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Abstract

A new Open Artwork System Interchange Standard (OA-
SIS) has been recently proposed for replacing the GDSII
format. A primary objective of the new OASIS format is to
enhance the compressibility of layout data. We compare the
data compression capability of the Full OASIS set of oper-
ators with those also present in GDSII, which we refer to as
the Restricted OASIS format. We measure the compression
quality of the OASIS and GDSII operators in two contexts:
(1) compressible fill generation, where the fill amounts are
specified and compressible fill is then generated, and (2)
post-fill data compression, where fill has already been gen-
erated and is then compressed. Our experimental results
confirm the advantages of the OASIS compression opera-
tors: compressed file sizes using the Full OASIS format are
on average about twice as small as those obtained using the
Restricted OASIS format. We propose new OASIS-based
compression algorithms which outperform industry physical
verification tools. We also evaluate the respective merits of
the individual repetition operators in OASIS, and suggest
possible improvements to the OASIS repetition operators.

1 Introduction

To improve manufacturability and performance predictabil-
ity, foundry rules require that a layout be made uniform with
respect to prescribed density criteria, through the insertion
of area fill features. Currently, area fill is added by physical
verification tools (such as Mentor Graphics’ Calibre) in the
form of a flat “target layer” [19], which is eventually merged
with the actual layout features at the mask data preparation
step of the manufacturing handoff. Interconnect layers have
little natural hierarchy that can be exploited, and contexts
for instantiations of IP blocks may be different; this typi-
cally leads to a flat filling solution. According to the 2002
International Technology Roadmap for Semiconductors [14],
the fractured (MEBES format) layout data volume for a
single critical layer will reach hundreds of gigabytes during
the transition between 130nm and 90nm technologies [3].
To alleviate file transfer times, and to accommodate future
regimes of maskless lithography (e.g., direct-write requires
transfer of terabytes of layout data per second), layout data
must be compressed as much as possible (required compres-
sion factors have been estimated at 20 times or more [11]).

Off-the-shelf data compression techniques such as the
Joint Bi-Level Image Processing Group (JBIG), Ziv-Lempel
(LZ77) and ZIP cannot directly be used inside the standard
GDSII Stream data format, and such techniques are there-
fore of limited use in today’s design-to-manufacturing flows.
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However, for a direct-write maskless lithography system, a
data processing system architecture and three compression
algorithms are compared in [11] and an interesting alterna-
tive compression is suggested in [13]. Ueki et al. in [22]
propose a data compaction algorithm for mask data pro-
cessing in vector scan electron beam writing systems, where
‘array’ and ‘cell’ constructs are used to represent the data.

Traditionally, the standard format for layout data inter-
change is GDSII Stream, which uses basic shapes (polygon,
path, box) and two compression operators: structure ref-
erence (SREF) and array reference (AREF). SREF allows
hierarchy and AREF allows compact representation of reg-
ular two-dimensional arrays of structures. However, due to
the rapidly growing volume of layout and fill data, GDSII
file sizes have recently become unwieldy, in some cases grow-
ing to many tens of gigabytes [1]. Meeting a clear need for
a more compressible format, a new standard layout data
representation format called the Open Artwork System In-
terchange Standard (OASIS)1 has been recently proposed.

This paper is motivated by two basic questions:

• How should new fill generation methods exploit the
compression operators available in the OASIS layout
representation format?

• Can the proposed OASIS standard be improved to fur-
ther reduce compressed-fill data volume?

In the next section we measure the compression efficacy
of the corresponding operators in the OASIS and GDSII
formats. We then propose OASIS-based algorithms for gen-
erating compressible fill from scratch (Section 3), as well as
for the compression of existing fill (Section 4). Section 5
describes the experimental results and proposes a new com-
pression operator.

2 Compression Operators in OASIS

The OASIS format supports primitive geometric shapes
(rectangle, polygon, path, trapezoid, circle and X-
geometries), recursively defined cells and compression op-
erators, called repetitions. A repetition is an array of either
cells, geometries or texts. There are eight repetition types
(see Table 1), as illustrated (for a rectangular fill feature) in
Figure 1.

OASIS repetition types are based on unsigned integers2

and the g-delta constructs representing a general (x, y) dis-
placement using a pair of unsigned integers, or an orthogonal

1This new standard is expected to be simple enough to be widely
supported by all EDA suppliers and CAD groups with prior knowledge
of GDSII. OASIS is capable of representing the commonly used GDSII
data types, which will enable a smooth migration from GDSII to the
new and more efficient OASIS format.

2An OASIS unsigned integer is an N-byte integer.



TYPE FORMAT DESCRIPTION # INT Rc Asymptotic Rc

1 x-dim y-dim [x-space] [y-space] matrix or vector with M × N (N > 0, M > 0) 4 7MN/11 MN
2 x-dim x-space uniform orthogonal spacing 1 × N (N > 1) 2 7N/9 N
3 y-dim y-space M × 1 (M > 1) 2 7M/9 M
4 x-dim x-space1...x-spaceN−1 vector with non-uniform 1 × N (N > 1) N 7N/(7 + N) 7
5 y-dim y-space1...y-spaceM−1 orthogonal spacing M × 1 (M > 1) M 7M/(7 + M) 7
6 n-dim m-dim [n-disp] [m-disp] repetition with uniform and N × M (N > 0, M > 0) 4, 5, or 6 7MN/(11, 12, or13) MN
7 dim disp non-orthogonal displacements P -element (P > 1) 2 or 3 7P/9 ∼ 7P/10 P
8 dim disp1 . . . dispP−1 repetition with non-uniform and P -element (P > 1) 2 · P − 1 7P/(6 + 2P ) 3.5

non-orthogonal displacements

Table 1: Syntax of the 8 OASIS repetition types & compression ratios Rc for the different types of rectangle repetitions.
The parameters x-dim, y-dim, x-space, y-space, dim, n-dim and m-dim are integers, while disp, n-disp and m-disp are two-
dimensional displacements called g-deltas. M and N are the numbers of rows and columns in the repetition. # INT is the
number of integers needed to represent a repetition.

Type 1

Type 4

Type 2 Type 3 Type 5

Type 8

Type 6

Type 7

Figure 1: Examples of the 8 types of OASIS repetitions.

or 45-degree displacement using a single unsigned-integer.
Table 1 summarizes the different types of repetitions and
provides estimates of the number of unsigned integers re-
quired to represent each type. We also define the starting
point of the repetition to be the left bottom point of the left
bottom element of the repetition. Here, Type 6 repetitions
may have different sizes, depending on the displacement di-
rection: if one or both of the directions are multiples of
orthogonal or 45-degree displacements, then their size may
be either 4, 5, or 6 integers. Similarly, the size of a Type 7
repetition may also vary between 2 and 3 integers, depend-
ing on the displacement direction being either orthogonal or
45-degrees.

To compare the compression capabilities of different op-
erators, we define the following measure of compression ef-
ficacy.

Definition 1 The compression ratio Rc is the ratio of the
size of a flat OASIS file (Sorig) to the size of its compressed
version (Scompressed).

Consider an M × N array of Rectangles, and let A be
the number of integers required to represent a single record
without any repetitions. Let R be the number of integers
required to store the additional information when using rep-
etitions. Then, the total number of integers required to store
M ×N independent rectangles would be M ·N ·A, while the
total number of integers required to store these rectangles
as an array with repetitions would be A+R. The estimated
compression ratio is hence given by:

Rc =
(M · N · A)

(A + R)
(1)

Since R is always smaller than (M ·N − 1) ·A, there will be
a reduction in data volume when using repetitions.

Table 1 gives the estimated compression ratio of each
repetition type when area fill features are rectangles. Rep-
etition Types 1 and 6 are the most powerful compression
operators, followed by Types 2, 3 and 7, while repetition
Types 4 and 5 are the least powerful compression operators.
Type 8 is subsumed by the other repetition operators and
thus has no significant effect on single-level data compres-
sion; however, it may still be useful in hierarchical cases,
similarly to the SREF operator in GDSII.

We further define the Full OASIS format as allowing the
use of repetition Types 1 through 7. The GDSII AREF
construct can represent only the first three OASIS repetition
types. We therefore define the restricted OASIS format as
one that may use only repetition Types 1 through 3.

In the next two sections we apply the compression oper-
ators of the Restricted and Full OASIS formats in two dif-
ferent contexts: (i) while generating compressible fill for a
given fill distribution, and (ii) while compressing an existing
fill pattern.

3 Compressible Fill Generation

A recent method of generating compressible fill using the
GDSII constructs appears in [8]. This method applies in
the regime where the fill generation is explicitly aware of
compressibility and data volume issues. In this subsection
we adapt the method of [8] to compare Restricted OASIS
(repetition Types 1 through 3) with Full OASIS (repetition
Types 1 through 7). All existing methods for area fill syn-
thesis are based on discretization: the layout is partitioned
into tiles, and filling constraints or objectives (e.g., minimiz-
ing the maximum density variation) are enforced for square
windows, each consisting of r × r tiles.

The Compressible Fill Generation Problem
(CFGP): Given a design rule-correct layout, generate a
minimum number of OASIS operators to represent area fill
features that keeps the window density variation within the
given bounds (L, U).

In the fixed-dissection regime, when the layout is parti-
tioned into tiles, let Fij be the required number of area fill
features to be inserted into tile Tij , computed using any ex-
isting method 3. The following two formulations have been
addressed in [8].

The CFGP in Fixed-Dissection Regimes: Given
a design rule-correct layout consisting of m × n tiles Tij,

3Examples include LP methods [16] [20], greedy and Monte-Carlo
methods [6] [7], and iterated greedy / Monte-Carlo methods [7].



and fill requirements Fij for each tile, generate a minimum
number of OASIS operators to represent area fill, such that
each tile Tij contains exactly Fij area fill features.

The Ranged CFGP in Fixed-Dissection Regimes:
Given a design rule-correct layout consisting of m × n tiles,
generate a minimum number of OASIS operators to repre-
sent area fill, such that each tile Tij contains a number of
area fill features within the given range (Lij , Uij).

The proposed algorithm in Figure 2 first greedily finds
repetitions of Types 1, 2, 3, 6 and 7 with sufficiently large
Rc, i.e., larger than the given lower bound LRc , and then
completes the generation using repetition Types 4 and 5.
The time complexity is O(K · L · n3), where K · L upper
bounds the number of elements in any repetition. In Figure
2, Sα,ij is the number of unfilled free sites covered by a fill
repetition Aα in each tile (i, j); letting Lij = Uij = Fij will
solve the fixed fill problem.

Compressible Fill Generation with OASIS operators

1. Input site set G of an M × N multiple-tile (i, j),
i = 1 . . .M , j = 1 . . . N ;

2. For each free site in G in scan order Do

3. Find a fill repetition Aα among Type {1, 2, 3, 6, 7} with
maximum Rc that does not overfill tiles;

4. If Rc > LRc
(given lower bound of compression ratio)

5. Update the fill requirements:
Lij = Lij − Sα,ij ; Uij = Uij − Sα,ij ;

6. Update G;
7. End For

8. While ( Lij > 0 ) Do

9. Find a fill repetition Aα among Type {4, 5} with maxi-
mum compression ratio Rc that does not overfill tiles;

10. Update the fill requirements:
Lij = Lij − Sα,ij ; Uij = Uij − Sα,ij ;

11. Update G;
12. End While

Figure 2: The greedy algorithm for the compressible fill gen-
eration problem with OASIS operators.

4 Fill Compression

An alternative stage in the design-to-manufacturing flow
where the fill data volume can be reduced, occurs after the
fill for the entire layout has been generated. There, the
GDSII AREF construct or OASIS repetition operators are
applied without changing the filled design.

The OASIS Fill Data Compression Problem
(FDCP): Given a layout containing area fill features, rep-
resent these area fill features using the OASIS repetition op-
erators in a way that minimizes the resulting data volume.

To detect compressible fill patterns, we represent the
fixed-dissection layout region as a binary m × n matrix M
(=[mij ], 1 ≤ i ≤ m, 1 ≤ j ≤ n ), where 1’s correspond to
area fill features, and 0’s denote empty areas or original fea-
tures. The intersection of row i and column j in the matrix
M is denoted by mij . Each nonzero element of the input
matrix corresponds to a basic fill feature. A 0-1 matrix rep-
resentation of fill layout is possible for the outputs of all
major commercial fill insertion tools (e.g., Mentor’s Calibre,
Synopsys’ Hercules and Cadence’s Assura), even when op-
erating in modes that output “tilted fill” or tiled “fill cells”.

All of our algorithms utilize the following priority scheme
to search for repetitions:

1. Find a repetition of Type 1, 2, 3, 6, or 7 with maximum
compression ratio Rc (this priority in identifying com-
pression operators is based on the compression ratio
analysis from Table 1).

2. If Rc > LRc , output the repetition and update the fill
data. The constant LRc is an experimentally derived
lower bound on the compression ratio for acceptance of
repetitions of Type {1, 2, 3, 6, 7}. Our algorithms all
use LRc = 5.0.

3. Repeat 1 & 2 until no repetition exists with Rc > LRc .

4. Find a minimum number of Type 4 or 5 repetitions
to cover the remaining fill geometries using bipartite
matching.

Step 4 of the algorithm above can be implemented opti-
mally, since each repetition of Type 4 (respectively Type 5)
covers an entire row (respectively column). The problem of
covering all remaining points with the minimum number of
repetitions of Types 4 and 5 is therefore equivalent to the
well-known problem of finding minimum vertex cover in a
bipartite graph H = (V = R ∪ C, E), where vertices corre-
spond to the set R of rows and the set C of columns, and
edges connect columns and rows iff there is a 1 at their inter-
section in the 0-1 matrix. Applying Konig’s Theorem, the
minimum vertex cover in a bipartite graph H can be derived
from a maximum matching which can be found within time
O(N

√
m + n), where N is the number of 1’s [10].

4.1 Exhaustive Search-Based Greedy Algorithm
(ESBG)

A straightforward but inefficient way to represent the fill
features using the OASIS repetition operators is to perform
exhaustive search for each repetition type. In our ESBG
method, each 1-element of the input 0-1 matrix is treated
as the bottom-left corner of a potential maximal parallel-
ogram or rectangle (the latter being a special case of the
former) with all the corners of the parallelogram containing
1’s (Types 1, 2, 3, 6 and 7). If a repetition type originating
from a 1-element with maximum compression ratio satis-
fies the given minimum compression ratio requirements, it
is saved and all of the sites covered by this repetition are
marked as visited. This process is repeated, each time using
the remaining unvisited 1-elements in the matrix as poten-
tial starting points, until all of the 1-elements have been
either included in repetitions or tried as starting points. Fi-
nally, any remaining 1-elements that have not been marked
as visited are covered by repetition Types 4 and 5 using
a bipartite perfect matching based minimum vertex cover
method as outlined above. Figure 3 gives a formal descrip-
tion of our algorithm.

ESBG Algorithm for Fill Data Compression

1. Input fill matrix M ;
2. Do

3. Find next unmarked and unvisited site in B
4. Search exhaustively for maximum repetitions of Types

{1, 2, 3, 6, 7} originating from the site;
5. Pick the repetition type having the maximum Rc

assuming that Rc > LRc
(given lower bound on Rc);

6. Mark all sites covered by the repetition;
7. Until all fill sites are marked or used as starting points;
8. Use bipartite matching to find a minimum number of

repetition Types {4, 5} covering remaining unvisited sites.

Figure 3: Exhaustive search-based greedy algorithm for the
fill data compression problem.



4.2 Regularity Search-Based Greedy Algorithm
(RSBG)

The exhaustive search-based greedy method described above
may be computationally inefficient for large layouts. We can
improve on this approach using a regularity detection tech-
nique for planar pointsets [15]. The work of [15] addresses
two problems for a given set of N points (Figure 4):

• Finding subsets of equally spaced collinear points.

• Finding subsets of regularly spaced parallelogram cells.

Figure 4: Finding regularities in a pointset.

Our proposed greedy fill compression algorithm uses 1-
elements of the input matrix to represent points in the plane,
and 0-elements of the input matrix to denote intermedi-
ate spaces. Three levels of granularity among the elements
are considered during the search to find maximal repetition
types: points, line segments formed by pairs of points, and
parallelograms formed by sets of four distinct points.

Our heuristic finds a group of congruent adjacent cells4

and selects repetitions which contain maximal numbers of
unvisited points located among cells of this group. The pro-
posed greedy method (Figure 5) starts with the set of points
determined by the input 0-1 matrix M , and forms all pos-
sible segments over point pairs. Next, these segments are
sorted in non-decreasing order of their length, as projected
onto the axes. Parallelograms are then formed from pairs of
segments having the same length and slope; this is accom-
plished by scanning the sorted segment list in a left-right and
bottom-up order. Next, a graph is constructed where each
graph vertex corresponds to a cell, and edges correspond to
geometric adjacency between neighboring cells (i.e., congru-
ent cells that share a common edge). For each connected
component of this graph, we search for maximal repetitions
of Types 1, 2, 3, 6 and 7, as detailed in Steps (14) through
(20) of the algorithm in Figure 5. This method for identify-
ing maximal repetitions extends the method of [15].

The largest of all maximal repetitions is thus identified,
and the corresponding points are marked as visited. The
same process is repeated for the remaining set of points, until
no feasible new repetitions and no unvisited points remain.
Note that the resulting repetitions may overlap with each
other, and thus some points may be covered by more than
one repetition (i.e., some fill elements may be represented
redundantly). Finally, Step (21) of Figure 5 optimally covers
the remaining points with the minimum number of Types 4
and 5 repetitions.

4A cell is defined by a pair of distinct line segments having the
same length and slope. The offset between two segments Si and
Sj is defined by a horizontal width w(Si, Sj) and a vertical height
h(Si, Sj).

RSBG Algorithm for Fill Data Compression

Input: binary matrix of fill pattern;
Output: Compressed OASIS file
1. Add segments between all pairs of points into the

segment array R by scanning the input binary matrix;
2. Sort all the segments in R by their y-distance, then

x-distance using bucket sort; Build an adjacency list G
(i.e., list of congruent adjacent cells)

3. For each subset Q in R where each segment has the same
x and y Do

4. G = (V, E) = (∅, ∅);
5. For k1 = 1 : s(Q) − 2 Do

6. k2 = k1 + 1; k3 = k1 + 2;
7. While k3 ≤ s(Q) Do
8. (A, B, C) = (k1, k2, k3);
9. If w(A,B) = w(B, C) and h(A, B) = h(B, C)
10. V = V

⋃
{(A, B), (B, C)};

E = E
⋃

{((A, B), (B, C))};
11. Else If h(A,B) > h(B, C) or w(A,B) > w(B, C),

k3 = k3 + 1;
12. Else k2 = k2 + 1;
13. Sort all vertices in the adjacency list G by its w and h

using bucket sort;
/* Find repetitions in G */
14. For each subset P of G where cells have same w, h Do

15. For each vertex v ∈ P Do

16. Search the repetition Types 1, 2, 3, 6 and 7
originating from v;

17. Save into the set S the repetition with the maximum
compression ratio bigger than LRc

(based on the
number of unvisited points);

18. Select from S a repetition with maximum compression
ratio, and mark the points contained in the
selected repetition as visited;

19. Update compression ratios of the repetitions in S,
remove the selected repetition and the repetitions
whose compression ratios are smaller than LRc

;
20. Go to Step 18 until S = ∅;
21. Use a bipartite matching algorithm to find the minimum

number of instances of repetition Types 4 and 5 that
cover the remaining unvisited points;

22. Output all saved repetitions.

Figure 5: Regularity detection -based greedy approach for
fill data compression.

The overall time complexity of this algorithm is O(N 3),
which may still be prohibitive if there are millions of fill ele-
ments. We may therefore partition the layout into k blocks
to speed up the runtime, with the time complexity of this
modified variant being O(N3/k2). Note that since the mini-
mum vertex cover can be found much faster, it is possible to
employ a coarser partition into blocks (or forgo the partition
into blocks altogether) in Step (19). Alternatively, we can
initially run an optimal algorithm for finding a minimum
covering with repetitions of Types 4 and 5. Then, each can-
didate repetition may be selected only if it reduces the size
of the minimum covering.

5 Computational Experience

All of our experiments were performed on metal layers ex-
tracted from industry standard-cell layouts (Table 2). Our
experimental testbed integrates GDSII Stream input and
internally-developed geometric processing engines, coded in
C++ under Solaris 2.8. All runtimes are reported in CPU
seconds on a 300 MHz Sun Ultra-10 with 1 GB of RAM.



Testcase T1 T2 T3 T4 T5 T6
layout size 819,200 522,060 819,200 819,200 125,000 112,000

# rectangles 142.585 133,873 32,258 78,293 49,506 76,423

Table 2: The industry test cases.

5.1 Compressible Fill Generation Results

We assess the OASIS-based compressible fill generation ap-
proaches by inserting low density fill as well as high density
fill into the layout.5 Table 4 reports the compressible fill gen-
eration results. Columns 2 and 3 of Table 4 indicate that the
compression ratios using the Full OASIS format are on av-
erage twice those using the Restricted OASIS Format. This
confirms an advantage of the OASIS compression operators
over those of GDSII.6 Table 4 also shows the performance
of different types of repetition combinations. Since the sizes
of repetition Types 1, 2, 3, 6, and 7 are independent of the
number of 1’s covered, and the sizes of repetition Types 4
and 5 are dependent on the number of 1’s, using repetition
Types 4 and 5 achieves better compression results if the fill
requirements are small. Otherwise, if the fill requirements
are large, using Type 1, 2, 3, 6, and 7 repetitions will achieve
better compression results. We also find that Full OASIS
compression is slightly worse than using only Types 1, 2, 3,
4 and 5. The reason is that using Type 6 and 7 repetitions
may break large instances of Type 1, 2 or 3, yet may fail
to decrease the number of Type 1, 2 and 3 repetitions since
these are all independent of the number of 1’s.

Finally, Table 3 compares the greedy compressible fill
generation algorithm with OASIS operators (GCF) with the
off-the-shelf data compression tool GZIP. GZIP has been
applied to the GDSII file containing only the generated fill.
The average compression ratio is 5.5 for GZIP, 8.4 for GCF,
and 50.6 for GCF followed by GZIP. The average runtime
is 13.3 seconds for GZIP, 2.5 for GCF, and 3.8 seconds for
GCF followed by GZIP. These results indicate that GCF is
faster and better than GZIP and these two compressions can
be applied simultaneously without worsening compression
ratios of each other.

Testcase Fill GZIP GCF GCF+GZIP
T/W/r/s CPU C Ratio CPU C Ratio CPU C Ratio CPU

T1/80k/4/15 34.07 5.24 8.63 12.90 5.04 71.59 5.64
T2/80k/4/15 40.44 5.44 12.36 4.04 5.62 25.94 7.57
T3/80k/4/15 36.11 5.89 10.73 10.48 0.39 61.07 1.16
T4/12k/4/2 13.61 5.51 10.48 7.99 1.29 49.75 2.34
T5/12k/4/2 31.80 5.44 31.92 6.49 0.54 42.91 3.53
T6/12k/4/2 18.13 5.55 5.78 8.44 1.86 52.18 2.49

Table 3: Comparison of fill synthesis methods: GZIP, GCF
and GCF followed by GZIP. Notation: T/w/r/s: testcase /
window size / r-dissection / site size; C Ratio: compression
ratio; CPU: runtime in second.

5.2 Fill Compression Results

Experimental comparison and verification of the two fill data
compression algorithms – the greedy algorithms based on
regularity detection (RSBG, Figure 5), and the exhaustive
search (ESBG, Figure 3) – have been performed on the same
test cases filled by the following four methods: Iterated

5The high density fill was produced by fill synthesis with the Min-
Var objective, while the low density fill was produced by fill synthesis
with the Min-Fill objective.

6Full OASIS compression will work well on specific styles of fill,
such as “tilted fill” using repetition Types 6 and 7.

Monte-Carlo (IMC) as described in [7], the Mentor Graphics
Calibre tool, the Cadence Assura tool, and our compressible
fill generation method using either the Restricted OASIS or
Full OASIS formats. Table 5 presents fill compression re-
sults for low and high density fill data using the ESBG and
RSBG methods. The compression using the Full OASIS
format is better than using the Restricted OASIS format by
a factor of 1.4 for ESBG, and by a factor of 2.0 for RSBG.
ESBG has a compression and runtime advantage over RSBG
for the restricted OASIS, and RSBG has an advantage over
ESBG for the full OASIS format.

We can expect that compressible fill should enable better
compressibility than IMC-generated fill. Since high density
fill covers almost all free sites in the layout, compressible fill
generation in a high-density scenario does not offer much ad-
vantage, as expected. However, low density fill produced by
the compressible fill generation method always yields better
compression than IMC.

testcase Low Density Fill High Density Fill
T/w/r/s I II III IV I II III IV

T1/32k/2/15 6.9 11.0 11.0 6.4 3.4 8.5 8.6 7.4
T1/32k/2/10 7.2 11.8 11.9 6.7 4.0 8.4 8.6 6.8
T1/32k/2/5 13.0 16.7 16.5 6.9 7.6 10.8 11.4 6.9
T1/32k/4/15 2.6 6.1 6.1 6.0 2.7 7.3 7.3 6.5
T1/32k/4/10 3.4 7.4 7.5 6.7 3.5 7.8 8.0 6.8
T1/32k/4/5 8.0 11.3 11.5 7.0 6.7 10.3 10.5 6.9
T2/32k/2/15 7.5 9.8 10.3 6.5 3.4 6.7 6.8 5.6
T2/32k/2/10 6.2 10.2 10.5 6.5 3.7 7.6 7.8 6.3
T2/32k/2/5 11.0 14.4 15.1 6.9 6.3 9.2 9.7 6.8
T2/32k/4/15 3.2 5.7 5.7 5.9 2.6 5.8 5.8 5.5
T2/32k/4/10 3.7 7.2 7.3 6.2 3.2 7.3 7.3 6.3
T2/32k/4/5 6.2 9.6 9.8 6.9 5.6 9.0 9.3 6.8

Table 4: Compression ratios of low/high density compress-
ible fill. Notation: T/w/r/s: testcase / window size /
r-dissection / site size; I: Restricted OASIS; II: Full OASIS;
III: Using Type 1, 2, 3, 4, and 5 repetitions; IV: Using Type
4 and 5 repetitions;

Table 6 reports fill compression results for fill data gener-
ated by the Mentor Graphics Calibre tool and the Cadence
Assura tool. Our method yields better compression than
Calibre does on its own output data. When analyzing the
number of different repetition types used in fill compression,
we have observed that repetition Types 6 and 7 are not ideal
choices, unless there are many Type 6 and 7 patterns in the
layout. We further observed that repetitions Types 4 and
5 clearly provide Full OASIS with additional compression
capability as compared to Restricted OASIS.7

6 Conclusions

In this paper, we compared fill data volume reduction using
the old GDSII format against the newly proposed OASIS
format. We also compared the merit of using OASIS, versus
using a restricted version of OASIS where only a subset of
the operators is utilized. Our experimental results illustrate
the superiority of the OASIS compression operators over the
corresponding GDSII operators.

The following two interesting potential modifications to
the OASIS repetition operator may enhance compression ef-
fectiveness. We propose a new irregular array OASIS con-

7After extracting repetition Types 1, 2, 3, 6, and 7, we apply both
the perfect matching -based minimum vertex cover method, as well as
the greedy algorithm for finding repetition instances of Type 4 and 5.
The minimum vertex cover method wins 3.8% over greedy in ESBG,
and 0.7% over greedy in RSBG.



Low Density Fill data generated by IMC
testcase ESBG RSBG ESBG RSBG
T/w/r/s Rest CPU Rest CPU Full CPU Full CPU

T1/32k/2/15 3.6 1 3.3 16 5.5 342 6.0 3
T1/32k/2/10 3.6 4 3.3 106 6.2 3134 6.9 30
T1/32k/2/5 4.4 35 3.5 1078 6.5 23945 7.8 664
T2/32k/2/15 4.6 1 4.1 3 6.0 116 7.2 6
T2/32k/2/10 4.1 2 3.8 56 6.7 810 7.7 171
T2/32k/2/5 4.7 42 3.6 816 7.1 9694 8.2 2383

Low Density Compressible fill generation data
testcase ESBG RSBG ESBG RSBG
T/w/r/s Rest CPU Rest CPU Full CPU Full CPU

T1/32k/2/15 5.4 0.3 5.1 11 7.6 459 7.8 6
T1/32k/2/10 5.9 2 4.8 96 8.0 1335 8.2 223
T1/32k/2/5 9.2 110 4.6 934 9.6 6106 8.6 2048
T2/32k/2/15 6.5 0.3 6.5 4 7.9 149 9.5 13
T2/32k/2/10 6.0 3 4.5 57 8.6 842 8.3 247
T2/32k/2/5 9.2 45 4.6 730 9.7 4377 8.6 2968

High Density Fill data generated by IMC
testcase ESBG RSBG ESBG RSBG
T/w/r/s Rest CPU Rest CPU Full CPU Full CPU

T1/32k/2/15 4.0 6 3.3 107 7.1 5137 8.0 1246
T1/32k/2/10 4.9 54 3.4 344 6.8 23621 7.8 5719
T1/32k/2/5 7.8 540 4.6 2118 7.7 146729 9.1 22586
T2/32k/2/15 3.8 1 3.7 19 6.5 1479 7.0 99
T2/32k/2/10 4.4 4 3.7 83 6.6 3918 7.6 366
T2/32k/2/5 6.7 51 4.4 583 7.1 38416 8.4 3099

High Density Compressible fill generation data
testcase ESBG RSBG ESBG RSBG
T/w/r/s Rest CPU Rest CPU Full CPU Full CPU

T1/32k/2/15 4.0 2 3.6 139 7.5 4184 8.5 626
T1/32k/2/10 4.9 47 3.3 576 6.8 7607 7.8 5464
T1/32k/2/5 7.9 572 4.5 973 7.8 117108 9.0 36297
T2/32k/2/15 3.8 1 3.8 19 6.4 759 7.0 255
T2/32k/2/10 4.4 5 3.7 82 6.7 2948 7.5 285
T2/32k/2/5 6.8 72 4.4 577 7.1 18074 8.4 13167

Table 5: Fill compression ratios for low/high density fill
data. Notation: Rest: Restricted OASIS; Full: Full OA-
SIS; CPU: runtime (in seconds.)

Test Commercial ESBG RSBG
Tl/T/F Tools Rest Full Rest Full

MGC/T1/1 1.64 6.58 7.28 3.69 8.03
MGC/T2/1 2.30 8.07 8.60 4.45 8.60
MGC/T2/2 1.86 6.09 8.05 4.18 8.15
MGC/T2/3 2.02 5.52 7.83 4.89 7.83
MGC/T2/4 2.19 4.86 6.02 3.41 8.00
Assura/T2/1 N/A 3.63 5.51 2.46 5.81

Table 6: Fill compression ratios for fill data generated by
Calibre and Assura. Notation: Rest: Restricted OASIS;
Full: Full OASIS; Tl/T/F: Tool/Testcase/File, Tool is Men-
tor Graphic Calibre (MGC) or Cadence Assura (Assura);

struct, equivalent to the combination of Type 4 and 5 repe-
titions, i.e., a new repetition type with possibly non-uniform
spacing between elements along the x- and y-directions.
This repetition type will (i) have a potentially unbounded
compression ratio O(MNA/(M+N+A)), and (ii) be less uni-
form, yet highly compressible fill. By varying the x and y
spacings, it is possible to achieve fill distributions closer to
that generated by efficient Monte-Carlo methods [5].

We also proposed including a pseudo-random number
generator in the OASIS format, which will substantially sim-
plify the application of Monte-Carlo methods for CMP lay-
out density control. When generating compressible fill (see
[8]), large quantities of feasible sites can be described using
a small number of repetitions, and a built-in pseudo-random
number generator can thus be used to reproducibly and com-
pletely specify the filling of a prescribed number of sites.
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