
How to Test a Tree

Andrew B. Kahng,1 Gabriel Robins,2 Elizabeth A. Walkup3

1 Department of Computer Science, UCLA, Los Angeles, California 90095-1596

2 Department of Computer Science, University of Virginia, Charlottesville, Virginia 22903-2442

3 Duet Technologies, Bellvue, WA 98006

Received 26 October 1992; revised 24 March, 1995; accepted 2 August 1997

Abstract: We address the problem of verifying that a tree is connected using probe operations which
check mutual connectivity between two (or more) leaves of the tree. We present optimal algorithms for
determining minimal probe sets that detect all possible edge and vertex faults in arbitrary trees. Our
results are of particular interest for the testing of interconnection substrates in VLSI multichip module
packaging technologies. q 1998 John Wiley & Sons, Inc. Networks 32: 189–197, 1998

Keywords: graph algorithms; connectivity verification; tree testing; VLSI testing; reliability

1. INTRODUCTION required interchip wiring. This results in a smaller area,
reduced power requirements, and increased system speed,
since interconnections on an MCM are much shorter thanThis paper addresses the problem of verifying that all the
on printed circuit boards. Thus, MCMs have become verynodes of an arbitrary given tree are mutually connected.
attractive for the packaging of today’s highly complexWe assume that the testing operations consist of k-probes,
VLSI systems.which query whether a given set of nodes in the tree are

In manufacturing an MCM, all the substrate intercon-mutually connected. Naturally, we seek to minimize the
nections must be tested before chips are attached, in ordernecessary number of probes which still accomplish a com-
to avoid having to later discard good chips along with aplete testing of the given tree (it is not necessary that the
faulty substrate onto which the chips are mounted. Theselocation of any fault be identified by the tests) .
substrate interconnections are modeled as trees, and theirOur motivating application is the testing of electrical
connectivity is verified by probes applied to the treeinterconnections in multichip module (MCM) packaging
‘‘leaves’’—the terminals to which the chip inputs andtechnologies for high-complexity VLSI systems. MCMs
outputs are attached.allow multiple ‘‘bare’’ chips to be directly mounted, very

Production MCM substrate testers simultaneouslyclose to one another, on a substrate that contains all the
move k ‘‘flying’’ probe heads to various locations in the
circuit and verify electrical connectivity by measuring

Correspondence to: G. Robins. resistance and capacitance values at these locations [5] .
Contract grant sponsor: NSF; contract grant numbers: MIP-9110696; This enables the detection of faults along the (k

2) unique
MIP-9257982; MIP-9457412. paths in the tree between the various pairs of probe heads.

Contract grant sponsor: ARO; contract grant number: DAAK-70-
Figure 1 shows the unique path tested by a 2-probe (this92-K-0001; contract grant number: DAAL-03-92-G-0050.
path connects nodes ‘‘A’’ and ‘‘B’’) .Contract grant sponsor: Packard Foundation: Fellowship for Science

and Engineering. Earlier probe-based testing methods [4, 9, 10], which

q 1998 John Wiley & Sons, Inc. CCC 0028-3045/98/030189-09

189

8u27 832/ 8U27$$0832 08-20-98 15:12:42 netwal W: Networks

190 KAHNG, ROBINS, AND WALKUP

in T . A probe succeeds if the k vertices are mutually
connected and fails otherwise.

Definition. Given a tree T Å (V, E) , an edge fault at e
√ E removes e from T and thus separates T into the two
subtrees, T1 and T2 , incident to the endpoints of e .

Definition. Given a tree T Å (V, E) , a vertex fault is a
partition of an internal vertex £ √ V of degree d that
separates T into a forest of i ° d connected subgraphs of
T as follows:

Fig. 1. Testing a tree network: the (A , B) probe tests the
• £ is removed from TA–B path.
• new vertices {£1 , . . . , £i } are added to T

• each edge e Å {u , £} that was incident to £ in T is
do not guarantee complete fault coverage, have been in- replaced with e * Å {u , £j} for some j , 1 ° j ° i , and
sufficient because the cost of an undetected fault (in terms • each member of {£1 , . . . , £i } is incident to at least one
of manufacturing time and wasted chips) is very high. such e *.
Other methods for complete fault coverage are suboptimal
with respect to the time required to generate the probe We say that a set of probes detects all possible faults
set [11]. In this paper, we give an algorithm that provides of a given type when tree T contains a fault if and only
complete fault coverage, generates the optimal number if one or more of the probes fails. An edge fault that
of probes, and has optimal time complexity. Our results separates T into T1 and T2 can be detected by any probe
and discussion are for the case kÅ 2; however, extensions (pi , pj) with pi √ T1 and pj √ T2 . Detection of a vertex
to k ú 2 probe heads can easily be made. Empirical fault is more complicated since our definition embodies
results from an implementation of our algorithms and a physical model of vertex failure that is motivated by a
benchmarks on actual MCM circuits are reported in [6– cracked via [11] in a VLSI routing tree.* Figure 2 shows
8]. Other methods for probe-based testing were indepen- how a probe set that detects all possible edge faults may
dently investigated in [1–3, 12, 13]. fail to detect a vertex fault; this phenomenon can occur

at an internal vertex of degree 4 or higher.†

2. DEFINITIONS

3. OPTIMAL EDGE FAULT TESTINGWe begin by formally defining the trees that we will be
BY 2-PROBEStesting, the operations that will be used to test them, and

the two types of faults that we wish to discover.
In this section, we study the problem of edge fault detec-
tion:Definition. A tree T Å (V, E) is an acyclic, undirected,

connected graph consisting of a set of vertices V and a
The Edge Fault Detection Problem. Given an intercon-set of edges E . A given tree has l leaf vertices L Å {p1 ,
nection tree T with l leaves, determine a minimum-sizep2 , . . . , pl } ⊆ V and ÉVÉ 0 l internal vertices.
probe set which detects all possible edge faults in T .

Definition. A rooted, oriented tree has a distinguished
We observe that without loss of generality it sufficesroot vertex, and the edges are all directed toward the root.

to probe only leaf vertices. Our algorithm for completeWe say that vertex £ is the child of vertex u (and u is
edge fault testing is quite simple: make an arbitrary in-the parent of £) if there is a directed edge from £ to u .
order traversal of T starting from any internal vertex toApplying transitive reflexive closure to the parent and
order the leaves as p1 , . . . , pl and then output the set ofchild relationships results in the ancestor and descendant

relationships. In such a tree, the distance from a vertex £

to any of its ancestors u is the number of edges along the
* In integrated circuit routing, a via is an internal vertex of T thatdirected path from £ to u .

joins wires from two or more routing layers; see Figure 2.
† Observe that if faults at internal vertices do not have the ‘‘physi-

Definition. A k-probe consists of a set of k vertices cal’’ traits of our model and are visible to all probe paths through the
whose mutual connectivity in T is checked. Thus, a 2- vertex then an algorithm which generates a probe set for edge-fault

detection will automatically detect all possible vertex faults.probe, (pi , pj) checks the unique path between pi and pj

8u27 832/ 8U27$$0832 08-20-98 15:12:42 netwal W: Networks

HOW TO TEST A TREE 191

Fig. 2. A cross section of a via between two routing layers (left) , an edge fault (middle) ,
and a vertex fault (right) in a tree. The two probes (A , B) and (C , D) together detect any
edge fault (middle) , but cannot detect the vertex fault shown (right) .

 l /2 probes {(pi , pi/l /2)É1 ° i °  l /2}. If l is odd, be the entire subtree of T rooted at £i = . Note that since T
and T * have distinct roots, T * is properly contained insidealso output the probe (p1 , pl) .

We call this algorithm PROBE1; Figure 3 illustrates its T (i.e., some leaves of T are not contained in T *) . We
claim that one of the probes generated by algorithmexecution, while Figure 4 describes it formally. Clearly,

PROBE1 runs in linear time, which is optimal. The fol- PROBE1 involves a leaf pj in T * and another leaf pk not
in T *, and we show that this probe (pj , pk) tests edge elowing lemma and theorems show that PROBE1 produces

a minimum size probe set for testing all edge faults. Å {£i , £i =} for faults.
To see that this is true, assume toward contradiction

that for every probe that involves a leaf of T *, both ofLemma 3.1. A set of k-probes for detecting all edge
that probe’s endpoints are leaves internal to T *. This im-faults in a tree T with l leaves has size at least  l /k .
plies that T * must contain the two middle leaves £l /2

Proof. Every edge which is incident to a leaf vertex and £l /2/1 , which, in turn, means that £1 and £l must also
must be tested, and any probe which tests it must have be in T *. Thus, T * coincides with T , contradicting the
that leaf vertex as one of the probe locations. Since there fact that T * is a proper subtree of T . Therefore, algorithm
are l leaves and at most k are tested by a single probe, at PROBE1 must have produced a probe involving a leaf pj
least  l /k probes are required for complete edge fault in T * and a leaf pk not in T *. This probe forms the circuit
coverage. j

£i *, . . . , pj , pk , . . . , £m , . . . , £i , £i = , where £m is the lowest
common ancestor of both £i and pk ; thus, the probe (pj ,

Theorem 3.2. For any edge e Å {£i , £i =} in T, PROBE1 pk) tests the given arbitrary edge e Å {£i , £i =}. j

outputs some probe which fails if there is an edge fault
Theorem 3.3. Given a tree T with l leaves,  l /2 probesat e.
are necessary and sufficient for correct detection of all

Proof. Let the tree be rooted at an internal vertex, and possible edge faults in T.
let the leaves be labeled in in-order, exactly as done in

Proof. Necessity follows from Lemma 3.1; correct-algorithm PROBE1. Given an arbitrary edge e Å {£i , £i =} ness follows from Theorem 3.2, and the fact that no probein the original tree T , where £i is the parent of £i = , let T *
of T can fail if T is connected; and sufficiency follows
from correctness and from the fact that a total of  l /2
probes are generated in lines 3 and 4 of PROBE1 in
Fig. 4. j

The extension of PROBE1 to handle k probes is
straightforward, as follows. An in-order traversal is used
to partition the leaves into k sets, each of size  l /k or
 l /k . Each probe consists of one leaf from each set (with
one leaf from each of the size  l /k sets occurring a
second time in the probe set and all others appearing
once). The proof of the generalization of Theorem 3.2
for k ú 2 still only requires us to show that one of the
probes involving p1 or pl will fail.

4. OPTIMAL VERTEX AND EDGE FAULT
TESTING BY 2-PROBES

We now study the problem of vertex (and edge) faultFig. 3. A minimum probe set for detecting all possible edge
faults. detection:

8u27 832/ 8U27$$0832 08-20-98 15:12:42 netwal W: Networks

192 KAHNG, ROBINS, AND WALKUP

Fig. 4. PROBE1: Generation of minimum probe set for edge-fault detection.

The Vertex and Edge Fault Detection Problem. Given 1 / (1 / (d 0 k / 1 0 k) / (k 0 1))
an interconnection tree T with l leaves, determine a mini- Å 1 / (1 / (d 0 k 0 (k 0 1))/(k 0 1))mum-size probe set which detects all possible vertex and
edge faults. Å 1 / (d 0 k) / (k 0 1) probes are required. j

For 2-probes, Lemma 4.1 indicates that d 0 1 probesThis section describes our PROBE2 algorithm, which
are necessary to test a single vertex of degree d . For theproduces in linear time the optimum number of 2-probes
graph consisting of d leaf vertices and a single internalfor complete detection of both vertex and edge faults.
vertex of degree d , the most straightforward way to per-Recall from Lemma 3.1 that the number of leaves l in T
form this testing is to choose one special leaf vertex andinduces a lower bound of  l /2 probes. We will see that
issue the d 0 1 probes which test its connectivity withPROBE2 very nearly achieves this lower bound: The al-
each of the other d 0 1 leaves.gorithm generates at most max{ l /2 , d 0 1} probes,

This suggests that a single interior vertex £ of degreewhere d is the maximum degree of any vertex of T . Theo-
d can be tested by dividing T into the d connected compo-rem 4.8 proves that this bound optimal.
nents, which result when £ is removed from T , and thenAs shown in Figure 2, testing paths through every edge
by issuing d 0 1 probes which test a leaf of T in one ofincident to a vertex does not guarantee that all possible
the components with a leaf of T from each of the otherpaths through the vertex are connected: probes (A , B)
d 0 1 components. A simple method based on this obser-and (C , D) test all edges of the given vertex, but cannot
vation would call for separately creating probes of thetell us whether A and C are connected. When only edge
degree(£) 0 1 necessary paths through each vertex £faults are possible, as in Section 3, the faultless vertices
resulting in a total ofbecome points through which one may assume connectiv-

ity to be transitive. Once we assume the vertex fault
∑
£√V

degree(£) 0 1 Å 0ÉVÉ / ∑
£√V

degree(£)model, we must be certain that each of the (d
2) Å O(d 2)

paths through a vertex of degree d is sound. Fortunately,
Å 2∗ÉEÉ 0 ÉVÉ Å ÉVÉ 0 2Lemma 4.1 shows that only O(d) probes are required to

test the O(d 2) paths.
probes. PROBE2 significantly improves upon this upper
bound by taking advantage of two key ideas:

Lemma 4.1. Detection of a fault in a vertex £ of degree
d requires 1 / (d 0 k) / (k 0 1) k-probes.

• probes may be generated which test paths through sev-
eral vertices at once, andProof. We prove this lemma by induction on d .

• if two successful probes pass through the same edge,Basis: For any d such that 1 ° d ° k , exactly 1 probe
their leaves are mutually connected.is needed: We simply choose d leaves whose paths to

each other must pass through the d edges incident to £,
plus any d 0 k additional leaves. Our formula holds since Both of these observations are employed in PROBE2 by

‘‘passing messages’’ containing each leaf name from thein this case 01 õ (d 0 k) / (k 0 1) ° 0.
Induction: We assume that dú k and that the induction leaves of T up to a designated root. PROBE2 examines

the local structure at internal vertices of T to decide howhypothesis holds for all d * such that 1 ° d * õ d . The
first probe of £ verifies that k edges incident to £ are the leaf names listed in those messages should be either

combined into probes or passed on toward the root toconnected. The remaining d 0 k edges must be shown to
be mutually connected and, furthermore, must be shown participate in subsequently-generated probes.

Algorithm PROBE2 (Fig. 5) first chooses an internalto be connected to at least 1 of the first k edges probed.
Thus, the remaining probes must show that d 0 k vertex R of maximum degree d and then roots the tree at

R by orienting all edges toward R . Each leaf pi is given the/ 1 edges are connected. We then have that

8u27 832/ 8U27$$0832 08-20-98 15:12:42 netwal W: Networks

HOW TO TEST A TREE 193

Fig. 5. PROBE2: Optimal detection of all edge and vertex faults. See Fig. 6 for an execution
example.

label i . The algorithm propagates message lists containing PROBE2 outputs a probe set which detects all possible
edge and vertex faults and (2) PROBE2 generates inleaf names toward R , starting from the leaves in bottom-

up order. Initially, each leaf pi sends to its parent a mes- optimal (i.e., linear) time the minimum possible number
of probes. We begin with two lemmas which limit thesage list containing only the label i . Phase I of the algo-

rithm (lines 4–13 of Fig. 5) applies to internal vertices size of the message lists passed up from each internal
vertex and a third lemma which limits the number of£ x R . When such a vertex £ has received message lists

from all its children, it iteratively generates probes by labels in message lists present at line 20 of PROBE2.
pairing two labels from distinct incoming message lists
as long as one of these lists is of size ú 1; the two labels Lemma 4.2. No vertex passes a message list of size
are then deleted from the respective lists. After the total greater than d to its parent.
number of labels in the incoming message lists has been
reduced to d or less, all remaining labels are concatenated Proof. By induction on the maximum distance to a

vertex from any of its descendants.into a single message list that is passed up to £’s parent.
When only the root R remains unprocessed, Phase II Basis: If the distance is zero, then the vertex is a leaf

and passes up a message list of size one.(lines 14–23 of Fig. 5) applies a variation on the probe-
matching method described above to the message lists at Induction: We assume toward contradiction that vertex

£ passes up a message list containing more than d labels.the root. Figure 6 traces the execution of PROBE2 on a
small example. By the induction hypothesis, each child of £ passed up at

most d labels, so the propagated labels must be from theWe now prove a sequence of lemmas and theorems
which lead to two main results, namely, that (1) algorithm message lists of two or more children. However, under

8u27 832/ 8U27$$0832 08-20-98 15:12:42 netwal W: Networks

194 KAHNG, ROBINS, AND WALKUP

Fig. 6. Execution of PROBE2 on a tree containing nine leaves and five internal vertices;
a total of five probes are generated (shaded arcs) . Message lists passed up from nodes
to their parents are displayed on the edges of T .

such conditions, the algorithm will continue to output contradiction that £ hasúi descendants that are leaf verti-
ces. The while statement at line 6 of Figure 5 can onlyprobes that pair up labels from different message lists

(lines 6–9 of Fig. 5) until the total size of the incoming reduce the total number of leaves present to d 0 1 and,
therefore, since i õ d 0 1, no probes could have beenmessage lists becomes d or less or until each child’s mes-

sage list has size one. In the first case, £ sends up a list output at £. Hence, i is the sum of sizes of all message
lists passed up by the children of £. Each of these childrenof size at most d . In the second case, £ must have received

message lists from at most d 0 1 children and, hence, must have passed up a list of size no greater than i , and
therefore by the induction hypothesis each child mustcan pass up a message list of size at most d 0 1. Either

case provides our desired contradiction. j have passed up a list containing the labels of all its leaf
descendants. Thus, the list passed up from £ is the union
of the lists passed to £ and contains the labels of all leafLemma 4.3. No internal vertex passes a message list of

size less than d 0 1 to its parent, unless this list contains vertex descendants of £. The size of the list passed up
from node £ is therefore equal to the number of its descen-the labels of all leaves that are descendants of that vertex.
dants, and we have our contradiction. j

Proof. By induction on the maximum distance to a
vertex from any of its descendants.

Lemma 4.4. At line 20 of algorithm PROBE2, all MiBasis: If the maximum distance is zero, then the vertex
have size either 0 or 1 .

is a leaf and it passes up a message list of size one con-
sisting of its only descendant, namely, itself. Proof. Suppose that when we reach line 20 of algo-

rithm PROBE2 one of the message lists has size ÉMiÉInduction: Assume that vertex £ passes up a message
list of size i , where i õ d 0 1, and suppose toward ú 1. There can be only one such Mi , else we would have

8u27 832/ 8U27$$0832 08-20-98 15:12:42 netwal W: Networks

HOW TO TEST A TREE 195

continued matching probes in the while loop at line 14. each of the two or more components. Since the remaining
probes all match to the same leaf, there will be at leastConsider the d 0 1 probes generated at line 18 of algo-

rithm PROBE2 which reduced the size of each of the one intercomponent match made. j

other d 0 1 message lists from 1 to 0. Each must have
used one label from Mi , because Mi must always have Theorem 4.7. Given an interconnection tree T, algorithm
been the largest message list, since no other list has size PROBE2 outputs a probe set which detects all possible
within one of ÉMiÉ. Hence, Mi must initially have had edge and vertex faults.
size ¢ d / 1, but this violates Lemma 4.2. j

Proof. Lemmas 4.5 and 4.6 prove that all vertex faults
at any internal vertex will be detected by the probes is-We are now ready to prove that PROBE2 generates a
sued. To complete our proof that all vertex faults areset of probes which test for all possible vertex and edge
covered, we need only note that all leaves appear in atfaults.
least one probe, and any probe involving a given leaf
vertex tests whether that vertex is connected to the restLemma 4.5. Let T be divided into connected components
of the tree. To show that all edge faults are covered, we{T0 , . . . , Tj} by an arbitrary vertex fault at internal
note that every leaf name passed up through a given edgevertex £ x R. Algorithm PROBE2 will issue at least one
results in a probe that tests that edge, and all edges haveprobe which involves leaves in different components Ti ,
at least one leaf name passed up through them. jthus detecting the vertex fault at £.

Proof. We assume that the lemma is not true and show Having shown that algorithm PROBE2 is correct, we
that this leads to a contradiction. We begin by noting that now proceed to prove our claim that the number of probes
all leaves in any given message list are from the same generated by PROBE2 is optimal. We begin by formaliz-
component Ti . Without loss of generality, let T0 be the ing our claim of a lower bound of max{ l /2 , d 0 1}
component which contains T’s root, R . Consider how the on the number of probes necessary for complete fault
labels present at the children of £ are either assembled testing.
into probes at £ or passed on to £’s parent. If any leaf is
paired with a leaf in another component, then the fault Theorem 4.8. It requires max{ l /2 , d 0 1} 2-probes
must be discovered. If any leaf in some Ti x T0 is passed to test a tree with l leaves and maximum vertex degree
up into £’s message list to £’s parent, then it will be d for all possible edge and vertex faults.
paired with a leaf in T0 , and the fault will be discovered.

Proof. The lower bound of  l /2 follows directlyTherefore, it must be the case that all leaves from any Ti
from Theorem 3.3, and the lower bound of d 0 1 fromx T0 are paired only with leaves from the same Ti and
Lemma 4.1. jnone are passed up into £’s list. Thus, all leaves initially

present in Ti must be matched into probes at line 9 of
We now must prove that PROBE2 meets the bound ofalgorithm PROBE2. In particular, since the message lists

Theorem 4.8. Our only concern is that in line 21 of theare not empty, there must be at least one match made,
code we generate ÉLÉ 0 1 probes when the bound mightand, therefore, a last match made. However, this last
allow us only ÉLÉ/2 more. We therefore will show thatmatch must leave at least one leaf in one of the message
when ÉLÉ ú 1 it must be the case that d 0 1 ú  l /2lists within Ti , since one of the lists involved in the match
and that the total number of probes generated is d 0 1.must have size at least 2. Thus, some labels from Ti

We begin with a series of lemmas relating the number ofare passed up to the next level, and this provides our
leaf labels arriving in message lists at the root to thecontradiction. j
number of leaves in the tree.

Lemma 4.6. Let T be divided into connected components
Lemma 4.9. If 2(i 0 1) or more labels are present{T0 , . . . , Tj} by an arbitrary vertex fault at the root
among i nonempty message lists at the root R, and thevertex R. There will be at least one probe issued which
difference in size between the two largest message listsprobes leaves in different components Ti , thus detecting
is no more than i 0 1 , then either every label appearsthe vertex fault at £.
exactly once in the probe sequence or one label appears

Proof. Similar to the proof of Lemma 4.5 above, we twice and all others appear once.
note that every match made in line 18 of PROBE2 must
be between labels from message lists within the same Proof. By induction on i .

Basis: i Å 2. There are two nonempty message listscomponent and must leave at least one leaf present in the
message list of each component Ti , since at least one of at R , and either they are of the same size or one is one

element larger than the other. If they both are of the samethis lists considered for the match must have size 2 or
more before the match. This means that at line 20 of size s , their respective contents are matched by s probes

(i.e., s 0 1 probes output at line 18, plus one probe outputalgorithm PROBE2 L contains at least one label from

8u27 832/ 8U27$$0832 08-20-98 15:12:42 netwal W: Networks

196 KAHNG, ROBINS, AND WALKUP

at line 21), and no label is repeated. If the sizes are s R , then by Lemma 4.9 we have either l or l / 1 labels
used in the sequence of what must be  l /2 probes. Ifand s / 1, then some label will appear a second time (in

a probe output at line 23) in order to match the single 2(d 0 1) 0 j labels arrive at the root for j ú 0, then by
Lemma 4.11 we have l Å 2(d 0 1) 0 j , and by Lemmaremaining label after s probes have been made at line 18.

Induction: It must be the case that either one of the 4.10, the sequence of probes contains l / j Å 2(d 0 1)
labels for a total of d 0 1 probes. This is optimal byinitial nonempty lists has size 1 or that after some number

of matches at line 18 the smallest of the lists has been Theorem 4.8. j

reduced to size 1. At this point, there must still be at least
2(i 0 1) labels distributed among the message lists. The The time complexity of PROBE2 is also optimal: each
next match leaves i 0 1 nonempty message lists and a vertex £ passes no more than d labels to its parent, and
total number of leaves of at least 2((i 0 1) 0 1). The thus each vertex will receive fewer than d 2 labels from
difference in sizes between the two largest message lists its children. Assuming that d is a constant (dependent on
can never increase and, in this last match, must have the VLSI technology of our application area) , the amount
decreased by one unless these sizes were already equal. of processing at each vertex is a constant, and since each
Hence, this difference is now at most (i 0 1) 0 1. vertex is processed only once, the overall time complexity
We may therefore invoke the induction hypothesis for of algorithm PROBE2 is linear in the size of the input.
i 0 1. j In considering the vertex and edge-fault detection

problem for k-probes where k ú 2, the following two
Lemma 4.10. If 2(i 0 1) 0 j labels are present among observations are helpful. (1) At an internal vertex £

i nonempty message lists at the root R for j ¢ 0 , then x R , each k-probe need not test leaves from k different
one of these labels will appear j / 1 times in the ensuing message lists—probing leaves from two different lists is
sequence of probes and all other labels will appear ex- enough to gain useful connectivity if we leave at least
actly once. one leaf from one of the lists unmatched after the probe.

(2) Rather than passing d 0 1 leaf names up in its mes-Proof. By induction on i .
sage list, each vertex should, if possible, pass on at leastBasis: If i Å 2 and j Å 0, then we have two singleton
k(1 / (d 0 k) / (k 0 1)) 0 (d 0 1) leaves to its parent.messages lists which are matched at line 21, and all labels
This ensures that the k leaves needed for each of the 1appear exactly once.
/ (d 0 k) / (k 0 1) probes required to test the root willInduction: We know that there must be some list of
be available if all other message lists sent to the rootsize one, else we would have more than 2(i 0 1) labels
have size 1. Benchmarks of this method on actual MCMpresent. If there is a message list of size greater than one,
circuits, along with issues related to efficient probe sched-we match one of its labels with a list of size one (line
uling, are reported in [6–8].18) and invoke the induction hypothesis for 2((i 0 1)

0 1) 0 j labels over (i 0 1) nonempty lists. If none of
the nonempty lists has size greater than one, then all have
size one and 2(i 0 1) 0 j Å i , implying i Å j / 2. We 5. CONCLUSION
then must use one of the labels i 0 1 Å j / 1 times (i.e.,
ÉLÉ Å i in line 21) and all others only once. j

We have studied the testing of an arbitrary interconnec-
tion tree topology using probes which verify the correct-

Lemma 4.11. If fewer than 2(d 0 1) labels arrive in
ness of paths within the tree. Our formulation captures

the messages lists at root R of degree d, then the vertices
the increasingly important VLSI application of multichip

represented in those messages are the set of all leaves
module substrate testing and involves an interesting

of T.
‘‘physical’’ model of vertex failure in the connection to-
pology. We have presented linear-time algorithms whichProof. Since the d children of the root must each pass
yield minimum probe sets that detect all possible edge andup at least one leaf in its message list, the fact that there
vertex faults. Remaining areas of investigation includeare strictly less than 2(d 0 1) labels implies that no

incoming message list at R can be of size d 0 1 or greater.
Applying Lemma 4.3 then gives the desired result. j • Characterizing the sets of probes that completely detect

all edge/vertex faults in a given interconnection tree
Theorem 4.12. Algorithm PROBE2 generates max{l/2, (the output of our algorithms are usually just one of
d 0 1} probes for a tree T with l leaves and maximum many possible solutions);
vertex degree d, which is the minimum number of probes • Obtaining a variant of PROBE2 which does not rely
necessary to detect all possible edge and vertex faults. on rooting the tree at a vertex of maximum degree; and

• Extending the problem formulation to the testing ofProof. As usual, we use l to denote the number of
leaves in T . If 2(d 0 1) or more labels arrive at the root general graph topologies (e.g., with each probe opera-

8u27 832/ 8U27$$0832 08-20-98 15:12:42 netwal W: Networks

HOW TO TEST A TREE 197

ASIC Conference, Rochester, NY (Sept. 1992) 230–tion verifying the k-connectivity between groups of
233.graph vertices) .

[4] J. C. Crowell, R. Keogh, and J. Conti, Moving probe
bare board tester offers unlimited testing flexibility. Ind.
Elect. Equip. Design (1984).We thank Professor David Cantor for his insightful com-

ments on an earlier draft of this paper. We also thank Professor [5] C. Hilbert and C. Rathmell, Design and testing of high
C. K. Cheng for bringing the problem to our attention. We density interconnection substrates. Proceedings NEP-

CON West (1990).appreciate the help of Douglass Bateman, Sarah Friend, and
Chris Helvig with proofreading. Additional related papers may [6] A. B. Kahng and G. Robins, On optimal interconnections
be found at http: / /www.cs.virginia.edu/Çrobins/ and http: / / for VLSI. Kluwer, Boston, MA (1995).
vLsicad.cs.ucla.edu/Çabk/ . A.B.K. was supported by NSF [7] A. B. Kahng, G. Robins, and E. A. Walkup, New results
MIP-9110696, NSF Young Investigator Award MIP-9257982, and algorithms for MCM substrate testing. Proceedings
ARO DAAK-70-92-K-0001, and ARO DAAL-03-92-G-0050. of the IEEE International Symposium on Circuits and
G.R. was supported by a Packard Foundation Fellowship and Systems, San Diego, CA (May 1992) 1113–1116.
by NSF Young Investigator Award MIP-9457412. E.A.W. was [8] A. B. Kahng, G. Robins, and E. A. Walkup, Optimal
supported by an NSF Graduate Fellowship. algorithms for substrate testing in multi-chip modules.

Int. J. High-Speed Electr. Syst. 6 (1995) 595–612.
[9] W. H. Kautz, Testing for faults in wiring networks. IEEE

Trans. Comp. C-23 (1974) 358–363.
REFERENCES [10] B. McWilliams, private communication (invited talk at

CANDE meeting), San Marcos, CA (April 1991).
[11] S. Z. Yao, N. C. Chou, C. K. Cheng, and T. C. Hu, A

[1] R. Carragher, N. C. Chou, C. K. Cheng, and T. Russell, multi-chip module substrate testing algorithm. Proceed-
Distortion mapping for cofired ceramic substrate testing. ings of the IEEE International ASIC Conference, Roch-
Proceedings of the International Symposium on Micro- ester, NY (Sept. 1991) P9:4.1–P9:4.4.
electronics (Nov. 1993) 295–300. [12] S. Z. Yao, N. C. Chou, C. K. Cheng, and T. C. Hu,

[2] N. C. Chou, C. K. Cheng, and T. Russell, Dynamic An optimal probe testing algorithm for the connectivity
probe scheduling optimization for MCM substrate test. verification of MCM substrates. Proceedings of the IEEE
IEEE Trans. Comp. Hybrids Mfg. Tech. (1994), 182– International Conference on Computer-Aided Design,
189. Santa Clara, CA (Nov. 1992) 264–267.

[3] N. C. Chou, C. K. Cheng, and T. C. Russell, High- [13] S. Z. Yao, N. C. Chou, C. K. Cheng, and T. C. Hu, A
performance microelectronic substrate verification using multi-probe approach for MCM substrate testing. IEEE

Trans. Computer-Aided Design 13 (1994) 110–121.probe testers. Proceedings of the IEEE International

8u27 832/ 8U27$$0832 08-20-98 15:12:42 netwal W: Networks

