy is first to find a solution that optimizes one of
the objectives (Min-Var) and then modify that solution with re-
spect to the other objective (Min-Fill), hopefully without de-
grading the solution quality relative to the first objective. Thus,
the first objective (density variation) can hopefully be traded off
toward a significant improvement in the second objective (the
amount of inserted fill). This strategy can be implemented with
an LP-based approach as follows.

1) Solve the Min-Var LP formulation with the given upper
bound UJ on window density.

2) Decrease the obtained minimum window density M by a
given amount L = M (1 -).

3) Solve the Min-Fill LP formulation within the interval
(L, U).

To implement the same strategy with either the Monte Carlo
or this greedy approach, we assume that the density of each
window is already within the given interval (L, U) and then
solve the following.

Fill-Deletion Problem (With the Min-Fill Objective): Delete
as much previously inserted fill as possible, while maintaining
a minimum window density of no less than L.

To solve the Fill-Deletion problem using the Monte Carlo ap-
proach, we iteratively delete a fill geometry from a tile randomly
chosen according to a certain priority. It is natural to choose
this priority symmetrically to the priority in the Min-Var Monte
Carlo algorithm, i.e., proportional to MinWin(Tij)- L. Again
symmetrically, no filling geometry can be deleted from the tile

Min-Fill Monte-Carlo Algorithm
Input: n x n filled layout,

fixed r-dissection, w x w window,
lower bound on window density L

Output: filled layout with minimized amount of inserted fill area
1. While there exist an unlocked tile do
2. Choose an unlocked tile Tij randomly, according to its priority
3. Delete a filling geometry from Tij
4. Update priorities of tiles
5. Output the resulting layout
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Eig. 5. In the Iterated Monte Carlo and Greedy Eilling approach, each iteration consists of two applications (with the Min Var and Min Eill objectives) of the
Monte Carlo and Greedy algorithms.

Tij (i.e., Tij is locked) if and only if it either has zero priority,
or else all fill previously inserted into Tij has been deleted.

Thus, the Min-Fill Monte Carlo algorithm deletes fill geome-
tries from unlocked tiles which are randomly chosen according
to the above priority scheme (see Fig. 4). Similarly, the Min-Fill
Greedy algorithm iteratively deletes a filling geometry from an
unlocked tile with the currently highest priority.

Iterated Monte Carlo and Greedy Methods:
Min-Var Objective: As mentioned above, both the Monte

Carlo and Greedy Algorithms are suboptimal for the Min-Var
Objective, and although they are both fast in practice, the re-
sulting minimum window density may be significantly lower
than the optimum. We now propose iterated methods based on
alternating the Min-Var and Min-Fill objectives (see Fig. 5), re-
sulting in a monotonic narrowing of the gap between the upper
window density bound UJ and the minimum window density L.
Such iterated methods are still very fast and retain all the advan-
tages of their noniterated Monte Carlo and Greedy counterparts,
yet offer improved accuracy (see Table IV).

Min-Fill Objective: To solve the Filling Problem with the
Min-Fill Objective, the Iterated Monte Carlo and Greedy Filling
algorithms (see Fig. 5) may be modified as follows.

1) Interrupt the filling process as soon as the lower bound L
on window density is reached, i.e., when M = L, instead
of improving the minimum window density (while pos-
sible) for the Min-Var objective.

2) Continue iterating, but without changing the lower den-
sity bound M = L. Although this does not guarantee that
the total filling area will not increase, an improved solu-
tion can typically be obtained if we keep track of the best
solution seen over all iterations.

V. FILL SYNTHESIS FOR HIERARCHICAL LAYOUTS

Most modern designs are hierarchical, with layout represen-
tations that are substantially more succinct than flat layouts, and
that can be analyzed and processed more efficiently. The filling
problem for hierarchical (standard-cell) layouts is similar to its
flat layout counterpart, except that the hierarchical structure of
master cells must be preserved, i.e., the same filling geometry
is simultaneously added to all instances of the same master cell.
The slack area of each cell can be filled independently and uni-
formly, as is the case when the size of fill geometries is suffi-
ciently small.

A. Why Not Linear Programming

The filling constraints due to hierarchical characteristics
make the LP approach for hierarchical filling problem infea-
sible. Instead of using 0((nr/w)2 ) variables and constraints
corresponding to each tile and window in the LP formulation
for the flat fill problem, we must define the variables and
constraints for each window, all instances of each master cell,
all feasible fill positions in each master cell, and each window.
This greatly increases the number of variables and constraints
(e.g., the number of grid cells is much larger than number of
tiles). The LP formulation is furthermore complicated by the
transformations of master cell instances and the overlaps be-
tween the instances. Based on these considerations, the Monte
Carlo method constitutes a much more feasible approach for
the hierarchical filling problem than linear programming.

B. The Monte Carlo Method

Our proposed hierarchical filling algorithm (see Fig. 6) starts
by computing the slack for all master cells. (Cell overlaps are
possible and must be addressed carefully, as detailed below.) We
then create buffer zones around master cells to avoid overfilling
the regions near master cell boundaries. Master cells are then
filled in a Monte Carlo fashion, according to a priority scheme
where master cells that are more severely underfilled receive
higher priority for filling at each iteration. This process con-
tinues until all master cells are filled past the lower bound den-
sity threshold, or until the slack in all underfilled master cells is
exhausted.

C. Slack Computation for Hierarchical Layouts

For each master cell, area fill may be inserted only into the
slack area of a master cell, not into its subcells. Computing the
slack of a master cell proceeds by first determining the number
of grid positions inside the bounding box of the master cell,
while excluding all positions that overlap with either a "bloated"
feature (i.e., a forbidden buffer zone around each feature) or a
"bloated" subcell. However, slack area computation is compli-
cated by the fact that instances of master cells may overlap. Such
overlaps can occur between the master cell instance and the fea-
tures, or between two or more master cell instances (see Fig. 7).
In general, overlaps may have a very complicated structure. We
distinguish the following cases:

1) the overlap between a master cell instance and a feature;

Iterated Monte-Carlo and Greedy Filling Algorithms
Input: n x n layout,

fixed r-dissection, w x w window,
upper bound on window density U

Output: filled layout
1. Repeat forever
2. Run Min-Var Monte-Carlo (Greedy) Algorithm with the upper window density U
3. If resulting minimum window density equals the previous M Then exit repeat
4. Update the densities of tiles and windows and the minimum window density M
5. Run Min-Fill Monte-Carlo (Greedy) Algorithm with the lower window density M
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Fig. 6. The Monte Carlo Hierarchical filling algorithm.

Fig. 7. Computing master cell intersections: the dark features and patterned
subcells may either completely or partially overlap with a given master cell.

2) the overlap between two instances of different master
cells;

3) the overlap between more than two instances of different
master cells;

4) the overlap between two or more instances of the same
master cell.

For each region of master cell overlap we must determine
which master cell "owns" that intersection region. In other
words, it is necessary to assign the space available for filling to
the slack of a single master cell. We resolve this "ownership"
problem by fixing a containment order over all master cells,
starting from the global master cell (containing the entire
layout), all the way down to individual features. This hierarchy
can be represented as an acyclic directed graph H, with the set
of nodes consisting of all master cells and individual features,
and where there is an arc from a cell A to another cell or feature
B, if and only if B participates in the definition of A.

The topological order of the graph H is a linear ordering of
its nodes in such a way that all arcs point in the same direction
(say, left-to-right). Such a topological order may be obtained by

a breadth-first-search traversal of H, starting from the global
master cell, and represents a containment-based ordering of the
hierarchy where no master cell appearing later in the order may
use in its definition any master cells appearing earlier in the
order. For every intersection of master cell instances, we check
which of the master cells appears later in the topological order
and assign the intersection area to this master cell. This correctly
resolves the overlap cases l)-3) above. Unfortunately, case 4)
cannot be resolved in this manner because hierarchy cannot dis-
tinguish different instances of the same master cell. Thus, we ex-
clude such type-4) overlapping regions from the slack of master
cells, thereby leaving such regions unavailable for fill.

D. Hybrid Hierarchical/Flat Filling Approaches

Pure hierarchical filling may tend to result in some sparse
or unfilled regions (e.g., due to overlaps between different in-
stances of master cells and features, or due to the interactions
among the "bloat" regions around master cells), which could
result in an unacceptably high layout density variation. A nat-
ural and simple solution is to apply a postprocessing "cleanup"
phase, i.e., apply a standard flat fill algorithm to the output of
the hierarchical phase. However, a purely flat fill approach, even
when applied as a secondary postprocessing phase, may greatly
increase the resulting data volume and runtime, negating the
benefits of using a hierarchical approach in the first place.

We propose a new algorithm for mitigating this drawback,
by combining hierarchical filling techniques with a flat filling
approach, in a way that smoothly trades off the respective
efficiency and accuracy of these two approaches. In our
proposed method, varying a user-controlled parameter yields
a smooth tradeoff among solution quality, data volume, and
runtime, as confirmed by our computational experience. Our
three-phase hybrid hierarchical-flat filling approach is summa-
rized as follows:

1) a purely hierarchical fill phase;

Monte-Carlo Hierarchical Filling Algorithm
Input: hierarchical layout, fixed r-dissection, buffer distance,

w x w window, upper bound U on window density
Output: new hierarchical layout with filled master cells
1. For each Master Cell Mi in the layout Do
2. Partition the Master Cell Mi according to the given grid size
3. For all grids in the Master Cell Do
4. Mark the status of grid "occupied" if it is covered by the original features or the sub Master Cell
5. For all instances Ij of the Master Cell Mi Do
6. If the instance Ij is overlapped with features or instances of other Master Cells Then
7. Update the status of grids which are covered
8. Calculate the priority of the Master Cells
9. While the sum of priority > 0 Do
10. Use the Monte-Carlo method to select one Master Cell M,
11. Randomly select a slack grid position in the master cell
12. For each corresponding position of the grid in all instances of the Master Cell Mi Do
13. If the insertion causes any window density to exceed the upper bound U on window density Then
14. Discard the insertion and lock slack grid position
15. Go over all other grid positions in master cell which are covered by the exceeded window and lock them
16. Else Increase the fill area of the Master Cell
17. Add the new fill geometry into the Master Cell
18. Update the relevant windows' densities
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Eig. 8. Improving the hierarchical filling approach by splitting master cells
k-ways. Each master cell is replaced with k distinct masters, each of which
may be filled independently and differently.

2) a split-hierarchical phase, where certain master cells that
were deemed to be underfilled in phase 1, would be repli-
cated so that distinct copies of the same master cell may
be filled differently than other copies of the same master
cell;

3) a flat fill "cleanup" phase (say, Monte Carlo based), which
will fill any remaining sparse or unfilled regions that were
not processed satisfactorily during the first two phases.

The overall goal with this strategy is to quickly fill as much
of the layout as possible in phases 1 and 2 while keeping the fill
output data volume relatively low, and then further improve and
tune the resulting filled layout using a flat filling approach in
phase 3 on the (presumably small number of) remaining sparse
or unfilled areas.

In particular, phase 2 consists of repeatedly splitting master
cells located in regions which were determined to be under-
filled during phase 1, as follows. Given a top-down contain-
ment-based topological ordering of the n master cells, i.e., C0,
C2, C3, ... , Cn 2, Cn 1, Cn, where a master cell Ci can only
contain master cell Cj if and only if i < j, a master cell C0 may
be split into two master cells Ci, 1 and Ci, 2 and any Cj con-
taining master cell Ci is then modified to point to either the copy
Ci, 1 or Ci, 2 (say, randomly chosen). More generally, rather than
performing only two-way splits, we can perform k-way splits
(see Fig. 8).

Varying the parameter k (which controls the split factor)
from 1 (pure hierarchical) to an arbitrarily large number (pure
flat) yields a smooth tradeoff between solution quality, data
volume, and runtime. As k is increased, the solution quality
asymptotically approaches that of flat fill. If the result of
hierarchical filling does not satisfy the technological con-
straints, we then recommend foregoing the original hierarchy
in favor of a more uniform filling. This can be implemented
by storing in the original cell library different filled versions
of each master. Such a scheme will not necessarily slow down
verification, since having fixed permanent structure, they can
be "preverified," and thus dramatically improve the uniformity
of hierarchical filling without a large runtime increase.

VI. FILL SYNTHESIS FOR MULTIPLE-LAYER LAYOUT

In the model of [28], topographic variation of each layer at-
tenuates through subsequent CMP steps, each of which is mod-

eled as a low-pass filter based on (3) and (4), according to the
following:

Zk-1+ ) Po(h-) i
Pon() = Ik+( Zkl _1] x<f, k>1

i dx f, k = 1

(14)

k-Way Master Cell Splitting Algorithm
Input: hierarchical layout, and a splitting parameter k
Output: new hierarchical layout with new copies of master cells
1. For i= I to n Do
2. Create k new copies of Ci, namely C,,i ,Cj, 2 , ---Ci,k
3. For any master cell C' containing in the master cell C; Do
4. Forall 1 < j<kDo
5. Put an arc from the master cell Cij to C'
6. For any master cell C which contains master cell Cj Do
7. Replace Ci inside C with copy Cij for random j, 1 < j < k
8. In the hierarchy H, replace the arc (C,Cj) with (C,Cjj)
9. Output resulting new hierarchical layout

k

Pot(k) = E [(Zl/Zk)t k1+ X di]
1=1

(15)

Furthermore, in order to achieve effective density at location
(i, j) on layer k, each term in the summation induces a multiple
circular convolution in the physical domain

[IFFT (fao) x d1)] (i, j)

= [(f 0 f ... f) ®d1 ](i, j)

= E E [f(ii -i, jl -i)
ii jl

X ' '(E E [z (iz
ice jct

- iA Ja i - 1)

(Xij' +X0Dl)] (16)

Since a multiple convolution written as a series of summations is
linear in term of pi, j, all LP formulations can be easily extended
to multiple layers.

A. Linear Programming Approaches for Multiple-Layer Fill

Wong et al. [25] extended the linear programming formula-
tion to address multiple layers, with the objective of minimizing
the sum of density variations over all layers

K

Minimize: E (H, -Lk)
k=1

Subject to:

<< <

i.
ij 0 .. ' -w 1 k = 1, ... , K (17)

where " - " is the fast Fourier transform (FFT) operator, P0(k) is
the effective local density, Zk is the step height (i.e., the height
of layer k from the first layer), dk is the local density (all for
layer k), and f is the weighting function. In the discussion
below, we will not explicitly address the multiple-layer model.
However, our linear programming and Monte Carlo algorithms
have straightforward extensions for simultaneously handling
multiple layers.

By mathematical induction on the layer number k and the
linearity of Fourier transforms, (14) can be written as [25]
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Fig. 9. The multiple-layer Monte Carlo filling algorithm.

Fig. 10. The iterated Monte Carlo and Greedy multiple-layer filling approach.

0 < Xijk < slack(Tijk)

n77
i, j=0,. . .,- _1, k =1,...K. (18)

w

Considering only the sum of layer variations in the objective
function cannot guarantee that the filling on each layer will sat-
isfy the Min-Var objective, abad polishing of an intermediate
layer due to nonplanarization can potentially cause problems on
subsequent (upper) layers. We therefore formulate a linear pro-
gram for multiple-layer fill with the objective of minimizing the
variance of density variations over all layers

Minimize: M

Subject to:

0 < Lk < po(i, j, k) < Hk <E
1=1

i, j = O ... ,- -1,nr

(Zk )

k =1,...,K (19)

(20)(Hk-Lk) <M k =1, . .. , K

0 <• Xik < slack(Tijk)
ni.

i' j = 0, .... ,-
w

1,

B. Monte Carlo Approaches for Multiple-Layer Fill

LP-based methods for the fill problem have two main draw-
backs: 1) solving large problems is very time consuming and
2) rounding errors adversely affect the solution quality. In this
section, we address the multiple-layer fill problem using new
Monte Carlo-based approaches.

For the multiple-layer fill problem where the objective is to
minimize the sum of density variations over all layers, we define
a tile stack as a column of tiles all having the same position on
each layer [2]. We also define the density of a tile stack as the
sum of densities of all the tiles in that tile stack. The Monte Carlo
algorithm (see Fig. 9) assumes the original maximum density to
be the upper bound for each layer. It then randomly chooses a

Multiple-Layer Monte-Carlo Filling Algorithm
Input: layout with multiple layers, and fill feature size
Output: layout with multiple filled layers with respect to the minimized

sum of density variations of all layers, or other objectives
1. For L= bottomLayer To topLayer Do
2. For each tileiljij] on layer L Do
3. Compute its slack area slackAreaOfTile[L][i][j] and cumulative effective density mlEffDenOfPile[L][i][j]
4. mlSlackAreaOfljleStack[i)[j] += slackAreaOfTile[L][i][j]
5. mlEffDenOfTileStack[i][jJ += mlEffDenOfTile[LJ[i][j]
6. Compute the priority of tile stacks according to mlEffDenOfTileStack[i][j]
7. While (sum of priorities > 0) Do
8. Randomly select a tile stack TS(i,j) according to its priority
9. For L = bottomLayer to topLayer Do
10. If slack4reaOfTile[L][iJfj] > 0 Then
11. For every neighboring tile[L][m][n] located in (L + 1) x (L + 1) square Do
12. If the insertion on tile[L][i][j] causes the neighboring tile meet the upperbound Then
13. Exit loop
14. Insert the fill feature into tile[L][i][j]
15. Update the slackAreaOjTile[L][i][j] and mlSlackAreaOfTile[i][j]
16. Update the priorities
17. Exit loop
18. Else Lock the tile on layer L

Iterated Monte-Carlo and Greedy Filling Algorithms
Input: n x n multiple-layer layout with I layers, fixed r-dissection, w x w window,

density upper bound U1 on each layer
Output: Filled multiple-layer layout
1. Repeat forever
2. Run Min-Var Monte-Carlo (Greedy) Algorithm with the upper window densities U1
3. If resulting sum of density variations equals the previous solution Then Exit repeat
4. Else
5. While there exist an unlocked tile stack Do
6. Choose an unlocked tile stack TSij randomly, according to its priority
7. Choose a layer
8. If the deletion does not deteriorate the solution Then
9. Delete a fill feature from the layer
10. Else
11. Lock the tile stack
12. Update the priorities of the tile stacks
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tile stack according to its priority value, selects a layer in that
stack, and increments the tile's density as well as the tile stack's
density by a prescribed fill amount, assuming that this insertion
is permitted with respect to the overall objective.

The probability of choosing a particular tile stack TSij is
referred to as the priority of that tile stack. Note that the priority
of a tile stack TSij is zero if and only if either TSij has already
achieved the density upper bound U, or the slack of TSij is less
than the prescribed fill area. Tiles with zero priority are said to
be locked. Based on our computational experience with single-
layer fill synthesis, the priority of a tile stack TSij is chosen to
be proportional to U-EffDern(TSij), where EffDern(TSij) is
the effective density of the tile stack TSij.

During the algorithm's execution, after choosing which tile
stack to fill next, we also need to decide into which layer the fill
features should be inserted. We consider three different ways to
choose the insertion layer. The first method entails choosing the
bottom layer first, then trying an upper layer if the current layer
is not feasible. The second method is to select the top layer first,
then try a lower layer only if the current layer is not feasible.
For these two approaches, once no layer is suitable for fill, the
tile stack will be "locked" and will not be subsequently selected
for any more filling. The third approach is to randomly choose
one layer for fill, and then to try the upper layer or the lower
layer with equal probability. Here, a tile stack is "locked" when
it contains no remaining slack area. Our experimental results
indicate that the second method described above outperforms
the other two approaches.

A variant of the Monte Carlo approach is the deterministic
Greedy algorithm. Unlike the Monte Carlo approach, at each
step the Greedy algorithm adds a prescribed amount of fill into a
tile with the highest priority. The experiments show that the run
times of this Greedy approach are slightly higher than Monte
Carlo's, due to the necessity of finding a tile with the highest
priority, rather than a random tile.

We can also implement the Iterated Monte Carlo and Greedy
methods for the multiple-layer filling problem; our approach
again alternates between the Min-Var and Min-Fill objectives,
resulting in a monotonic narrowing of the density variation (see
Fig. 10). Such iterated methods are still very fast and retain all
the advantages of the noniterated Monte Carlo and Greedy coun-
terparts, but offer improved accuracy.

VII. IMPLEMENTATION DETAILS

Our implementation of hierarchical filling for layout density
control is further enhanced with the following important prac-
tical features:

* Grid Slack Computation. In previous academic and industry
approaches, the area slack in each tile, i.e., the area available
for filling, was assumed to be proportional to the total tile area
minus the area of original features after the bloating of features
by a certain buffer distance. However, such a calculation is quite
optimistic because fill geometries have lower/upper bounds on
their dimensions. That is also the reason the prescribed LP fill
solution may not correspond to a legal filling. An alternative
grid slack computation entails using an underlying grid and the
actual fill pattern to compute the maximum number of legal po-
sitions for fill geometries in each tile. This method of slack cal-
culation is more precise and realistic, since it guarantees that

TABLE I
PARAMETERS OF FOUR INDUSTRY TEST CASES

Test Cases
Testcase Li L2 Llx4 L2x4

layout size n 125,000 112,000 250,000 224,000
# rectangles k 49,506 76,423 198,024 305,692

the calculated fill amount can actually be legally inserted into
the corresponding tile.

* Doughnut Area Computation. In shallow-trench isolation
processes, so-called reverse active-area mask steps lead to a den-
sity criterion whereby only the width-d "outer ring" of a large
feature contributes to the effective density. Our tool is enhanced
to optionally apply such a "doughnut" area computation.

* Wraparound Window Density Analysis and Synthesis. In the
CMPprocess,the polishingpadtypicallypolishes multipleneigh-
boring dies simultaneously. Since all dies on a wafer are usually
identical, we may assume thatthe rightmosttile ofthe layout is ad-
jacent to the leftmost tile in the same row, and that the topmost tile
is adjacent to lowest tile in the same column. In order to take this
into account while performing density analysis as well as fill syn-
thesis, the windows are thus "wrapped around" the layout so that
a window overlapping with the upper (left) edge of the layout also
contains tiles fromthe bottom (right) portion of the layout.

* Different Pattern Types. In order to reduce worst case cou-
pling capacitance to fill, we may impose a constraint dictating
that the same amount of fill area should be intersected by any
vertical or horizontal line. To this end, a basket-weaving pat-
tern has been suggested in [12]. Our implementation allows in-
sertion of filling geometries either on a rectangular grid or in
a basket-weaving manner. Our implementation can also easily
support more exotic fill pattern types.

* Compressed Fill Insertion. In practice, filling can increase
the size of the output GDSII file by a large factor (sometimes
by more than an order of magnitude) due to the small size of
the filling geometries and the possibly large amount of empty
area in the original layout. We have, therefore, implemented a
"compressed fill" approach which greatly reduces the size of
the GDSII file (via the AREF construct). The basic idea here
consists of utilizing several fill patterns of increasing size, e.g.,
one filling geometry, four filling geometries arranged in a 2-by-2
square, 16 filling geometries arranged in a 4-by-4 square, etc.
The insertion phase tries to first fit in the largest feasible fill
pattern, then gradually reduces the size of the fill pattern if it
is no longer possible to insert any larger patterns. Naturally, for
certain layouts with large empty areas, the file size reduction
realized by this technique may even be exponential. Note that
this is in itself a third form of hierarchy in our filling solution.

VIII. COMPUTATIONAL EXPERIENCE

A. Experiments on Flat Layouts

Our experiments were performed using part of a metal layer
extracted from an industry standard-cell layout.5 (see Table I
for details6 ) Benchmark Li is the M2 layer from an 8131-cell

50ur experimental testbed integrates GDSII Stream input, conversion to
CIF format, and internally developed geometric processing engines, coded
in C++ under Solaris.

61n the given coordinate system, 40 units is equivalent to 1 micron.
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TABLE II
MONTE CARLO METHODS WITH VARYING TILE SELECTION PRIORITIES AND UPDATING SCHEDULES. NOTATION: T/W/r: LAYOUT/WINDOW SIZE/r DISSECTION:

Max N LAYOUT INFO: THE MAXIMUM WINDOW DENSITY IN THE ORIGINAL LAYOUT: MinN LAYOUT INFO: THE MINIMUM WINDOW DENSITY IN THE ORIGINAL
LAYOUT: Max Pri = MAXIMAL PRIORITY: Min Pri = MINIMAL PRIORITY: SLK Pri = SLACK PRIORITY. THE COLUMNS Min AND CPU CORRESPOND

TO THE MINIMUM WINDOW DENSITY OF THE RESULTING FILLED LAYOUT AND THE RUNTIME IN CPU SECONDS, RESPECTIVELY.
THE MAXIMUM WINDOW DENSITY IN THE FILLED LAYOUT IS THE SAME AS IN THE ORIGINAL LAYOUT

Heuristic I Heuristic II
Layout Info Min-Pri Max-Pri Min-Pri Max-Pri SLK-Pri

TIW/r Max Min Min CPU Min CPU Min CPU Min CPU Min CPU
L1/31/2 0.20201 0.10548 0.19354 3.30 0.19336 2.21 0.19345 1.01 0.19327 1.00 0.19254 0.97
L1/31/3 0.20712 0.09683 0.19186 9.96 0.19102 5.96 0.19148 1.33 0.19093 1.31 0.19571 1.32
L1/31/4 0.21248 0.09369 0.19870 26.29 0.19811 15.18 0.19778 1.67 0.19660 1.69 0.19505 1.67
L1/31/5 0.21449 0.09097 0.19950 57.08 0.19871 32.35 0.19874 2.08 0.19847 2.07 0.19678 2.08

Llx4/31/2 0.21075 0.08739 0.15132 13.38 0.15132 10.08 0.15124 4.72 0.15044 4.66 0.14948 4.64
Llx4/31/3 0.21511 0.07808 0.14765 38.00 0.14765 25.10 0.14765 5.78 0.14765 5.72 0.14762 5.66
Llx4/31/4 0.21489 0.10775 0.19192 90.59 0.19101 54.50 0.19027 6.59 0.18977 6.55 0.19002 6.49
Llx4/31/5 0.21462 0.10103 0.18454 187.16 0.18445 109.58 0.18336 7.67 0.18307 7.65 0.18164 7.57

L2128/2 0.18076 0.05065 0.11353 4.70 0.11327 3.98 0.11301 1.67 0.11411 1.68 0.11305 1.67
L2128/3 0.22651 0.05125 0.14774 20.98 0.14538 15.98 0.14527 2.87 0.14612 2.86 0.14944 2.87
L2/28/4 0.21827 0.08072 0.17866 49.30 0.17796 35.05 0.17810 3.30 0.17814 3.29 0.17912 3.28
L2/2815 0.23764 0.07203 0.17121 100.84 0.16703 78.74 0.16535 3.92 0.16582 3.91 0.16830 3.99

L2x4I28/2 0.22327 0.05011 0.17217 44.54 0.16472 34.63 0.16712 13.88 0.16450 13.90 0.16129 13.59
L2x4/28/3 0.20957 0.05087 0.12437 90.25 0.12514 69.53 0.12286 13.12 0.12234 13.19 0.12364 12.99
L2x4/28/4 0.22412 0.05010 0.17105 242.11 0.16867 176.95 0.16887 17.41 0.16908 17.33 0.16407 17.18
L2x4/2815 0.23771 0.05005 0.16841 516.86 0.16482 373.06 0.16538 21.36 0.16285 21.32 0.16037 21.00

TABLE III
OPTIMAL LP FILLING COMPARED WITH THE MONTE CARLO APPROACH USING DIFFERENT FILLING SCHEDULES. NOTATION: Filling 1: INSERTING A SINGLE

FILLING GEOMETRY INTO A TILE PER ITERATION: Filling 2: INSERTING THE MAXIMUM POSSIBLE FILLING GEOMETRIES INTO A TILE PER ITERATION.
THE COLUMNS Min AND CPU CORRESPOND TO MINIMUM WINDOW DENSITY OF THE FILLED LAYOUT AND THE RUNTIME IN CPU SECONDS, RESPECTIVELY.

THE MAXIMUM WINDOW DENSITY IN THE FILLED LAYOUT IS THE SAME AS IN THE ORIGINAL LAYOUT. WE DID NOT FILL ONE OF THE ENTRIES
IN THE TABLE DUE TO THE PROHIBITIVELY LARGE RUNNING TIME OF THE LP METHOD FOR HIGHER VALUES OF r

|| LP Method Heuristic I Heuristic II
Layout Info 11 11 Filling1 1 Filling- 1 Filling1 1 Filling-v

T/W/r Max Min Min CPU Min CPU Min CPU Min CPU Min CPU
L1/31/2 0.20201 0.10548 0.20119 0.11 0.19354 3.30 0.18036 0.11 0.19345 1.01 0.17834 0.17
L1/31/3 0.20712 0.09683 0.20026 0.23 0.19186 9.96 0.18763 0.12 0.19148 1.33 0.18218 0.14
L1/31/4 0.21248 0.09369 0.20084 0.57 110.19870 26.29 0.19176 0.35 0.19778 1.67 0.19164 0.22
L1/31/5 0.21449 0.09097 0.20328 1.75 0.19950 57.08 0.19212 0.56 0.19874 2.08 0.19634 0.49
L1/8/2 0.26966 0.02080 0.15968 1.52 0.15868 6.32 0.13249 0.20 0.15868 2.29 0.14865 0.36
L1/8/3 0.27043 0.03151 0.17174 11.54 0.17162 14.78 0.16882 1.14 0.17162 2.54 0.16635 1.12
L1/8/4 0.27375 0.03362 0.18261 39.66 0.18282 39.97 0.17834 3.76 0.18282 3.53 0.17763 4.54
L1/8/5 0.27213 0.02766 0.14901 60.80 0.14827 67.45 0.13564 9.21 0.14827 3.90 0.13678 1.42
L1/4/2 0.28250 0.00544 0.16734 24.47 0.16771 7.31 0.11763 0.92 0.16771 2.79 0.11143 3.97
L1/4/3 0.27807 0.00911 0.13792 67.61 0.13229 14.31 1 0.13102 2.99 0.13229 , 3.17 0.11784 2.72
L1/4/4 0.28250 0.00950 0.16914 395.95 0.16452 44.07 0.14987 9.57 0.16452 5.28 0.15212 38.36
L1/4/5 0.28237 0.00390 0.12928 335.0 0.12385 88.91 0.11373 22.70 0.12385 8.58 0.11234 45.82

Llx4/31/2 0.21075 0.08739 0.15845 35.9 0.15132 13.38 0.09343 0.23 0.15124 4.72 0.0902 0.87
Llx4/31/3 0.21511 0.07808 0.15082 378.9 0.14765 38.00 0.09188 2.34 0.14765 5.7 0.10465 1.52
Llx4/31/4 0.21489 0.10775 0.19812 1864.3 1 0.19192 90.59 0.11473 2.37 0.19027 6.5 0.11274 3.59
Llx4/31/5 0.21462 0.10103 N/A N/A || 0.18454 187.16 T 0.11241 3.22 0.18336 7.67 0.10945 4.84

design, and Benchmark Li x 4 is the same layout replicated
four times in a 2 x 2 array to create a larger test case. Benchmark
L2 is the M3 layer from a 20 577-cell layout. L2 x 4 is this same
layout replicated four times in a 2 x 2 array.

Table II compares the CPU runtimes and the original and re-
sulting minimum window densities for the minimal, maximal,
and slack priorities. All data provided in this paper are the av-
erage values of ten runs, and all experiments assume that U is

equal to the maximum window density of the original layout. All
run times are in CPU seconds on a 300-MHz Sun Ultra-5 -10
with 640 MB of RAM. These results indicate a tradeoff be-
tween runtime and accuracy for different priorities; the fastest
slack priority has the lowest accuracy and the minimal priority,
while the slowest slack priority has the highest accuracy. The
best choice seems to be the maximal priority, which is almost as
accurate as the minimal priority, but considerably faster.
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Table III compares the optimal results obtained by solving the
linear program7 [see (5)-(8)] from [13] with two fill schedule
heuristics. Our results show that the accuracy of the Monte Carlo
method is very high. In all of our test cases the resulting vari-
ation is no more than 5% larger than the optimal solution ob-
tained by the LP method. On the other hand, the Monte Carlo
method is much faster than the LP method. When the window
size is small and/or the number of fixed dissections is large, the
LP method becomes impractical, while our new method is still
fast.

The exhaustive comparison of different tile priorities and up-
dating schedules shows that the minimal-priority updating is the
best choice for the Monte Carlo method (see Table III). On the
other hand, the faster filling schedule, which fills a chosen tile
with the maximum possible number of filling geometries, loses
in terms of performance, e.g., in some cases the window density
variation does not even change (see Table III).

The runtime advantage of the Monte Carlo methods may be
leveraged to obtain more uniform filling. We apply the faster
Monte Carlo method to larger numbers of fixed dissections, re-
sulting in filled layouts which are more uniform than those ob-
tainable with the LP method. For instance, the LP method ap-
plied to the layout with parameters (L 1/4/4) yields a filled layout
with a density variation of 15% measured for r = 16 fixed
dissections. On the other hand, the Monte Carlo method with
the slack priority, minimal updating, and single-geometry filling
schedule applied to the same layout but for r = 16 fixed dis-
sections, yields a filled layout with a density variation less than

7
1n this paper, lp solve 3.0 is used as the linear programming solver.

TABLE V
PARAMETERS OF THE TEST CASES

Test Cases
Testcase I Casel I Case2 I Case3

layout size 1 260000 1288000 j504000
#rectangleskl 216 | 432 l 540

14%. Moreover, the LP method requires almost two minutes of
CPU time, while the Monte Carlo method takes only 10 s to run.

Table IV compares the minimum window density and the as-
sociated run times for the minimum variation linear program,
Greedy algorithm, Monte Carlo algorithm, Iterated Greedy al-
gorithm, and Iterated Monte Carlo algorithm. The table consists
of two parts, corresponding to the spatial and effective density
measures, respectively. The left column of Table IV reports for
each test case the window size (in thousands of units) as well as
the number r of fixed dissections.

The smaller r-value corresponds to the maximal value for
which the LP approach can still produce the optimal minimum
window density within a reasonable run time, and the larger
r-value is selected sufficiently high to demonstrate the accuracy
of the suggested heuristics. The next two table columns report
the maximum and minimum window densities of the original
layout before filling.

Table IV indicates that the iterated methods are more accu-
rate than previous noniterated approaches, that they are more
efficient than LP-based methods, and that they yield more even
filling or larger number of tiles (corresponding to larger r). Fi-
nally, note that the iterated Monte Carlo and Greedy algorithms
can output better solutions than LP-based approaches, since the
LP's rounding errors become more significant for larger r.
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TABLE IV

ITERATED GREEDY (IGREED) AND ITERATED MONTE CARLO (IMC) ALGORITHMS ARE MORE ACCURATE THAN THE NONITERATED VERSIONS

(GREED AND MC), AND ARE FASTER THAN A LINEAR PROGRAM-BASED APPROACH (LP)

Orig. Density LP II Greed II MC IGreed IMC
Test case Max |M Min CPU M CPU Min CPU Min I CPU Min I CPU

Spatial Density Model
L1/3218 0.21447 0.10414 0.19864 41.5 0.18779 18.2 0.19221 17.3 0.19871 26.9 0.19871 24.8
L1/32/16 0.21783 0.10088 0.19768 1077.5 0.19044 21.9 0.19410 19.6 0.19779 98.1 0.19740 93.5
L1/16/8 0.26452 0.07803 0.17519 161.1 0.17556 21.8 0.17556 18.9 0.17556 36.7 0.17556 30.2

L1/16/16 0.26452 0.08551 N/A N/A 0.18868 44.2 0.18868 23.4 0.18868 202.3 0.18868 168.9
L2/32/8 0.22648 0.07039 0.14467 43.0 0.14257 25.5 0.13565 24.4 0.14469 41.3 0.14463 68.6
L2/32/16 0.22648 0.07650 0.15093 2716.0 0.14621 33.8 ,0.14459 29.4 0.14971 538.5 0.14940 317.2
L2/16/8 0.33022 0.04552 0.17926 1912.4 0.16709 42.1 0.17748 30.5 0.17980 170.1 0.17980 169.4

Llx4/32/8 0.21693 0.09657 0.18643 255.7 0.18183 82.6 0.18282 72.3 0.18648 131.9 0.18648 111.9
Llx4/32/16 0.21793 0.10263 N/A N/A 0.19574 124.3 0.19547 80.2 0.19933 632.8 0.19933 565.1
L2x4/32I8 0.22226 0.05776 0.14647 532.6 0.14480 150.7 0.13824 117.7 0.14649 289.5 0.14655 469.7

Effective Density Model
L1/32/8 0.41625 0.16255 0.31970 32.4 0.31859 22.8 0.31994 22.3 0.31994 26.5 0.31994 23.9
L1/32/16 0.46662 0.10626 0.28249 105.5 0.28353 27.4 0.28353 24.0 0.28353 33.2 0.28353 27.8
L1/16/8 0.46662 0.10626 0.28249 105.2 0.28353 27.1 0.28353 23.1 0.28353 32.8 0.28353 26.0
L1/16/16 0.48313 0.05693 N/A N/A 0.24748 49.7 0.24748 27.1 0.24748 74.2 0.24748 33.4
L2/32/8 0.53585 0.07249 0.34777 66.8 0.34538 39.7 0.31153 38.3 0.34629 49.5 0.33858 68.9
L2/32/16 0.84446 0.03514 0.35956 520.5 0.36007 57.4 0.34049 41.4 0.36007 67.9 0.35276 107.4
L2/16/8 0.84446 0.03514 0.35956 526.7 0.36007 57.3 0.34206 40.1 0.36007 68.7 0.35120 90.1

Llx4/32/8 0.43270 0.14665 0.28487 171.5 0.28505 107.2 0.28505 90.7 0.28505 126.5 0.28505 100.9
L1x4/32/16 0.46740 0.10494 0.28732 1238.8 0.28835 177.0 0.28835 106.3 0.28835 262.4 0.28835 125.5
L1x4/16/8 0.46740 0.10494 0.28732 1387.8 0.28835 188.8 0.28835 106.3 0.28835 266.6 0.28835 121.5
L1x4/16/16 0.48313 0.05160 N/A N/A 0.27197 586.0 0.27197 119.5 0.27197 975.0 0.27197 150.1
L2x4/32/8 0.52179 0.04467 0.34176 637.4 0.32008 241.5 0.30799 165.6 0.33620 342.0 0.33524 435.9
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TABLE VI
HIERARCHICAL, FLAT, AND HYBRID FILLING APPROACHES. NOTATION: data:
DATA VOLUME, I.E., THE NUMBER OF FILL GEOMETRY REFERENCES IN THE

RESULTING GDSII OUTPUT FILE: #fl/l: NUMBER OF FILL FEATURES IN THE

RESULTING LAYOUT: MinDen: MINIMUM WINDOW DENSITY ACROSS THE

LAYOUT: Hier: HIERARCHICAL FILLING APPROACH: EXTSLH + F:
HIERARCHICAL + FLAT FILLING APPROACH: H + S: HIERARCHICAL +

2-WAY MASTER CELL SPLITTING FILLING APPROACH: H + S + F:
HIERARCHICAL + 2-WAY MASTER CELL SPLYITTNG + FLAT FILLING

APPROACH: Flat: FLAT FILLING APPROACH

Density Model || Spatial Density Model Effective Density Model
|| data I #fill I MinDen data I #fill I MinDen

. Testcase 1
Original Layout 0.070 0.291

Hier 645 5136 0.11 1054 2608 0.369

H+F 1562 6053 0.335 2758 4312 0.655

H+S 2321 7601 0.17 1552 4166 0.525

H+S+F 2834 8114 0.339 2908 5522 0.676
Flat 5219 5219 0.403 5732 5732 0.735

.I Testcase 2
Original Layout 0.167 0.145

Hier 2081 16060 0.272 2142 16972 0.248

H+F 2451 16430 0.393 5630 17460 0.320

H+S 4368 17494 0.410 4531 18126 0.365

H+S+F 4374 17500 0.421 7234 20829 0.383

Flat 13974 13974 0.527 23415 23415 0.443

.I Testcase 3
Original Layout 0.000 0.091

Hier 4995 22566 0.071 4449 20320 0.157

H+F 7472 25043 0.532 9461 25332 0.371

H+S 9690 23622 0.102 8575 22990 0.159

H+S+F 12212 26144 0.540 13285 25700 0.394

Flat 17695 17695 0.547 31204 31204 0.483

B. Experiments on Hierarchical Layouts

Table V lists the attributes of our three test cases, i.e., the
layout dimension N and the number of rectangles k.

Table VI compares the minimum window density, data
volume (i.e., the number of fill geometry references in the
resulting GDSII output file), and the number of area fill features
(i.e., the number of fill geometries in the resulting layout after
flattening) for five heuristics: 1) hierarchical; 2) flat; 3) 2-way
splitting; 4) hybrid of hierarchical and flat; and 5) hybrid of
the hierarchical, splitting and flat approaches. For each test
case, we ran all the five filling heuristics under both the spatial
density model and the effective density model, with the window
density upper bound equal to the original maximum window
density.

Table VI indicates that the Flat Monte Carlo approach yields
the best quality results (i.e., highest minimum density), but also
produces the largest output data volumes. On the other hand,
the Hierarchical Monte Carlo approach saves on data volume,
but yields low-quality results. The hybrids of the hierarchical
and flat fill approaches produce substantially improved results,
with only a modest increase in data volume. Finally, we observe
that the k-way Master Cell Splitting approach smoothly trades
off performance and data volume, i.e., it provides better results
than the pure Hierarchical Fill approach, yet produces less data
volume than the pure Flat Filling approach.

C. Experiments on Multiple-Layer Flat Layouts

The layouts used in our multiple-layer filling experiments
have either two or three layers with the same dimensions.
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Table VII shows the performances of the two LP formulations
proposed in [25] and by us, respectively, for the different
multiple-layer fill objectives. The experiments indicate that the
LP formulations designed to minimize the sum of density vari-
ations across all layers cannot at the same time also minimize
the maximum density variation.

Table VIII compares the sum of density variations on all
layers and the associated run times for the linear programming
method (LPO), Greedy method, Monte Carlo (MC) method,
Iterated Greedy (IGreedy) method, and Iterated Monte Carlo
(IMC) method. Our results show that the accuracy of the
Monte Carlo/Greedy methods is very high. When the window
size is small and/or the number of fixed dissections is large,
the LP method becomes impractical for the multiple-layer
fill problem,8 while the Monte Carlo/Greedy methods are
still fast. On the other hand, the rounding errors inherent in
the LP method make its performance worse than the Monte
Carlo/Greedy methods on the large test cases.

Table IX shows the performance of the Linear Programming
method (LP1), Greedy method, Monte Carlo method, Iterated
Greedy method, and Iterated Monte Carlo method with respect
to the maximum density variation objective across all layers.
The Monte Carlo and Greedy methods yield better solutions
than the LP-based approaches on these test cases within shorter
run times.

IX. CONCLUSION

We developed a new Monte Carlo approach for layout den-
sity control and compared several criteria to decide where to in-
sert fill geometry. The Monte Carlo method is scalable to large
designs, yet offers accuracy competitive with previously known
linear programming based approaches. We also presented a new
unified approach to capturing different models of layout den-
sity control for CMP. This enables the application of Greedy
and Monte Carlo methods that simultaneously address different
filling objectives for spatial and effective density definitions.
Our new iterated Greedy and Monte Carlo methods are more ac-
curate and practical than previous LP-based methods. We also
discuss and compare extensions of the linear programming and
Monte Carlo approaches to multilayer designs.

For hierarchical layouts, we proposed a practical approach
to hierarchical fill synthesis for layout density control, which
trades off runtime, solution quality, and output data volume.
Our approach allows distinct copies of a master cell to be filled
differently, which improves solution quality in a user-con-
trolled manner. Our system also generates filling geometries in
compressed GDSII format, which reduces the resulting fill data
volume. Experiments indicate that this new hybrid hierarchical
filling approach is scalable, efficient, and highly competitive
with previous Monte Carlo and linear programming-based
methods.

Ongoing research includes developing alternate pure-hierar-
chical filling heuristics and developing more robust hierarchy
manipulators for in-memory layout representations, in order to
enable even more robust tradeoffs between solution quality and
data volume. We also seek to make our fill solutions reusable,

8For example, the LPO method did not terminate for the test case L6/8/5 after
running for more than 12 h.
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TABLE VII
PERFORMANCE OF THE LP FORMULATIONS UNDER THE OBJECTIVES OF MINIMIZING: I) THE SUM OF DENSITY VARIATIONS AND II) THE MAXIMUM DENSITY

VARIATION, ON ALL LAYERS. NOTATION: L/W/r: LAYOUT/WINDOW SIZE/r DISSECTION: LPO: THE LINEAR PROGRAMMING FORMULATIONS FOR MINIMIZING
THE SUM OF DENSITY VARIATIONS ON ALL LAYERS: LPI: THE LINEAR PROGRAMMING FORMULATIONS FOR MINIMIZING THE MAXIMUM DENSITY VARIATION
ACROSS ALL LAYERS: SumVar: THE SUM OF DENSITY VARIATIONS ON ALL LAYERS: maxDenVar: THE MAXIMUM DENSITY VARIATION ACROSS ALL LAYERS:

CPU: THE RUN TIME: Area: THE NUMBER OF INSERTED FILL FEATURES

Testcase . LPO _ LP1

LIW/r SumVar maxDenVar CPU Area SumVar maxDenVar CPU Area
L4/16/4 0.2690 0.1696 42.0 20921 0.2875 0.1666 37.6 19609
L41814 0.6626 0.4696 44.2 14769 0.6626 0.4696 43.2 14330
L5/16/4 0.3436 0.2420 101.0 38152 0.3843 0.1932 69.8 38241
L5/814 1.0585 0.5531 279.7 34942 1.0621 0.5393 655.7 33376
L6/16/4 0.5986 0.4080 91.3 65578 0.6333 0.3737 71.0 62113
L618/4 1.6116 1.1155 12617.0 67178 1.6584 1.0903 6649.0 65576

TABLE VIII
PERFORMANCE OF LPO, GREEDY, MC, IGREEDY, AND IMC FOR THE SUM OF DENSITY VARIATIONS ACROSS ALL LAYERS. NOTATION: L/W/r:

LAYOUT/WINDOW SIZE/r DISSECTION: SumVar: THE SUM OF DENSITY VARIATIONS ACROSS ALL LAYERS: CPU: THE RUN TIME

Testcase LP0 Greedy MC IGreedy IMC
LlW/r SumVar CPU SumVar CPU SumVar CPU SumVar CPU SumVar CPU
L4/16/8 0.6626 33.1 0.6420 36.3 0.6285 36.6 0.6285 37.7 0.6285 33.9
L4/16/5 0.5435 30.7 0.5541 32.2 0.5535 33.0 0.5535 31.1 0.5535 30.5
L4/818 0.9031 140.1 0.7794 48.1 0.7766 36.2 0.7762 74.7 0.7762 34.5
L4/8/5 0.8351 33.4 0.7882 35.4 0.7804 32.7 0.7804 39.1 0.7804 30.7
L518/8 2.2118 8093.0 2.0526 102.8 2.0913 65.4 2.0526 111.7 2.0716 67.6
L5/8/5 1.3494 8879.0 1.3450 65.0 1.3943 54.2 1.3252 79.6 1.3476 59.3

TABLE IX
PERFORMANCE OF LP1, GREEDY, MC, IGREEDY, AND IMC WITH RESPECT TO MAXIMUM DENSITY VARIATION ACROSS ALL LAYERS. NOTATION: L/W/r:

LAYOUT/WINDOW SIZE/r DISSECTION: MaxDen: THE MAXIMUM DENSITY VARIATION ACROSS ALL LAYERS: CPU: THE RUN TIME

Testcase LP1 __ Greedy MC IGreedy IMC
LlW/r MaxDen CPU MaxDen CPU MaxDen CPU MaxDen CPU MaxDen CPU
L4/16/8 0.4696 34.8 0.4459 36.3 0.4454 36.6 0.4454 37.7 0.4454 33.9
L4/16/5 0.3638 36.5 0.3638 30.2 0.3635 33.0 0.3635 31.1 0.3635 32.5
L418/8 0.6255 120.8 0.5437 48.1 0.5410 - 36.2 0.5406 74.7 0.5406 34.5
L4/815 0.5897 33.2 0.5576 - 35.4 0.5497 - 32.7 0.5497 39.1 0.5497 30.7
L5/8/8 1.2174 1761.3 1.1081 j 102.8 8 6.4 1.1081 1 111.7 i 1.1081 j 67.6
L5/8/5 1 0.6886 1524.0 11 0.6857 165.0 11 0.7050 154.2 11 0.66981 79.6 11 0.6746 1 59.3

so that fill solutions can be stored in a library along with the
master cells, thus would not have to be recomputed from scratch
in cases where a cell is used in a context that has different den-
sity constraints. However, the reusability methodology currently
can only be applied to the master cells which neither overlap
with other master cells, nor require routing over their area. One
way of achieving such "unrollable" solutions is to produce and
store a fill solution in a "monotone" manner, so that successively
longer prefixes of a given fill solution would still constitute valid
fill solutions in lower density contexts.
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