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Closing the Gap: Near-Optimal
Steiner Trees in Polynomial Time

Jeff Griffith, Gabriel Robins, Member, IEEE, Jeffrey S. Salowe, and Tongtong Zhang

Abstract-The minimum rectilinear Steiner tree (MRST) prob-
lem arises in global routing and wiring estimation, as well as
in many other areas. The MRST problem is known to be NP-
hard, and the best performing MRST heuristic to date is the
Iterated 1-Steiner (IIS) method recently proposed by Kahng and
Robins. In this paper, we develop a straightforward, efficient im-
plementation of IIS, achieving a speedup factor of three orders of
magnitude over previous implementations. We also give a parallel
implementation that achieves near-linear speedup on multiple
processors. Several performance-improving enhancements enable
us to obtain Steiner trees with average cost within 0.257 of
optimal, and our methods produce optimal solutions in up to
90t/' of the cases for typical nets. We generalize 11S and its
variants to three dimensions, as well as to the case where all
the pins lie on k parallel planes, which arises in, e.g., multi-
layer routing. Motivated by the goal of reducing the running
times of our algorithms, we prove that any pointset in the
Manhattan plane has a minimum spanning tree (MST) with
maximum degree 4, and that in three-dimensional Manhattan
space every pointset has an MST with maximum degree of 14
(the best previous upper bounds on the maximum MST degree
in two and three dimensions are 6 and 26, respectively); these
results are of independent theoretical interest and also settle an
open problem in complexity theory.

I. INTRODUCTION

T HE MINIMUM rectilinear Steiner tree problem is central
to VLSI physical design phases such as global routing

and wiring estimation, where we seek low-cost topologies to
interconnect the pins of signal nets [30], [37]:

The Minimum Rectilinear Steiner Tree (MRST) prob-
lem: Given a set P of n points, find a set S of Steiner points

such that the minimum rectilinear spanning tree (MST) over

P U S has minimum cost.
The cost of a tree edge is the Manhattan distance between

its endpoints, and the cost of a tree is the sum of its edge
costs. The terms points and pins are synonymous and are
used interchangeably, depending on the context (a net is a
set of pins). Fig. I shows an MST and an MRST for the same
four-pin net.

Research on the MRST problem has been guided by several
fundamental results. First, Hanan [211 has shown that there
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Fig. 1. A minimum spanning tree (left) and MRST (rght) for a fixed net;
hollow dots represent the original pointset P, while solid dots represent the
set S Of added Steiner points.

Fig. 2. Hanan's theorem: There always exists an MRST with Steiner points
chosen from the intersections of all the horizontal and vertical lines passing
through all the points.

always exists an MRST with Steiner points chosen from the
intersections of all the horizontal and vertical lines passing

through all the points in P (see Fig. 2), and this result was
generalized by Snyder [42] to all higher dimensions. However,
a second major result by Garey and Johnson [16] establishes
that despite this restriction on the solution space, the MRST
problem remains NP-complete; this has given rise to numerous
heuristics as surveyed by Hwang, Richards, and Winter [27].

In solving intractable problems, we often seek provably
good heuristics having bounded worst-case error from optimal.

Thus, a third important result is the discovery by Hwang [25]
that the rectilinear MST is a fairly good approximation to the

MRST, with a worst-case performance ratio of cnst(Ts ) <cost(MRSTI) -

2. This implies that any MST-based strategy that improves
upon an initial MST topology will also enjoy a performance
ratio of at most 3. This has prompted a large number of Steiner

tree heuristics that resemble classic MST construction methods
[23], [24], [26], [31], [32], all producing Steiner trees with

average cost 7 to 9% smaller than the MST cost [27].
Unfortunately, all MST-based MRST constructions were

recently shown by Kahng and Robins [29] to have a worst-

case performance ratio of exactly 2. This negative result

has motivated research into alternate schemes for MRST
approximation, with the best performing among these being
the Iterated I-Steiner (IIS) algorithm [28], [38]. 11S always
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performs strictly better than 3 times optimal,1 and also per-

forms very well in practice, achieving almost 11% average

improvement over MST cost, which is on average less than

0.5% away from optimal [40]. The Iterated 1-Steiner method
was generalized to arbitrary weighted graphs by Alexander

and Robins [1], [2], and is thus a suitable basis of a practical

global router that must handle congestion, obstacles, etc. [15].

The performance success of 11 S was achieved at the expense

of a high time complexity: although a more efficient variant of
IIS can be implemented to run within time 0(o2 log ol) [28],

the computational geometric methods employed to achieve

this time bound hide large constant factors and are also

difficult to code. Thus, actual previous implementations of 11 S

typically use a more straightforward approach that requires
time 0(i 4 logn).

The first contribution of this paper is a practical implemen-

tation of IIS that runs within time 0(n3 ). Our method is based

on a dynamic minimum spanning tree update scheme and es-

tablishes the practicality and viability of the iterated I -Steiner

approach. For 100 points, our new implementation is about

three orders of magnitude faster than the naive implementation,
and the speedup over the naive implementation increases with

the number of points. This dramatic improvement in speed

enables for the first time the testing of IIS on nets containing

several hundred pins.
Since a typical CAD environment consists of a network of

workstations, exploiting the available large-grain parallelism
provides a natural and effective means of improving the

performance of CAD algorithms. With this in mind, a second

contribution of our work is a parallel version of 11S that

achieves high parallel speedups. Since Steiner tree construction
is a computationally expensive part of global routing, our

parallel implementation may be viewed as an important first
step toward obtaining a "Steiner engine," i.e. an efficient tool
for producing near-optimal Steiner trees.

Our third contribution entails several performance-

improving enhancements to the IIS method. Our methods
rely on an approach that deviates from pure greed and

instead employs randomness in order to break ties during

Steiner point selection. Although asymptotically no slower

than the original IIS variants, our methods afford improved

average performance. Extensive simulations indicate that for

uniformly distributed random nets of up to 8 pins, the average

performance of our enhanced IuS algorithm is only 0.25%

away trom optimal. Moreover, for 8-pin nets, our method

produces the optimal Steiner tree in 90% of all instances.
We also propose a method of improving performance at the

expense of running time, allowing a smooth tradeoff between
solution quality and efficiency.

1 Recently, Berman and Ramaiyer [7] and Foessmneier, Kaufmann, and

Zelikovsky [6], 1131 have extended the fundamental work of Zelikovsky [461,
[471 to yield a method similar to 0S (specifically, to the 'batched" 11S method

descnbed below) with performance ratio bounded by 'S; this work settles

in the affirmative the longstanding open question of whether there exists

a polynomial-time rectilinear Steiner tree heuristic with performance ratio

strictly smaller than 3 [25]. At the time of this writing, Berman. Foessmeier,
Karpinski, Kaufmann, and Zelikovsky [ 131 further improved the performance

bound of their polynomial-time rectilinear Steiner heuristic to Lt = 1 271.
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Next, we generalize 1lS and its variants to three dimensions,
as well as to the intermediate case where all pins lie on

A, parallel planes. This formulation has several applications,
including multi-layer routing [9], [20], [22] and the design of

buildings [41]. Empirical testing suggests that this approach
is effective for three-dimensional Steiner routing, yielding

up to 15% average improvement over MST cost in three-

dimensional Manhattan space.
Finally, in order to reduce the running time of the dynamic

MST-maintenance component of our algorithms, we prove the

following results under the Manhattan metric: I) every two-
dimensional pointset has an MST with maximum degree of

at most 4; and 2) every three-dimensional pointset has an

MST with maximum degree of at most 14 (the best previously

known bounds for two and three dimensions were 6 and 26,

respectively). Our results and algorithms on degree-bounded

minimum spanning trees are of significant independent theoret-

ical interest [39] and settle several open issues in complexity
theory.

2

The rest of the paper is organized as follows. In Section
II we review the IHS method. Section III outlines our more

efficient implementation of u1S, and Section IV describes a

variant of IIS with enhanced performance. Section V gen-
eralizes IIS to three dimensions and proposes an efficient

method for three-dimensional MST-maintenance. Section VI

proves tight bounds for the maximum MST degree in two and

three dimensions under the Manhattan metric and discusses the

implications of our results to a problem in complexity theory.
Section VII outlines the parallel implementation, and Section
VIII presents extensive simulation results regarding perfor-
mance, running times, and parallel speedups. We conclude in

Section IX with directions for further research. A preliminary

version of this work appeared in [3] and in [4].

Il. REVIEW OF THE ITERATED I-STEINER METHOD

We begin with a review of the Iterated 1-Steiner method

of Kahng and Robins [28]. For two pointsets P and S,

we define the MST savings of S with respect to P as

AMST(P, S) = cost(MST(P)) - cost(MST(PUS)). We use

H(P) to denote the set of Hanan Steiner point candidates (i.e.,
the intersections of all horizontal and vertical lines passing
through points of P). For a pointset P, a I-Steiner point

x c H(P) maximizes AMST(P, {x}) > 0. The IIS method

repeatedly finds 1-Steiner points and includes them into S. The
cost of the MST over P U S will decrease with each added

point, and the construction terminates when there is no x with
AMST(P U S. ax}) > 0. Although a Steiner tree may contain

at most n - 2 Steiner points [18], IIS may add more than

n - 2 Steiner points; therefore, at each step we eliminate any

extraneous Steiner points having degree 2 or less in the MST

over P U S. Fig. 3 illustrates a sample execution of Il S. and

Fig. 4 describes the algorithm formally.
Although a single I-Steiner point may be found in 0(n2)

time using complicated techniques from computational geom-

2 Robins and Salowe [39] investigate the maximum MST degree for higher

diiiensions and other L, norms, and relate the iiiaxiiuui MST degree to the

so called "Hadwiger" numbers.
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(b)

(d) (e)

Fig. 3. Execution of Iterated 1-Steiner (II S) on a 4-pin net. Note that in step
(d) a degree-2 Steiner point is formed, and is eliminated from the topology.

Algorithm Iterated 1-Steiner (IIS) [28]

Input: A set P of n points
Output: A rectilinear Steiner tree over P

While T = {x e H(P)l AMST(P U S, {s}) > O} 3 i 0 Do

Find x E T with maximum AMST(P U S, {x})

S - S U {j}
Remove from S points with degree < 2 in ATST(P U S)

Output MST(P US)

Fig. 4. The Iterated I Steiner algonthm.

etry [17], [28], such methods suffer from large constants in

their time complexities, and they are notoriously difficult to

implement. Thus, a batched variant of IIS is usually favored

that efficiently adds an entire set of "independent" Steiner

points in a single round, thereby affording both practicality

and reduced time complexity [28], [38].

Following Hanan's result, for each candidate Steiner point

£ E H(P) the Batched 1-Steiner (BIS) variant computes

the induced MST savings AMST(Px{}). Next, we select

a maximal "independent" set of Steiner points, where the

criterion for independence is that no candidate Steiner point

is allowed to reduce the potential MST cost savings of any

other candidate. More formally, a set S of Steiner points is

independent if AMST(P, S) > AEZs AMST(P, {x}). The

weight of set S is AMST(P, S), and our goal is to find an

independent set of maximum weight; the Steiner points in that

independent set are grouped together during a round of B IS.

Using a reduction from the NP-complete problem of finding

a maximum independent set in a graph, it is easy to show that

our maximization problem is NP-complete also, even if the

independent sets obey the "inheritance property," one of the

axioms for matroids (see Cormen et al. [ 11]). Our independent

sets do not necessarily obey the inheritance property or the

exchange property for matroids. Nevertheless, we can use a

greedy approximation, described in Fig. 5, to approximate the

weight of a maximum independent set. Note that the greedy

algorithm would find a maximum independent set if the subset

system was a matroid. This approximation is efficient and

seems to work well in practice; it would he interesting to

prove nontrivial performance bounds.
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Algorithm Batched 1-Steiner (BIS) 1281
Input: A set P of n points
Output: A rectilinear Steiner tree over P

While T ={ p H(P)fc MST(P, {r}) > O} =S 0 Do
S-=t0
For x E {T in order of non-increasing AMST} Do

If AMST(P U S. {x}) > AAYSi'(P, {j) Then S= U 4}

P =PuS
Remove from P Steiner points with degree < 2 in MST(P)

Output MST(P)

Fig. 5. The Batched 1-Steiner (BIS) algorithm.

Once an approximate maximum independent set S is deter-
mined, it is inserted into P and we iterate this process with
P set to P U S until we reach a round that fails to induce a
Steiner point. The total time required by BIS is Q(r0 log n)
per round (the number of rounds in practice is a small constant
independent of net size, i.e., less than 3 on average [281). The
BIS algorithm is summarized in Fig. 5.

III. A NEW, FASTER IMPLEMENTATION

In speeding up the MST-savings computations, a key ob-
servation is that once we have computed an MST over the
pointset P. the addition of a single new point x into P can only
induce a small constant number of changes between MST(P)
and MST(P U {x}). This follows from the observation that
each point can have at most eight neighbors in a rectilinear
planar MST, i.e. at most one per octant [24]. Thus, to update
an MST with respect to a newly added point x, it suffices
to consider only the closest point to x in each of the eight
plane octants with respect to x (below we show that for each
point it suffices to examine at most four potential candidates
for connection in the MST).

Thus, we have the following linear-time algorithm for
dynamic MST maintenance: connect the new point x to each
of its potential neighbors (i.e. the closest point to x in each of
the 0(1) octants around x), then delete the longest edge on
any resulting cycle. This dynamic MST maintenance scheme
reduces the time complexity of each round of BIS from
O(r4 log n) to 0(n'), a substantial savings. An execution
example of this method is given in Fig. 6, and Fig. 7 describes
it formally. Note that dynamic MST maintenance can also
be achieved in sub-linear time [14], but such methods seem
impractical due to their complicated description and large
hidden constants. A similar method was also used by Yao [451
to obtain a sub-quadratic MST algorithm in higher dimensions,
but no attempt was made to optimize the number of necessary
regions, whereas we also optimize the number of regions.

We now show that only four regions suffice for dynamic
MST maintenance, namely the four regions defined by the
two lines oriented at 45 and -45 degrees (Fig. 8(a)); we
call this the diagonal partition. We couch the discussion in
general terms so that we can later extend our terminology and
techniques to the three-dimensional case. We begin by defining
the following key property for regions and partitions:

The Uniqueness Property: Given a point p, a region R has
the uniqueness property with respect to p if for every pair of

I -- t l
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Fig. 6 Dynamic MST maintenance, adding a point to an existing MST
entails connecting the point to its closest neighbor in each octant and deleting
the longest edge on each resulting cycle (the Euclidean metric has been used
for clarity in this example).

Dynamic MST Maintenance (DMSTM)
Input: A set P of o points, 51.51 (1), a neo" point
Output: MST(P L x))
T =5fST(P)
For i = i to #regions do

Find in region R,(xi) the point p c P closest to a

Add to T the edge tp.)
If T contains a enete Then remote from T the longest edge on the cye

Output P

Fig. 7. Linear-time dynamic MST maintenance.

points t, uc E R, either dist(w, u) < dist(w.p) or dist(t'. ti;) <

dist(u, p).

We use dist(u, w) to denote the Manhattan distance between

the two points u and w. A partition of space (i.e., into a

finite set of mutually disjoint regions whose union covers

the space) is said to have the uniqueness property if each of

its regions has the uniqueness property. Clearly, any partition

scheme having the uniqueness property can be used in dynamic

MST maintenance, since each region having the uniqueness

property can contain at most one candidate for connection

in the MST. Naturally, simpler partition schemes (i.e., ones

containing a smaller number of regions) are preferable to more

complicated ones. We now prove that the diagonal partition

has the uniqueness property.

Lemma 3.1: Given a point p in the Manhattan plane, each re-

gion of the diagonal partition with respect to p has the uniqueness

property.

Proof The two diagonal lines through p partition the

plane into four disjoint regions RI through R 4 (see Fig. 8(a)).

The boundary points between two neighboring regions may

be arbitrarily assigned to either region. Consider one of

the four regions, say RI, and let a, w E R1 (Fig. 8(b)).

Assume without loss of generality that dist(u, p) < dist(w, p)

(otherwise swap u and w in this proof). Consider the diamond

D in R1 with one corner at p, and with u on the boundary

of D (see Fig. 8(c)). Let c be the center of D, so that c is

equidistant from all points on the boundary of D, and let a

ray starting at p and passing through lt intersect the boundary

of D at the point b. By the triangle inequality, dist(w, u) <

dist(w, b) + dist (bc) + dist(c, u) = dist(w.b) + dist(b,c)

+ dist(c, p) = dist(w, p). Thus, w is not closer to p than it is

to u, and the region R1 therefore has the uniqueness property.

The other three regions are handled similarly. It follows that

the diagonal partition has the uniqueness property. El

A natural question is how to determine an optimal parti-

tioning scheme for a given dimension and metric, i.e., finding

a partition scheme that contains the smallest possible number

of regions, yet still possesses the uniqueness property. The

existence of pointsets in the Manhattan plane where the MST

is forced to have degree 4 (i.e., the five points corresponding

to the center and four corners of a diamond) establishes the

optimality of the diagonal partition, in the sense that no

partition of the Manhattan plane into less than four regions

can have the uniqueness property. Section V addresses the

problem of finding an optimal partition for three-dimensional

Manhattan space.
We have shown above that in the Manhattan plane. the

degree of any particular single MST node can be made to

be 4 or less. But note that this does not imply that the degrees

of all nodes can be made 4 or less simultaneously, since

decreasing the degree of one node can increase the degree

of neighboring nodes. Thus, it is not immediately obvious

that in the Manhattan plane there always exists an MST with

maximum degree 4; this requires additional proof as detailed

in Section VI below.

IV. A VARIANT WITH IMPROVED PERFORMANCE

At each iteration, the basic IIS heuristic uses pure greed

to select a I -Steiner point, and this may unfortunately pre-

clude additional savings in subsequent iterations. A similar

phenomenon may occur due to tie-breaking among 1-Steiner

candidates that induce equal savings. For example, in Fig. 9

we observe that an unfortunate choice for a 1-Steiner point

can interfere with the savings of future potential 1-Steiner

candidates, resulting in a suboptimal solution.

Empirical tests indicate that ties in MST savings for the

various 1-Steiner point candidates occur very often. Therefore,

in order to avoid breaking ties in ways that would preclude

possible future savings, we propose the following scheme:

when an MST savings tie occurs among a number of 1-Steiner

candidates, rather than using a deterministic tie-breaking rule,

we instead randomly select one of the I-Steiner candidates

and proceed with the execution. We then run this randomized

variant of 11S m times on the same input and select the best

solution (i.e., the least costly of the m trees produced), where

nt is an input parameter.
In order to further avoid the pitfalls of a purely greedy

strategy (i.e., getting trapped in local minima), we also propose

a mechanism that allows IIS to select a 1-Steiner candidate

if its MST savings is within 6 units from that of the best

candidate, where 6 is again an input parameter. This strategy

1354
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(a) (b) (c)

Fig. 8. The diagonal partition of the plane into four regions with respect to a point p (a) has the uniqueness property: for every two points u and it, that
lie in the same region (b), either dist(u u) < dist(u .ip) or else dist(it. w) < dist( i,p) (c).

(a)
0 0

0 0 0

Fig. 9. An unlucky tie-breaking choice for a I-Steiner point may interfere
with the savings of other potential I-Steiner candidates (a). If PI is selected
in the first iteration (b), then the MST savings of both P2 and P3 vanish
during the second iteration, yielding a suboptimal tree of cost 7 (c); on the
other hand, if P2 is selected in the first iteration, then P3 may be selected in
the second iteration, yielding an optimal tree of cost 6 (d).

Fig. 10. The Enhanced Iterated k-Steiner (ElkS) method.

would enable the acceptance of a slightly suboptimal choice
(with respect to the best immediate possible savings), with the
possibility of realizing greater savings in future iterations.

Finally, we note that performance may be further improved
if instead of looking for individual 1-Steiner points, we search
for pairs of Steiner candidates that offer maximum savings
with respect to other candidates or pairs of candidates. For
example, such an Iterated 2-Steiner algorithm (12S) will op-

timally solve the pointset of Fig. 9. Combining these three
techniques of 1) nondeterministic tie-breaking, 2) near-greedy
search, and 3) k-Stetner selection, we obtain a new Enhanced
Iterated k-Steiner (ElkS) algorithm, as shown in Fig. 10.

Note that the original IIS algorithm of Kahng and Robins
[28] (see Fig. 4) is equivalent to our new ElkS algorithm
with k = 1. rn = 1, and 6 = 0. Our ElkS scheme can also
be extended using a '"noninterfering" criterion as in [28], to

yield an enhanced batched k-Steiner (EBkS) algorithm, where
a maximal number of Steiner points are added during each
round. The time complexity of EBkS is 0(m n 2(k-1) 1T( ,
where T(n) is the time complexity of B13S. For fixed mn, EBIS
runs asymptotically within the same time as BIS, namely
0(n 3 ) per round. The EBkS method improves the quality of
the solutions at the expense of running time, allowing a smooth
tradeoff between performance and efficiency. Although EBkS
is guaranteed to always yield optimal solutions for <A: + 2
pins, its time complexity increases exponentially with k: thus,
tin order to remain within polynomial time, k must be fixed.

Finally, it was observed empirically that only a small
fraction of the Hanan candidates have positive MST savings
in a given round of BIS; moreover, only candidates with
positive MST savings in an earlier round are likely to produce
positive MST savings in subsequent rounds. Therefore, rather
than examine the MST savings of all Hanan candidates in
a given round, we may consider only the candidates that
produced positive savings in the previous round. The empirical
simulations described in Section VIII indicate that this strategy
significantly reduces the time spent dunng a round, without
degrading solution quality. We call this streamlined version of
BIS the modified batched 1-Steiner (MB IS) algorithm.

V. STEINER ROUTING IN THREE DIMENSIONS

Three-dimensional packaging is emerging as a viable VLSI
design technology [9], [20], [22]; however, most existing CAD
routing tools and techniques still implicitly address two dimen-
sions only. In contrast, the ElkS method readily generalizes
to arbitrary dimensions. We distinguish between the general
three-dimensional version of the Steiner problem and the less
general (but more realistic) multi-layer formulation, where the
points of P lie on L parallel planes. Note that the unrestricted
three-dimensional version of the Steiner problem occurs in
the limit when L = on, and the standard two-dimensional
formulation is the case [ = 1. The cost of routing between one
layer and another (i.e., using vias) is likely to be substantially
higher than staying on the same single layer (i.e., in terms of
manufacturing expense, signal propagation delay, etc.), and
this may be modeled by varying the distance between the
layers. In Section VIII, we present simulation data for several
combinations of values for L and n.

Algorithm Enhanced Iterated k-Steiner (ElkS)
Input: A set P of n points, parameters 6i >0, k > 1. and to > 1
Output: A rectilnear Steiuer tree over '
T -MST(P)
Do mn times

S-= 0
WhileC= fX C H(P) I XI < k,AMST(PLS,X) >}# 7i0 Do

Find Y E C with maximom AMST(P u S. Y)
Randomly sele-if E C with AMST(P U S, .) > AMST(1'uS S. )
S =SUZ
Remove from S points with degree < 2 in MST(P u Si

If cos(MST(IP J S) < cost(T) Then T =MST(P U S)
Output T

1 355

PI

CLT�_�n

PI(0 Fo_�� 0 P2 PI
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Our three-dimensional ElkS method may be implemented
efficiently by using Snyder's [42] generalization of Hanan's
theorem to higher dimensions. In particular, there always exists
an optimal Steiner tree whose Steiner points are chosen from
the O(ro) intersections of all orthogonal planes (i.e., planes
parallel to the coordinate axis) passing through all points in
P. The three-dimensional analog of Hwang's result suggests
that the maximum MST/MRST ratio for three dimensions is at
most 3 (this is a consequence of a more general conjecture for
higher dimensions [19]), although there is currently no known
proof of this. An example consisting of six points located in the
middles of the faces of a rectilinear cube establishes that I is

a lower bound for the worst MST/MRST performance ratio in
three dimensions. Thus, we expect the average performance of
our heuristics, expressed as percent improvement over MST,
to be higher in three dimensions than it is in two dimensions;
this is indeed confirmed by our experimental results in Section
VIII. Also as expected, the average performance improves as
the number of layers L increases.

As noted above, once we have computed an MST over a
pointset P, the addition of a single new point p into P can
only induce a small constant number of topological changes
between MST(P) and MST(P U {p}). This follows from the
fact that in a fixed dimension, each point can have at most
0 (1) neighbors in a rectilinear MST, as noted above in Section
III. Thus, MST savings in three dimensions may be efficiently
calculated by partitioning the space with respect to the new
point p into 0(1) mutually disjoint regions Ri(p) having the
uniqueness property, namely that only the closest point to p
in each region Ri(p) may be connected to p in the MST(P).
This implies that in three-dimensional Manhattan space, linear
time suffices to compute the MST savings of each 1-Steiner
candidate.

Using similar arguments to those of Lemma 3.1, we can
partition three-dimensional Manhattan space into 14 regions,
with the uniqueness property holding for each region. Such
a partition corresponds to the faces of a truncated cube
(Fig. I I (a)), i.e., a solid obtained by chopping off the corners
of a cube, yielding six square faces and eight equilateral trian-
gle faces (Fig. 1(b)): this solid is known as a "cuboctahedron"
[34]. The 14 solid regions of this partition are induced by the
14 faces of the cuboctahedron, namely the six pyramids with
square cross-section (Fig. I l(c)) and the eight pyramids with
triangular cross-section (Fig. I1(d)). Again, points located on
region boundaries may be arbitrarily assigned to any of the
adjacent regions. We call this particular partition of space
the cuboctahedral partition, and we refer to the two types of

induced regions as square pyramids and triangular pyramids,

respectively. We now show that the cuboctahedral partition
has the uniqueness property.

Theorem 5.1: Given a point i) in three-dimensional space

under the Manhattan metric, each of the 14 regions of the cuboc-
tahedral partition of space with respect to p has the uniqueness
property.

Proof: To show the uniqueness property for the square
pyramids, consider one of the square pyramids R with respect

to p (Fig. II(c)), and let isw E R. Assume without loss
of generality that dist(u,p) < dist(w.p) (otherwise swap the

OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO 11, NOVEMBER 1994

roles of u and w in this proof). Consider the locus of points

D c R that are distance dist(u.p) from p. (Fig. I1(e)); D
is the upper half of the boundary of an octahedron. Let c
be the center of the octahedron determined by D. so that e

is equidistant from all points of D. Let b be the intersection
of the surface of D with a ray starting from p and passing
through w. By the triangle inequality, dist(w, u) < dist(w, b)
+ dist(b. c) + dist(c, o) = dist(rw, b) + dist(b, c) + dist(cp) =
dist(w.p). Thus, iw is not closer to p than it is to u, and
therefore the region R has the uniqueness property. The other
square pyramids are handled similarly.

To show the uniqueness property for the triangular pyra-
mids, consider one of the triangular pyramids R with respect
to p (Fig. 1 1(d)), and let u. C R. Assume without loss of

generality that dist(a.p) < dist(w,p) (otherwise swap the

roles of u and in). Consider the locus of points D in A
that are distance dist(up) from p (Fig. 11(f)). Let b be the
intersection of D with a ray starting from p and passing

through w. By the triangle inequality, dist(ii, o) < dist(w. b)

+ dist(bu) < dist(wbl) + dist(Lp) = dist(wp). Thus, w

is not closer to p than it is to u and therefore the region R

has the uniquenes property. The other triangular pyramids are
handled similarly. H

We thus have the following:
Corollary 5.2: Given a poin/set P in three-dimensional Man-

hattan space and an additional new point p, there exists an MST
over P U {p} where p has degree of at most 14 in the MST.

Proof: The cuboctahedral partition of space with respect
to p yields 14 regions, each possessing the uniqueness prop-

erty. This implies that for any two points inside a region, one
is closer to the other rather than to the origin; thus, only one
point inside each region is a viable candidate for an MST
neighbor of p. Therefore, the degree of p (or any other single
point) in the MST can be made 14 or less. C:

It is still an open question whether for three dimensions the
cuboctahedral partition is optimal (i.e., whether the cubocta
hedral partition has a minimum number of regions among all
partitions having the uniqueness property); we conjecture that
it is. On the other hand, we can show that 13 is a lower bound
on the maximum MST degree in three-dimensional Manhattan
Space:

Theorem 5.3: There are three-diimensional pain/sets for which
the maximum degree of any MST is at least 13.

Proof.' Consider the pointset P {(0. 0. 0),
(+100 .0 0), (0 100. 0), (0. 0. ±100), (47. 4, 49),

(-6. -49.15), (-49,8,43), (-4.47, -49), ( 49-6. -45),
(8, -49, -43), (49. 49. 2)1.

The distance between every point and the origin is exactly
100 units, but the distance between any two non-origin points
is strictly greater than 100 units. Therefore, the MST over
P is unique with a star topology (i.e., all 13 points must
connect to the origin in the MST), and thus the origin point
has degree 13 in the MST. El

A remaining open question is whether there exists a three-
dimensional pointset where the maximum MST degree is
forced to be as high as 14. Given that each point can connect
to at most 14 neighbors in the MST, we obtain the fol-
lowing linear-time algorithm for dynamic MST maintenance
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(a) (b)

(c) (d)

* wo -.

......... , ll......:\ :4,

(e) (f)

Fig. I1. A truncated cube (a)-(b) induces a three-dimensional cuboctahedral space partition where each region has the uniqueness property. The 14
induced regions consist of six square pyramids (c) and eight triangular pyramids (d). Using the triangle inequality, the uniqueness property may be

shown to hold for each region (e)-(f).

(DMSTM) in three dimensions: connect the new point in VI. ON THE MAXIMUM MST DEGREE

turn to each of its < 14 potential neighbors, then delete
the longest edge on each resulting cycle. This is a three- As noted above, Lemma 3.1 does not imply that in the

dimensional analog of the two-dimensional method given in Manhattan plane the maximum MST degree is 4, nor does

Figs. 6 and 7. Corollary 5.2 imply that the maximum MST degree in three
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Algorithm Parallel Iterated -Steiner (PI1S)
Input: A set P ole go its (assuming p processors available)
Output: A Sr uilineas Stenes iree tor P
Master Process:
H -0
Do Forever

For i =tI to p D.
Send the i" pie-sor P U S and Offl different H.-an candidates frto H(P)

Fosi- I topD.
Receive Ioo bhe 7th grocessoi the candidate ,i e ith the largest \MST

Let a be th h whith thhe Iargest AMMST(P Li SI (hi) to oal 1 I< < p
If AMST(f S,. {}) > 0 Then

Remove fern S points with degree < 2 in MUS el U S)
Else Output MST(P S anid Stop

Slave Process:
Receive fern the nster pie.e.s P J S aed s of It a .n .ordidoies hl... /1h
Return th candidates h, sith tie largest AITtST(P US.}hi)

Fig. 12. The Parallel Iterated 1-Steiner algorithm. The master process sends
each one of p slave processors 1 of the Hanan candidates: a slave process
then determines the candidate with the best AMST and returns it to the master
process. Out of all the p candidates received, the master process then uses
the candidate with the highest MST savings for inclusion into the pointset.
To further increase the parallel execution speed, slower processes are sent
smaller sets of candidates, in proportion to their observed speed (for clanty,
this simple load-balancing scheme is not shown in the above template).

dimensions is 14, since reducing the MST degree of any one

point may increase the MST degree of other points. It turns

out, however, that ties for connection during MST construction

may always be broken appropriately so as to keep the overall

MST degree low. We begin by defining a strict version of the

uniqueness property:

The Strict Uniqueness Property: Given a point p, a space

region R has the strict uniqueness property with respect to

p if for every pair of points u,7'tf E R, either dist(wv, u) <

dist(w, p) or dist(u, w) < dist(u, p).

Note that if a region has the strict uniqueness property it

also has the (nonstrict) uniqueness property. Clearly each d-

dimensional region satisfying the strict uniqueness property

may contribute at most 1 to the maximum MST degree. We

now prove that by breaking ties judiciously, the maximum

MST degree can be made no larger than the number of d-

dimensional regions in a partition having the strict uniqueness

property:

Theorem 6.1: Given a partition of d-dimensional space into
r regions, and given that only r' < r of these regions are d-
dimensional and have the strict uniqueness property (the rest of
the r -r' regions being lower-dimensional, and are not required
to have the uniqueness property), then the maximum MST degree
in this space is r' or less.

Proof: Given a pointset P. perturb the coordinates of

each point by a tiny amount so that the lower-dimensional

regions with respect to each point do not contain any other

points. This is always possible to do, and yields a new

perturbed pointset P'. Clearly, interpoint distances in P' only

differ by a tiny amount from the corresponding interpoint

distances in P, and therefore the cost of the MST's over

P' and P can differ by only a similarly tiny amount, which

can be made arbitrarily small. But the MST over P' has

maximum degree r', since only the r' d-dimensional regions

of the partition are nonempty with respect to the points of P'.

We now use the topology of the MST for P' to connect the

corresponding points of P; this would induce an MST over P

having maximum degree r'. H
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Applications of this technique to 2 and 3 dimensions are
immediate:

Corollary 6.2: Every pointser in the Manhattan plane has an
MST with maximum degree 4.

Proof Modify the diagonal partition into a strict di-
agonal partition having a total of eight regions: four two-
dimensional open wedges (i.e., not containing any of their
own boundary points), and four one-dimensional rays (i.e.,
the boundaries between the wedges). By arguments similar to
those of Lemma 3. 1, each of the open wedges possesses the
strict uniqueness property, and thus by Theorem 6.1 points
lying on the boundaries between wedges can be perturbed into
the interiors of the wedges themselves. Thus, the maximum
MST degree given such a strict diagonal partitioning scheme
is 4. H

The bound of 4 on the maximum MST degree in the
Manhattan plane is tight, since there are examples that achieve
this bound (e.g., the center and vertices of a diamond). Note
that the best previously known upper bound for the maximum
MST degree in the Manhattan plane was 6, as was stated
without proof in [24].

Corollary 6.3: Every pointset in three-dimensional Manhat-
tan space has an MST with maximum degree 14.

Proof: Modify the cuboctahedral partition into a strict

cuboctahedral partition having a total of 38 regions: 14 three-
dimensional open pyramids (i.e., 8 triangular pyramids and
6 square pyramids, each not containing any of their own
boundary points), and 24 two-dimensional regions (i.e.. cor-
responding to all the boundaries between the pyramids). By
arguments identical to those of Theorem 5. 1. each of the open
pyramids possesses the strict uniqueness property, and thus by
Theorem 6.1, points lying on the boundaries between the 14
pyramids can be perturbed into the interiors of the pyramids
themselves. Thus, the maximum MST degree given such a
strict cuboctahedral partition scheme is equal to the number
of three-dimensional regions of the cuboctahedral partition, i.e.
14. C]

While Theorem 5.3 gives an example that illustrates that
the maximum MST degree in three-dimensional Manhattan
space can be as large as 13, it is still open whether there exist
examples in three-dimensional Manhattan space that force an
MST degree of 14. Note that the best previously known bound
for the maximum MST degree in three-dimensional Manhattan
space was 26, as implied by a result from the theory of sphere
packing [12), [441.

Our results regarding MST bounds also settle some open
questions in complexity theory, since it is known that the prob-
lem of finding a degree-bounded MST is NP-complete, even
when the degree bound is fixed at 2 (yielding the Traveling
Salesman Problem) or at 3, as shown by Papadimitriou and
Vazirani [36]. Corollary 6.2 implies that the degree-bounded
MST problem in the Manhattan plane is solvable in polynomial
time when the degree bound is fixed at 4 or more, since
we have shown how to efficiently find an MST that meets
these maximum degree constraints; this was previously an
open problem. Similarly, Corollary 6.3 implies that the degree-
bounded MST problem in three-dimensional Manhattan space
is solvable in polynomial time when the degree bound is fixed
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Fig. 13. An example of the output of Batched I-Steiner (BIS) on a random

300-point set (hollow dots). The Steiner points produced by BIS are denoted

by dark solid dots.

at 14 or more (since we have shown how to efficiently find an

ordinary MST that meets such maximum degree constraints).

Monma and Suri [35] used a similar perturbation argument to

prove that for any poinset in the Euclidean plane, there is an

MST with maximum degree of 5.

VII. A PARALLEL IMPLEMENTATION

Since a typical CAD environment consists of a network of

workstations, exploiting the available large-grain parallelism

provides a natural and effective means of improving the

performance of CAD algorithms. We therefore propose a

parallel implementation of the Iterated 1-Steiner method that

achieves high parallel speedups. The IIS algorithm is highly

parallelizable because each one of p processors can compute

independently and in parallel the MST savings of 0( r)

of the Steiner candidates. In our parallel implementation, all

processors send their best candidate to a master processor,

which selects the best of these candidates for inclusion into the

pointset. This procedure is iterated until no improving candi-

dates can be found (the B IS algorithm parallelizes similarly).

We used the Parallel Virtual Machine (PVM) system [5],

[431 to control remote processors. PVM is a widely available

software package that allows a heterogeneous network of

parallel and serial computers to be used as a single com-

putational resource. The PVM system consists of two parts,

a daemon process, and a user library, providing mechanisms

for initiating processes on other machines and for controlling

synchronization and communication among processes. Using

PVM as a framework for parallelism alleviates the need to

hand-code the synchronization and communication protocols

from scratch; for the specific details on how PVM manages

the underlying system resources, see [5], [431.

Each of the processors in our parallel implementation is
a SUN workstation, communicating over an Ethernet. The

master processor sends to the p available processors equal-

sized subsets of the Hanan candidate set H(P); each slave

process then determines from among the candidates that it

received the one with the best AMST and returns the winner

to the master process. Out of all the p candidates received, the

master process then determines the candidate with the highest

MST savings and includes it into the pointset. This parallel

version of the Iterated 1-Steiner algorithm is shown in Fig. 12.

To further increase the parallel execution speed, we im-

plemented a load-balancing scheme in order to mitigate any

significant variations that may exist between the speeds of dif-

ferent processors (due to a heavy CPU load, the underlying ar-

chitecture type, swapping behavior, etc.) To this end, the wall-

clock response time of each processor is tracked. If any indi-

vidual processor is determined to be considerably slower than

the rest, it is henceforth given smaller tasks to perform (i.e., it

is sent less Hanan candidates, in an amount proportional to its

observed speed). If a processor does not complete a task within

reasonable time, it is sent an abort message and its computation

task is reassigned altogether to the fastest idle processor avail-

able. This prevents individual slow (or crashed) processors
from seriously impeding the speed of the overall computation.

VIII. EXPERIMENTAL RESULTS

We have implemented both serial and parallel enhanced

versions of the BIS algorithm, using C in the SUN workstation

environment. Our code is available upon request. The serial

B IS heuristic has been benchmarked on up to 10000 instances

of each net size. The instances were generated randomly by

independently choosing the coordinates of each point from a

uniform distribution in a 10000 x 10000 grid; such instances

are statistically similar to the pin locations of actual VLSI nets

and are the standard testbed for Steiner tree heuristics [27]. As

is the convention in the Steiner approximation literature [27],

we evaluate the performance of our method by comparing

the cost of our solutions to the MST cost over the same

inputs. Performance results are summarized in Table I and are

illustrated in Fig. 14(a)-14(c). BIS yields Steiner trees with

cost averaging almost 1% less than the MST cost.3

We timed the execution of the serial and parallel versions

of B I S, using both the naive 0(n' log n) implementation [28]

and our new 0(n 3 ) implementation, which incorporates the

efficient, dynamic MST maintenance as described in Section

III. We observe that the number of rounds required by BIS is

always very small, and may therefore be considered a constant;

for example, when n - 300, the average number of rounds is

only about 2.5, and we never observed BIS to require more

than 5 rounds.
The parallel implementation uses nine SUN 4/40 (IPC)

workstations, with a SUN 4/75 (Sparc2) as the master proces-

sor. The improvements in running time are dramatic: for n =

100, our fast serial implementation is 247 times faster than the

naive serial implementation (as measured by CPU time), and

3Recently, other Steiner heunstics with performance approaching that of

IIS were proposed by Borah, Owens. and Irwin 181, Chao and Hsu [10], and

by Lewis, Pong, and VanCleavc [33].
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TABLE I
BATCHED 1-STEINER (B IS) STATISTICS: THE PERFORMANCE FIGURES DENOTE PERCENT IMPROVEMENT OVER MST COST. ALSO GIVEN ARE STATISTICS REGARDING

THE NUMBER OF STEINER POINTS PRODUCED, THE NUMBER OF ROUNDS, AND THE NUMBER OF STEINER POINTS PRODUCED IN EACH ROUND

Batched 1-Steiner (H1S) Performance Results
Performance Number of SPs Number of rounds Ave #SPs per round

n Min Ave Max Min Ave Max Min Ave Max 1 2 3 4
4 0.00 8.83 27.19 0 2.10 4 0 0.97 2 1.14 0.37 0.00 0.00
5 0.00 9.35 23.59 0 2.59 5 0 1.08 3 1.51 0.46 0.06 0.00
6 0.00 9.83 25.99 0 3.09 6 0 1.15 3 1 91 1.42 0.03 0.00
7 0.41 9.82 23.44 2 3.52 7 1 1.17 3 2.32 0.59 0.02 0.00
8 0 00 9.92 20 93 0 3.99 8 0 1.23 3 2.73 0.96 0.17 0.00
9 1.04 10.07 20.62 2 4.48 7 1 1.31 3 3-12 1.16 0.19 0.00

10 1.26 10.24 20.03 3 4.95 8 1 1.34 4 3.56 1.11 0.10 0.01
11 2.01 10.32 20.81 3 5.42 10 1 1.33 3 4.01 1.01 0.03 0.00
12 1.85 10.32 18.83 2 5.88 10 1 1.43 4 4.31 1.28 0.09 0.00
13 2.06 10.27 19.74 3 6 39 11 1 1.46 4 4.80 1.23 0.09 0.04
14 3.01 10.28 19.56 3 6.82 11 1 1.48 4 5.18 1.25 0.14 0.07
15 2.78 10.41 18.10 4 7.27 12 1 1.49 4 5.59 1.33 0.12 0.00
16 2.47 10.42 18.45 4 7 76 13 1 1.52 4 6.01 1.33 0.13 0.00
17 3.00 10.58 17.94 5 8.33 14 1 1.56 3 6.50 1.38 0.27 0.00
18 3.62 10.46 18.19 o 8.70 14 1 1.58 4 6.85 1.52 0.26 0.01
19 3.71 10.37 18.05 5 9.14 14 1 1.61 5 7.21 1.58 0.10 0.01
20 4.35 10.39 17.90 5 9.63 11 1 1.60 4 7.68 1.58 1.00 0.00

30 6.49 10.64 14.73 9 13.47 20 1 1.85 4 11.61 1.75 0.21 0.01
40 6.28 10.68 14.55 12 18.10 26 1 1.98 5 15.95 2.47 0.23 0.00
50 7.25 10.72 15.28 15 23.70 33 1 2.04 4 19.97 2.78 0.56 0.00
60 8.67 10.77 14.29 19 27T13 37 1 2 12 5 23.88 3.81 0.58 0.00
70 7.80 10.82 13.55 23 32.26 42 1 2.17 4 28.02 3.52 0.62 0.00
80 7.34 10.83 12.88 28 36.99 50 1 2.20 4 32.07 4.66 0.64 0.01
90 7.99 10.84 13.52 32 4161 56 1 2.24 4 36.18 5.14 1.17 0.04
100 8.78 10.86 13.60 35 46.30 59 1 2.25 4 40.21 5.55 1.31 0.01
110 8.04 10.86 12.86 40 30.98 67 1 2.28 4 44.96 5.77 0.53 0.08
120 7.83 10.86 12.62 44 o5.59 68 1 2.29 5 48.64 7.15 1.02 0.00
130 8.25 10.85 12.63 47 60.03 73 1 2.34 4 52.87 7.22 0.82 0.00
140 8.45 10.84 12.57 51 64.97 79 1 2.38 5 56.94 8.12 1.07 0.22
150 9.07 10.92 12.63 57 69.83 87 1 2.39 4 59.92 8.28 1.13 0.00
200 9.39 10.97 12.32 79 93 10 107 2 247 4 80.04 11.68 1.48 0.50
250 10.26 10.98 11.68 103 116 32 131 2 2.57 4 100.00 14.53 0.82 0.00
300 9.76 10.97 12.18 131 137.67 145 2 2.50 4 121.85 16.85 1.33 0.00

our parallel implementation running on 10 processors is 1163
times faster than the naive implementation (as measured by
elapsed wall-clock time). It should be noted that for the serial
implementation, the CPU time and the elapsed wall-clock

time are essentially identical, since we report averages over
hundreds of cases, and all of our algorithms are CPU-bound

(i.e., swapping and 1/0 time is negligible). Detailed execution
timings for various cardinalities are given in Table II. and
are illustrated in Fig. 14(d). Note that most of the observed

speedup over the naive implementation stems from the fast
serial implementation using the dynamic MST update scheme
(i.e., as described in Section III). The parallel implementation
only adds a speedup factor somewhat less than the number
of processors/workstations available (10 SUN's in our case).
The serial speedup grows as a function of the net size, since
our new serial implementation is asymptotically faster than

the naive serial implementation.
As noted by Ganley and Cohoon [15], most nets in actual

VLSI designs have a small number of pins (i.e., less than 10).
It is therefore of particular interest to observe the behavior

of our algorithms on small nets. Even for small pointsets, our
new implementations are considerably faster than the previous,
naive ones; for example, for n = 5, the new serial BIS is on
average twice as fast as the naive implementation, while for

n = 1il it is 7 times as fast. Our parallel speedup increases
with problem size, reaching about 7.2 for n = 250 running
on 10 processors. This enables us to examine the asymptotic
behavior of B IS for much larger pointsets than was previously
possible: the output of Batched 1-Steiner (B1lS) for a random
pointset of size 300 is shown in Fig. 13.

We have also implemented the EMkS and the EBkS algo-
rithms, and the following algorithms were tested side-by-side
on the same inputs:

* BIS-The Batched 1-Steiner method, with the code fur-
ther streamlined for speed;

* MBIS-The "modified" B IS variant that uses only win-
ning candidates from previous rounds;

* EBIS-The enhanced version of BIS:
* 12S-The Iterated 2-Steiner algorithm;
* EI2S-The enhanced version of 12S;
* META(B1S,MB1S)-The metaheuristic over heuristics

BIS and MB 1S, i.e., the best solution found by either of
these heuristics;

* META(EB1S,t2S,EI2S) -The metaheuristic over EB I S,
12S, and E12S;

* META(BlS,MBlS,EBlS,12S,EI2S)-The metaheuristic
over BOS, MBIS, EBIS, 12S, and E12S;

* OPT-The optimal Steiner tree algorithm [40].

1 360
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Fig. 14. (a) Average performance of BIS, shown as percent improvement over MST cost. (b) Average number of rounds for BIS. (c) Average number of

Steiner points induced by BIIS (vertical bars indicate the range of the minimum and maximum number of Steiner points added). (d) Average execution times

(in elapsed wall-clock seconds) for the serial and parallel BIS, using both the naive MST implementation and our new incremental MST maintenance scheme,

over a wide range of net sizes; note that for the seinal versions, the elapsed wall-clock times are essentially the same as the CPU time, since the benchmarks

represent average inning times over hundreds of cases (the algorithms are CPU-bound, so that swapping and 110 have negligible effect on the running time).

Recall from the discussion at the end of Section IV that MB I S

is a more efficient version of BIS, since it only examines

a fraction of the Hanan candidates in a typical round (i.e.,

only the ones with positive MST savings in the previous

round). OPT is the fastest known optimal rectilinear Steiner

tree algorithm [40]. All variants have been benchmarked on up

to 10000 random instances of each net size. Fig. 15(a) shows

the performance comparison of MB IS, E12S, and OPT, while

Table III gives more detailed performance data. We observe

that the average performance of our methods is extremely close

to optimal: for n - 8, E12S is on average only about 0.11%

away from optimal and solutions are optimal in about 90%

of the cases. Even for n = 30, MBIS is only about 0.30%

away from optimal, and yields optimal solutions in about one

quarter of all cases. Table IV tracks the percentage of cases

where the various heuristics find the optimal solution, and this

data is also depicted in Fig. 15(b).

Table V gives the average CPU times, in seconds, for each

heuristic and net size. Our most time-efficient algorithm is

MBIS, requiring an average of 0.009 CPU seconds per 8-pin

net, and an average of 0.375 seconds per 30-pin net. Using

ElkS (or EBkS) with values of k greater than 2 improves

the performance, but slows down the algorithm; it is easy to

see that for arbitrary k, ElkS (EBkS) always yields optimal

solutions for <k + 2 pins, but has time complexity greater by

a factor of n2(k-1) than that of EBIS. This allows a smooth

tradeoff between performance and efficiency. However, the

performance of the EBkS algorithm with k = 2 is already so

close to optimal, that in most applications increasing k further

is not likely to justify the incurred time penalty.

In three dimensions, we observed that the average perfor-

mance of EBIS approaches 15% improvement over MST cost

and the performance increases with the number of planes L.

It is not surprising that the average savings over MST cost

in three dimensions is higher than it is in two dimensions,

since the worst-case performance ratio in three dimensions

is higher also (i.e., 3 for three dimensions versus 3 for two

dimensions). Fig. 15(c) shows the performance of our method

in three dimensions for various values of the number of parallel

planes L, including the unrestricted three-dimensional case,

corresponding to the limit when L approaches oc. Table VII

gives statistics for three dimensions on the number of Steiner
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Fig. 15. (a) Average performance iii two dimensions of E12S, B IS. and OPT; note that E12S is only 0.25%/ (or less) away from optimal. (b) Percentage of all
cases when the heuristics find the optimal solution (note that E12S yields optimal solutions a large percentage of the time). (c) Average performance of EBIS
il three dimensions for various values of L =number of parallel planes. (d) Average number of Steiner points added by BIS in three dimensions for L = oc.

points induced by BIS (see Fig. 15(d)), as well as on the

number of rounds that occur in BIS before termination. As
is the case in two dimensions, the number of rounds for BiS
in three dimensions is on average very small. Table VI gives
more detailed performance data. In all cases, the L parallel
planes were uniformly spaced in the unit cube (i.e., they were
separated by G units, where G - 10000 is the gridsize).
Unfortunately, the OPT algorithm of Salowe and Warme [40]
does not easily generalize to higher dimensions; thus, we were
not able to compare our three-dimensional version of EB IS to
optimal.

IX. CONCLUSION

We have proposed enhanced serial and parallel implemen-
tations of the Batched I-Steiner heuristic (BiS), achieving
speeds of up to three orders of magnitude faster than previous
implementations. Moreover, the speedup increases with the
number of points. This has enabled the testing of BIS on
several hundred points for the first time, and we observed that
for such large pointsets BIS consistently improves lI5c over
MST cost.

Next, we enhanced BlS by using a near-greedy approach

with random tie-breaking. Our method enjoys the same asymp-
totic time complexity as B IS, yet offers improved average per-
formance. We also allow performance increase at the expense
of running time, creating a smooth tradeoff between solution
quality and computational efficiency. Extensive simulations
indicate that for typical nets, the average performance of
our methods is less than 0.25% away from optimal, and our
solutions are actually optimal for up to 90% of uniformly
distributed nets of typical sizes.

We generalized B 1S and its variants to three dimensions, as
well as to the case where all the pins lie on L parallel planes,
which arises in, e.g., three-dimensional VLSI and multi-layer
routing. Our methods are highly parallelizable and generalize
to arbitrary weighted graphs; thus, they are suitable to support
a multi-layer global router, where obstruction and congestion
considerations affect routing. Since Steiner tree construction
is a computationally expensive component of global routing,
our techniques suggest the feasibility of a "Steiner engine" for
efficiently computing near-optimal Steiner trees.

We reduced the running time of our algorithms through
a dynamic MST-maintenance scheme, and we proved that
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TABLE 11
EXECUTION TIMES FOR BATCHED 1-STEINER (BIS) THE SERIAL EXECUTION

TIMES ARE GIVEN IN CPU SECONDS, WHILE THE PARALLEL
EXECUTION TIMES ARE ELAPSED WALL CLOCK TIMES BOTH THE

SERIAL AND PARALLEL VERSIONS WERE TESTED WITH THE OLD NAIVE
IMPLEMENNIAIION, AS WELL AS THE NEW FASTER IMPLEMENTATION THE

OVERALL GAIN OS THE RATIO OF THE OLD SERIAL TIME TO THE NEW
PARALLEL TIME. THE PARALLEL IMPLEMENTATION USES 9 SUN 4/40 (IPC)

WORKSTATIONS, WItH A SUN 4/75 (SPARC2) AS THE MASTER PROCESSOR

n
4
3

6

7

9
10
12
] 4
1G
18
20
30
50
50
60
7n

80
90
100
120
140
160
180
200
250
300

Batched Sterio PB verage Execulion Speeds (PU Second' I

Serial Par. l 1d
old 11l ratio
A B A.B

0.01
0.02
0.04
0.06
0.00
0.12
0.16
0.26
0.44
0.61
0.81
10.9
3.80
8.59
16.1
28.1
41.9
62.2
87.5
114
232
:344
376
571
801
1528

1 00
2.00
2.50
3.33
4.11
5.25
6.30
" 177
10.66
13.77
18011
22.08
39 74
60.77
70.19
97.69
131.74
166.40
176.57
246.84

1800

0.04

0.10

0.20
037
0 63
1 02
2028
4.69
8040
14.67
24.07
151
522
1130
274;
5520
103,50
1.n4,50
28140

o.d nle Itio
C_ DB C -/B

0.20
0.21
0.21
0.27
0.39
0.51
I .06
I 57
2.07
4.14
5 5
40.2
I26
200
753
1002
2084
2582
4748

0.19
0.20
0.22
0 24
0 27
0.29
0.35
0.41
0.47
0.57

0 61
l.79
3.23
5.03
8.03
12.1
17.1
16.5
24 2
40.5

79.6i7
103
129
212

447

1.05
1 .05
1.09
1.13
1.14
1.76
3.03
3.83
4.40
7.26
9.13

22.46
39.01
39.76
93.77
82.81
121 .7
156.48
196.20

old new 0 il*
A/C RD A/D

007
0.06
0.20
0.48

0.51
1.37
1.62
2.00
2.15
2.99
4.06
3.54
4.32
3l.75
4.11
56;

3,65
5.51
4.97
4.97
5.93

0 07
0.11
0.20
0.27
0 38
0.44
0..55
0.74
1.07
1.30
142
179
2.12
2.66
320
3 50
1 .46
3.64
5.30
4.71
5.73
5.87
4.72
5.54
6.21
7.21
4.03

0.07
0.21
0.;'3
0.91
1.54
2.'33
3.52

6.51

17.87

25.73

39.46

84.36

161.61

221.65

34 1.84

456.20

605.26

936 36
116.81

TABLE HI
PERFORMANCE STATISrlcS: THE FIGURES DENOTE

AVERAGE PERCENT IMPROVEMENT OVER MST COST

Average Performance Results in Two Dimensions ('c Improvement over 5MST)
# ( (21 (3) (4) 5) Meta Meta Set.

n cts BIS MB1S EBiS 12S E12S (1-2) (35) (1-5) OPT
4 10000 851 .54 8.54 8.54 8.54 8.54 8.54 854 3 54
o 10000 9.34 9 34 9.39 9.44 9045 9.37 9.(6 9046 9.47
6 10000 9.79 9.78 9.85 9 90 9 92 9 82 9093 993 9.97,
7 5000 1004 100)3 1012 16.15 10.19 10.08 10.21 1021 10.27
8 5000 1006 100.0 10.15 10.17 10.22 10.11 10.24 10.24 10.33
9 5001) 10.16 10.14 10.25 10.27 10.33 10.20 10.34 10.34 10.47
160 5000 19 1 0.16 10.27 10.

2
8 1034 10.22 10.36 10.36 10.52

12 5000 10.24 10.24 10.34 10.33 1039 1029 10441 1HA1 I 1.5R

11 0000 10.33 10.33 10.42 10.40 1047 1037 10.49 1049 10.70

16 5000 10.33 10.32 10.42 10.40 10.47i 10.37 10.49 10.49 10.73
18 4000 10.51 10 51 10.61 10.58 10.66 10.56 10.67 10.67 10.93

20 3000 10.51 [IH51 loo.t 10.56 10.64 10.5. 10.660 066 10.92
25 2000 10.47 10.48 10.07 10.53 10.61 10.52 10.62 10 62 10.90
:30 1100 10.45 10.59 10.76 1055 10.62 10.51 10.63 1063 10.89

50 500 10.89 10.89 10.99 10.03 11.03 10.93 1 .04 11 05

[70 00 1 0.'] 1077 10.66 1086 1080 1091 1091

under the Manhattan metric: 1) in two dimensions we can

always find an MST with maximum degree 4; and 2) in
three dimensions we can always find an MST with maximum
degree 14. The best previously known bounds for two and
three dimensions were 6 and 26, respectively. These results
were used to decrease the running times of our algorithms,
and moreover they have independent theoretical significance;
for example, our bounds on the maximum MST degree were
used to settle an open problem in complexity theory [39].
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TABLE IV
OPTIMALITY PERCENTAGES: FIGURES DENOTE THlE PERCEN I OF THE CASES

WhERE THE VARIOUS HEURISTICS FOUND THE OPTIMAL SOLUTION

Pcrcnt o theCd9O Whe Sovton aptimal
(I) i2) (3) () () Mt eaMt

n-nts BIS MBIS EBIS 12S ES 2 ( ; (I) OP
*1 10000 149.0 4020 6 00.00I3 co 00 40 1.3 002 1006 10000 94.29 93.96 96-53 984 sn ;3 9.11 1 J2 0"ooo

0 30 90 34 20 U 93168 4310 304, 4100 5v33 o7.2 10000

20266 10 10441 31 40 3500 140.9 430104

3 00 8 w20 84 7 15 89 9 4 0 40 11 90 4 0 4 10000
81 000 70 22 78.707 85.26 84373 0.107 '03 00 0268
916no 75.80 703 88 82 20 0372 0. 50 007, 10.12 0400

1603 01I .4 0. 00 027 14461.6807

20 so 72103 70 .144 790.32 77lo.0 092 7 23ns84.04 24.49 4 oo 1
12 5000 0320 6194 13 20 40.7709768 9 700 72 70204 13.06

300 'I03 09 0 01 0.94 100. 102 490

4 U 5865.73 66.69 62 R4 70, 73 62.3l 723 233 oo
s50 n 3 36 49.92 60.17 54.1 763092 . 4.4 60 73 084 7: lIS 4 00 44.90 45 02 55 6.S 49.33 .8 49.45 61.02 61 02 lo OQ

20 300 42 87 42.00 53. 20 45.70 55 47 47 007 1823 ss.23 6085 o25 2000 31 25 31 70 41.45 34.15 44.3 356 59 4.0loo

30 100) 27.oo 26.00 41.00 32 0o45 en 3]0U 47, 0 47 00 100.00

TABLE V
AVERAGE EXECUTION TIMES, IN CPU SECONDS. FOR EACH OF THE HEURISTICS

average CoT tEle Per Net CPU recon soet
-(1) (2) (3) (4) Meta Meta.et

n BIS MB1S EBIS 32S EC2S 7 C2) (3-5) (1-5) OPT
4 0.002 91 92 001 0.072 0.003 0.127 0 130 0.006
5 0.004t 0.002 0.107 0.003 0.068 O.O[16 0.178 0.184 0.010
6 0.006 0.006 4 0.006 0.128 01010 0.317 0328 0.018
7 0.009 0.006 0.287 0.012 0.231 0.015 0.530 0.545 0.031
8 0.013 0.009 0.432 0.019 0.384 0.022 0.83oi n 857 0.046
9 0.019 0.012 0.571 0.030 0.634 0.031 14.2 1 266 0.066
10 0.025 9.016 0.806 16 04 0.951 0.04 1.802 1844 0.090
12 0 043 0.026 1.324 0.096 1.967 0.069 3.387 1 456 4.18
14 0.066 0.041 2.127 0.180 3.623 0.107 5.930 6,037, 0.268
16 0.096 0.059 3.288 0.317 6.372 0.155 9.971 10.13 0.405
18 2 .034 O16 4212 041 .140 9.700 0.215 14.46 14.68 01774
20 0.181 0.115 6.440 0.833 15.87 0.296 23.14 23.44 1.618
25 0.341 0.220 1194 2.0150 48.09 0.561 62.08 62.64 13.88
30 0.569 0.375 1S.93 4.184 86.10 0.9,41 109.2 110.1 495.8
50 2.732 1.694 79.78 35.9 1 764.64 4426 8.80.3 884.7
70 6.661 4.236 255.4 150.3 5 668L 10.90 -604 68

TABLE VI
AVERAGE PERCENT IMPROVEMENT OF EB IS OVER MST

COST IN THREE DIMENSIONS FOR L PLANES EQUALLY SPACED
IN T(oE UNIT CUBE. THE UNRESTRICTED THREE-DIgnENSIONAL

CASE OCCURS WHFN L = cO (LAST COLUMN)

Avbeter erfo rformance bu that rns Imopre ovem t ovsc MST)
- L2 13 L=_4 L= = -0 L=14 L-20 L=-

.1 .1 9 72 _H)1 1.1106 1.2-6 10.63 10.66
4 9.7 1 6 11.14 11.80 12.33 12.39 12.17 12.01 12.57
5 10.42 11.46 12.46 1 2.48 13.12 13.26 13.48 13.45 13.61
7 10.66 12.16 IJ 07 13.24 13.95 13.91 14.19 14.20 14.23

10 10.14 12.86 I1'3,64 14 22 I1.s.54 15.33 14.26 14.34t 15.26
14 10.53 12.20 13.25 13,77 14 38 14.7 14.27 14.77 14.84
20 10.19 12.10 13.48 13.37 14.2n 14.95 14.74 14.84 14.97
30 10.33 11.23 11.92 13.21 13.82 14.52 15.02 15.04 15.24

50 10.28 10.20 11.31 13.01 13.49 14,49 15.14 15.08 15.16

Remaining open research questions include finding an
MRST heuristic with performance consistently higher than
EBIS (or MBIS), but with a significantly better running
time (note that it would not suffice to just find a heuristic with
better performance, but that runs more slowly, since increasing
the parameter k in EBkS will achieve exactly that). On the
theoretical front, it would be interesting to determine whether
the maximum MST degree in three-dimensional Manhattan
space is 13 or 14 and extend such results to higher dimensions
and to different Lp norms.
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TABLE VII
STATISTiCS REGARDING THE NUMBER OF STFINER POINTS INDUCED BY

B IS iN THE UNRESTRICTED THREE DIMENSIONAL CASE (i.e.,

L = ac). ALSO GIVEN ARE THE NUMBER OF ROUNDs ExECUTED BY

B IS. SHOWN ARE THE MINIMUM, AVERAGE, AND MAXIMUM VALUES
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