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Matching-Based Methods for High-Performance
Clock Routing

Jason Cong, Member, IEEE, Andrew B. Kahng, Associate Member, IEEE, and Gabriel Robins, Member, IEEE

Abstract-Minimizing clock skew is important in the design
of high performance VLSI systems. We present a general clock
routing scheme that achieves very small clock skews while still
using a reasonable amount of wirelength. Our routing solution
is based on the construction of a binary tree using geometric
matching. For cell-based designs, the total wirelength of our
clock routing tree is on average within a constant factor of the
wirelength in an optimal Steiner tree, and in the worst case is
bounded by O(Vi72 -Ar) for n terminals arbitrarily distrib-
uted in the 11 x 12 grid. The bottom-up construction readily
extends to general cell layouts, where it also achieves essentially
zero clock skew within reasonably bounded total wirelength.
We have tested our algorithms on numerous random examples
and also on layouts of industrial benchmark circuits. The re-
sults are promising: our clock routing yields near-zero average
clock skew while using total wirelength competitive with pre-
viously known methods.

I. INTRODUCTION

CIRCUIT speed is a major consideration in the design
of high-performance VLSI systems. In a synchronous

VLSI design, limitations on circuit speed are determined
by two factors: the delay on the longest path through com-
binational logic, and the maximum clock skew among the
synchronizing components. With advances in VLSI fab-
rication technology, the switching speed of combinational
logic increases dramatically. Thus, the clock skew in-
duced by non-symmetric clock distribution has become a
more significant limitation on circuit performance.

Minimization of clock skew has been studied by a num-
ber of researchers in recent years. H-tree constructions
have been used extensively for clock routing in regular
systolic arrays [2], [11], [15], [34]. Although the H-tree
structure can significantly reduce clock skew [11], [34],
it is applicable primarily when all of the synchronizing
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components are identical in size and are placed in a sym-
metric array. Ramananathan and Shin [231 proposed a
clock distribution scheme for building block design where
all blocks are organized in a hierarchical structure. They
assume that all clock entry points are known at each level
of the hierarchy and, moreover, that the number of blocks
at each level is small since an exhaustive search algorithm
is used to enumerate all possible routes. Fishbum [14]
gave methods to maximize the margin of error in clocking
constraints, and to minimize the clock period while avoid-
ing clock hazards, or race conditions. This is accom-
plished via a linear programming formulation. However,
the approach assumes that the entire clock tree topology
is already known.

Jackson, Srinivasan, and Kuh [18] presented a clock
routing scheme for circuits with many small cells. Their
algorithm recursively partitions a circuit into two equal
parts, and then connects the center of mass of the whole
circuit to the centers of mass of the two sub-circuits. Al-
though it was shown that the maximum difference in path
length from the root to different synchronizing compo-
nents is bounded by O(Nfl 27 ) in the average case, small
examples exist for which the wirelengths between clock
source and clock pins can vary by as much as half the chip
diameter.

In this paper, we first study the problem of high-per-
formance clock routing for cell-based designs, i.e., cir-
cuits with many small cells, such as with standard-cell or
sea-of-gates design styles. We then extend our method to
general cell (also known as building-block) layouts, where
the wiring is restricted to specific channels. In either of
these scenarios, the H-tree approach cannot be used since
synchronizing components may be of different sizes and
may be in arbitrary locations in the layout. The method
of [23] cannot be applied either, since there is no natural
hierarchical structure associated with the design and the
number of synchronizing components is typically too large
to allow exhaustive examination of all possible routes.
The algorithm of [18] is not completely satisfactory since
large skews may result even for small examples, while the
approach of [14] does not construct an actual clock rout-
ing topology. With this in mind, the goal of our present
work is to develop a clock routing methodology which
minimizes skew while incurring little added wiring ex-
pense.

We present a basic algorithm and several variants,
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which minimize skew by constructing a clock tree that is
balanced with respect to root-leaf pathlengths in the tree
(these notions will be formalized below). The approach is
based on geometric matching: we start with a set of trees,
each containing a single terminal of the clock signal net.
At each level, we combine the trees into bigger trees using
the edges of geometric matching. The end result is a bi-
nary tree whose leaves are the terminals in the clock sig-
nal net and whose root is the clock entry point. Our
method is particularly suitable for designs which employ
a single large buffer to drive the entire clock tree, rather
than a buffer hierarchy. There are a number of reasons for
such a design choice, as discussed in [2]. We note that
the recently announced DEC Alpha processor uses such a
single-buffer design style [12].

In the cell-based design regime, our algorithm guaran-
tees perfect pathlength balanced trees for inputs of four or
less pins. Extensive experimental results indicate that even
for large clock signal nets, the maximum difference of
pathlengths in the clock tree constructed by our algorithm
remains essentially zero. This performance is obtained
without undue sacrifice of wirelength: we prove that on
average the total wirelength in our clock tree construction
is within a constant factor of the wirelength in the optimal
Steiner tree. Furthermore, our worst-case clock tree cost
is bounded by O( 1 * . ) for n terminals in the 1, x
12 grid,' which is the same bound as for the worst-case
cost of the optimal Steiner tree.

Since the work in [18] addresses minimum-skew clock
routing for cell-based designs, we implemented the al-
gorithm of [181 for comparison purposes. For uniformly
random sets of up to 1024 pins in the l x 12 grid, our
method produced clock routings with near-zero clock
skew both in the average case and worst case, with total
wirelength of the clock tree significantly lower than that
produced by the method of [18]. In addition, our routing
results for layouts of the MCNC Primary 1 and Primary2
benchmarks are significantly better than those reported by
[18]; we obtain perfectly balanced root-leaf pathlengths
in the clock tree using several percent less total wire than
the method of [18]. Actual clock skews for our bench-
mark routings, as determined by SPICE simulation, are
reasonable.

We then apply our method to general cell design, by
extending the notion of matching to arbitrary weighted
graphs. In this scenario our algorithm produces a clock
routing tree that is embedded in the channel intersection
graph [10] of an arbitrary building-block layout. The clock
routing trees produced by our method attain almost zero
skew with only modest wirelength penalty. Experimental
results show that the pathlength skew of our routing tree
is less than 2% of the skew for a heuristic Steiner tree.
This is achieved on average with less than 50% increase
in wiring cost over the Steiner tree.

'The 1, X 12 grid consists of all lattice points (x, y) with x, y integers and
0 S X 5 11,0 5 Y < 12

The remainder of this paper is organized as follows.
Section II defines a number of basic concepts and gives a
precise formulation of our skew minimization problem.
In Section III, we present the clock routing algorithm in
detail for cell-based designs; Section IV extends the al-
gorithm to general cell layouts. Experimental results of
our algorithm and comparisons with previous methods are
presented in Section V, and Section VI concludes with
possible extensions of the method. Early versions of this
paper were presented in [19] and [8].

II. PRELIMINARIES

A synchronous VLSI circuit consists of two types of
elements, synchronizing elements (such as registers) and
combinational logic gates (such as NAND gates and NOR
gates). The synchronizing elements are connected to one
or more system-wide clock signals. Every closed path in
a synchronous circuit contains at least one synchronizing
element (Fig. 1). The speed of a synchronous circuit is
mainly determined by the clock periods. It is well known
[1], [18] that the clock period Cp of each clock signal net
satisfies the inequality:

Cp 2 t t + tk,. + tsu + td,

where td is the delay on the longest path through combi-
national logic, tke,. is the clock skew, t,, is the set up time
of the synchronizing elements (assuming that the syn-
chronizing elements are edge triggered), and tds is the
propagation delay within the synchronizing elements.

The term td itself can be further decomposed into td =

td interconnect + tt-gates, where td interconnect is the delay asso-
ciated with the interconnect of the longest path through
combinational logic, and td gases is the delay through the
combinational logic gates on this path. As VLSI feature
sizes become smaller, the terms to,, tds, and tdfates

all decrease significantly. Therefore, as noted above,
td interconnect and tskew become more dominant factors in de-
termrining circuit performance. It was noted in [1] that tske,
may account for 10% or more of the system cycle time.
The objective of this paper is to minimize tke_ while we
have subsequently addressed the problem of minimizing
td interconnect in a different work [9].

Given a routing solution for a clock signal net, the clock
skew is defined to be the maximum difference among the
delays from the clock entry point (CEP) to synchronizing
elements in the net. The delay from the CEP to any syn-
chronizing element depends on the wirelength from the
CEP to the synchronizing element, the RC constants of
wire segments in the routing, and the overall topology of
the routing solution. Usually, the clock routing may be
described as an RC tree [24], and we commonly use the
first-order moment of the impulse response (also called
Elmore delay) to approximate delay in an RC tree. The
formulas derived by Rubinstein, Penfield and Horowitz
[24] give both upper and lower bounds on delay in an RC
tree.

However, although both the formula for Elmore delay
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Fig. 1. A typical combinational circuit.

and those in [24] are very useful for simulation or timing
verification, they involve sums of quadratic terms and are
more difficult to compute and optimize during layout de-
sign. Thus, a simpler, linear RC model is often used (e.g.,
[23], [22]) so that wirelength between CEP and the syn-
chronizing elements approximate the circuit delay. In this
paper, we also use wirelength as a simple approximation
of delay in a routing solution. The clock skew is hence
defined to be the maximum difference in wirelength from
the CEP to synchronizing elements in the clock signal net.
We now give several definitions, along with a formal
statement of the skew minimization problem.

A clock routing solution is represented by a rooted
(Steiner) tree in the layout whose root is the CEP and
whose leaves are synchronizing elements in the clock sig-
nal net. The length, or cost, of an edge in the tree is the
Manhattan distance between the two endpoints of the
edge, and the tree cost is the sum of all edge costs in the
tree.

Definition: The pathlength skew of a tree is the maxi-
mum difference of the pathlengths in the tree from the root
to any two leaves.

A tree is called a perfect pathlength balanced tree if its
pathlength skew is zero. It is not difficult to construct a
perfect pathlength balanced tree if we are allowed to use
an arbitrary amount of wire. However, a routing tree with
very high cost may distort the clock signal due to longer
signal rise and fall times. Thus, we wish to construct a
clock routing tree whose pathlength skew is as small as
possible, without making the total tree cost too large. With
this in mind, we formulate the clock routing problem as
follows:

The Pathlength Balanced Tree (PBT) Problem: Given
a set of n terminals, N, and real numbers B and S, find a
clock routing tree connecting N such that the pathlength
skew of the tree is bounded by S and the tree cost is
bounded by B.

The following is immediately evident:

Theorem 1: the PBT problem is NP-hard.
Proof: Set S = co so that the PBT problem simpli-

fies to the minimum rectilinear Steiner tree problem,
which is known to be NP-complete [17]. El

Our objective is to give a heuristic algorithm for the
PBT problem. For cell-based design methodologies, we
wish to construct a clock tree with pathlength skew as
small as possible, using wirelength as close as possible to
that in an optimal Steiner tree. Specifically we would like
to obtain a clock routing solution in the l, x 12 grid which
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uses O(V1i * '.) total wirelength because an optimal
Steiner tree will also use O(%/iil -vin) wirelength in the
average case [28].

III. A CLOCK ROUTING ALGORITHM FOR CELL-BASED

DESIGN

For cell-based design, point-to-point interconnection
cost is closely approximated by (Manhattan) geometric
distance. Thus, in developing our clock routing algorithm
for cell-based layouts, we introduce the notion of a geo-
metric matching:

Definition: Given a set of 2k terminals, a geometric
matching on this set consists of k line segments between
terminals, with no two of the k segments sharing an end-
point.

Each line segment in the matching defines a matching
edge. The cost of a geometric matching is the sum of the
costs of its matching edges. A geometric matching on a
set of terminals is optimal if its cost is minimum among
all possible geometric matchings. An example of an op-
timal geometric matching over four terminals is shown in
Fig. 2.

To construct a tree by iterative matching, we begin with
a forest of n isolated terminals (for convenience, assume
that n is a power of 2), each of which is considered to be
a tree with CEP equal to the location of the terminal itself.
The minimum-cost geometric matching on these n CEPs
yields n/2 segments, each of which defines a subtree with
two nodes. The optimal CEP into each subtree of two
nodes is the midpoint of the corresponding segment, i.e.,
such that the clock signal will have zero skew between
the segment endpoints.

In general, the matching operation will pair up the
CEP's (roots) of all trees in the current forest. At each
level, we choose the root of each new merged tree to be
the balance point which minimizes pathlength skew to the
leaves of its two subtrees (see Fig. 3). The balance point
is the point p along the "straightline" connecting the roots
of the two subtrees, such that the maximum difference in
pathlengths from p to any two leaves in the combined tree
is minimized. Computing the balance point requires con-
stant time if we know the minimum and maximum root-
leaf pathlengths in each of the two subtrees, and these
values can be maintained incrementally using constant
time per each node added to the clock tree.

Notice that at each level of the recursion, we only have
to match half as many nodes as in the previous level.
Thus, after [log n7 matching iterations, we obtain the
complete clock tree topology. In practice, we actually
compute min-cost maximum cardinality matchings, i.e.,
if there are 2m + 1 nodes, we find the optimal m-segment
matching and match m + 1 CEPs at the next level. Fig.
4 describes of our clock routing algorithm ALG1 for cell-
based design.

The following two results show that ALG1 indeed uses
a reasonable amount of wirelength. We prove that our
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Fig. 2. An optimal geometric matching over four terminals.

Th2I::

Fig. 3. ALGI execution on a set of 16 terminals. Solid dots denote ter-
minals, and hollow dots represent the balance points of the corresponding
edges. At each level a geometric matching is computed on the balance
points of the previous level. Note that although edges are depicted as
straight lines, they are actually routed rectilinearly.

clock tree cost grows at the same asymptotic rate as the
worst-case optimal Steiner tree cost over n terminals; we
also show that our tree cost is on average within a constant
factor of the optimal Steiner tree cost.

Theorem 2: For n terminals arbitrarily distributed in
the 11 x 12 grid, the maximum total wirelength of TALGI

is O( A).
Proof.: For n terminals in the 1I X 12 grid, the worst-

case cost of an optimal matching is O(4 12 * An) [31].
Since the clock tree is formed by the edges of a matching
on n terminals, plus the edges of a matching on n/2 ter-
minals, etc., the total edgelength in the tree is

= 0(VlI * A) E

This is of the same order as the maximum possible total
edge length for the optimal Steiner tree on n terminals
[28]. Note that Theorem 2 does not directly relate the cost
of our clock routing construction to the cost of the optimal
Steiner tree; this is partially addressed by the following.

Fig. 4. The matching-based clock tree routing algorithm.

Theorem 3: For random sets of terminals chosen from
a uniform distribution in the 11 X 12 grid, the total edge-
length of the ALG1 clock tree will be on average within
a constant factor of the total edgelength of the optimal
Steiner tree.

Proof. The minimum Steiner tree cost for n termi-
nals randomly chosen from a uniform distribution in the
I1 X 12 Manhattan grid grows as 0 * - In for some
constant ,3 [281. The claim follows from the O(12 -

/) worst-case bound on the minimum-cost matching at
any level of the construction [31]. 0

The balancing operation to determine the CEP of a
merged tree is necessary because the root-leaf pathlength
might vary between subtrees at a given stage of the con-
struction. In general, when we merge subtrees T1 and T2
into a higher level subtree T, the optimal entry point of T
will not be equidistant from the entry points of T1 and T2
(this can be seen in the example of Fig. 3). Intuitively,
balancing entails "sliding" the CEP along the "bar of the
H." However, it might not always be possible to obtain
perfectly balanced pathlengths in this manner (see Fig.
5).

We therefore use a further optimization, which we call
H-flipping: for each edge e added to the layout which
matches CEPs on edges el and e2, replace the "H" formed
by the three edges e, el, and e2 by the "H" over the same
four terminals which (i) minimizes pathlength skew, and
(ii) to break ties, minimizes tree cost. We now prove that
for four terminals it is always possible find an "H" ori-
entation which achieves zero clock skew, and we also
bound the increase in wirelength caused by H-flipping for
nets of size four. As discussed below, extensive empirical
tests confirm that even for very large inputs, the H-flipping
refinement almost always yields perfectly path-balanced
trees with essentially no increase in wirelength.

If a net is of size two, ALGI selects the midpoint of
the segment connecting the two terminals as the balance
point, and this clearly yields a perfect pathlength balanced
tree. Now we show that for nets of size four, ALG I with

ALGl: A Clock Routing Algorithm for Cell-Based Designs
Input: A set of terminals N
Output: A clock tree topology TALCI with root CEP
T=l
P=N
While P1 > I

M = the edges of the optimal geometric matching over P

For (Plp2) E M Do
T. = the subtree of T rooted at pi
T2 = the subtree of T rooted at p2
p = a point lying between pi and p2 on the line

containing pi and p2, such that p minimizes skew
of the tree T1 U T2 U {(p, pi), (p, p2)} rooted at p

P1 -F U {p}

T - T U {(p,pa), (Pp2)}

P - P plus a possible unmatched node if P1 is odd
CEP = root of T = single remaining point in P
Output clock routing tree = TALGI = T
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Fig. 5. Example of flipping an H to minimize clock skew: the tree on the
left has no zero-skew balance point along the middle segment of the "H",
while the tree on the right does.

the H-flipping refinement also yields perfect pathlength
balanced trees (a net of size three can be treated as a net
of size four in which two terminals coincide).

Let a, b, c, and d be the terminals in a net of size four.
Without loss of generality, assume that ab and cd are the
edges in an optimal matching and ab a cd. (for conven-
ience, we use ab to denote both the segment ab and also
its length. Let ml and m2 be the midpoints of ab and cd,
respectively. According to ALGI, ml is chosen to be the
root of the subtree for a and b, and m2 is chosen to be the
root of the subtree for c and d. Then, the algorithm tries
to choose the balance point p on segment mI m2 such that

ab +PI cd +P2
2 +pm 2=2+Pm2 . (1)

It is easy to see that if ml M2 2 (ab - cd)/2, we can
always choose p satisfying (1). In this case, the path-
lengths from p to all four terminals are the same, so that
we have a perfect pathlength balanced tree. However, if
mI m 2 < (ab - cd)/2, we perform H-flipping and replace
ab and cd by ad and bc. Then the midpoint n, on bc is the
root of the subtree for b and c, and the midpoint n2 on ad
is the root of the subtree for a and d. We then seek p' on
In n2 such that

ad + p bn =c+ p'n2c (2)
2(2)

According to the following lemma, we are guaranteed to
find p' on n, n2 satisfying (2).

Lemma 1: If mI m 2 < (ab - cd)/2 then n n2 2
(bc - ad)/2.

Proof. If we have both mI M2 < (ab - cd)/2 and
nIn 2 < (bc - ad)/2 then (see Fig. 6):

ab - cd bc-ad
mI M 2 + nln2 < 2 +

2 2

therefore,

ab + bc cd + ad
2 > mlm2 + nln2 + 2 (3)2 2

Let x be the midpoint of bd. Using similar triangles and
the triangle inequality, we obtain

ab cd2 = Xn2 C Inn2 + xnl - Inl n 2 + 2
2 2

and
bc ad
- = xm2 c mlm2 + xmI = mlm2 + 2
22

a b
Fig. 6. Illustration for the proof of Lemma 1.

so that

ab + bc cd + ad
2 mIm2 + njn 2 + 2

contradicting (3). Therefore if mIm 2 < (ab - cd)/2
we must have n In2 2 (bc - ad)/ 2. El

Lemma 1 implies that we can always choose the bal-
ance point p' on n, n2 after H-flipping. Therefore, ALGI
always constructs a perfect pathlength balanced tree for a
net of size four. The following lemma shows that when
we replace ab and cd by ad and bc in the H-flip, the
wirelength increase is bounded by a constant factor.

Lemma 2: If mI M 2 < (ab - cd)/2 then bc + ad c
3(ab + cd).

Proof: Let x be the midpoint of bd. Again applying
similar triangles and the triangle inequality, we obtain (see
Fig. 7):

bc cd
2 = XM2 s_ xd + din2 = xd +

and

2 = xm1 c xb + bmi = xb + 2
2 2

so that

bc + ad ab + cd

2 -bd + 2
(4)

Let y be the intersection of bd and mI M2. We then have

ab
by c mly + mlb = mly +2

cd
dy c m2y + m2d = m 2 Y + 2

ab + cd ab-cd ab + cd
bd c mIm 2 + 2 < + = ab.

2 2 2

(5)
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matching algorithm runs within monotonically non-de-
creasing time S(n) = 0(n), we may write S(n) = n T(n)
where T(n) = S(n)/n is monotonically non-decreasing,
and hence the total time required by ALGI is

S(n) + S (2) + S (-) +

= n * An) + - + 4- T (4) +
2 TX 2 / 4 T 4+

n n
A 7n) + T- n) + - ( n) +

a b
Fig. 7. Illustration for the proof of Lemma 2.

Thus, from (4) and (5) we have

bc + ad ab + cd 3(ab + cd)

2 <ab+ 2 2

or bc + ad < 3(ab + cd). F
Together, these lemmas imply:

Theorem 4: It is always possible to find an "H" ori-
entation over four terminals which achieves zero clock
skew, using at most a constant factor extra wirelength.

We now briefly discuss complexity issues and the re-
quirement of an efficient implementation. Since our
method is based on geometric matching, its time com-
plexity depends on that of the matching subroutine. A
well-known algorithm for general weighted matching re-
quires time 0(n3

) [16], [211. By taking advantage of the
planar geometry, the algorithmic complexity can be re-
duced to 0(n2

.
5 log n) [33]. However, even this may be

excessive for large problem instances.
In order to solve problems of practical interest, and

since there is no clear relationship between the optimality
of the matching and the magnitude of the skew of the re-
sulting clock tree, we may choose to speed up the imple-
mentation by using efficient geometric matching heuris-
tics [3], [29], [30]. Although most of these methods were
designed for the Euclidean plane, they also perform well
in the Manhattan metric, especially if their output is fur-
ther improved by uncrossing pairs of intersecting edges in
the heuristic matching (in any metric, this reduces the
matching cost due to the triangle inequality; to this end,
note that k intersections of n line segments may be found
efficiently in time 0(n log n + k) [7]).

We shall later discuss empirical results from implemen-
tation of ALG1 based on three matching methods which
require time 0(n), 0(n log n) and 0(n log2 n), respec-
tively. Each of these three matching heuristics yields very
good clock routing solutions.

The basic approach of ALG1 thus consists of [log n7
applications of the matching algorithm. H-flipping re-
quires constant time per node, and therefore does not add
to the asymptotic time complexity. If the underlying

= n) (in + 2- + - +* )

< 2n 7(n) = 2S(n) = O(S(n))

i.e., the time complexity of ALGI is asymptotically equal
to the time complexity of the underlying matching algo-
rithm.

IV. A CLOCK ROUTING ALGORITHM FOR GENERAL

CELL DESIGN

The same idea of bottom-up iterative matching which
we developed in the preceding section may be easily gen-
eralized to clock routing in block layouts. In this section,
we extend our method to such general cell designs, where
a circuit is partitioned into a set of arbitrarily-sized rect-
angular cells (also referred to as blocks). Blocks may be
of widely varying sizes, and are not necessarily placed in
any regular arrangement. The routing is carried out in the
channels between blocks, with routing over blocks pro-
hibited. For this design style, the approximation of rout-
ing cost by geometric distance, which we used for cell-
based design in the previous section, does not apply. The
feasible routing regions are represented by the channel in-
tersection graph (CIG) [10], which represents the avail-
able routing channels induced by a module layout. To
capture the locations of clock pins within channels, we
use the augmented channel intersection graph (ACIG),
which is constructed as follows: for each pin incident to
a routing channel, introduce a new node into the channel
intersection graph which breaks the channel edge into two
new edges (see the top left of Fig. 9).

Our goal is still to construct a clock signal tree with
both skew and total wirelength as small as possible, ex-
cept that routing of tree edges is now restricted to lie
within prescribed routing channels. Given a graph G with
positive edge costs, we let minpath0 (x, y) denote the min-
imum cost path between nodes x and y, and use distc (x,
y) to denote the cost of minpathG(x, y). The notion of a
matching may be extended to arbitrary weighted graphs
as follows:

Definition: Given a graph G = (V, E) with a positive
cost function on the edges, a generalized matching M in
G is a set of shortest paths connecting m mutually disjoint
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node pairs, i.e., M = {minpathG(xI, yO, minpathG(x2 ,

Y2), * * , minpathG (Xm, Xm)}, where the xi's and yi's are
all distinct.

A generalized matching on a set of nodes N C V in G
is complete if m = LIN | /2j . The cost of a generalized
matching M is the sum of the costs of the shortest paths
in the matching, i.e., cost(M) = =I distG (xi, yi). An
optimal complete generalized matching on N C V is one
with least cost. We can show the following properties of
optimal complete generalized matchings:

Lemma 3: Each edge of G belongs to at most one
shortest path in an optimal complete generalized matching
on N ' Vin G.

Proof: Let M be an optimal complete generalized
matching on N. Suppose that edge e appears in both
minpathG(Xi, yi) and minpathG(xj, Yj), where (xi, yi) and
(x;, yj) are in M and i * j (see Fig. 8). Because (xi, yi)
and (xi, yj) e M are shortest paths in G, we have

distG (xi, Xj) + diStG (Yi, Yj)

c diStG (xi, Yi)

+ distG(xj, yj) - 2 cost(e).

Therefore, replacing minpathG (xi, yi) and minpathG (xi, Y,)

by minpathG (xi, x;) and minpathG (yi, yj) would yield a
complete generalized matching on N with smaller cost, a
contradiction. El

Henceforth, we will assume that there are b blocks in
the design. G is the underlying augmented channel inter-
section graph and we assume that the n clock terminals
are embedded on edges of G.

Lemma 4: The routing cost between any two clock ter-
minals in G is bounded by 11 + 12.

Proof: Let x and y be two clock terminals in G. Let
PI be any monotone (staircase) path passing through x and
connecting two opposite corners w and w' of the layout
grid. Clearly, cost(P1) = 11 + 12. Similarly, let P2 be a
monotone path passing through y and connecting w and
w'. Then, cost(P1) + cost(P2) = 2 * (1l + 12). Since at
least one of w or w' can be reached from both x and y with
cost at most 11 + 12, the shortest path between x and y has
cost no more than l1 + 12. [I

Proof: Let x and y be two clock terminals in G. Let
PI be any monotone (staircase) path passing through x and
connecting two opposite corners w and w' of the layout
grid. Clearly, cost(PI) = 11 + 12. Similarly, let P2 be a
monotone path passing through y and connecting w and
w'. Then, cost(P1) + cost(P2) = 2(1 + 12). Since at least
one of w or w' can be reached from both x and y with cost
at most 11 + 12, the shortest path between x and y has cost
no more than I + 12. El

It is clear from Lemma 4 that an optimal complete gen-
eralized matching on the clock terminals in G has cost no
more than (1, + 12) * Ln/2J .

As in the previous section, our basic strategy is to con-

Fig. 8. Each edge belongs to at most one shortest path in an optimal com-
plete generalized matching.

struct a clock tree by computing a sequence of generalized
matchings on the clock terminals. We begin with a forest
of n isolated clock terminals in G (again for convenience,
we assume that n is a power of 2), each of which is a
degenerate tree with CEP being the terminal itself. The
optimal complete generalized matching on these n termi-
nals yields n/2 paths, each of which defines a subtree.
The optimal CEP into each subtree is the midpoint of the
corresponding path, so that the clock signal will have zero
skew between the two terminals. At each level, we com-
pute an optimal generalized matching on the set of CEPs
(roots) of all subtrees in the current forest and merge each
pair of subtrees into a larger subtree. As before, the root
(CEP) of the resulting tree is chosen to be the balance
point on the path connecting the two subtrees such that
the pathlength skew in the resulting tree is minimized (see
Fig. 9).

Notice that at each level of the recursion, we only have
to match half as many nodes as at the previous level. Thus,
in [log n] matching iterations, we obtain a complete
clock tree topology. If n is not a power of 2, then as noted
in the discussion of ALGI, there will be an odd number
2m + 1 of nodes to match at some level. For such cases,
we compute an optimal maximum-cardinality generalized
matching on 2m nodes, and then match m + 1 nodes at
the next level. Fig. 10 gives a formal description of our
clock routing algorithm ALG2 for general cell design.

The worst-case clock tree cost produced by the algo-
rithm can be bounded as follows:

Theorem 5: Given b blocks in the l X 12 grid and n
terminals of a clock signal net, the cost of the clock tree
created by ALG2 is at most (11 + 12) * n.

Proof: By Lemma 4,. the cost of a generalized
matching on n terminals is bounded by (11 + 12) * Ln/2j .
After each iteration, the number of nodes to be matched
is reduced by half. Therefore, the total clock tree cost is
bounded by

(1 + 12) . - + (1 + 12) . - + *.*
2 4

-(14 + 12) * n.

In order to compute an optimal generalized matching
on a set of nodes N in G, we construct a weighted com-
plete graph G' on N such that weight(x, y) = dist0 (x, y)
for each pair of nodes x and y in N. This can be accom-
plished by applying an O( E |. I V + V 12) implemen-
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Fig. 9. ALG2 execution on a random module placement with an 8-terminal
net. Solid dots are roots of subtrees in the previous level; hollow dots are
roots (CEPs) of new subtrees computed at the current level. At each level
an optimal generalized matching is computed on the solid points. For clar-
ity, only the newly added wires are highlighted at each level.

ALG2: A Clock Routing Algorithm for General Cell Designs
Input: A set of terminals N embedded in a CIG G
Output: A clock tree topology TALG2 with root CEP

P=N
While IP > I

M = opt complete generalized matching on P
P =O
For {p:,p2} E M Do

T, = subtree of T rooted at p,
T2 = subtree of T rooted at p2
p = balance point on mninpath0 (p1 , p2) minimizing the

skew of the tree T1 U T2 U minpathG(pi, p 2 )
p 'P U {p}
T T U {{p,p'}, {p,pi}}

P = ' plus an unmatched node if IPI is odd
CEP = Root of T = single remaining point in P
Output clock routing tree = TAIG2 = T

Fig. 10. The matching-based clock tree algorithm for general cell design.

tation of Floyd's all-pairs shortest path algorithm [25] to
the graph G = (V, E). Note that G is a planar graph and
therefore I E = 0(1 VI). Since for the augmented channel
intersection graph we have I VI = 0(b + n), and typically
b > n, the overall time complexity for this step is 0(b 2).
We may then apply an 0(n 3 ) algorithm for computing an
optimal complete matching in general graphs [21]. How-
ever, this complexity will result in long runtimes for large
problem instances. Therefore, in order to achieve an ef-
ficient implementation, we use the greedy matching heu-
ristic [26]. Such a heuristic matching may be improved
by removing overlapping edges of shortest paths, as de-
scribed in the proof of Lemma 3, so that no edge is used
in more than one shortest path. The time complexity of
each iteration of ALG2 is dominated by the 0(b2) all-pairs
shortest paths computation, which we invoke [log n]

times, so that the overall time complexity of ALG2 is
0(b2  log n). This complexity is reasonable since the
number of blocks is typically not large.

V. EXPERIMENTAL RESULTS

Both ALGI and ALG2 were implemented in ANSI C
for the Sun-4, Macintosh, and IBM 3090 environments.
This section summarizes the simulation results.

5.1. Empirical Data for Cell-Based Designs

We have implemented three basic heuristic variants of
ALGI, corresponding to different matching subroutines.
The first heuristic variant (SP) uses the linear-time space
partitioning heuristic of [30] to compute an approximate
matching; the second variant (GR) uses an 0(n log2 n)
greedy matching heuristic [29]; and the third variant
(SFC) uses an O(n log n) spacefilling curve-based method
[3]. We have further tested these three variants by running
each both with and without two refinements: (1) removing
all edge crossings in the heuristic matching, and (2) per-
forming "H-flipping" as necessary. Either of these op-
timizations can be independently added to any of the three
variants, yielding a total of twelve distinct versions of the
basic algorithm. The variants of the algorithm are denoted
and summarized as follows:

* SP: Use the space-partitioning matching heuristic of
[30], which induces the matching through recursive
bisection of the region (rather than bisection of the
set of terminal locations).

* GR: Use a greedy matching heuristic, which always
adds the shortest edge between unmatched terminals
[29].

* SFC: Use a space-filling curve to map the plane to
a circle, then choose the better of the two embedded
matchings (i.e., either all odd edges or all even edges
in the induced Hamiltonian cycle through the termi-
nal locations) [3].

* SP+E, GR+E, SFC+E: Same as SP, GR, and SFC,
respectively, except that the heuristic matching cost
is further improved by edge-uncrossing.

* SP+H, GR+H, SFC+H. Same as SP, GR, and
SFC, respectively, except that pathlength skew is
further reduced by H-flipping.

* SP+E+H, GR+E+H, SFC+E+H: Same as SP,
GR, and SFC, respectively, except that both edge-
uncrossing and H-flipping are performed.

For comparison, we also implemented

* MMM: The method of means and medians, similar
to that of Jackson, Srinivasan and Kuh [18].

The algorithms were tested on random sets of up to 1024
terminals generated from a uniform distribution in the
1000 x 1000 grid (i.e., 11 = 12 = 1000). Results for a
sample run with 50 random terminal sets at each cardi-
nality are summarized here: Table I compares the average
tree costs and Table II compares the average clock skews

164
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TABLE I
AVERAGE TREE COSTS, IN GRID UNITS, FOR THE VARIOUS HEURISTICS

PIS MMM SP GR SFC SP+E GR+E SFC+E

4 1197 1155 1136 1140 1129 1129 1130

8 2136 2075 2032 2031 1990 1990 1992

16 3506 3582 3409 3527 3343 3326 3343

32 5598 5922 5481 5788 5342 5277 5326

64 8377 9184 8526 9048 8100 8032 8068

128 12276 13793 12632 13656 11912 11725 11976

256 17874 20765 18625 20354 17573 17024 17768

512 25093 30443 27055 29618 25341 24548 25720

1024 36765 44304 38688 42750 36444 35086 37056

PIs SP+H GR+H SFC+H SP+E+H GR+E+H SFC+E+H Meta

4 1125 1125 1125 1125 1125 1125 1125

8 2027 2028 1994 1971 1979 1980 1960

16 3502 3416 3428 3333 3322 3329 3268

32 5860 5628 5577 5329 5273 5304 5151

64 9226 8794 8748 8076 7982 8047 7844

128 13997 3315 13159 11871 11697 11914 11566

256 21307 19611 19713 17457 16955 17629 16919

512 31646 29175 28688 25188 24465 25483 24480

1024 46417 42110 41540 36276 34965 36814 34992

TABLE 11

AVERAGE SKEW VALUES, IN GRID UNITS. FOR THE VARIOUS HEURISTICS

PtS MMM SP GR SFC SP+E GR+E SFC+E

4 112.31 3.98 15.52 0.00 0.00 0.00 0.00

8 186.10 45.79 76.71 4.26 0.66 0.66 0.66

16 234.72 70.93 141.22 19.47 4.01 3.54 3.66

32 262.61 143.85 200.33 28.29 8.14 7.85 6.14

64 229.15 179.83 273.04 51.36 6.93 8.65 5.29

128 201.55 226.61 314.05 64.86 11.52 14.18 11.26

256 183.28 286.90 324.57 85.10 17.25 13.85 15.04

512 153.90 321.23 399.29 85.46 14.79 15.26 15.73

1024 125.34 339.34 402.59 89.75 17.14 16.71 15.35

Pts SP+H GR+H SFC+H SP+E+H GR+E+H SFC+E+H Meta

4
8

16
32
64

128
256
512

1024

0.00
3.38
1.80
3.53

13.17
20.79
41.79
76.35
75.92

0.00
0.12
3.80
8.64

27.69
40.34
51.87
90.66
94.99

0.00
0.00

0.12
0.00
1.26
3.18
7.49

13.51
16.62

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.39
0.44

0.00
0.00
0.00
0.00

1.02

0.92
0.62
0.08

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.24 0.00
0.00 0.00
0.39 0.00
0.38 0.00

for all heuristics. The data in the tables is given in grid

units.
The computational results indicate that both optimiza-

tions (edge-uncrossing and H-flipping) significantly im-

prove both skew and total wirelength. When the refine-
ments are combined, average pathlength skew essentially
vanishes, and the wirelength of several variants is
superior to the output of MMM. The best variant appears
to be GR + E + H, which is based on the greedy matching
heuristic together with edge-uncrossing and H-flipping.
Note that the cost of the greedy matching is asymptoti-
cally as good as that of the optimal matching 126]. Tables

III and IV highlight the contrast between GR + E + H and
MMM, showing minimum, maximum and average values

TABLE III
MINIMUM, AVERAGE, AND MAXIMUM SKEW VALUES, IN GRID UNITS, FOR

GR+E+H AND MMM

MMM GR+E+H

PIs min ave max min ave max

379 0 0.00
4
8

16
32
64

128
256
512

1024

2
46
86

118
141
120
127
103
94

112.31
186.10
234.72
262.61
229.15
201.55
183.28
153.90
125.34

379
407
416
540
337
282
250
203
167

0 0.00

0 0.00
0 0.00
0 0.00

0 1.02
0 0.92
0 0.62
0 0.08

0
0
0
0
30

46
31
4
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Fig. 11. Overallpathlength skew comparisons between ALGI (GR+E+H)

and MMM
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Fig. 12. Overall tree cost comparisons between ALGI (GR+E+H) and

MMM.

TABLE IV
MINIMUM, AVERAGE, AND MAXIMUM TOTAL WIRELENCTH VALUES, IN

GRID UNITS, FOR GR+E+H AND MMM

MMM GR+E+H

Pls min ave max min ave max

4 656 1197 1823 555 1125 1668
8 1089 2136 2943 1123 1979 2810

16 2841 3506 4221 2793 3322 3993
32 4813 5598 6216 4695 5273 5866
64 7624 8377 9266 7372 7982 8556

128 11439 12276 13136 11052 11697 12243
256 17220 17874 18549 16379 16955 17543
512 25093 25666 26291 23866 24465 25325

1024 36126 36765 37561 34231 34965 36179

for both total wirelength and skew. Figs. 11 and 12 depict
these same comparisons graphically.

As noted in [20], any set of approximation heuristics
induces a meta-heuristic which returns the best solution
found by any heuristic in the set; we also implemented
this (denoted as "Meta"), which returns the minimum-
skew result from all of the other variants. Interestingly,
in our experience Meta always returns a perfect path-
length balanced tree, i.e., for each problem instance, at
least one of the other heuristic variants will yield a zero
clock skew solution. This is very useful, especially when
the heuristics are of similar complexity. For example, we
can solve the Primary 1 benchmark using all twelve meth-
ods in under two minutes on a Sun-4/60 workstation.

Fig. 13 and 14 illustrate the output of variant
GR+E+H on the Primaryl and Primary2 benchmarks,
using the same placement solutions as in 118]; note that
although edges are depicted as straight lines in these dia-
grams, they are actually routed rectilinearly. Table V
compares the results of GR +E + H and the results of [18]
which were provided by the authors [27]: GR+E+H
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350
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2.50

2.00

1.50

I.O0

0.50

0.00

I I -

I I I I I I

0.00 100 2.00 3.00 4.00 5.00

Fig. 13. Output of variant GR+E+H on the Primary 1 benchmark layout.

y
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Fig. 14. Output of GR+E+H on the Pnmary2 benchmark layout.

completely eliminates pathlength skew while using 5%-
7% less wirelength. To confirm the correlation between
the linear delay model and actual delay, we ran SPICE
simulations on the Primary I and Primary2 clock trees us-
ing MOSIS 2.0-Ism CMOS technology parameters and
0.3-pF sink loading capacitance); the simulated skews of
our clock trees for Primaryl and Primary2 were 181 ps
and 741 ps, respectively 2. Notice that this clock skew was

2
Vias and parasitic difference between metal layers were not considered

in our simulation because detailed layer assignment has not been deter-
mined at this stage of clock routing.
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TABLE V
COMPARISONS OF GR+E+H AND MMM ON PRIMARYI AND PRIMARY2. "SKEW (STD)" DENOTES THE

STANDARD DEVIATION OF THE PATH LENGTH, AND "COST" DENOTES THE TOTAL WIRELFNGTH

Skew
Skew (STD) Cost (STD) Cost Reduction Reduction

MMM MMM GR+E+H GR+E+H Skew (STD) Cost (%)

Primaryl 0.29 161.7 0.00 153.9 0.29 4.8
Primary2 0.74 406.3 0.00 376.7 0,74 7.3

TABLE VI
AVERAGE CLOCK TREE COSTS AND PATHLENGTN SKEWS, IN GRID UNITS, OF

ALG2 AND THE STEINER TREE HEURISTIC, RESPECTIVELY.

Skew Cost
#of Net

Modules Size Steiner ALG2 Steiner ALG2

16 4 511.0 0.8 1537 1921
16 8 794.9 12.9 2328 3478
16 16 1101.5 22.1 3332 5873

32 4 445.0 0.4 1401 1729
32 8 804.4 4.4 2261 3407
32 16 1136.9 12.0 3357 5847

obtained simply by balancing CEP-leaf pathlengths; as
discussed in Section VI, more sophisticated delay models
can yield a better choice of balance points in the match-
ing-based construction.

5.2. Empirical Data for General Cell Designs

We have tested ALG2 on two sets of test cases. One
set of examples contains clock nets of sizes 4, 8, and 16
on 16 blocks, and the other set contains clock nets of sizes
4, 8, and 16 on 32 blocks. Block sizes and layouts were
assigned randomly in the grid by creating a fixed number
of non-overlapping blocks, with length, width, and lower-
left coordinates all chosen from uniform distributions on
the interval [0, 1000] (i.e., 11 = 12 = 1000).

For each net size (and block number), 100 instances
were generated randomly, and we compared the skew and
cost of the ALG2 routing trees with those produced by the
1-Steiner heuristic [20]. Results are shown in Tables VI
and VII. The skew of our clock tree is very close to zero.
In no case is it more than 2% of the skew of the Steiner
tree routing. The increase in total wirelength of our rout-
ing tree varies from 24% to 77% when compared with the
Steiner tree. The data in the tables is given in grid units.

As with the cell-based layout benchmarks, we ran
SPICE simulations on a number of examples (again using
MOSIS 2.0-jim CMOS technology and 0.3-pF gate load-
ing capacitance). The actual skew of our clock tree is con-
sistently much smaller than that of a Steiner tree. For a
typical 16-pin clock net in a 16-block design, the skews
of our clock tree and the Steiner tree are 18 and 69 ps,
respectively.

For the routing tree produced by ALG2, we may have
overlapping edges in a channel because matching paths at
different levels may use the same channel. However, by
Lemma 3, no channel segment will appear in more than

TABLE VII
AVERAGE CLOCK TREE COSTS AND PATHLENGTH SKEWS, OF ALG2 OUTPUT,

NORMALIZED (PER INSTANCE) TO CORRESPONDING HEURISTIC STEINER TREE

VALUES.

4 of Net Pathlength Tree Edge Density
Modules Size Skew Cost in Channels

16 4 0.00 1.26 1.24
16 8 0.02 1.49 1.40
16 16 0.02 1.77 1.63

32 4 0.01 1.24 1.21
32 8 0.01 1.52 1.36
32 16 0.01 1.74 1.48

a single path in a matching. Therefore, there are at most
Flog nl overlapping edges in each channel. The last col-

umn in Table VII shows the average edge density in chan-
nels, computed as the average of non-zero local column
densities over all columns in all channels.

VI. REMARKS AND EXTENSIONS

We recommend that the global clock routing of ALGI
or ALG2 be performed before other wiring, following
standard practice. In this way, there are no wire-crossing
conflicts since two layers of metal are used, one for hor-
izontal wires, and the other for vertical wires. The exact
routing of the clock tree topology may be determined in
the detailed routing step.

For cell-based design, we can realize additional wire-
length savings in our clock tree routing by varying the
geometric embedding of individual wires in the layout. In
the Manhattan metric, the "balance point" of a wire con-
necting two terminals is not unique but is rather a locus
of many possible terminals (Fig. 15), with the extremes
corresponding to the two L-shaped wire orientations. Our
current implementation sets the balance point of a seg-
ment to be its "Euclidean" midpoint, but this is not nec-
essarily an optimal choice. Using a graph-theoretic for-
mulation, we can easily derive a polynomial-time method,
based on general graph matching, for finding the optimal
set of balance points within these loci.

The wire embedding at each level of our algorithm may
also benefit from lookahead of one or more levels, i.e.,
when we reach a situation where pathlength skew cannot
be eliminated even via the utilization of an H-flip, we can
go back one or two levels in the subtrees involved and try
different H-flips during previous iterations on those sub-
trees. In our experience, this strategy easily allows com-
plete elimination of clock skew at the current level, and
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Fig. 15. Further optimizations are possible by matching over the loci of
balance point candidates.

requires only a constant amount of computation provided
the lookahead depth (i.e., number of levels) is bounded
by a constant. With respect to Fig. 15, note that because
the routing layers have different electrical characteristics,
the choice of balance points must be optimized both with
respect to locations and the actual embeddings of the wires
incident to the balance point. If the layer assignment is
prescribed, the balance point computation is straightfor-
ward. Alternatively, deciding between various optional
embeddings may be accomplished using one level of
lookahead as in [32].

Another important extension lies in the selection of the
CEP at each level. Instead of using the linear delay model
to select a CEP, we may use a more accurate distributed
RC model, to select the CEP so that clock skew is reduced
by as much as possible. This is a strictly local modifica-
tion of our method and does not affect the execution of
the rest of the algorithm (or any variant). Such an exten-
sion applies to both ALGI and ALG2, and is particularly
useful when varying capacitative loadings exist at the ter-
minals of the clock net. Since our algorithm operates in a
bottom-up fashion, and since we treat each level inde-
pendently, our method is able to accommodate variable
gate loading very naturally.3

'We note that Tsay [32] recently gave a clock routing algorithm which
uses a bottom-up construction approach similar to the one described in this
paper. Tsay's algorithm incorporates one level of look-ahead and the in-
troductiun of "extra" wire to achieve an exact zero-skew tree with respect
to the Elmore delay model [13]. At each step, Tsay's method combines a
pair of zero-skew trees to yield a new zero-skew tree of larger size. The
linear-time "Deferred-Merge Embedding" (DME) algorithm of [4]-[6]
generalizes look-ahead in maintaining all loci of CEP's that are compatible
with a zero-skew tree construction. DME thus reduces the cost of an initial
clock tree topology computed by any previous method, while maintaining
exact zero clock skew. In regimes where the linear delay model applies,
the DME method produces the optimal (i.e., minimum-cost) zero-skew
clock tree with respect to the prescribed topology, and this tree will also
enjoy optimal source-terminal delay [4], [5]. It is noteworthy that with
respect to DME, our present matching-based approach yields topologies
which lead to lower cost trees than such other initial topologies as those of
[6], [18], [32].

Finally, we mention that the PBT problem is interesting
from a theoretical standpoint: the tradeoff between path-
length balance and total edgelength appears important not
only for clock skew minimization, but also for a number
of applications in areas ranging from computational ge-
ometry to network design.

In summary, we have presented a bottom-up approach
for constructing clock routing trees, for both cell-based
and general cell designs. Skew minimization is achieved
by constructing the clock tree iteratively through geomet-
ric or graph matchings, while carefully balancing the
pathlengths from the root to all leaves at each level of the
construction. We verified our algorithm on numerous ran-
dom examples, on industry benchmark circuits, and by
SPICE timing simulations; the results show near-zero av-
erage clock skew while using total wirelength that com-
pares favorably with previous work.
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