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Abstract
In very deep-submicron VLSI, certain manufacturing steps – notably
optical exposure, resist development and etch, chemical vapor deposi-
tion and chemical-mechanical polishing (CMP)– have varying effects
on device and interconnect features depending on local characteristics
of the layout. To make these effects uniform and predictable, the layout
itself must be made uniform with respect to certaindensityparame-
ters. Traditionally, only foundries have performed the post-processing
needed to achieve this uniformity, via insertion (“filling”) or partial
deletion (“slotting”) of features in the layout. Today, however, physical
design and verification tools cannot remain oblivious to such foundry
post-processing. Without an accurate estimate of the filling and slot-
ting, RC extraction, delay calculation, and timing and noise analysis
flows will all suffer from wild inaccuracies. Therefore, future place-
and-route tools must efficiently perform filling and slotting prior to
performance analysis within the layout optimization loop. We give the
first formulations of thefilling and slotting problemsthat arise in lay-
out post-processing or layout optimization for manufacturability. Such
formulations seek to add or remove features to a given process layer, so
that the local area or perimeter density of features satisfies prescribed
upper and lower bounds in allwindowsof a given size. We also present
efficient algorithms for density analysis as well as for filling/slotting
synthesis. Our work provides a new unification between manufactur-
ing and physical design, and captures a number of general requirements
imposed on layout by the manufacturing process.

1 Introduction
As CMOS technology advances to the 180nm generation and beyond,
the manufacturing process has an increasingly constraining effect on
physical layout design and physical verification. Foundry economics
dictate that process window volumes be maximized; this in turn dic-
tates that device and interconnect features be fabricated as predictably
and uniformly as possible. On the other hand, the physics of semicon-
ductor processing make large process windows and uniform manufac-
turing difficult [3] [11] [8] [4]. In particular:

1. optical interference effects in lithography can create “iso-dense”
effects, where the exposure intensity for isolated features is dif-
ferent from that for densely packed features;

2. reaction dynamics in resist development and etch, as well as
chemical vapor deposition, can exhibit microloading effects where
local variations in the density of exposed feature surface area re-
sult in line width or gate length variations across the chip; and

�Research at UCLA was supported by a grant from Cadence Design Systems, Inc.
Professor Robins was supported by a Packard Foundation Fellowship and by NSF
Young Investigator Award MIP-9457412. Papers by these researchers may be found at
http://vlsicad.cs.ucla.edu and http://www.cs.virginia.edu/

~

robins/ .

3. uniformity of CMP, which is used for planarization of interlayer
dielectrics (or glass, with newer shallow-trench isolation) in multi-
layer interconnect processes, depends on uniformity of features
on the interconnect layer beneath a given dielectric layer to avoid
dishing and other irregularities.

In this paper, we are concerned primarily with (2) and (3). The connec-
tion to (1) – that process-induced constraints on layout should not ham-
per separate optimizations related to proximity effects (i.e., OPC) – is
understood. To minimize the impact of manufacturing process physics
on device yield, foundries imposedensityrules so that the layout be-
comes more uniform. For example, a local interconnect metal layer
might have a requirement that every 10µm�10µm window contain at
least 35µm2, but no more than 70µm2, of metal features [1] [10]. Many
process layers, including diffusion and even thin-ox, can have associ-
ated density rules [1] [14].1 While empty areas must befilled, very
wide features (e.g., power buses on top-layer metal) must beslottedto
avoid lift-off in CMP.

Traditionally, only foundries or specialized TCAD tools companies
have performed the post-processing of layout needed to achieve this
uniformity, via insertion (“filling”) or partial deletion (“slotting”) of
features in the layout. Today, however, ECAD tools for physical design
and verification cannot remain oblivious to such post-processing. With-
out an accurate estimate of the downstream filling and slotting at the
foundry, all the RC extraction, delay calculation, timing, noise and reli-
ability analyses will be inaccurate, leading to a broken design flow. For
instance, slotting will change the cross-section of a power bus, which
in turn affects peak current density and reliability.

In the Appendix, we present analyses showing the extent to which
metalfilling and slotting can affect the results of capacitance extraction
and performance analysis. Other analyses in the Appendix show that
filling and slotting can, for the most part (and especially for the filling
case), be viewed in thesingle-layercontext. The precise locations of
fill/slot geometries on a given layer will not significantly affect perfor-
mance of interconnect on a neighboring layer. Rather, the dominant
effects (coupling to dense geometries on neighboring layers, shielding
from farther layers, and shielding of non-adjacent same-layer coupling)
stem from lower bounds on area density on all layers. This enables us
to address the metal filling and slotting problems one layer at a time.2

Our Contributions
In this paper, we give the first formulation of thefilling and slotting
problemsthat arise in layout post-processing or layout optimization for
manufacturability. Essentially, we seek to add or remove features to
a given process layer, such that the local area or perimeter density of
features satisfies prescribed upper and lower bounds in allwindows

1For example, in 0.35µmand below, one major semiconductor house requires diffusion
area density between 0.25 and 0.40, and metal area density between 0.40 and 0.70. Another
major semiconductor house requires metal area density to be at least 0.35. Note that density
rules and post-processing solutions may differ between, e.g., ASIC and high-end micropro-
cessor technologies, due to tradeoffs between device performance and predictability.

2There are several notable conditions under which the single-layer assumption fails.
Slotting approaches (e.g., for power buses) must avoid slotting contacted areas. Thus, any
slotting synthesis approach must either perform re-layout of power distribution (unlikely)
or else specifically mark contacted rectangles within power buses as inviolate. Filling ap-
proaches must pay attention to adjacent layers if they contain drawn geometries outside
geometries on the layer to be filled. For example, poly fill geometry in regions with under-
lying active diffusion can create spurious transistors, and again regions must be marked as
inviolate on the poly layer.
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of given size. After formally defining the filling and slotting prob-
lems, we present efficient algorithms for density analysis as well as
filling/slotting synthesis. The remainder of this section defines nota-
tion and gives a general statement of the filling and slotting problem.
Then, Section 2 gives new algorithms for analysis of minimum- and
maximum-density (i.e.,extremal-density) windows. All of these meth-
ods can optionally return all extremal-density windows, or all violat-
ing windows, with the same time complexity needed to return a single
extremal-density window. Section 3 establishes performance bounds
for two practical approximations for the filling and slotting problem,
namely, when only windows offixed dissectionsof the layout region
need to satisfy density bounds. Section 4 develops new algorithms for
synthesis of filling/slotting geometries, and we conclude by listing sev-
eral directions for future research.

Notation and Problem Statement
We will use the following notation and definitions.

� The input is alayoutconsisting of rectangulargeometries.3

� c� smaller of the minimum feature width and minimum feature
separation. The value ofc is typically 25 to 50 times the manu-
facturing unit.

� w� fixed windowsize. The window is the moving square area
over which density lower and upper bounds apply. A typical win-
dow size would bew= 50�c.

� n� size of the layout region side. Typically, we might seen as
an integer which is about 50;000�c. Note thatc does not imply
that n

c is “the size of the grid”: the only grid that is guaranteed is
the manufacturing grid, which is typically 25 to 50 times smaller
thanc.

� k� the complexity of the original layout, i.e., the total number
of rectangles in the input.

� La;Ua � area densitylower and upper bounds expressed as real
numbers 0< La � Ua < 1. Eachw�w region of the layout
must contain total area of features (considered as a fraction of
the quantityw�w) satisfying these bounds.

� Lp;Up � perimeter densitylower and upper bounds expressed
as real numbers 0< Lp � Up < 1. In practice, the maximum
perimeter density is attained in memory cores, and the boundsLp
andUp are set with respect to this maximum density. Consider a
w�w window filled with as many smallc�c squares as possible,
where the origins of the small squares are offset from each other
by integer combinations of the vectors(0;2c) and (2c;0). We
consider the total perimeter of these squares to be the maximum
possible feature perimeter. Then, eachw�w region of the layout
must contain total perimeter of features (considered as a fraction
of the maximum possible feature perimeter) satisfying the given
bounds.

� Ld;Ud � densitylower and upper bounds expressed as real num-
bers 0< Ld �Ud < 1. It turns out that most of our results and
algorithms easily apply to either the area density or perimeter
density regimes. Thus, we will generically indicate the density
bounds usingLd andUd.4

3Our implementation reads in layouts from GDSII Stream format. Without loss of gen-
erality, our discussion below assumes that rectilinear geometries have been fractured into,
say, horizontally maximal rectangles. It is also possible to generalize our analyses and al-
gorithms from rectangles to trapezoids. Note that standard industry tools, such as Cadence
Dracula, will fracture geometries into horizontal trapezoids [2].

4To our understanding, current foundries have not yet imposedboth area density and
perimeter density boundssimultaneouslyon a given layer [14]. However, we expect that
such simultaneous constraints will be required in future technologies, and we analyze fill
pattern synthesis for such a situation in Section 4 below.

� An extremal-densitywindow is a window with either maximum
density or minimum density over all windows in the layout. If
an algorithm applies to either maximum-density or minimum-
density analysis, we generically refer to extremal-density analy-
sis.

Given the definitions and parameters above, we define the Filling and
Slotting Problem as follows:5

The Filling and Slotting Problem. Given a design rule-
correct geometry ofk disjoint rectilinear rectangles in an
n�n layout region, a minimum feature sizec, area and/or
perimeter density upper and lower boundsLa;Ua;Lp and
Up, and a window sizew < n, add fill and slot geometries
into the layout while preserving circuit function and design
rule-correctness such that everyw�w window in the lay-
out region satisfies the lower and upper bounds on area and
perimeter density.

2 Algorithms for Density Analysis
Before addressing the Filling and Slotting Problem, we first develop al-
gorithms for density analysis (with respect to either area or perimeter)
in a given layout. Given a fixed layout and window size, we shall de-
termine a maximum-density and a minimum-density window (i.e., our
analysis will return extremal-density window(s)). Our density analysis
methods can reportall violations of density bounds in the layout within
the same time complexity needed to report a single extremal-density
window (see Section 2.5). We state the density analysis problem as
follows:

Extremal-Density Window Analysis. Given a fixed win-
dow sizew and a set ofk disjoint rectangles in ann�n layout
region, find an extremal-densityw�w window in the layout.

This section presents a series of algorithms for the Extremal-Density
Window Analysis problem. We first present a density analysis algo-
rithm with time complexityO(n2) that is strictly a function of the lay-
out size. We then develop a different algorithm with time complexity
O(k2) that is strictly a function of the number of rectangles. Finally, we
propose an algorithm with even faster expected runtime. Note that the
O(n2) andO(k2) time complexities are incomparable in terms of effi-
ciency, sincek2 can sometimes be much smaller thann2 (e.g.,k = 100
andn= 104) and at other times much larger (e.g.,k= 105 andn= 104).
Therefore, our choice of algorithm for density analysis would depend
on the exact values ofn andk, with overall time complexity of the “hy-
brid” approach beingO(min(k2;n2)).

2.1 ALG1: O(n2) Density Analysis
Our first algorithm for density analysis has time complexityO(n2), and
operates as follows.

1. Initialize ann�n boolean arrayB to all 0’s, and then put 1’s in ar-
ray positions corresponding to areas in the layout that are covered
by thek rectangles. This takes timeO(n2).

2. Create anothern�n arraySand initialize eachS[i; j ] to be equal to
the number of 1’s appearing in the southwest quadrant of arrayB
with respect to coordinate[i; j ] (i.e.,S[i; j ] counts the number of
1’s in the subarrayB[1::i;1:: j ]). This can be done by scanningB
one row at a time from left to right, maintaining a running sum of
the 1’s encountered on all the rows, and storing all these partial
sums into the arrayS. All this preprocessing requires a total of
O(n2) time.

5 Note that this is asatisficingformulation where we seek only a feasible solution, as
opposed to anoptimizationformulation where we seek a best solution. We can easily give
variant optimization formulations (e.g., insert as little metal as possible, minimize the sum
of window density deviations from an ideal density, etc.). However, it appears that the
current state of technology does not yet require such formulations.
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3. After this preprocessing phase, the density of an arbitrary-size
w�h rectangle with its bottom-left corner located at an arbitrary
position(i; j) can be found in constant time, as follows:

density(w�h rectangle at(i; j))

= S[i +w; j +h]�S[i +w; j ]�S[i; j +h]+S[i; j ]

This formula uses the principle of inclusion-exclusion: the fourth
term is added in the formula above since it is implicitly subtracted
twice by the middle two terms. The technique is analogous to
efficient range tally queries in computational geometry [9].

In particular, the density of allO(n2) windows of fixed sizew�w
can be determined inO(1) time per window, i.e., a total ofO(n2) time.
All extremal-density windows can be determined using the same tech-
nique within the same time complexity. This method given is consid-
erably more general than is required to solve the extremal-density win-
dow problem, in that the preprocessing enables the future solution of
arbitrary dynamic queries in constant time per query forany window
sizew�h. Thus,w andh are both (variable) parameters in the query
input, rather than fixed (as is the case in practice) over all input in-
stances.

2.2 Properties of Extremal-Density Windows
To obtain an algorithm with time complexity that is strictly a function of
k (as opposed to a function ofn), we first prove a result that is analogous
to Hanan’s Theorem for the rectilinear Steiner minimal tree problem
[6]. TheHanan gridover a given layout is formed by creating vertical
and horizontal lines that pass through all the sides of all the rectangles
(Figure 1).6

Figure 1: A layout (left) and its corresponding Hanan grid (right).

Theorem 1 Given a layout of k rectilinearly-oriented rectangles in the
n�n grid and a fixed window size w, there exists a w�w maximum-
density window having at least one of its corners at a vertex of the
Hanan grid.

Theorem 1 actually establishes a stronger result than coinciding a
vertex of the maximum window with a Hanan grid point: it shows that
there always exists a maximum-density window that touches rectangles
of the layout with at least two of its sides (these sides might touch the
samelayout rectangle). This observation helps us to design an efficient
algorithm for density analysis, since it limits the possible locations of a
maximum-density window (i.e., abutting either one or two of the layout
rectangles). The argument used to prove Theorem 1 can also be used to
establish an analogous result forminimum-density windows.

6Here and elsewhere in what follows we state our result for maximum-density windows,
explaining the extension to minimum-density windows only if there is some possibility of
confusion. All proofs are omitted due to space constraints, but are available in our technical
report [7].

Corollary 2 Given a layout of k rectilinearly-oriented rectangles in the
n�n grid and a fixed window size w, there exists a w�w window with
extremal area density that abuts layout rectangles with at least two of
its sides.

Notice that a type of geometric symmetry/duality is present here, in
that layout rectangles abut theinterior of maximum-density windows,
and abut theexteriorof minimum-density windows. Finally, a similar
argument establishes analogous results for windows having maximum
or minimumperimeterdensity.

Corollary 3 Given a layout of k rectilinearly-oriented rectangles in the
n�n grid and a fixed window size w, there exists a w�w window with
extremal perimeter density that abuts layout rectangles with at least two
of its sides.

2.3 ALG2: O(k2) Density Analysis
Recall that Theorem 1 shows that an extremal-density window must
touch rectangles of the layout with at least two of its sides. We observe
that there are onlyO(k) sides of rectangles in the first place, and that
O(k2) density analysis can be achieved essentially by (i) defining a win-
dow for each of theseO(k) rectangle sides, and (ii) computing inO(k)
time the window’s intersections with all rectangles as it slides along the
rectangle side. This yields an algorithm with overall time complexity
of O(k2).

We preprocess by sorting all left and right edges of thek rectangles
by their x coordinates into a single sorted listL (having up to 2k ele-
ments), withinO(k logk) time. In the main loop (2), for each “pivot”
rectangleR, we create aw�w windowW that abutsR on the top and
right (i.e., so that their top-right corners coincide - see Figure 2(a)). We
then compute the density ofW in O(k) time by intersectingW with all
k rectangles of the layout (Step (3) of the algorithm).

In the inner loop (4), we slide the windowW horizontally to the
right (Figure 2(a-c)) until it leavesR, updating the density ofW each
time its left or right edge intersects an edge in the listL. Note that
the perimeter and area density of the windowW increase or decrease
monotonically between such intersection events.7 We update the value
of area density, or the two values of perimeter density, forW in constant
time per intersection event by keeping track of the total “cross section”
length of the current intersections between the rectangles and the left
and right edges ofW. We add new intersections that enter the window
W as it advances horizontally, and we subtract from the total the areas
of rectangles that exit the windowW on the left during the sliding pro-
cess. Finally, we repeat Steps 3 through 5 for all otherO(1) starting
orientations ofW with respect to the pivot rectangleR (Figure 2(d-f)).
The overall time complexity of this algorithm is dominated by theO(k)
scans which requireO(k) time each. A formal definition of the algo-
rithm is given in Figure 3.

2.4 ALG3: Fast Expected Time Density Analysis
ChargingO(k) time for each scan in the ALG2 analysis is pessimistic,
since each sliding window is expected to intersect only a small fraction
of the total number of rectangles (the window size is typically very
small compared with the overall layout area). For each pivot rectangle,
it would be advantageous to scan through only the few rectangles that
actually intersect its associated sliding window (as opposed to scanning
all k rectangles).

We implement this speedup via a newfixed-dissection preprocess-
ing step, modifying our algorithm from Figure 3. The layout area is
first partitioned inton

w �
n
w squares of sizew�w each. Then, for each

such square we create a list of rectangles intersecting it; doing this for
all squares requires a single pass through all rectangles. The main loop

7The area density is a continuous function and all its minima or maxima occur only at
such intersections. The perimeter density has discontinuities when a window edge crosses
a vertical feature edge. Therefore, at such intersection events we maintain both possible
values of perimeter density (i.e., with and without the vertical feature edge).
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pivot

(a)

pivot

(b)

pivot

(c)

pivot

(d)

pivot

(e)

pivot

(f)

Figure 2: ALG2 starts a window abutting apivot rectangle(a) and
slides the window to the right, stopping at each edge that intersects its
perimeter (b), until the pivot abuts the opposite side of the window,
on the outside (c). Other combinations of the pivot-window orien-
tations are then explored (d-f). This process is repeated for every
rectangle, using each as a pivot in turn.

ALG2: O(k2) Density Analysis
Input: n�n layout withk rectangles
Output: all extremal-densityw�w windows
(1) Sort all the left and right edges of allk rectangles by

x coordinates into a sorted list L
(2) For each “pivot” rectangleRdo
(3) Find the density of aw�w windowW

that abutsR on the top and right
(4) WhileW intersectsRdo
(5) SlideW to the right to the next point of intersection

with one of the edges on the listL
Record changes in density

(6) Repeat steps (3-5) for all other starting orientations forW
Output all extremal-density windows

Figure 3: ALG2:O(k2) density analysis.

of the algorithm checks the rectangle intersections for a givenw�w
query windowW by examining four lists of rectangles (corresponding
to the four squares that together coverW).

Theorem 4 Given k non-overlapping rectangles with positions uni-
formly distributed in the n�n grid, the algorithm from Figure 3 finds
the maximum-density w�w window in time O(k �E), after applying
a fixed-dissection preprocessing phase with runtime O(( n

w)
2 +( n

w)
2 �

E � log(( n
w)

2 �E)), where E is the expected number of rectangles that
intersect an arbitrary w�w window.

We call this improved-preprocessing algorithm ALG3. We can show
that the expected number of rectangles that intersect a given fixed-size
window is indeed quite small.

Theorem 5 Given k arbitrarily-sized disjoint rectangles located at ran-
dom positions chosen from a uniform distribution inside the n�n layout
region, the expected number E of rectangles that intersect a given w�w
window is bounded by E= O(k � (w

n )
2).

By the previous two theorems, substitutingE = O(k � (w
n )

2) into the
overall time complexity ofO(( n

w)
2 + ( n

w)
2 �E � log(( n

w)
2 �E) + k �E)

yields:

Corollary 6 Given k rectangles in the n�n layout region, the maximum-
density width-w window can be found in time O(( n

w)
2 + k logk+ k2 �

(w
n )

2).

Note that because a window cannot contain more thanO(w2) rect-
angles, the expected time complexity of ALG3 is also bounded by
O(( n

w)
2+k logk+k�w2). The same algorithm and expected time bounds

will hold for finding minimum-density windows, as well as for extremal-
perimeter density analysis.

2.5 Remarks
Our algorithms, as stated, address only the problem of finding a sin-
gle extremal-density window. However, they all implicitly find and re-
port all windows having extremal density. In fact, all of the algorithms
above will detecteverywindow of the layout whose density violates
either of the given density thresholds (either lower or upper).8 This
information can be reported by printing any extremal density encoun-
tered at the end of every scan phase involving each pivot element, if its
value violates a density bound. Reporting all density violations in this
manner does not increase the running time of any of our algorithms.

We must also re-emphasize that all our techniques outlined above
extend in a straightforward way to computing extremal-density win-
dows with respect to total perimeter. For example, to adapt theO(n2)

algorithm of Section 2.1 to perform perimeter density analysis, Step
(1) of that algorithm should mark the locations in arrayB that corre-
spond to the perimeters of thek rectangles. Then, Step (2) of the algo-
rithm of Section 2.1 will add up the total perimeter lengths in each
point’s south-west quadrant. After all this preprocessing, arbitrary-
window extremal-perimeter queries can be performed in constant time
per query. To adapt sliding-window area density analyses to the detec-
tion of extremal-perimeter density windows, we keep track of the total
rectangle perimeter inside the sliding window, rather than the total rect-
angle area. The only caveat is that consistency must be exercised in
deciding which grid points are considered to be occupied by particular
rectangle perimeters. Finally, all algorithms described above work for
any non-squarew�h query window, even ifw andh are input parame-
ters (as opposed to being fixed over all input layouts).

3 Fixed-Dissection Density Analyses
In attempting to verify (or satisfy) upper and lower density bounds for
w�w windows, a very practical method is to check (or enforce) these
constraints only forw�w windows of afixed dissectionof the layout
into w

r �
w
r tiles, i.e., the set of windows having top-left corners at points

(i � w
r ; j � w

r ), for i; j = 0;1; :::; r( n
w �1); herer is an integer divisor of

w. To our knowledge, this is the type of verification that is most of-
ten performed by commercial tools.9 Unfortunately, a fixed-dissection
scheme for smallr cannot guaranteeanynontrivial density bounds over
all w�w windows (as opposed to only the fixed tiles in the dissection).
For r = 1, even if the area density of each tile in the fixed dissection is
guaranteed to be at least 75%, a completely emptyw�w tile can exist.
Conversely, if the area density of each window in the fixed dissection
is guaranteed to be at most 25%, a completely fullw�w window can
exist.

8Practically speaking, this is the most common use model: a designer would like to
know all areas of his layout that violate density bounds, so that these areas can be fixed or
an exception granted by the project management. Any design may have numerous special
cases that require exceptions, e.g., pads and scribe line areas.

9As an example of a fixed-dissection -based commercial analysis tool, consider the Drac-
ula COVERAGE command [2], or capabilities of mask analysis tools in the TCAD market-
place [14]. Dracula COVERAGE, for example, allows checking of area density upper and
lower bounds inw�w windows (e.g.,w = 50µm) that occur at a fixed offset, orstep(e.g.,
w
r = 10µmandr = 5), from each other.
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On the other hand, the analysis of fixed dissections can be done
much faster than the analysis of all eligiblew�w windows. First we
initialize an array ofn

w � n
w counters associated with all of the fixed

dissection windows, and then for each rectangleR, we increment the
counters of the windows intersectingR by the area of the intersection.
In case ofr > 1, we repeat the procedure abover2 times in order to
check all(r � n

w)
2 windows.

In the rest of the section, we seek ways in which density bounds for
arbitrarily located windows can be enforced by density bounds on fixed
dissection windows. Such rules can be viewed as a form of density-
related layout design rule. We compare two ways of applying simple
local rules to windows having top-left corners at points(i � w

r ; j � w
r ),

i; j = 0;1; :::; n
w for somer > 1 such thatwr is an integer. First, we con-

sider what happens when we enforce upper and lower density bounds
in each individualwr �

w
r tile of our fixed dissection (Theorem 7), and

then we derive upper/lower bounds in the case when we enforce den-
sity bounds for standardw�w windows (Theorem 8). For example, if
we enforce the area density to be at least 25% (i.e.La = 0:25), then
(for r = 5) the first rule guarantees 16% area density while the standard
method can guarantee only 6%. The bounds from Theorems 7 and 8 can
help to choose appropriate combinations of fixed dissections and design
rules corresponding to specified area density lower/upper bounds.

Theorem 7 Suppose allwr �
w
r fixed dissection tiles with top-left cor-

ners at points(i � w
r ; j � w

r ), i; j = 0;1; :::; r( n
w �1), have area density at

least La and at most Ua. Then the exact lower bound on the area density
of w�w windows equals

(r�1)2

r2 �La+
4(r�1)

r2 maxfLa�0:5;0g+
4
r2 maxfLa�0:75;0g

and the exact upper bound equals

(r�1)2

r2 �Ua�
4(r�1)

r2 maxfUa�0:5;0g�
4
r2 maxfUa�0:25;0g:

Theorem 8 Suppose all w�w-sized windows with top-left corners at
points(i � w

r ; j � w
r ), for i; j = 0;1; :::; r( n

w�1), have area density at least
La and at most Ua. Then any w�w window has density at least La�
1
r +

1
4r2 and at most Ua+ 1

r �
1

4r2 , and these bounds are tight.

4 Synthesis of Filling and Slotting Patterns
Given the layout geometry along with the parameters of the Filling and
Slotting Problem, we wish to synthesize fill and slot geometries such
that all windows satisfy the density bounds. In this section we first con-
struct filling patterns for wiring-type layouts that are usually produced
by preferred-direction area routers. Then we consider slotting patterns
of minimum area. Finally, we derive conditions when both area and
perimeter density bounds can be satisfied, and we suggest appropriate
filling patterns for such situations.

4.1 Fill Synthesis for Wiring-Type Layouts
Here we present an efficient metal fill synthesis algorithm that will han-
dle layouts containing mostly wires occupying discrete rows, where
wire segments have discrete widths and varying lengths. Gridded pre-
ferred-direction area routers typically produce such geometries.

If the separation between adjacent wire rows for this type of layout
is nearly the same as the width of the rows (rectangles), the layout den-
sity never exceeds 50% or 60% anywhere. Thus, typical density upper
bounds trivially hold (i.e., are never violated due to the minimum spac-
ing rules for interconnect). To solve the Filling and Slotting Problem
for this kind of layout, we only need to make sure that the density lower
bound is satisfied everywhere. AnO(k logk) algorithm can achieve this
as follows:

1. Sort the wires/rectangles by rows, and within each row sort them
by the coordinates of their leftmost starting points.

2. For each row, from left to right, create metal fill in the space be-
tween the rectangles (with small separation from the neighboring
rectangles on the left and right).

Figure 4 shows an example of a wiring-type layout along with the metal
fill solution produced by the above algorithm. Many current designs
contain regions with wiring geometries of this form.

(a)

(b)

Figure 4: (a) An example of a wiring-type layout, and (b) a corre-
sponding metal fill solution (shaded rectangles denote metal fill).

4.2 Minimization of Slotting
To minimize the slotting of rectangles, we propose the following algo-
rithm that, whenever possible, favors adding metal fill to empty regions
rather than slotting existing rectangles. The main idea of this approach
is as follows.

1. Inside every rectangle, if there is enough room inside, slot the
rectangle lengthwise using parallel slots of widthw1, spaced a
distance ofd1 apart. The parametersw1 andd1 are chosen so that
the density inside the rectangle does not exceed the maximum
allowable density (see Figure 5(b)).

2. Outside every rectangle, if there is enough room (with respect
to neighboring rectangles), create a maximum-density metal fill
band of widthw2 at distanced2 away from the rectangle, leaving
empty space between the rectangle and this band (see Figure 5(c).

3. Fill up the remaining empty areas of the layout (outside all the
outer bands) with a canonical slotted metal pattern corresponding
to the density lower bound (see Figure 5(d)).

This algorithm clearly satisfies the density upper and lower bounds
for appropriate values ofd1;w1;d2 andw2 which depend onw, c and
the density upper and lower bounds.10 These values can be computed
in constant time, and the overall algorithm can be implemented to run
efficiently.

4.3 Simultaneous Area and Perimeter Bounds
In this subsection, we characterize combinations of area and perime-
ter densities(Da;Dp) that can be simultaneously satisfied by the same
filling pattern.

As discussed in Section 1, all geometries must satisfy minimum
length and minimum separation rules. In particular, no fill feature di-
mensions, nor any distance between features, can be less thanc. In

10Recall from Section 1 that slotting requires several design flow changes, particularly
since slotted power buses will have reduced current carrying capability. The slotting orien-
tation is aligned with the direction of current flow.
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Figure 5: For each rectangle of the given layout (a), we create par-
allel slots in the direction of the current flow, and a corresponding
maximum-density band just outside the rectangle (b). All remain-
ing empty areas between rectangles are filled with a canonical metal
pattern having minimum density (c).

practice, the distance between filling or slotting geometries and near-
est layout feature is constrained to be greater thanc0 > c. However we
can still view regions eligible for filling asc-polyominoes, i.e., poly-
ominoes [5] with sides a multiple ofc that are in distancec0 from the
layout features. The fill pattern should also consist of polyominoes in
thec-grid, i.e., the minimum separation rule implies that a pair of filled
cells which share exactly one corner should have one common filled
neighboring cell.

First, we will describe filling patterns for a rectangular regionR
which have maximum perimeter, and either the minimum or maximum
allowable area density. The patternPmin with the minimum area density
fills all cells which have top-left corner coordinates(a+2ci;b+2c j),
where(a;b) is one of the corners ofR(see Figure 6(a)). This pattern has
area slightly more than14 �area(R), because it fills approximately every
fourth cell of R. The patternPmax with maximum area density fillsR
completely, leaving empty only cells with coordinates(a+c+2ci;b+
c+2c j) (see Figure 6(b)). The area of this pattern is slightly larger than
3
4 �area(R) because it leaves empty approximately every fourth cell of
R.

Two more patterns are necessary for completing the description of
all possible patterns. These are simply the empty patternP0 with zero
perimeter and area, and the completely-filled patternP1 having both
perimeter and area equal to those ofR. In the graph of Figure 7, the
x-axis represents area and they-axis represents perimeter. The high-
lighted region with verticesP0, Pmin, Pmax andP1 represents the com-
binations of area and perimeter densities for which there exist filling
patterns. Notice that a square has the minimum perimeter with a given
area. LetSbe the area of a maximum square which can be embedded
in R. Before the pattern area reachesS, the minimum perimeter grows
quadratically; pastS, the minimum perimeter grows linearly.

The algorithm for finding a pattern with a given area and perimeter
is straightforward: it starts with the minimum area pattern that has the
given perimeter, and sequentially adds square cells with sidec until the
necessary area is achieved.

5 Computational Experience

We now report our computational experience for (i) the fast expected
time algorithm of Section 2.4 (ALG3), and (ii) a simple implemen-
tation of the approximate overlapping fixed-dissections approach of
Section 3 (FD), withr = 1;2;5;10.11 Our benchmarks include CIF-
formatted (converted from GDSII Stream) M2 geometries from three

11Given a fixed dissection into(n=w)
2 windows of sizew�w, we iterate over each layout

rectangle, and add the rectangle’s area contribution to the total of each window that the
rectangle intersects. We then check all windows to find the window with maximum area
density. We repeat this processr2 times.
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Figure 6: Two patterns with maximum perimeter. (a) the patternPmin
with minimum possible area, and (b) the patternPmaxwith maximum
area.
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Figure 7: Thex-axis represents the area and they-axis represents
the perimeter of the filling pattern. The highlighted region with ver-
ticesP0, Pmin, Pmax, andP1 represents the combinations of area and
perimeter for which there exist filling patterns.

standard-cell layouts produced by an industry place-and-route tool.12

We also use random instances ofk = 2000;4000;8000;16000 rectan-
gles in square layout regions of siden= 2000;4000, with window sizes
w= 20;40;80.13

Table 1 shows runtimes and maximum computed area density for
each algorithm. The first column of the Table represents the triple
k=N=w=Type, where “Type” denotes the two regimes of “wiring-type”
(W) and “random-small” (R) (see Footnote 13). The second column
gives the runtime (in CPU seconds on a 167MHz Sun Ultra-1) and
maximum window density for the algorithm of Section 2.4. The third
through sixth columns give (CPU and density values) obtained by the
overlapping fixed-dissections approach usingr = 1;2, 5, and 10, re-
spectively. We observe that, as expected, the fixed-dissection approach
is faster but less accurate, and that its accuracy improves steadily (at the
cost of additional CPU time) asr increases.

6 Conclusions and Ongoing Research Directions
In conclusion, we have introduced a critical new problem in the inter-
face between lithography, physical layout design and performance ver-
ification. We have given the first formulation of thefilling and slotting
problemsthat arise in layout post-processing and layout optimization

12Benchmark 1 corresponds to a 1756-cell design and has 4470 rectangles; Benchmark 2
corresponds to a 8131-cell design and has 47904 rectangles; and Benchmark 3 corresponds
to a 20577-cell design and has 127760 rectangles. For these three benchmarks, we have
n= 34134;61888;111905 andw= 2000;2000;4000 for window size.

13 Until k rectangles have been generated, we repeatedly generate a new rectangle having
width uniformly random in[wmin;wmax] and height uniformly random in[hmin;hmax], such
that the rectangle fits inside the layout region and is at least distancec from all previously
generated rectangles. There are two regimes: “wiring-type” (W) useswmin = 1, wmax =

1000, andhmin = hmax= 1; “random-small” (R) useswmin = hmin = 1, wmax= hmax= 10.
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for manufacturability. We have also developed a number of effective
algorithms for density analysis (both in the general case and in a prac-
tical context) as well as for filling/slotting synthesis. Our algorithms
have been integrated into a software environment that includes GDSII
reader/writer, CIF manipulation, and a geometric database; preliminary
data are encouraging, but also point out the need for careful imple-
mentation. We are currently seeking more test cases and density rules
from industry to further refine our approaches and implementations.14

We believe that our formulations capture several requirements in fu-
ture lithography and provide a key unification between lithography and
physical design. Our current work addresses such issues as the follow-
ing:

� developing more efficient, general and provable filling/slotting
algorithms (e.g., for simultaneous perimeter- and area-density
based criteria);

� finding min/max density/perimeter windows in worst-case time
o(n2) or o(k2); and

� maintaining knowledge of min/max density/perimeter windows
under dynamic rectangle insertion/deletion in timeo(n) or o(k).
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Appendix: Fill Impact on Extraction
Table 2 shows capacitance extraction results obtained with the Raphael
3-D field solver from TMA/Avant!, for an isolated conductor (i) with or
without fill insertion in empty regions of adjacent layers, and (ii) with
or without same-layer neighbor conductors. The simulation shows that
ignoring the possibility of metal fill can result in underestimation of
total line capacitance by more than 50%. This can in turn lead to use-
less RCX, delay calculation, and timing analysis results. We conclude
that the presence or absence of fill geometriesmustbe modeled during
performance-driven layout optimization. Similarly, we can show that
slotting must also be modeled for power and reliability analyses. Such
modeling must be efficient and “transparent”; since there are many iter-
ations through the layout optimization loop, we must be careful with the
time complexity of fill/slot insertion and the increases in data volume.

Tables 3 and 4 give TMA/Avant! Raphael capacitance extraction
results for multi-layer interconnect structures involving fill geometries,
as follows.
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Victim Layer Total Capacitance (10�15F)
Same layer-i Fill layers
neighbors? i�1, i +1? ε = 3:9 ε = 2:7

N N 2.43(1.00) 1.68(1.00)
N Y 3.73(1.54) 2.58(1.54)
Y N 4.47(1.84) 3.09(1.84)
Y Y 5.29(2.18) 3.66(2.18)

Table 2: Raphael 3-D field solver results for total capacitance extrac-
tion of a single victim conductor. The conductor on layeri is 20�1.
Line-to-line spacing is 1, line width is 1, line thickness is 1.5, and
dielectric height is 1.5. Metal fill features on layersi�1 andi +1
are 10�1 with side-to-side spacing of 1 and end-to-end spacing of
4. The dielectric permittivity was set to both 3.9 (for SiO2) and 2.7
(cf. recent announcements by Sematech [12] of new low-permittivity
dielectric technologies). Layersi�2 andi +2 are set to be 40�40
ground planes.

Victim B Total Capacitance (10�15F)
Fill layer offset Fill geometry ε = 3:9 ε = 2:7

N 10�1 3.776(1.00) 2.614(1.00)
N 1�1 3.750(0.99) 2.596(0.99)
Y 10�1 3.777(1.00) 2.615(1.00)
Y 1�1 3.745(0.99) 2.593(0.99)

Table 3: TMA/Avant! Raphael capacitance extraction results: total
capacitance for the middle victim conductorB.

� Three 20�1 victim conductorsA, B andC (with B in the middle),
with spacing 1 between them, are placed on a victim layeri. All
conductor thicknesses = 1.5; dielectric height between layers =
1.5. Dielectric permittivity was set at either 3.9 or 2.7.

� A 40�40 bottom ground plane is placed at layeri�2.

� Two types of fill geometry patterns were considered for layer
i�1 (see Figure 8): (a) 1�1 squares with(x;y) origins of form
(2i;2 j), i and j integers, resulting in an overall pattern area den-
sity (for an infinite layout region) of 0.25, and (b) 10� 1 (tall
and thin) rectangles with(x;y) origins of form(4i;14j) or (4i�
2;14j �7), i and j integers, resulting in an overall pattern area
density (for an infinite layout region) of 0.357.

� An offsetis optionally introduced. When the fill geometries are
offset, they lie directly under the spaces between the victim con-
ductors. When there is no offset, the fill geometries lie directly
under the victim conductors.

Table 3 shows that the total capacitance values for the middle con-
ductor (B) fluctuate by less than 1 percent over all four combinations of
fill pattern and offset. The critical factor is that the fill is present in the

Victim A, C Total Capacitance (10�15F)
Fill layer offset Fill geometry ε = 3:9 ε = 2:7

N 10�1 3.009(1.00) 2.083(1.00)
N 1�1 2.984(0.99) 2.066(0.99)
Y 10�1 3.004(1.00) 2.080(1.00)
Y 1�1 2.980(0.99) 2.063(0.99)

Table 4: TMA/Avant! Raphael capacitance extraction results: total
capacitance for the outside victim conductorA orC.

(a) (b)

Figure 8: The two fill patterns considered in Raphael simulations:
1�1 squares separated 1 unit apart (a), and 10�1 rectangles sep-
arated 1 unit apart horizontally and 4 units apart vertically (b). The
fill pattern (b) was used for the simulations reported in Table 2.

first place. Similarly, Table 4 shows that the total capacitance values
for each of the outside conductors (A andC) also fluctuate by less than
one percent. We conclude that the filling and slotting can, subject to
constraints involving feature dependencies between layers, be viewed
as a “single-layer problem”.
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