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We have developed a phylogenetic tree reconstruction method that detects and reports multiple topologically distant
low-cost solutions. Our method is a generalization of the neighbor-joining method of Saitou and Nei and affords a
more thorough sampling of the solution space by keeping track of multiple partial solutions during its execution.
The scope of the solution space sampling is controlled by a pair of user-specified parameters—the total number of
alternate solutions and the number of alternate solutions that are randomly selected—effecting a smooth trade-off
between run time and solution quality and diversity. This method can discover topologically distinct low-cost
solutions. In tests on biological and synthetic data sets using either the least-squares distance or minimum-evolution
criterion, the method consistently performed as well as, or better than, both the neighbor-joining heuristic and the
PHYLIP implementation of the Fitch-Margoliash distance measure. In addition, the method identified alternative
tree topologies with costs within 1% or 2% of the best, but with topological distances of 9 or more partitions from
the best solution (16 taxa); with 32 taxa, topologies were obtained 17 (least-squares) and 22 (minimum-evolution)
partitions from the best topology when 200 partial solutions were retained. Thus, the method can find lower-cost
tree topologies and near-best tree topologies that are significantly different from the best topology.

Introduction

Reconstruction of ancestral relationships from con-
temporary data is widely used to provide both evolu-
tionary and functional insights into biological systems.
The explosive increase in available DNA sequence data
has increased interest in phylogenetic analysis of mul-
tigene and domain-swapped protein families. Three gen-
eral classes of phylogenetic reconstruction methods are
commonly used for analysis of sequence data sets: par-
simony methods (Swofford et al. 1996), distance-based
methods (Fitch and Margoliash 1967), and maximum-
likelihood methods (Felsentein 1982; 1988). Parsimony-
and distance-based methods are most often used, largely
because they are faster computationally and allow a
larger number of potential phylogenetic trees to be eval-
uated.

Reconstruction of an evolutionary history for a set
of contemporary taxa based on their pairwise distance
is computationally intractable (i.e., NP-complete) for
various optimality criteria (Foulds and Graham 1982;
Day 1987), including the least-squares criterion and the
minimum-evolution criterion. Various heuristics have
been proposed to search for solutions of desired quality
(Felsenstein 1988; Bandelt and Dress 1992; Swofford et
al. 1996), and the majority of these methods are greedy
methods, which always employ moves that are ‘‘locally
best’’ and may not necessarily lead to global optima
(Swofford et al. 1996). Among the greedy approaches,
the neighbor-joining (NJ) method (Saitou and Nei 1987;
Studier and Keppler 1988) is widely used by molecular
biologists due to its efficiency and simplicity.

Greedy methods are efficient because they explore
only a small portion of the solution space. (A solution
space is the set of all possible phylogenies spanning the
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given taxa.) Taxa correspond to leaves in a tree that
spans them. However, greedy methods can fail to find
the best overall solution if they become ‘‘trapped’’ in
local optima. In addition, because only a small fraction
of the solution space is examined, a greedy heuristic
typically will not report (or detect) alternative solutions
with distinct topologies that may fit the data nearly as
well, or even equally well. Neglecting such alternative
solutions can produce misleading inferences regarding
evolutionary history. For instance, Wilson et al. (1989)
concluded that all humans originated from Africa, be-
cause their tree-building method failed to discover al-
ternative, near-optimal trees that were consistent with a
different geographical history (Maddison 1991).

To improve the reliability of phylogenetic tree re-
construction, we propose a scheme which samples the
solution space more extensively by repeatedly using the
NJ algorithm (Saitou and Nei 1987). Instead of tracking
only a single locally best tree as NJ does, our scheme
maintains multiple partial solutions as it progresses. The
method explores all possible trees derivable from the set
of current partial solutions in a single NJ step, and then
selects a subset of these partial solutions to pass on to
the next iteration. This approach is competitive with NJ
in recovering distinct low-cost topologies, while still be-
ing computationally efficient.

Materials and Methods
The NJ Method

The NJ method was initially proposed by Saitou
and Nei (1987) and later modified by Studier and Kepler
(1988). NJ seeks to build a tree that minimizes the sum
of all edge lengths, i.e., it adopts the minimum-evolution
(ME) criterion. (The ME criterion seeks the best phy-
logeny for the input distance matrix that minimizes the
sum of all edge lengths, where edge lengths are assigned
to minimized the least-squares deviation.) A number of
studies have corroborated NJ’s performance in recon-
structing correct evolutionary trees (Saitou and Imanishi
1989; Kuhner and Felsenstein 1994; Huelsenbeck 1995).
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FIG. 1.—The NJ heuristic. a, An input matrix of size 5. b, An NJ
solution strategy. First, the star tree topology centered at node 6 is
formed; next, the closest neighbor pair {1; 2} is ‘‘joined’’ into a dis-
tinct internal node 7; finally, this new internal node 7, together with
one of the leaf nodes 3, is joined to a new internal node 8 to form T1.
c, An equally good solution T2, but with a very different topology,
which was not found by NJ.

FIG. 2.—The GNJ method. The GNJ heuristic for the data of
figure 1 a is shown. Throughout the search, three partial solutions are
kept (K 5 3). At each iteration, all possible neighboring taxa pairs are
examined; three are selected to pass to the next iteration. The dashed
lines represent the neighboring pairs that are eliminated during the
current iteration. While NJ follows the path on the left and thus only
finds the single tree T1, the GNJ scheme recovers both equally good
solutions T1 and T2 (see fig. 1).

For small numbers of taxa, NJ solutions are likely to be
identical to the optimal ME tree (Saitou and Imanishi
1989).

NJ begins with a star tree, then iteratively finds the
closest neighboring pair (i.e., the pair that induces a tree
of the minimum sum of edge lengths) among all pos-
sible pairs of nodes (both internal and external). The
closest pair is then clustered into a new internal node,
and the distances of this node to the rest of the nodes
in the tree are computed and used in later iterations. The
algorithm terminates when n22 internal nodes have
been inserted into the tree (i.e., when the star tree is
fully resolved into a binary tree). The NJ heuristic is
illustrated in figure 1b.

Although the NJ method runs quickly, it returns
only the single best solution found by its greedy search
strategy. This solution can be further improved with
postprocessing by rearranging branches and swapping
subtrees (Rzhetsky and Nei 1992; Swofford 1996), but
such improved solutions tend to remain topologically
similar to the original starting-point solutions. To in-
crease our confidence in the solution’s reliability, it is
natural to ask if there are other solutions, with different
topologies, that are equally well supported by the dis-
tance matrix data.

Solution spaces can exhibit many alternate local
optima (Penny et al. 1995). For instance, among all 15
possible trees of 5 taxa, 2 of them (T1 in fig. 1b and T2
in fig. 1c) fit the input matrix (fig. 1a) best. However,
these two trees have very different topologies; they
share no common internal edges. Indeed, according to
the partition distance metric (see Algorithms Compared,
below), T1 and T2 are the most dissimilar trees possible.

The Generalized NJ Method

Our generalized NJ (GNJ) method samples the so-
lution space extensively by keeping track of multiple
partial solutions as it progresses (the number of partial

solutions K is an input parameter). Unlike the NJ meth-
od, which follows only a single path toward a solution,
GNJ performs a more thorough search of the solution
space by tracking and exploring many potentially good
paths. That is, GNJ retains promising partial solutions,
which may not be locally optimal but which have the
potential for substantially greater cost savings in sub-
sequent steps. An execution example of GNJ on the ma-
trix of figure 1a is shown in figure 2.

The GNJ algorithm can select in several ways the
K partial solutions that are passed on to the next itera-
tion. A simple strategy would save the K best (i.e., least-
cost) partial solutions; alternatively, partial solutions can
be chosen at random. Selecting the best solutions tends
to improve solution quality, while randomly selecting
alternates tends to increase solution diversity. We im-
plement a hybrid scheme that balances these two ex-
tremes: the top Q # K least-cost solutions are selected,
along with additional D 5 K 2 Q ‘‘topologically di-
verse’’ solutions. (The parameter names Q and D are
mnemonic for quality and diversity, respectively.) If
there are more than Q least-cost pairs at a given itera-
tion, GNJ will select Q of them arbitrarily, which makes
the GNJ method nondeterministic.

To achieve topological diversity, at each iteration,
after selecting the best Q partial solutions, the remaining
partial solutions are partitioned into G groups according
to their topological distances from a best partial solution
(partial solutions within the same group are equidistant
from the best partial solution). We then obtain an ad-
ditional D ‘‘topologically diverse’’ partial solutions for
the next iteration by selection the top D/G solutions
from each group. If G does not divide D, we select one
additional solution from each of the D 2 ( D/G · G)
groups corresponding to the topological distances far-
thest from the best partial solution. Thus, at the last step
toward solving a 16-taxon problem, alternate solutions
can be as many as 13 partitions away from the best
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current solution. In this case, if D 5 50, at least 50/13
5 3 best solutions at topological distances 1 and 2 are
saved, and at least the 4 best solutions at topological
distances 3 through 13 are saved. For 32 taxa and D 5
100, at least 3 solutions will be saved at each topological
distance. Because the maximum topological distance in-
creases linearly with the number of taxa, the above strat-
egy ensures that the number of topologically distinct
good solutions can remain relatively constant by in-
creasing D linearly, rather than exponentially, with the
number of taxa.

A similar idea is employed in the stepwise ME tree-
building method (Kumar 1996). At each iteration, for a
given partial tree, this method first identifies the leading
node (i.e., the node most likely to be joined to another
node), and forms the set of next-step NJ trees by clus-
tering each node with the leading node. This strategy
restricts the solution space somewhat, but it requires ex-
ponential time to run, which makes it practical only for
small data sets. Moreover, it does not explicitly consider
alternate solutions at different topological distances (see
below), so it is less likely to identify topologically dis-
tinct alternatives.

Different combinations of Q and D (K 5 Q 1 D)
enable a smooth trade-off between quality versus diver-
sity. As Q increases with respect to D (for a fixed K),
lower-cost solutions are favored over ones with diverse
topologies, while for smaller values of Q, the solution
space exploration becomes broader, and topologically
different local optima are more likely to emerge. We
note that if K 5 Q 5 1 (and thus D 5 K 2 Q 5 0),
the single solution returned by our GNJ approach is
identical to the solution produced by the original NJ
method (Saitou and Nei 1987; Studier and Keppler
1988). Here, only the best-cost partial solution is passed
to each subsequent iteration, which is exactly what NJ
does. Thus, GNJ directly generalizes the NJ method.

Additional strategies for expanding the search of
phylogenetic tree space might be considered. The GNJ
approach can be abstractly divided into two phases: (1)
a tree generation component which produces multiple
partial solutions, and (2) a partial solution evaluation
function which favors certain preferred partial solutions
over others. The overall run time per iteration of the
combined method is asymptotically no greater than the
slowest of these two components.

The algorithm described in this section utilizes the
NJ method as the partial tree generation mechanism in
phase 1, while using the ME criterion (implicit in the
NJ method) in filtering candidate partial solutions in
phase 2. However, any combination of existing algo-
rithms or heuristics for tree generation and tree evalu-
ation can be incorporated into this general template. For
example, we can evaluate partial trees at each step using
the least-squares deviation optimality criterion. (The
least-squares criterion seeks the best phylogeny for the
input distance matrix that minimizes Sl#i#j#n (tij 2 dij)2,
where dij is the distance between taxa i and j in the input
distance matrix, and tij is the sum of all the branch
lengths along the unique path connecting taxa i and j in
the postulated phylogeny.)

An alternative scheme for tree generation might al-
low arbitrary partitions at intermediate steps (i.e., ‘‘join’’
any number of taxa rather than exactly two). In this case,
a number of existing efficient partitioning heuristics (Al-
pert and Kahng 1995) can be readily applied to generate
more promising and diverse partial solutions. Likewise,
the method for selecting topologically diverse partial so-
lutions might select more solutions from more distant
topologies, rather than uniformly sampling the topolog-
ical distances as is done in this implementation.

The GNJ program is written in the C programming
language and is available from ftp://ftp.virginia.edu/pub/
fasta/GNJ. To make the GNJ results more usable in prac-
tice, we output the trees obtained by GNJ in a computer-
readable format that can be readily processed by other
programs (e.g., the consense program in the PHYLIP
package). Moreover, we summarize the leaf partitions
found among the GNJ solutions below a threshold cost
and rank them by decreasing frequencies.

Data Sets

We tested the GNJ heuristic in the UNIX environ-
ment. Two types of distance matrices were used to eval-
uate the algorithm:

(1) Distance matrices were constructed for nucle-
otide sequences generated by randomly mutating an
‘‘ancestral’’ sequence along a model evolutionary tree
using the treeDNA program (J. Felsenstein, personal
communication) with the Kimura (1980) two-parameter
model for mutation rates. Three types of topologies were
used for the model trees: topologies of minimum di-
ameter (which we refer to as type A), topologies of max-
imum diameter (type B), and a mixture of both (type
C). Here, the diameter of a topology is defined as the
maximum number of edges connecting any two leaf
nodes within the topology. Therefore, topologies of type
A are the most ‘‘branchy’’ (i.e., they resemble a com-
plete binary tree), while topologies of type B are more
‘‘stringy.’’ Type A trees were the most challenging and
are used for most of the figures.

Divergence rates ranging from 0.005 (internal
branches) to 0.50 (leaf or external branches) were used
to produce the synthetic data. Two different type A and
type B data sets were examined. Type A1 and type B1
data sets used divergence rates ;0.02 (32 taxa) to ;0.05
(8 taxa) for internal edges and 0.4 for external edges
(thus, the ratio of external to internal branch rates varied
from 10 [for 8 taxa] to 35 [for 32 taxa]). Type A2 and
type B2 trees used rates of 0.005 for the central (inter-
nal) edges and 0.50 for the external (leaf) edges (exter-
nal/internal ratios of 100).

(2) Several biological data sets were examined, in-
cluding immunological data from 9 frog species (Saitou
and Nei 1987), data from 13 viral env V3 fragments and
gag P17 (Leitner et al. 1996), and 47 aligned TCP-1
chaperonin 60 family members (J. S. Blandfort, personal
communication). For DNA sequences, the distance ma-
trices were computed with the dnadist program in the
PHYLIP package (Felsenstein 1993), using the Kimura
(1980) two-parameter model. For protein sequences, the
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FIG. 3.—Distribution of tree costs and diversity. The number of
trees (left ordinate, m, M) and maximum topological (partition) dis-
tance averaged over 30 data sets (right ordinate, v, V) are plotted as
a function of the fractional cost range. Distributions for the least-
squares (LS, m, v) and the minimum-evolution (ME, M, V) criteria
are shown. Distributions were determined for eight taxa from 30 syn-
thetic type A1 data sets, 30 synthetic type B1 data sets, and 30 data
sets from biological data set R1. The figures show the results deter-
mined after an exhaustive search of all 10,395 tree topologies for 8
taxa.

distance matrices were computed with the protdist
program in the PHYLIP package (Felsenstein 1993), us-
ing the Dayhoff (1978) PAM matrix model. We obtain
30 biological data sets of 8, 16, or 32 taxa by randomly
sampling the original data sets. Results on the different
biological data sets were similar; only results on the chap-
eronin distances (referred to as data set R1) are reported.

Algorithms Compared

We evaluated the data sets using three algorithms:
(1) the NJ method (Saitou and Nei 1987; Studier and
Keppler 1988), as implemented in the PHYLIP package
(Felsenstein 1993); (2) the Fitch-Margoliash (FM) meth-
od for fitting topologies to distance matrices with respect
to the least-squares criterion (Fitch and Margoliash
1967), as implemented in the PHYLIP package (Felsen-
stein 1993); and (3) the GNJ method, described in this
paper.

In addition, we examined every possible tree to-
pology for synthetic and biological data over eight taxa.
This exhaustive method is guaranteed to return a global
optimum (i.e., the lowest-cost topology). Because of the
sheer size of the solution space, the optimal method is
feasible only for data sets containing fewer than 10 taxa.

The solutions from the different algorithms were
evaluated using either the least-squares or the ME cri-
terion. Least-squares tree cost is computed by assigning
nonnegative edge lengths in a way that minimizes the
least-squares deviation. ME tree cost is computed as the
sum of such edge lengths in a tree.

To further improve the solution quality, we also
applied a postprocessing optimization step which rear-
ranges subtrees as follows. Given a topology, we com-
pute the cost of all the trees resulting from swapping/
exchanging subtrees around each of the internal edges
of the topology. Then, the lowest-cost tree is chosen as
the new current tree, and its neighborhood is investi-
gated in turn. We iterate this process until no further
improvement can be obtained.

Topological distances in this paper are based on the
partition metric (Robinson and Foulds 1981; Penny and
Hendy 1985; Steel and Hendy 1993), which measures
the number of edges common to a given pair of binary
trees. Each internal edge naturally partitions the set of
leaf nodes into two subsets. Two trees spanning the
same set of leaves have a common edge if removing
this edge induces the same two subsets of leaf nodes.
Thus, the partition distance between any two trees is
defined as the number of edges in one tree for which
there are no corresponding equivalent edges in the other
tree. Since each binary tree of n leaves has n 2 3 in-
ternal edges, distances under the partition metric can be
represented as integers between 0 and n 2 3.

Results

Like NJ, GNJ seeks to identify phylogenetic tree
topologies and branch lengths that best fit distance data.
GNJ improves on NJ by identifying near-optimal topol-
ogies that are significantly different from the best so-
lution found in the search (there are typically many near-

optimal solutions that differ only slightly from the best
solution; we seek topologically distant alternatives). In
the results below, we first show that the data sets that
we examine contain topologically distinct low-cost so-
lutions. We then demonstrate that the GNJ algorithm can
find these low-cost alternative solutions; by examining
two measures of success: (1) the number of alternative
trees found by GNJ with a near-optimal cost and (2) the
maximal topological (partition) distance between the
near-optimal solutions and the optimal solution found.
(In the case of more than eight taxa, where an exhaustive
search for the optimal solution is computationally infea-
sible, we compare with the best solution found instead
of with the optimal solution.) In both tests, we seek the
largest number of solutions with cost nearest to optimal
but with topological distance that is far away.

Comparison of GNJ with Exhaustive Eight-Taxon
Searches

To judge how effectively the GNJ approach finds
alternative topologically distinct solutions, we first
characterized the actual number and diversity of near-
optimal solutions by enumerating all 10,395 different
trees for data sets with eight taxa and calculated the
cost for each tree topology (fig. 3). Tree costs were
optimized using either the ME criterion or the least-
squares criterion. Because the different cost criteria
may have different distributions of costs, we plot the
number of trees obtained as a function of the fractional
cost range: (cx 2 cmin)/(cmax 2 cmin), where cx is the
least-squares or ME cost of a specific tree topology,
cmin is the minimum (and for exhaustive searches, op-
timal) cost under that criterion, and cmax is the cost of
the worst topology. For the eight-taxon data, cmin and
cmax are known because the cost of every possible to-
pology has been calculated. For larger data sets, cmin is
approximated from the minimum cost obtained for all
of the tree searches on the data set, and cmax is ap-
proximated from the maximum cost obtained by sam-
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FIG. 4.—GNJ solutions—eight taxa. The distribution of solutions
found by GNJ on 30 type A1 synthetic eight-taxon data sets (A and
B) or 30 R1 biological eight-taxon data sets (C and D) are shown.
Searches were done with K 5 Q 1 D 5 50. Panels A and C show the
average numbers of different trees with costs within the fractional
least-squares cost shown. Panels B and D show the averages of the
maximum topological distances of the solutions within the fractional
cost range.

FIG. 5.—GNJ solutions—16 taxa. The distribution of solutions
found by GNJ on 30 type A1 synthetic 16-taxon data sets (A and B)
or 30 R1 biological 16-taxon data sets (C and D) are shown. Searches
were done with K 5 Q 1 D 5 100. Panels A and C show the average
numbers of different trees with costs within the fractional ME cost
shown. Panels B and D show the averages of the maximum topological
distances of the solutions within the fractional cost range.

pling 100 trees randomly. Thus, for the 16- and 32-
taxon data sets, cmin may not be the optimal minimum
cost and cmax may not be the highest (worst) cost, but
these approximations should differ only slightly from
the true values.

For the synthetic data, it is possible to ask how
often the low-cost trees found by the GNJ algorithm
were consistent with the original tree that was used to
produce the distance data. However, the lowest-cost
least-squares or ME tree was often different from the
original tree. Trees from type A1 and B1 data are used
for most of the figures because the difference between
the original tree cost and the best tree cost was typically
between 0 and 0.1, with the median between 0.01 and
0.03 of the cost range. Trees from type A1 and B1 syn-
thetic data behaved very similarly to trees from the bi-
ological data sets. For the A2 and B2 data sets, the me-
dian original tree cost was 0.4–0.7 of the cost range.
Thus, because of the high external/internal rate ratio, the
best tree frequently had a cost substantially lower than
that of the original tree, and these data sets have a large
number of distinct local minima, which are not seen
with the biological data sets or with the type A1 and B1
trees.

Figure 3 shows how the number of trees and the
topological distance between the alternative solutions in-
creases over the fractional cost range. The results from
three different data sets are shown using either the ME
or the least-squares cost criterion. In these plots, more
challenging data sets have a larger number of near-op-
timal trees and greater topological distance at lower
fractional cost. In general, there are more near-optimal
trees with the least-squares criterion than with the ME
criterion, and those trees tend to be more topologically
distinct (fig. 3). For example, with the biological data

(fig. 3C), there were 14.6 trees on average with least-
squares cost within 0.01 of optimal, but only 2.6 trees
#0.02 when the ME cost is calculated. Furthermore,
when the cost is less than 0.01, the maximum topolog-
ical distance for near-optimal trees is greater for the
least-squares trees than for the ME trees.

The branchy type A1 synthetic data set tends to
produce a larger number of near-optimal, topologically
distant trees than the type B1 (fig. 3) data sets. When
the type A2, B2, and C2 data sets were examined (data
not shown), type A2 data sets were the most challeng-
ing, and, for trees with costs of #0.01, number of trees
and topological distance between the trees were about
twice as high for type A2 as for type A1. The biological
data set appears more challenging than the type A1, B1,
and B2 synthetic data sets, but less challenging than the
type A2 data set (fig. 3 and data not shown). We focus
our attention on the number and diversity of trees with
cost range 0.01–0.05 both because these cost ranges are
intuitively close—between 1% and 5% of the best cost
found—and because, for the type A1 and B1 synthetic
data, 0.01–0.05 spans the range of cost differences be-
tween the original trees used to generate the distance
data and the best trees found for the data.

Ideally, the GNJ algorithm would find each of the
near-optimal solutions that can be found when every tree
topology is examined. Thus, we use the number of so-
lutions, their average cost, and their diversity to gauge
the effectiveness of GNJ (figs. 4–6) and compare GNJ
with an exhaustive search (fig. 3). We seek combinations
of Q and D that approach the distribution of solutions
seen in the exhaustive search. Figure 4A shows that the
GNJ algorithm effectively identifies virtually all sub-
optimal solutions with costs of #0.05 on the synthetic
data set as long as Q . 0. (Results, not shown, using
the ME cost criterion are indistinguishable.) Only when
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FIG. 6.—GNJ solutions—32 taxa. The distributions of the number
of trees (A) and the maximum topological distance averaged over 30
data sets (B) are shown for the least-squares cost criterion on 32 taxa
synthetic type A1 data. Searches were done with K 5 Q 1 D 5 500.
Panels C and D show tree numbers and topological distances for the
biological R1 data.

Q 5 0 and D 5 50 is the number of near-optimal so-
lutions different from the number found in the exhaus-
tive search; that is, some of the lowest-cost alternative
solutions are missed. The curves in figures 4B and D
report the average maximum topological distance; i.e.,
the maximum topological distance among all the trees
with cost less than the ordinate is determined for each
of the 30 data sets, and the 30 maximum distances are
averaged. Again, when Q . 0, the alternate solutions
found by the GNJ algorithm are as diverse as those
found by the exhaustive search for costs within 10% of
optimal. (We also examined the maximum topological
distances for the data in fig. 4 and found that they were
very similar to those for the exhaustive search if Q .
0; data not shown.)

The biological R1 data set is more challenging in
some ways—there are a larger number of alternate so-
lutions with low cost (fig. 4C), and the low-cost solu-
tions appear to be more topologically diverse (fig. 4D).
For the biological data set, GNJ begins to miss solutions
with costs of .0.005 that are found by the exhaustive
search. At a fractional cost of 0.01, 11 of 15 solutions
are found by GNJ with Q $ 25, and 18 of 31 are found
at fractional cost #0.02. As with the synthetic data set
(fig. 4B), when Q 5 0, some of the best near-optimal
solutions are missed. The results presented in figure 4
suggest that for small (eight-taxa) problems, the GNJ
algorithm identifies alternate near-optimal, topologically
distant solutions very effectively.

GNJ Performance with 16 and 32 Taxa

For larger data sets, it is not computationally fea-
sible to examine the solution space exhaustively, so we
cannot directly compare the GNJ results with the opti-
mal solution. (Likewise, we cannot guarantee that the
lowest-cost solution is optimal, but it is likely to be near
optimal.) Nonetheless, we can still evaluate how the

GNJ algorithm benefits from saving multiple K 5 Q 1
D solutions by examining a range of Q, D pairs (figs. 5
and 6). When type A1 synthetic data sets with 16 taxa
are searched, the largest number of low-cost solutions
are again found when Q . 0, and the most topologically
diverse solutions are found when D . 0. (Fig. 5 shows
the results using the ME cost criterion; results using the
least-squares criterion, not shown, are similar.) For these
data sets with K 5 100, the trade-off between quality Q
and diversity D is clear-cut. Below 0.01, there is little
difference in diversity as Q and D change; above 0.02,
D $ 50 gives the best results. On the biological data set
(fig. 5C), searches with Q $ 100 find almost twice as
many (62–78) solutions with fractional cost #0.01 as do
searches with D 5 90 or 100 (33–37 solutions). The
difference in performance with respect to Q and D in-
creases at higher fractional costs. However, while re-
ducing D increases the number of low-cost solutions
found, it also decreases the diversity of the solution set.
For these data, Q 5 D 5 50 seems to be the best com-
promise.

When searches are performed on 32-taxon data (fig.
6), the importance of D in improving the diversity of
the solutions is more apparent. As before, solutions with
Q 5 D 5 250 appear to provide a good balance between
finding the largest number of low-cost solutions and
finding the most diverse solutions. We note that as Q
increases from 250 to 500, there is little change in the
number of trees with fractional cost #0.02 on the syn-
thetic type A1 data set (fig. 6A), and that the maximum
topological distance among those solutions increases
very little as D increases from 250 to 500. Thus, for
these synthetic data, although K 5 500 retains only a
tiny fraction of up to 1040 possible 32-taxon tree topol-
ogies, the data in figures 6A–10 suggest that most of the
lowest-cost solutions, and many of the topologically di-
verse solutions, are found.

Comparison with Other Methods

Thus far, our results suggest that GNJ can identify
alternative near-optimal solutions when K ranges from
50 (8 taxa) to 200 (32 taxa). In this section, we compare
GNJ with different K 5 Q 1 D values with two popular
phylogenetic tree reconstruction methods for distance
data, the NJ method (Saitou and Nei 1987) and the FM
algorithm (Fitch and Margoliash 1967) as implemented
in the PHYLIP package (Felsenstein 1993). As before,
we consider both synthetic and biological data sets with
different numbers of taxa, and we compare two cost
criteria: the ME criterion used for NJ searches, and the
least-squares criterion used by FM. In these tests, we
again consider two measures of success: quality (cost)
and diversity. We evaluate the quality of the solutions
in two ways: (1) by the fraction of the time (for the 30
test data sets) that a near-optimal solution is found and
(2) by the average cost of the best solutions found. To
evaluate diversity, for each distance matrix, we first
compute the maximum topological distance between
pairs of near-optimal GNJ solutions. Diversity is then
measured by computing (1) the maximum, as well as
(2) the average of these distances, over 30 data sets.
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FIG. 7.—GNJ performance—eight taxa. The quality and diversity
of GNJ solutions with different values of Q and D are compared with
the optimal solution set (opt) and with NJ and FM solutions for syn-
thetic type A1 data A, The fraction of the time a solution was found
with a cost , 0.01 of optimal (squares, left axis) using either the least-
squares (filled symbols) or the ME (open symbols) criterion. The right
axis (circles) reports the cost of the best solution found, averaged over
the 30 data sets. B, The diversity of the K 5 Q 1 D solutions with
costs of ,0.01 is shown as the largest topological diversity found
among all 30 data sets (squares) and the maximum topological diver-
sity averaged over the 30 data sets. Closed symbols report diversity
for least-squares solutions; open symbols report ME diversity.

FIG. 8.—GNJ performance—16 taxa. Results for 16-taxon type
A1 synthetic data are plotted as in figure 7, except that both the fraction
of solutions found and the topological distance plot use a cost threshold
of 0.01.

FIG. 9.—GNJ performance—biological data. Results for 16 taxa
from biological data set R1 are plotted as in figure 8.

For eight-taxon type A1 data, GNJ finds solutions
of very high quality that are as diverse as the exhaustive
search when K . 5 and Q . 2 (fig. 7). When Q . 2,
a solution within a cost range of 0.01 of optimal is found
100% of the time. For Q 5 0, GNJ finds a solution
within 0.01 of optimal less than 20% of the time when
D 5 5, and less than 40% of the time when D . 5. On
the same data sets, NJ finds a ,0.01 ME solution and
FM finds a ,0.01 least-squares solution more than 95%
of the time. The average cost data in figure 7A show
that the best solutions found by NJ and FM are typically
within 0.01 of the cost range, but those found by GNJ
(K $ 20 and Q $ 2) are optimal. Thus, GNJ consistently
finds solutions with costs lower than both NJ and FM.
Moreover, comparison of both the largest maximum to-
pological distance and the average maximum topologi-
cal distance (fig. 7B) shows that when the optimal so-
lution was found by GNJ, the diversity of solutions
found (with costs ,0.01 of optimal) is as large for the
GNJ solution set as for those found by the exhaustive
search. GNJ performed as well as the exhaustive search
on the much more challenging type A2 data as well (not
shown).

Results for 16 taxa are shown in figures 8 and 9.
On the synthetic type A1 data set, GNJ found a solution
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FIG. 10.—GNJ performance—32 taxa. Results for 32-taxon type
A1 synthetic data are plotted as in figure 8, except that both the fraction
of solutions found and the topological distance plot use a cost threshold
of 0.02.

FIG. 11.—Number and diversity of postprocessed solutions. Re-
sults for 16-taxon biological R1 data (A and B) and 16-taxon type A2
data (C and D) are plotted as in figure 5. Results shown are for K 5
100, Q 5 D 5 50, with either nonpostprocessed (squares) or postpro-
cessed (circles) solutions. Filled symbols report the distribution of
least-squares solutions with fractional cost; open symbols plot ME
costs.

within 0.01 of the best cost 100% of the time when Q
. 0. For these data, NJ found a ,0.01 cost solution
only 80% of the time using the ME criterion, while FM
always found a ,0.01 cost solution. Once again, GNJ
found solutions with lower average costs. For type A2
data (not shown), NJ and FM found ,0.01 solutions
only 30%–55% of the time for the least-squares crite-
rion, and 25%–37% of the time for the ME criterion,
while GNJ found the best ME solution 100% of the time
when Q . 5. GNJ found the best least-squares solution
more than 80% of the time on type A2 data with Q $
5. As K increased from 20 to 200, the cost of the best
solutions consistently improved with GNJ. While we
cannot compare the GNJ diversity with the diversity that
would be found by an exhaustive search, increasing K
from 20 to 200 improves the average maximum diver-
sity, and, as before, Q 5 D seems to provide low-cost
solutions with high diversity.

When 16-taxon biological data are examined, the
NJ and FM algorithms perform quite well (fig. 9). How-
ever, even with these data, the average cost of the best
solutions found improves from about 1024 to 1026 when
GNJ is used and Q $ 25.

NJ, FM, and GNJ all perform well on 32-taxon
type A1 (fig. 10) and biological data (not shown) using
a cost threshold of 0.02 or 0.05 (not shown). However,
it is surprising how diverse the GNJ solutions are; when
solutions with costs within 2% of the best cost are in-
cluded, GNJ found alternate low-cost solutions that
share fewer than half of the internal edges (two trees

share an internal edge if the edge induces the same leaf
bipartitions in both trees).

Comparison of the cost and the diversity of GNJ
solutions with K 5 200 and K 5 500 suggests that K
5 500, which increases the run time 2.5-fold, is prob-
ably unnecessary, since neither the quality of the solu-
tions nor the diversity increases significantly with the
higher K. Again, using Q 5 D provides a good balance
of quality and diversity.

Postprocessing

Rzhetsky and Nei (1992) have observed that for
small data sets, NJ solutions are likely to be topologi-
cally close to the optimal solution. We examined how
postprocessing (described in Algorithms Compared) af-
fects the number and diversity of the low-cost solutions,
and how postprocessing might improve NJ, FM, and
GNJ-based initial solutions. The postprocessing algo-
rithm examines all the trees that can be formed by swap-
ping (exchanging) subtrees around each of the internal
edges in the tree, thus considering all the alternative
trees that are within one partition distance from the ini-
tial tree. If a topology is found with a lower cost (least-
squares or ME), the process is repeated, until no topo-
logical neighbor is found with a lower cost. If the GNJ
algorithm finds alternate solutions that are on different
sides of a single shallow cost basin, postprocessing
should reduce the number and diversity of low-cost al-
ternate trees. This seems to be the case for the biological
R1 data (fig. 11A) and the synthetic type A1 data (sim-
ilar to the biological R1 data; not shown). Alternatively,
if GNJ actually finds distinct local minima (with respect
to cost), the number of trees may decrease dramatically,
but the topological distance between alternate solutions
should remain substantial. Multiple distinct local mini-
ma are found with the synthetic type A2 data.
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FIG. 12.—Postprocessed NJFM, and GNJ performance. Postpro-
cessed results for 16-taxon type A2 data are plotted as in figure 8.

Table 1
Execution Times

Method 8 taxa 16 taxa 32 taxa

NJ. . . . . . . . . . . . . .
FM . . . . . . . . . . . . .
GNJ

K 5 20 . . . . . . .
K 5 50 . . . . . . .
K 5 100 . . . . . .
K 5 200 . . . . . .
K 5 500 . . . . . .

,0.01
0.08

0.08
0.2
0.5
1.1
3.1

0.01
2.4

0.8
2.1
4.4
8.8

24.2

0.09
31.5

9.8
25.1
52.1

103.7
262.7

NOTE.—Run time (in CPU seconds on a 167-MHz UltraSparc) for Neigh-
bor-Joining (NJ), Fitch-Margoliash (FM), and GNJ, averaged over 100 type A
input data sets of various sizes, using the least-squares criterion and Q 5 D.

The results of postprocessing on the 16-taxon data
sets suggest that GNJ is capable of identifying alternate
topologically distinct local minima when they exist (fig.
11). As expected, the number of distinct solutions drops
dramatically (because of convergence) when the GNJ
solutions are postprocessed. For the biological R1 data
(fig. 11A and C), the drop is more than 30-fold, as it is
with the synthetic type A1 data (not shown). However,
for the synthetic type A2 data, which is derived from
trees in which the cost for the original tree is frequently
midway between the best and worst costs, the drop is
only two to three fold, and the average maximum to-
pological distance drops only about 20%. Thus, for this
very difficult data set, many of the alternate solutions
found by GNJ cannot be reached by local branch-swap-
ping from the best solution, and distinct local minima
have been found. Figure 12 compares the performances
of NJ, FM, and GNJ, each followed by postprocessing,
on 16-taxon type A2 data. Postprocessing improves the
performance of NJ and FM in finding a solution with
cost ,0.01 from about 30%–50% success to 50%–70%
success; GNJ is 100% successful with every combina-
tion of K, Q, and D. Again, GNJ finds lower-cost so-
lutions that NJ and FM fail to find even after exhaustive
postprocessing. For these data, NJ and FM appear to
sometimes find local minima (with respect to cost),
while GNJ finds more global minima.

The average maximum topological diversity for the
difficult type A2 data decreases only slightly with post-
processing, and the maximum topological diversity is as
high after postprocessing as before. This result—topo-
logically diverse solutions despite a dramatic decrease
in the number of low-cost solutions—implies that GNJ

has found alternate local minima that cannot be reached
by local branch swapping from the lowest-cost solution.
Since our postprocessing strategy begins from the K so-
lutions found by conventional GNJ, GNJ without post-
processing can detect topologically distinct alternative
local minima. For the synthetic type A2 data sets, low-
cost solutions that are topologically distinct local mini-
ma appear often. For example, for Q 5 50 and D 5 50,
the least-squares solutions differing by 11 (out of a max-
imum 13 possible) branch swaps (partitions) are found
in at least one data set, and they differ by 2.9 swaps on
average (ME solutions differ by as much as 9 partitions,
and by 4.3 on average). This suggests that topologically
distinct solutions have been found by GNJ on 25%–50%
of the 30 synthetic data sets.

The results with the biological and synthetic type
A1 data sets contrast starkly to the diversity found with
the synthetic type A2 data. With the least-squares cri-
terion and postprocessing, the average maximum topo-
logical diversity is about 0.5 and the maximum diversity
is 4, implying that distinct solutions are found in only
about 10% of the data sets. With the ME criterion, the
maximum diversity is the same, but the average maxi-
mum is 1.1; again, topologically diverse solutions may
be found for 25% of these 16-taxon data. For the syn-
thetic type A1 data, the average diversity drops from
about 4 to 1.1 (least-squares) or from 7 to 2 (ME).

Although postprocessing can improve the quality
of GNJ solutions without significantly reducing their di-
versity, the time required to postprocess K alternative
solutions can be prohibitive when the number of taxa
(and thus the number of branch swaps that must be test-
ed) is large (.16). However, comparison of fig. 12A and
the nonpostprocessed data (not shown) suggests that
postprocessing does not improve the solution quality
significantly when Q and D $ 50, and thus the extra
computation is unnecessary.

Run Time

GNJ uses computation time roughly proportional to
the number of partial solutions maintained during exe-
cution (K) and cubic in the number of taxa analyzed.
Average run times of NJ, FM, and GNJ for various input
sizes are shown in table 1. GNJ is considerably slower
than NJ (which is one of the fastest tree construction
algorithms available, because it does not evaluate any
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alternative trees), and three- (K 5 200) to eightfold (K
5 500) slower than FM for the 32-taxon data sets.

During its execution, GNJ keeps track of K partial
solutions. At each iteration, as the next pair of taxa is
removed from the ‘‘star’’ tree, GNJ explores all the can-
didate solutions derivable from the current K partial so-
lutions via a single NJ step. Since each partial tree in-
duces O(n2) candidate trees by grouping one of the
O(n2) possible node pairs in the tree, the cost of all the
resulting candidate trees requires O(n2) evaluation time.
Therefore, each GNJ iteration requires O(Kn2) time to
examine the cost of all O(Kn2) candidate trees.

At each iteration, GNJ must also select K candidate
trees to pass on to the next iteration. In this version, the
selection process requires all O(Kn2) candidate trees to
be sorted by cost. Currently, the time required by each
iteration of GNJ is dominated by the sorting time, which
is O(Kn2 log (Kn2)) 5 O(Kn2 (log K 1 log n)). We
anticipate that the amount of data to be sorted can be
reduced and that in future versions, the GNJ cost cal-
culation will dominate the run time. Since GNJ has a
total of n 2 3 iterations, the overall run time for GNJ
is O(Kn3 (log K 1 log n)).

Discussion

The GNJ algorithm is explicitly designed to ex-
plore broadly phylogenetic tree solution spaces and seek
low-cost solutions that are topologically distant. To
achieve this goal, GNJ maintains multiple partial solu-
tions at each iteration and incorporates both quality (tree
cost) and diversity (topological distance) in selecting the
set of partial solutions that will be passed on to the next
iteration. The solution space sampling is controlled by
the parameters K, Q, and D, which specify the number
of partial solutions to retain and the balance between
quality (Q) and diversity (D) in selecting alternate so-
lutions.

For small data sets (e.g., 10 taxa), GNJ can perform
better than NJ and FM algorithms by maintaining K 5
20–50 partial solutions. For example, for biological data
sets over nine taxa, all eight trees of cost close to the
NJ cost (under the least-squares criterion) are obtained
by GNJ while maintaining only K 5 50 partial solutions.
For synthetic data sets of eight taxa, GNJ finds the op-
timal solution whenever K $ 20 and Q $ 2.

For data sets with 16 or 32 taxa, both the topolog-
ical diversity and the quality of GNJ solutions improves
as K increases. For the data sets that we examined, low-
cost solutions were efficiently found with K $ 20 for 8
taxa and with K $ 50 for 16 taxa. Increasing K did little
to improve either the quality or the diversity of the so-
lutions. Thirty-two-taxon problems are far more chal-
lenging (and more common in the molecular biology
literature). While K $ 200 (32 taxa) was effective in
finding low-cost solutions, increasing K improved the
quality and, to a lesser extent, the diversity of the 32-
taxon solutions.

We believe that the postprocessing results show
that GNJ is capable of identifying low-cost, topologi-
cally distinct solutions that cannot be found simply by

successively examining every topology near to individ-
ual low-cost trees. ‘‘Falling into local minima’’ is an
inherent flaw of any phylogenetic search method that
examines only a small portion of the solution space. The
postprocessing results for the biological R1 data suggest
that this data probably has a single, very broad local
minimum with many different low-cost topologies but
very few, if any, alternate solutions that cannot be found
by postprocessing (local branch swapping). In contrast,
the synthetic type A2 data do appear to have several
distinct local minima, which were found by GNJ. While
it is reassuring to learn that GNJ is capable of finding
alternative local minima when they exist, more exten-
sive simulations will be required to characterize the con-
ditions under which large numbers of distinct local min-
ima occur. While postprocessing may not be necessary
to find high-quality solutions, the decrease in diversity
with postprocessing should improve our confidence that
a data set does not have many topologically distinct low-
cost solutions.

Our results suggest that GNJ performs best when
Q 5 D 5 K/2, and that K 5 200 provides an excellent
balance between computation time and solution quality/
diversity for up to 32 taxa. For more than 50 taxa, K 5
500 or 1,000 may provide better solutions; however, this
will depend greatly on the structure of the phylogenetic
tree solution space. For large numbers of taxa, one can
judge whether a larger K is likely to provide novel so-
lutions by performing searches with K 5 100 and 200.
If K 5 200 does not find any low-cost trees that were
missed with K 5 100, it is unlikely that K 5 500 (or
more) will uncover additional novel trees either.

GNJ is considerably slower than traditional NJ and
for large problems (.32 taxa and K $ 200), it is much
slower than FM as well. However, a GNJ run is more
accurately compared with multiple FM searches where
the taxa are successively added in different orders, a
process that can easily increase the amount of time re-
quired 20- to 50-fold. Because GNJ explicitly seeks out
topologically diverse solutions, we believe that it is
more likely to identify distinct alternatives than addi-
tional FM trials.

This paper considers the generalization of the NJ
partitioning strategy to which the distance cost measures
seem ideally suited. However, the method of retaining
many partial solutions during a partitioning strategy can
be applied to maximum-parsimony methods, and per-
haps to maximum-likelihood-based approaches as well.
We are currently developing a broader generalization of
the approach that can be applied to character-based,
rather than distance-based, cost criteria.
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