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Abstract 3. uniformity of CMP, which is used for planarization of interlayer
dielectrics (or glass, with newer shallow-trench isolation) in multi-
layer interconnect processes, depends on uniformity of features
on the interconnect layer beneath a given dielectric layer to avoid
dishing and other irregularities.

s paper, we are concerned primarily with (2) and (3). The connec-

10n to (1) — that process-induced constraints on layout should not ham-

separate optimizations related to proximity effects (i.e., OPC) —is

In very deep-submicron VLSI, certain manufacturing steps — notably
optical exposure, resist development and etch, chemical vapor deposi-
tion and chemical-mechanical polishing (CMP)— have varying effects
on device and interconnect features depending on local characteri tic%.
of the layout. To make these effects uniform and predictable, the lay yfh!
itself must be made uniform with respect to certdensityparame-

ters. Traditionally, only foundries have performed the post-processi’?l Herstood. To minimize the i  of faCturi hsi
needed to achieve this uniformity, via insertion (“filling”) or partigHd€rstood. fominimize the impact of manutacturing process physics

deletion (“slotting”) of features in the layout. Today, however, physicgln device yield, foundries imposiensityrules so that the layout be-

design and verification tools cannot remain oblivious to such foun mhetshmore unn‘o_rm. Fc;rtre]x?mple, a Ioial '“teFCS“”eCt r?e_tal Itayer
post-processing. Without an accurate estimate of the filling and sigtdnt have a requirement that everyuhox 10umwindow contain &

ting, RC extraction, delay calculation, and timing and noise analy east 3‘:“|mz‘ but no :ng_re thd"‘.‘; 79"12' 0f(;netal feﬁ_tures (1] [1?11' Many
flows will all suffer from wild inaccuracies. Therefore, future placepiogecfs a_)t/ers,llnci ml%ﬂj IV\lIJr?'Ilon an teven t m-ox,t Cb%rll dave assocl-
and-route tools must efficiently perform filling and slotting prior tged density ruies (1] [14]. lie empty areas mus €d, very

performance analysis within the layout optimization loop. We give tPﬁQde feature_s (e.g., power buses on top-layer metal) mustdsedto

first formulations of thdilling and slotting problemshat arise in lay- avoid I'ft_'pﬁ in CMP. . - .

out post-processing or layout optimization for manufacturability. Sugh 1raditionally, only foundries or specialized TCAD tools companies
formulations seek to add or remove features to a given process layef/Q@ Performed the post-processing of layout needed to achieve this

that the local area or perimeter density of features satisfies prescrifBfiormity, via insertion (*filling) or partial deletion (“slotting”) of
upper and lower bounds in allindowsof a given size. We also presen eatures in the layout. Today, however, ECAD tools for physical design

efficient algorithms for density analysis as well as for filling/slotting"d Verification cannot remain oblivious to such post-processing. With-

synthesis. Our work provides a new unification between manufactit @n accurate estimate of the downstream filling and slotting at the
dry, all the RC extraction, delay calculation, timing, noise and reli-

ing and physical design, and captures a number of general requirem - ‘ . :
g pny 9 b 9 q ability analyses will be inaccurate, leading to a broken design flow. For

imposed on layout by the manufacturing process. instance, slotting will change the cross-section of a power bus, which
1 Introduction in turn affects peak current density and reliability.

In the Appendix, we present analyses showing the extent to which
As CMOS technology advances to the 180nm generation and beyanétalfilling and slotting can affect the results of capacitance extraction
the manufacturing process has an increasingly constraining effectaonl performance analysis. Other analyses in the Appendix show that
physical layout design and physical verification. Foundry economifiing and slotting can, for the most part (and especially for the filling
dictate that process window volumes be maximized; this in turn dicase), be viewed in thgingle-layercontext. The precise locations of
tates that device and interconnect features be fabricated as predictéililglot geometries on a given layer will not significantly affect perfor-
and uniformly as possible. On the other hand, the physics of semicamance of interconnect on a neighboring layer. Rather, the dominant
ductor processing make large process windows and uniform manufeffects (coupling to dense geometries on neighboring layers, shielding
turing difficult [3] [11] [8] [4]. In particular: from farther layers, and shielding of non-adjacent same-layer coupling)
“iso-densaiem from lower bounds on area density on all layers. This enables us

1. optical interference effects in lithography can create o . ;
b grapny d.address the metal filling and slotting problems one layer at a%ime.

effects, where the exposure intensity for isolated features is
ferent from that for densely packed features; Our Contributions
2. reaction dynamics in resist development and etch, as well
chemical vapor deposition, can exhibit microloading effects wh
local variations in the density of exposed feature surface area
sult in line width or gate length variations across the chip; and

18%his paper, we give the first formulation of tlfiling and slotting
%Sblemsthat arise in layout post-processing or layout optimization for
n?anufacturability. Essentially, we seek to add or remove features to
a given process layer, such that the local area or perimeter density of
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of given size. After formally defining the filling and slotting prob- e An extremal-densityvindow is a window with either maximum
lems, we present efficient algorithms for density analysis as well as  density or minimum density over all windows in the layout. If
filling/slotting synthesis. The remainder of this section defines nota- an algorithm applies to either maximum-density or minimum-
tion and gives a general statement of the filling and slotting problem.  density analysis, we generically refer to extremal-density analy-
Then, Section 2 gives new algorithms for analysis of minimum- and  sis.

maximum-density (i.e extremal-densifywindows. All of these meth-

ods can optionally return all extremal-density windows, or all violatsiven the definitions and garameters above, we define the Filling and
ing windows, with the same time complexity needed to return a singiotting Problem as follows:

extremal-density window. Section 3 establishes performance bounds . ) ) )

for two practical approximations for the filling and slotting problem, ~ The Filling and Slotting Problem. Given a design rule-
namely, when only windows dixed dissectionsf the layout region correct geometry ok disjoint rectilinear rectangles in an

need to satisfy density bounds. Section 4 develops new algorithms for N X N layout region, a minimum feature size area and/or
synthesis of filling/slotting geometries, and we conclude by listing sev-  Perimeter density upper and lower bounidgUg,Lp and

eral directions for future research. Up, and a window sizav < n, add fill and slot geometries
into the layout while preserving circuit function and design
Notation and Problem Statement rule-correctness such that evemyx w window in the lay-

out region satisfies the lower and upper bounds on area and

We will use the following notation and definitions. . .
perimeter density.

o The input is dayoutconsisting of rectangulayeometries 2 Algorithms for Density Analysis
o c = smaller of the minimum feature width and minimum featurgefore addressing the Filling and Slotting Problem, we first develop al-
separation. The value afis typically 25 to 50 times the manu- grithms for density analysis (with respect to either area or perimeter)
facturing unit. in a given layout. Given a fixed layout and window size, we shall de-
eElermine a maximum-density and a minimum-density window (i.e., our
ﬁjl_nalysis will return extremal-density window(s)). Our density analysis
methods can repodll violations of density bounds in the layout within
the same time complexity needed to report a single extremal-density
e n = size of the layout region side. Typically, we might seas Window (see Section 2.5). We state the density analysis problem as
an integer which is about 5000- c. Note thatc does not imply follows:
that’—g is “the size of the grid”: the only grid that is guaranteed is
the manufacturing grid, which is typically 25 to 50 times smaller
thanc.

¢ w = fixed windowsize. The window is the moving square ar
over which density lower and upper bounds apply. A typical wi
dow size would bev=50.c.

Extremal-Density Window Analysis. Given a fixed win-
dow sizew and a set ok disjoint rectangles in anx n layout
region, find an extremal-densityx wwindow in the layout.

¢ k= the complexity of the original layout, i.e., the total number

of rectangles in the input. This section presents a series of algorithms for the Extremal-Density

Window Analysis problem. We first present a density analysis algo-
o La,U, = area densityjower and upper bounds expressed as reiihm with time complexityO(n?) that is strictly a function of the lay-
numbers O< Ly < Uz < 1. Eachw x w region of the layout Out size. We then develop a different algorithm with time cc_JmpIeX|ty
must contain total area of features (considered as a fractionQfk?) that is strictly a function of the number of rectangles. Finally, we
the quantityw x w) satisfying these bounds. propose an algorlthm with even faster expected runtime. Note that the
O(n?) andO(k?) time complexities are incomparable in terms of effi-
e Lp,Up = perimeter densityower and upper bounds expressegiency, since&k? can sometimes be much smaller th&n(e.g.,k = 100
as real numbers € Lp <Up < 1. In practice, the maximum andn = 10*) and at other times much larger (elg= 10° andn = 10%).
perimeter density is attained in memory cores, and the baugdsTherefore, our choice of algorithm for density analysis would depend
andUp, are set with respect to this maximum density. Considerogn the exact values ofandk, with overall time complexity of the “hy-
wx wwindow filled with as many smadi x ¢ squares as possible,prid” approach bein@(min(kZ,n?))
where the origins of the small squares are offset from each other . .
by integer combinations of the vectof8, 2c) and (2¢,0). We 2.1 ALG1: O(n?) Density Analysis
consider the total perimeter of these squares to be the maximgyy st algorithm for density analysis has time compley?), and
possible feature perimeter. Then, eack w region of the layout operates as follows
must contain total perimeter of features (considered as a fractléjn o ' )
of the maximum possible feature perimeter) satisfying the given 1. Initialize ann-nboolean arra to all 0's, and then put 1's in ar-
bounds. ray positions corresponding to areas in the layout that are covered
by thek rectangles. This takes tin@(n?).

2. Create another-narraySand initialize eaclji, j] to be equal to
the number of 1's appearing in the southwest quadrant of &ray
with respect to coordinatg, j] (i.e., §i, j] counts the number of
1's in the subarrag|1..i,1..j]). This can be done by scanniiy
one row at a time from left to right, maintaining a running sum of
30ur implementation reads in layouts from GDSII Stream format. Without loss of gen- the 1's encountered on all the rows, and storing all these partial

erality, our discussion below assumes that rectilinear geometries have been fractured into, sums into the arra$. All this preprocessing requires a total of

say, horizontally maximal rectangles. It is also possible to generalize our analyses and al- o(nZ) time.

gorithms from rectangles to trapezoids. Note that standard industry tools, such as Cadence.

Dracula, will fracture geometries into horizontal trapezoids [2]. 5 Note that this is aatisficingformulation where we seek only a feasible solution, as
4To our understanding, current foundries have not yet impbsgharea density and opposed to aoptimizationformulation where we seek a best solution. We can easily give

perimeter density boundsmultaneouslyn a given layer [14]. However, we expect thatvariant optimization formulations (e.g., insert as little metal as possible, minimize the sum

such simultaneous constraints will be required in future technologies, and we analyzeofilvindow density deviations from an ideal density, etc.). However, it appears that the

pattern synthesis for such a situation in Section 4 below. current state of technology does not yet require such formulations.

¢ Lg4,Uq = densitylower and upper bounds expressed as real num-
bers 0< Lq < Ug < 1. It turns out that most of our results and
algorithms easily apply to either the area density or perimeter
density regimes. Thus, we will generically indicate the density
bounds usind.q andUg.*
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3. After this preprocessing phase, the density of an arbitrary-si2erollary 2 Given alayout of k rectilinearly-oriented rectangles in the
w x hrectangle with its bottom-left corner located at an arbitranyx n grid and a fixed window size w, there exists & w window with
position(i, j) can be found in constant time, as follows: extremal area density that abuts layout rectangles with at least two of

its sides. 0
densityw x h rectangle afi, j))
_ i+wj+h—Si+twj]—Si,j+h+Sij Notice that a type of geometric symmetr_y/duallty is present here, in
S JH+h =S J= S 1+ S ] that layout rectangles abut tirgerior of maximum-density windows,
This formula uses the principle of inclusion-exclusion: the fourtAnd abut thexterior of minimum-density windows. Finally, a similar
term is added in the formula above since it is implicitly subtractedfgument establishes analogous results for windows having maximum
twice by the middle two terms. The technique is analogous & Minimumperimeterdensity.

efficient range tally queries in computational geometry [9]. ) . ) )
Corollary 3 Given alayout of k rectilinearly-oriented rectangles in the

In particular, the density of alD(n?) windows of fixed sizevxw Nnx n grid and a fixed window size w, there exists a w window with
can be determined i®(1) time per window, i.e., a total dd(n?) time.  €xtremal perimeter density that abuts layout rectangles with at least two
All extremal-density windows can be determined using the same tehits sides. O
nigque within the same time complexity. This method given is consid-
erably more general than is required to solve the extremal-density wth3 ALG2: O(k?) Density Analysis

dow problem, in that the preprocessing enables the future solutiong@lea|| that Theorem 1 shows that an extremal-density window must
arbitrary dynamic queries in constant time per queryaoywindow o, rectangles of the layout with at least two of its sides. We observe
sizew x h. Thus,w andh are both (variable) parameters in the quenpat there are onlp(k) sides of rectangles in the first place, and that
input, rather than fixed (as is the case in practice) over all input 'lez) density analysis can be achieved essentially by (i) defining a win-
stances. dow for each of thes®(k) rectangle sides, and (ii) computing @(k)

2.2 Properties of Extremal-Density Windows time the window’s intersections with all rectangles as it slides along the

. . . . . . . rectangle side. This yields an algorithm with overall time complexit
To obtain an algorithm with time complexity that is strictly a function of¢ O(kzg). 4 g prexity

k (as opposed to a function of, we first prove a result that is analogous We preprocess by sorting all left and right edges ofkthectangles
to Hanan’s Theorem for the rectilinear Steiner minimal tree probl theirx coordinates into a single sorted list(having up to & ele-
[6]. TheHanan gridover a given layout is formed by creating vertical ents), withinO(klogk) time. In the main loop (2), for each “pivot”
an_d horiz%ntal lines that pass through all the sides of all the rectanqjg&ang@?, we create av x w window W that abutsR on the top and
(Figure 1). right (i.e., so that their top-right corners coincide - see Figure 2(a)). We
then compute the density @ in O(k) time by intersectingV with all
k rectangles of the layout (Step (3) of the algorithm).
In the inner loop (4), we slide the windowW horizontally to the
right (Figure 2(a-c)) until it leaveR, updating the density aV each
D time its left or right edge intersects an edge in the listNote that
|:| the perimeter and area density of the winddincrease or decrease
q monotonically between such intersection evénte update the value
of area density, or the two values of perimeter densityfon constant
] time per intersection event by keeping track of the total “cross section”
length of the current intersections between the rectangles and the left
‘ and right edges olV. We add new intersections that enter the window
W as it advances horizontally, and we subtract from the total the areas
of rectangles that exit the window on the left during the sliding pro-
cess. Finally, we repeat Steps 3 through 5 for all otBgt) starting
Figure 1: A layout (left) and its corresponding Hanan grid (right). orientations ofVV with respect to the pivot rectangR(Figure 2(d-f)).
The overall time complexity of this algorithm is dominated by @)
scans which requir®(k) time each. A formal definition of the algo-
rithm is given in Figure 3.
Theorem 1 Given a layout of k rectilinearly-oriented rectangles in the . . .
nx n grid and a fixed window size w, there exists a w maximum- 2.4 ALG3: Fast Expected Time Density Analysis
density window having at least one of its corners at a vertex of ttargingO(k) time for each scan in the ALG2 analysis is pessimistic,
Hanan grid. O since each sliding window is expected to intersect only a small fraction
of the total number of rectangles (the window size is typically very
Theorem 1 actually establishes a stronger result than coincidingraall compared with the overall layout area). For each pivot rectangle,
vertex of the maximum window with a Hanan grid point: it shows thitwould be advantageous to scan through only the few rectangles that
there always exists a maximum-density window that touches rectangleally intersect its associated sliding window (as opposed to scanning
of the layout with at least two of its sides (these sides might touch thigk rectangles).
samelayout rectangle). This observation helps us to design an efficient We implement this speedup via a néwed-dissection preprocess-
algorithm for density analysis, since it limits the possible locations oigg step, modifying our algorithm from Figure 3. The layout area is
maximum-density window (i.e., abutting either one or two of the layofitst partitioned intol x & squares of sizevx w each. Then, for each
rectangles). The argument used to prove Theorem 1 can also be useddh square we create a list of rectangles intersecting it; doing this for
establish an analogous result famimumdensity windows. all squares requires a single pass through all rectangles. The main loop

SHere and elsewhere in what follows we state our result for maximum-density windows,’The area density is a continuous function and all its minima or maxima occur only at
explaining the extension to minimum-density windows only if there is some possibility sfich intersections. The perimeter density has discontinuities when a window edge crosses
confusion. All proofs are omitted due to space constraints, but are available in our techrécegrtical feature edge. Therefore, at such intersection events we maintain both possible
report [7]. values of perimeter density (i.e., with and without the vertical feature edge).
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By the previous two theorems, substitutiig= O(k - (¥)?) into the
O O O overall time complexity ofO((2)2+ (2)2-E-log((8)2-E) + k- E)
ields:
= = = Yo
=> =
o —] 0 | Corollary 6 Given k rectangles in thexnn layout region, the maximum-
] ] density width-w window can be found in timé(&)? + klogk + k2 -
O —= [ L —= (Vﬁv)z) O
b (¢ .
@ (b) (©) Note that because a window cannot contain more ®@ar?) rect-
angles, the expected time complexity of ALG3 is also bounded by
i O((8)2 4 klogk+k-w?). The same algorithm and expected time bounds
1 L 1 L L will hold for finding minimum-density windows, as well as for extremal-
D [ pivor] J [pivor| J [pivor| perimeter density analysis.

i — H— — 2.5 Remarks
[ ] [ ] [ ]

Our algorithms, as stated, address only the problem of finding a sin-
0 —= 0 == 0 == gle extremal-density window. However, they all implicitly find and re-
(d) (e) ® portall windows having extremal density. In fact, all of the algorithms
above will detecteverywindow of the layout whose density violates
either of the given density thresholds (either lower or uppef)his
Figure 2: ALG2 starts a window abuttingpavot rectangle(a) and  information can be reported by printing any extremal density encoun-
slides the window to the right, stopping at each edge that intersects tered at the end of every scan phase involving each pivot element, if its
perimeter (b), until the pivot abuts the opposite side of the windowalue violates a density bound. Reporting all density violations in this
on the outside (c). Other combinations of the pivot-window orienmanner does not increase the running time of any of our algorithms.
tations are then explored (d-f). This process is repeated for every We must also re-emphasize that all our techniques outlined above
rectangle, using each as a pivot in turn. extend in a straightforward way to computing extremal-density win-
dows with respect to total perimeter. For example, to adapO(Pnév)
algorithm of Section 2.1 to perform perimeter density analysis, Step
(1) of that algorithm should mark the locations in arByhat corre-
ALG2: O(k?) Density Analysis spond to the perimeters of tlkeectangles. Then, Step (2) of the algo-

Input: nx nlayout withk rectangles rithm of Section 2.1 will add up the total perimeter lengths in each
Output: all extremal-densityv x w windows

point’s south-west quadrant. After all this preprocessing, arbitrary-
@ 50{‘c%'(')}2?n§2§ Pn%'ggt()??e%eﬁscflwreCtangleS by window extremal-perimeter queries can be performed in constant time
2) For each “pivot” rectangl® do per query. To adapt sliding-window area density analyses to the detec-
533 Find the density of & x w windowW tion of extremal-perimeter density windows, we keep track of the total
4 V\t/m?lte?/slf;i?sneggse?tgg and right rectangle perimeter inside the sliding window, rather than the total rect-
253 SlideW to the right to the next point of intersection angle area. The only caveat is that consistency must be exercised in
with one of the edges on the list deciding which grid points are considered to be occupied by particular

Record changes in densitﬁ ] ) . rectangle perimeters. Finally, all algorithms described above work for
6)t I?epl)leattstepsl (d -5) ftor all g[ er starting orientationsof  any non-squarev x h query window, even ifv andh are input parame-
ulput afl extremal-density Windows ters (as opposed to being fixed over all input layouts).

3 Fixed-Dissection Density Analyses

In attempting to verify (or satisfy) upper and lower density bounds for
w x w windows, a very practical method is to check (or enforce) these
constraints only fow x w windows of afixed dissectiorof the layout
of the algorithm checks the rectangle intersections for a giverw into ¥ x ¥ tiles, i.e., the set of windows having top-left corners at points
query windowW by examining four lists of rectangles (corresponding - ¥, j - ), for i, j = 0,1,...,r({ — 1); herer is an integer divisor of
to the four squares that together coveéy. w. To our knowledge, this is the type of verification that is most of-
ten performed by commercial todlsUnfortunately, a fixed-dissection
Theorem 4 Given k non-overlapping rectangles with positions unischeme for smal cannot guarantesnynontrivial density bounds over
formly distributed in the x n grid, the algorithm from Figure 3 finds all w x w windows (as opposed to only the fixed tiles in the dissection).
the maximum-density ww window in time Qk-E), after applying Forr = 1, even if the area density of each tile in the fixed dissection is
a fixed-dissection preprocessing phase with runtirmé\%p2 + (Vﬂv)2~ guaranteed to be at least 75%, a completely emptyw tile can exist.
E. |og((vﬂv)2 -E)), where E is the expected number of rectangles th&onversely, if the area density of each window in the fixed dissection
intersect an arbitrary w< w window. o s _gl:aranteed to be at most 25%, a completelyviud w window can
exist.
We call this improved-preprocessing algorlthm ALG3. We can ShOv_v Spractically speaking, this is the most common use model: a designer would like to
that the expected number of rectangles that intersect a given ﬂxed'ﬁ%ﬁ/ all areas of his layout that violate density bounds, so that these areas can be fixed or

window is indeed quite small. an exception granted by the project management. Any design may have numerous special
cases that require exceptions, e.g., pads and scribe line areas.
Theorem 5 Given k arbitrarily-sized disjoint rectangles located at ran- 9As an example of a fixed-dissection -based commercial analysis tool, consider the Drac-

. : s atrin AN o) ula COVERAGE command [2], or capabilities of mask analysis tools in the TCAD market-
dom positions chosen from a uniform distribution inside thewiayout place [14]. Dracula COVERAGE, for example, allows checking of area density upper and

re_gion, the expected number E of rectangles that intersect a given W jgwer hounds irw x w windows (e.g.w — 504m) that occur at a fixed offset, atep(e.g.,
window is bounded by E O(k- ("ﬁv)z). [ Y= 10umandr =5), from each other.

Figure 3: ALG2:0(k?) density analysis.
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On the other hand, the analysis of fixed dissections can be donel. Sort the wires/rectangles by rows, and within each row sort them
much faster than the analysis of all eligiblex w windows. First we by the coordinates of their leftmost starting points.
initialize an array of{} x & counters associated with all of the fixed
dissection windows, and then for each rectarigleve increment the
counters of the windows intersectifgby the area of the intersection.
In case ofr > 1, we repeat the procedure abavetimes in order to

check all(r - 8)2 windows.

In the rest of the section, we seek ways in which density bounds)}E pure 4 shows an example of awiring-type layout along with the ”?e‘a'
arbitrarily located windows can be enforced by density bounds on fi sol_ut|on _produc_:ed by the above_algorlth_m. Many current designs
dissection windows. Such rules can be viewed as a form of densﬁ)‘?ptam regions with wiring geometries of this form.
related layout design rule. We compare two ways of applying simple

local rules to windows having top-left corners at poitits¥, j - ¥),
i,j=0,1,.., 8 for somer > 1 such that" is an integer. First, we con- | l ‘ ‘ | l
sider what happens when we enforce upper and lower density bounds

2. For each row, from left to right, create metal fill in the space be-
tween the rectangles (with small separation from the neighboring
rectangles on the left and right).

in each individual¥ x ¥ tile of our fixed dissection (Theorem 7), and ] ‘ |
then we derive upper/lower bounds in the case when we enforce den \ \ \ \ | \
sity bounds for standand x w windows (Theorem 8). For example, if @)

we enforce the area density to be at least 25% (ige= 0.25), then

(for r = 5) the first rule guarantees 16% area density while the standard| [ N | | | ] |

method can guarantee only 6%. The bounds from Theorems 7 and 8 ca | I | |
help to choose appropriate combinations of fixed dissections and desig
rules corresponding to specified area density lower/upper bounds. \ | | | | | || |

(b)

Theorem 7 Suppose all¥ x ¥ fixed dissection tiles with top-left cor-
ners at pointgi- ¥, j-¥),i,j=0,1,..,r(& — 1), have area density at
least Ly and at most Y. Then the exact lower bound on the area densityFigure 4: (a) An example of a wiring-type layout, and (b) a corre-

of wx w windows equals sponding metal fill solution (shaded rectangles denote metal fill).

—1)2 4r—1 4
(r r2) La+t (rrz )max{LafO.5,0}+r—zmax{LafO.75,0}

4.2 Minimization of Slotting

and the exact upper bound equals To minimize the slotting of rectangles, we propose the following algo-
rithm that, whenever possible, favors adding metal fill to empty regions

r—1)? 4r—-1 4 i isti ini i
( > ) Us ( - ) max{Ua — 0.5,0} — 5 max{Ua — 0.25,0}. irsz‘ag]se][c:lrrg\vr\}ssilottlng existing rectangles. The main idea of this approach
| 1. Inside every rectangle, if there is enough room inside, slot the
. . . rectangle lengthwise using parallel slots of width, spaced a
Theorem 8 Suppose all w w-sized windows with top-left comers at  gistance ofl; apart. The parametens andd; are chosen so that
points(i- ¥, j- 7). fori,j=0,1,...,r( — 1), have area density at least the density inside the rectangle does not exceed the maximum
La and at most . Then any w w window has density at least, &= allowable density (see Figure 5(b)).

1

1, 1 1
F+pandatmostk4+rfp,

and these bounds are tight.
g = 2. Outside every rectangle, if there is enough room (with respect

. - . to neighboring rectangles), create a maximum-density metal fill
4 Synthesis of Filling and Slotting Patterns band of widthw, at distancel, away from the rectangle, leaving
Given the layout geometry along with the parameters of the Fillingand ~ empty space between the rectangle and this band (see Figure 5(c).
Slotting Problem, we wish to synthesize fill and slot geometries such
that all windows satisfy the density bounds. In this section we first con-
struct filling patterns for wiring-type layouts that are usually produced
by preferred-direction area routers. Then we consider slotting patterns
of minimum area. Finally, we derive conditions when both area and
perimeter density bounds can be satisfied, and we suggest appropfg:}t
filling patterns for such situations.

3. Fill up the remaining empty areas of the layout (outside all the
outer bands) with a canonical slotted metal pattern corresponding
to the density lower bound (see Figure 5(d)).

This algorithm clearly satisfies the density upper and lower bounds
gppropriate values afy,wy,dy, andw, which depend onw, ¢ and

the density upper and lower bourtfsThese values can be computed
4.1 Fill Synthesis for Wiring-Type Layouts in constant time, and the overall algorithm can be implemented to run

- } . . . efficiently.
Here we present an efficient metal fill synthesis algorithm that will han-

dle layouts containing mostly wires occupying discrete rows, whefe3 Simultaneous Area and Perimeter Bounds

wire segments have discrete widths and varying lengths. Gridded Affthis subsection, we characterize combinations of area and perime-

ferred-direction area routers typi_cally prqduce such ge_ometries. ter densitiegDa, Dp) that can be simultaneously satisfied by the same
If the separation between adjacent wire rows for this type of layog

. . ﬁing pattern.
is nearly the same as the width of the rows (rectangles), the layout den-AS discussed in Section 1, all geometries must satisfy minimum

. h and minimum ration rules. In icular, no fill f re di-
bounds trivially hold (i.e., are never violated due to the mlnlmumsparFﬁa??{gt and um separation rules particular, no eature d

. . -~ . iensions, nor any distance between features, can be less.tHan
ing rules for interconnect). To solve the Filling and Slotting Problem Y
for this kind of layout, we only need to make sure that the density lowenorecall from Section 1 that slotting requires several design flow changes, particularly

bound is satisfied everywhere. Aiklogk) algorithm can achieve this since slotted power buses will have reduced current carrying capability. The slotting orien-
as follows: tation is aligned with the direction of current flow.
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Figure 6: Two patterns with maximum perimeter. (a) the pat®fip
with minimum possible area, and (b) the pattBaxwith maximum

Figure 5: For each rectangle of the given layout (a), we create par@réa.
allel slots in the direction of the current flow, and a corresponding
maximum-density band just outside the rectangle (b). All remain-

ing empty areas between rectangles are filled with a canonical metal
pattern having minimum density (c).

maximum
perimeter

practice, the distance between filling or slotting geometries and near-_, ..
est layout feature is constrained to be greater thanc. However we theregion |
can still view regions eligible for filling as-polyominoesi.e., poly-
ominoes [5] with sides a multiple af that are in distanc€’ from the
layout features. The fill pattern should also consist of polyominoes in
thec-grid, i.e., the minimum separation rule implies that a pair of filled
cells which share exactly one corner should have one common filled A
neighboring cell.

First, we will describe filling patterns for a rectangular regRn
which have maximum perimeter, and either the minimum or maximum
allowable area density. The pattétgin with the minimum area density Figure 7: Thex-axis represents the area and thaxis represents
fills all cells which have top-left corner coordinat@s+ 2ci,b+2cj),  the perimeter of the filling pattern. The highlighted region with ver-
where(a, b) is one of the corners @& (see Figure 6(a)). This pattern has tices Py, Pmin, Pmax andP; represents the combinations of area and
area slightly more thaé -area(R), because it fills approximately every perimeter for which there exist filling patterns.
fourth cell of R. The patterrPmax with maximum area density fillR
completely, leaving empty only cells with coordinatest ¢+ 2ci,b+
c+ 2cj) (see Figure 6(b)). The area of this pattern is slightly larger than
. aredR) because it leaves empty approximate|y every fourth cell §fandard'ce” |ay0UtS produced by an industry place-and-l’outé'%ool.
We also use random instanceskof 2000 4000 800Q 16000 rectan-
raifs in square layout regions of side- 200Q 4000, with window sizes

area density

_;U.Noo

Two more patterns are necessary for completing the descriptio 13
all possible patterns. These are simply the empty paRgmith zero W= 20,40, 80. . ) )
perimeter and area, and the completely-filled pat®@raving both Table 1'shows runtimes and maximum computed area densny for
perimeter and area equal to thoseRofIn the graph of Figure 7, the each algorithm. Th“e fII’St" column of the Tablf_s repres“er?t_s the trlPIe
x-axis represents area and fexis represents perimeter. The highk/N/W/ Type where Type denotes the two regimes of “wiring-type
lighted region with vertice®p, Prmin, Pmax and Py represents the com- (W) and “random-small” (R) (see Footnote 13). The second column
binations of area and perimeter densities for which there exist filligyeS the runtime (in CPU seconds on a 167MHz Sun Ultra-1) and
patterns. Notice that a square has the minimum perimeter with a giVagximum window density for the algorithm of Section 2.4. The third
area. LetSbe the area of a maximum square which can be embeddBEPUgh sixth columns give (CPU and density values) obtained by the
in R Before the pattern area react&she minimum perimeter grows oVerlapping fixed-dissections approach using 1,2, 5, and 10, re-

quadratically; pas§, the minimum perimeter grows linearly. spectively. We observe that, as expected, the fixed-dissection approach

The algorithm for finding a pattern with a given area and perimetjérf"jlster bUt. I'ess accurate, and ;hat its accuracy improves steadily (at the
st of additional CPU time) asincreases.

is straightforward: it starts with the minimum area pattern that has e

iven perimeter, an ntiall re cells withcaimhil th . . ; :
ﬂefesggry f;fa’ig a‘iﬁg‘;ﬁ tially adds square cells wit ¢ 6 Conclusions and Ongoing Research Directions

In conclusion, we have introduced a critical new problem in the inter-
5 Computational Experience face between lithography, physical layout design and performance ver-
) . . ification. We have given the first formulation of tfiling and slotting
We now report our computational experience for (i) the fast expectgghpiemsthat arise in layout post-processing and layout optimization
time algorithm of Section 2.4 (ALG3), and (ii) a simple implemen-
tation of the approximate overlaﬂ)ing fixed-dissections approach o®Benchmark 1 corresponds to a 1756-cell design and has 4470 rectangles; Benchmark 2
Section 3 (FD), withr = 1,2,5,10.** Our benchmarks include CIF- corresponds to a 8131-cell design and has 47904 rectangles; and Benchmark 3 corresponds

; a 20577-cell design and has 127760 rectangles. For these three benchmarks, we have
formatted (converted from GDSII Stream) M2 geometries from thr%bz 3413461888 111005 andv — 2000 20004000 for window size.

13 Until k rectangles have been generated, we repeatedly generate a new rectangle having
1Given a fixed dissection intm/w)? windows of sizew x w, we iterate over each layout width uniformly random inWmin, Wmax] and height uniformly random iffimin, hmay, such

rectangle, and add the rectangle’s area contribution to the total of each window thatttta the rectangle fits inside the layout region and is at least distainom all previously

rectangle intersects. We then check all windows to find the window with maximum amgenerated rectangles. There are two regimes: “wiring-type” (W) wa@s= 1, Wmax =

density. We repeat this procegstimes. 1000, anthiin = hmax= 1; “random-small” (R) use€®min = hmin = 1, Wmax = hmax= 10.
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for manufacturability. We have also developed a number of effect
algorithms for density analysis (both in the general case and ina p

Véest Runtime / Density
n/w/Type ALG3 FD(T) FD(2) FD(G) FD(10)
ac- CPUden| CPUden| CPUden| CPUden| CPUden

tical context) as well as for filling/slotting synthesis. Our algorithnjSiki2k/20/R 95 360 0.1 .208] 0.1 .230| 05 315| 2.1 .360

have been integrated into a software environment that includes GO Sllk/%gg;R 3-5 -313 8-3 -820 8'1 -822 3-4 -égg 1-431 -égg
; ; ; ; . oy R .7 .045| 0.0 .031| 0.1 . 4. 13 .

reader/writer, CIF manipulation, and a geometric database; preliminal 1K/20/R 354 240! 01 203! 02 203| 10 203! 38 203

data are encouraging, but also point out the need for careful impleywaor || 101 .129| 0.0 .051| 0.2 .058| 0.5 .090| 1.9 .090

mentation. We are currently seeking more test cases and density fubesk/so/r 3.5 .037| 0.1 .023| 0.1 .023| 0.4 .023| 1.4 .029
from industry to further refine our approaches and implementatibng. 4k72k/20/R 29.7 403| 0.2 .298] 0.4 298| 17 .388| 5.9 .388
We believe that our formulations capture several requirements in fffk/2k/40/R 15.4.169] 0.2 1271 04 .145] 14 .160| 53 .161
ture lithography and provide a key unification between lithograph anémk/so,R oot Il A B I sl I

Ithography p Yy : grapny ana2o/r || 102.3 .362| 0.2 .203| 0.5 .210| 2.1 .225| 7.9 .225
physical design. Our current work addresses such issues as the follank/4o/R 29.7 .133| 0.2 .096| 0.4 .096| 1.5.097| 5.6 .097
ing: 4k/4k/80/IR 152 .052| 0.2 .037| 0.4 .037| 1.4 .041| 5.0 .041

. - - . [ 16k/2ki20/R || 130.8 518 1.1 .313| 1.5 .368| 5.9 403 | 22.7 .428
e developing more efficient, general and provable filling/slottingiew2k4o/r || 128.6 .266| 1.1 .188| 1.4 234| 5.7 .249| 20.5 .249
algorithms (e.g., for simultaneous perimeter- and area-densityék/i2k/80/R || 368.2 .172| 0.9 .139| 1.4 .139| 5.3 .144| 19.9 .150
based criteria); 16k/4ki20/R || 368.1 .380| 0.9 .360| 1.6 .360| 6.5 .360| 23.8 .360
o ) ) . ) ) | 16k/4k/40/R || 125.9 .183| 0.9 .136| 1.5 .136| 5.6 .136 | 20.6 .166
¢ finding min/max density/perimeter windows in worst-case timeiek/4k/80/R || 123.7 .096| 0.0 .083| 1.4 .083| 5.4 .085| 19.5 .085

o(n?) or o(k?); and 1k/2ki20MW 13.7 .350| 0.1 .300] 0.3 .300| 2.0 .350] 7.6 .350

e maintaining knowledge of min/max density/perimeter windomsizgzggm g"; 'gig 8'1 'gig 8'% g?g é'g g?g j'g 'ggg
under dynamic rectangle insertion/deletion in tiafa) oro(k). | 1kakzow || 39.9 .250| 0.2 .200| 0.4 .200| 2.5 .200| 10.0 .200
1k/4k/40/W 11.9 .175| 0.1 .100| 0.2 .125| 1.2 .150| 5.1 .150

1k/4k/80/W 5.0 .138| 0.0 .077| 0.1 .092| 0.7 .092| 2.8 .092

7 Acknowledgments 4KI2KI20AW || 44.0 .500| 0.4 .450| 0.9 450 4.8 450 19.2 450

T ) . 4k/2kI40/W 30.7 .474| 0.3 .389| 0.6 .392| 3.0 .396| 11.7 .413
We thank Tom Laidig and Kurt Wampler of MicroUnity Systems En- 4k/2k/so/w 46.1 .410| 0.2 .343| 0.5 .370| 2.2 .373| 8.1 .383
gineering, Inc. for many illuminating discussions and patient reading4k/4k/20/w || 120.1 .400 05 .350| 1.4 .350| 7.8 .350| 30.5 .350
of our drafts. Juan Rey of Cadence has also been generous with tj koW | 424 .325| 0.3 225)| 0.8 .295| 4.3 .322| 16.6 .322

; . "AKIB0/W 27.9 259| 0.3 .185| 0.6 .204| 2.7 .211| 10.4 .213
L
time. We gratefully acknowledge a software donation from Artwotkisimimonv T 1679 5001 T2 500 2.3 500 105 5001 40.0 500

Conversions, Inc. 16k/2k/40/W || 201.7 .500| 1.0 .444 | 1.8 .445| 7.8 .469 | 29.0 .474
16k/2k/80/W || 475.8 .463| 1.0 .412 | 1.7 422| 6.9 .435| 23.6 .437
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Victim Layer Total Capacitance (10~ °F)
Same layer-| FillTayers
neighbors? | i—1,i+1?| £=39 £=27
N N Z.43(1.00)| 1.68(1.00)
N Y 3.73(1.54) 2.58(1.54)
Y N Z.47(1.84) 3.09(1.84)
Y Y 5.29(2.18)] 3.66(2.18)

Table 2: Raphael 3-D field solver results for total capacitance extrac-
tion of a single victim conductor. The conductor on layer20x 1.

ARAAN
I|I I|I|I|I|I|I|I|I
(b)

Line-to-line spacing is 1, line width is 1, line thickness is 1.5, and
dielectric height is 1.5. Metal fill features on layers 1 andi + 1
are 10x 1 with side-to-side spacing of 1 and end-to-end spacing ofFigure 8: The two fill patterns considered in Raphael simulations:

4. The dielectric permittivity was set to both 3.9 (for $j@nd 2.7

1x 1 squares separated 1 unit apart (a), and 10rectangles sep-

(cf. recent announcements by Sematech [12] of new low-permittivityarated 1 unit apart horizontally and 4 units apart vertically (b). The

dielectric technologies). Layers- 2 andi + 2 are set to be 4Q 40

ground planes.

Victim B Total Capacitance (L0~ T°F)

FillTayer offset| Fillgeometry[ €=3.9 E=27
N 10x 1T 3.776(1.00)| 2.614(1.00
N Ix7T1 3.750(0.99)| 2.596(0.99
Y I0x 1T 3.777(1.00)| 2.615(1.00
Y Ix1 3.745(0.99)| 2.593(0.99

fill pattern (b) was used for the simulations reported in Table 2.

first place. Similarly, Table 4 shows that the total capacitance values
for each of the outside conductos §ndC) also fluctuate by less than
one percent. We conclude that the filling and slotting can, subject to
constraints involving feature dependencies between layers, be viewed
as a “single-layer problem?”.

Table 3: TMA/Avant! Raphael capacitance extraction results: total
capacitance for the middle victim conductr

e Three 20« 1 victim conductor#\, B andC (with Bin the middle),
with spacing 1 between them, are placed on a victim layAtl
conductor thicknesses = 1.5; dielectric height between layers =
1.5. Dielectric permittivity was set at either 3.9 or 2.7.

e A 40 x 40 bottom ground plane is placed at layer2.

e Two types of fill geometry patterns were considered for layer
i —1 (see Figure 8): (a) & 1 squares witlx,y) origins of form
(2i,2j), i andj integers, resulting in an overall pattern area den-
sity (for an infinite layout region) of 0.25, and (b) %01 (tall
and thin) rectangles wittx,y) origins of form(4i,14j) or (4i —
2,14j —7), i and j integers, resulting in an overall pattern area
density (for an infinite layout region) of 0.357.

¢ An offsetis optionally introduced. When the fill geometries are
offset, they lie directly under the spaces between the victim con-
ductors. When there is no offset, the fill geometries lie directly
under the victim conductors.

Table 3 shows that the total capacitance values for the middle con-
ductor @) fluctuate by less than 1 percent over all four combinations of
fill pattern and offset. The critical factor is that the fill is present in the

Victim A, C Total Capacitance (L0~ °F)
FillTayer offset | Fillgeometry| &€=3.9 e=27
N 10x1T 3.009(1.00)| 2.083(1.00
N Ix1 2.984(0.99)| 2.066(0.99
Y 10x1 3.004(1.00)] 2.080(1.00
Y Ix1 2.980(0.99)| 2.063(0.99

Table 4: TMA/Avant! Raphael capacitance extraction results: total
capacitance for the outside victim conducfoor C.
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