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New Approximation Algorithms for Routing with
Multiport Terminals

Christopher S. Helvig, Gabriel Robins, and Alexander Zelikovsky

Abstract-Previous literature on very large scale integration
routing and wiring estimation typically assumes a one-to-one cor-
respondence between terminals and ports. In practice, however,
each "terminal" consists of a large collection of electrically equiv-
alent ports, a fact that is not accounted for in layout steps such as
wiring estimation. In this paper, we address the general problem
of minimum-cost routing tree construction in the presence of
multiport terminals, which gives rise to the group Steiner minimal
tree problem. Our main result is the first known approximation
algorithm for the group Steiner problem with a sublinear perfor-
mance bound. In particular, for a net with k multiport terminals,
previous heuristics have a performance bound of (k -1) * OPT,
while our construction offers an improved performance bound
of 2 * (2 + ln(k/2)) * VT OPT. Our Java implementation is
available on the Web.

Index Terms-Approximation algorithms, combinatorial opti-
mization, group Steiner problem, multiport terminals, routing,
Steiner trees.

I. INTRODUCTION

PREVIOUS works on routing often assume a one-to-oneP correspondence between terminals and ports, either
implicitly or explicitly requiring each terminal to consist of
a single port. However, in actual layouts (e.g., in a gridded
routing regime), a "terminal" to which a wire is to be routed
can consist of a large collection of separate ports. Even though
a wire may connect to any one of these ports, this degree of
freedom is often not fully exploited, particularly in routing or
in wiring estimation.

In this paper, we address the general problem of min-
imum-cost Steiner tree construction in the presence of
multiport terminals. Clearly, the problem of interconnecting a
net with multiport terminals is a direct generalization of the
NP-hard Steiner problem and is, therefore, itself NP-hard (i.e.,
in the classical Steiner problem each terminal contains exactly
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Fig. l. (a) The minimum spanning tree (MST) and (b) the Steiner minimal tree
(SMT) in the rectilinear plane. Solid dots represent Steiner nodes.

one port). The classical Steiner minimal tree problem is defined
as follows.

The Steiner Minimal Tree (SMT) problem: given an undi-
rected weighted graph G = (V, E) and M C V, find a min-
imum-cost tree which spans all of M.

Nodes in V - M (referred to as Steiner nodes) may be option-
ally included in order to reduce the total tree cost. A rectilinear
instance of the Steiner problem is shown in Fig. 1.

We address the generalization of the Steiner Minimal Tree
problem, where rather than spanning a set of nodes, the objec-
tive is to connect groups of nodes. This problem, which models
the routing of nets with multiport terminals, is formalized as fol-
lows.

The Group Steiner Problem [9], [19]: given an undirected
weighted graph G = (V, E) and a family N = {N 1, . . ., Nk}

of k disjoint groups of nodes Ni C V, find a minimum-cost tree
which contains at least one node (i.e., port) from each group Ni.

As in the classical Steiner problem, we are allowed to include
optional (i.e., Steiner) nodes, in order to reduce the cost of the
tree interconnecting the groups of N. One version of the group
Steiner problem, known as the strong connectivity version, al-
lows different connections to the same group to attach to dif-
ferent nodes in that group [i.e., all the nodes of a group are im-
plicitly connected to each other, which allows the solution to the
group Steiner problem to be a forest-see Fig. 2(b)]. The ver-
sion of the group Steiner problem that we study involves weak
connectivity: the solution must be strictly a tree, and intra-group
edges must be explicitly part of the solution [see Fig. 2(a)].

The group Steiner problem captures several practical sce-
narios in very large scale integration layout design.

Even in single-port-per-terminal scenarios, the possibility
of rotating and flipping a module induces multiple loca-
tions for the given port. For a general module, there are
up to eight possible orientations [19] [see Fig. 3(a)], and
a given terminal will induce a group of up to eight nodes
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Eig. 2. (a) A feasible solution for the weak-connectivity version of the group
Steiner problem. (b) A solution to the same group Steiner problem instance
under the strong-connectivity assumption. Ovals represent terminals (i.e.,
groups), hollow dots represent ports within a terminal, and solid dots represent
Steiner nodes.

in the group Steiner problem formulation' [see Fig. 3(b)].
The use of "virtual" ports is mutually exclusive, and a ver-
sion of the weak connectivity model applies.

* The group Steiner problem also models the pin assignment
problem [15], which seeks to optimally determine pin lo-
cations on module boundaries. Usually, exactly one pin is
assigned to each module [18], and the weak connectivity
model applies.

* In grid-based maze routing regimes, "dot-models" or sim-
ilar techniques are commonly used to create multinode
routing abstracts for each terminal within the multilayer
grid. A complicated terminal geometry can easily have 30
or more ports located on multiple fabrication layers. These
ports form a group in the group Steiner problem formu-
lation. The ports are electrically equivalent, and a routing
tree may connect to more than one port of a given terminal.
Hence, the strong connectivity model applies.

* On a larger length scale, multiple ports on a block
boundary may be electrically equivalent by virtue of
being connected inside the block. Again, the strong-con-
nectivity group Steiner problem version applies with
these sets of ports forming groups.

Despite such applications, the freedom to connect to any of
multiple port locations has neither been explored in geometric
or graph-based routing tree constructions, nor has it been
accounted for in wiring estimation.2 In deep submicrometer
technologies, the error incurred by approximating multiple
ports with, e.g., their center of gravity can be substantial
when propagated through multiple logic stages. Furthermore,
instances of this problem become common when hierarchical
design methodologies are applied (e.g., when global nets are
partially prerouted).

The only existing approximation algorithms for the weak
group Steiner problem produce solutions k -1 times worse than
optimal 3 where k is the number of groups [10]. In this paper,

'Eor standard cells there are really only two (or possibly four) orientations
possible.

2
Detailed maze routers implicitly exploit this degree of freedom, but their

solutions may have unbounded error.
3
1n contrast, the strong connectivity version, though also NP-hard, is some-

what more tractable than the weak connectivity version: by converting an in-
stance of the strong connectivity version into an instance of the graph Steiner
problem, then setting to zero the weight of every intra-group edge, we can effi-
ciently solve the strong group Steiner problem to within a factor of two or less
of optimal using known graph-based Steiner tree algorithms [16], [21], [22].

we propose a new heuristic with an improved performance
ratio4 of 2 * (2 + ln(k/2)) * V, where k is the number of
groups. On the negative side, we show that this problem is
not likely to be approximable to within polynomial time with
a performance bound of less than ink OPT [6], [11]. This
implies that one can not expect to find efficient heuristics
with sublogarithmic performance bounds. Note that in practice
our heuristic produces solutions that are much better than the
theoretical bound indicates. This is apparent from our experi-
mental results and from examining actual trees produced by our
implementation. Note that although our algorithms are general
and apply to arbitrary weighted graphs, our implementation
(and the experimental results section) uses the rectilinear metric
to determine the distances between ports.

The rest of the paper is organized as follows. In Section II, we
introduce a special type of depth-bounded Steiner tree. We prove
that an optimal depth-2 bounded Steiner tree approximates the
optimal Steiner tree to within a factor of 2* x/k. In Section III,
we present our main heuristic that approximates the optimal
depth-2 Steiner tree to a 2 + ln(k/2) factor (our overall method,
therefore, has a performance bound that is the product of these
two factors). Analysis given in the Appendix shows that our
heuristic cannot be improved substantially (i.e., a logarithmic
factor is a lower bound). We finish Section III with the proof
of the claimed performance bound for our main heuristic. Sec-
tion IV analyzes its time complexity, and discusses some prac-
tical enhancements. Section V shows how to improve the bound
even further by specially treating groups of size one. Section VI
extends our basic group Steiner approach into a bounded-radius
formulation that minimizes tree cost as well as source-to-sink
pathlengths in a provably good manner. Finally, we discuss our
implementation and experimental results in Section VII. A pre-
liminary version of this work appeared in [3], [8].

II. DEPTH-BOUNDED STEINER TREES

In this section, we introduce the concept of Steiner depth-
bounded5 trees. Our motivation for using depth-bounded trees
is twofold: 1) optimal depth-2-bounded trees can be used to ap-
proximate optimal group Steiner trees to within a factor of 2 /k,
and 2) optimal depth-2-bounded trees in turn can be approxi-
mated efficiently, as discussed in the next section. Our overall
method is thus a composition of these two approximations and,
therefore, enjoys a performance bound that is the product of the
two corresponding bounds.

In general, the given graph G may violate the triangle in-
equality, i.e., there may be edges (u, v) in G whose cost is
greater than the cost of the minimum u-v path in G. An optimal
group Steiner tree will contain no such edges, since replacing
such edges with the corresponding shortest paths will decrease
the total tree cost. Therefore, without loss of generality, we re-
place G by its metric closure.6 In order to further simplify our

4The perlortnance ratio is an upper bound on the ratio of heuristic solu-
tion cost divided by optimal solution cost, over all problem instances [i.e., the
worst-case of cost(APPROX)/cost(OPT)].

5
We define the depth of a rooted tree T as the maximum number of edges in

any root-to-leaf path.
6

The metric closure is defined as the complete graph where the cost of each
edge (u, v) is equal to the cost of the minimum u -v path in G.
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Fig. 3. (a) A module is rotated and flipped to induce a group of eight terminal positions, shown in (b).
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Fig. 4. Transformation of G: each terminal node vi in G is connected to a
newly created node v' with a zero-cost edge (i.e., terminal nodes thus become
nonterminals, and newly created corresponding nodes replace the roles of the
original terminal nodes). Note that this transformation alters G in a way that
enables us to transform a solution in the modified graph back into a solution of
the same cost in the unmodified graph.

the t
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Fig. 5. (a) A 1 -star, and (b) a 2-star with root r. (c) Graph edges are thin, while
2-star edges are thick: the edge e is (re)used here three times in dashed paths
between nodes adjacent in the 2-star.

analysis, we also modify G as follows. For any port vi, we create
a new node vi and a new zero-cost edge (vi, vi); we let vi take
on the role of vi, i.e., vi becomes a port and vi becomes a non-
port, as shown in Fig. 4. An optimal tree in the modified graph
has the same cost as an optimal tree in the original graph. Hence,
this transformation allows us to seek the optimal Steiner tree in
which every port is a leaf.

We define d-stars to be rooted trees of depth of at most d [see
Fig. 5(a), (b)]. The goal of the rest of this section is to show
that for any arbitrary (but henceforth fixed) tree T with root r,
there exists a low-cost 2-star spanning the leaves of T. This will
imply that an optimal group Steiner tree can be approximated by
a low-cost group Steiner 2-star (defined as a 2-star which spans
all of the groups). Our overall strategy is to specify a low-cost
2-star and derive upper bounds on its total cost.

In deriving upper bounds on the cost of 2-stars, we will sum
the costs of tree paths between nodes which are adjacent in
2-stars. Such paths are not necessarily disjoint, and the same tree
edge may be counted multiple times in this sum. We refer to this
situation as edge reuse [see Fig. 5(c)]. For the tree T, edge reuse
provides a loose upper bound on the ratio cost(2-star)/cost(T):
if no edge is used more than j times when replacing edges of a
2-star by the corresponding paths in T, then the 2-star has cost
no more than j times the cost of the tree T. Our strategy for de-
riving upper bounds on the cost of a 2-star is to bound its edge
reuse.

More formally, given a tree T, a 1-star S1 , and a 2-star S2

(collectively denoted Sd), let reuseT (Sd) denote the maximum
number of times that any tree edge from T is used in tree paths
connecting nodes adjacent in Sd. In order to establish an upper
bound on the cost of a 2-star, we first select an appropriate
common root r for SI and S2 . The following is a known result
from graph theory (which we prove here for the sake of com-
pleteness).

Lemma 1: Any tree T has at least one node r, called the
center, such that each connected component of T- {r} contains
at most half of the leaves of T (See Fig. 6).

Proof: We direct each edge e = (u, v) in T from u to
v if the number of leaves in the connected component of T-
{e} containing v is strictly more than the number of leaves in
the other component [See Fig. 6(a)]. Since T is a tree, we can
start from an arbitrary node and walk along directed edges until
we reach a node r without any incident outgoing edges. The
node r is a center since no connected component of T -{ }

contains more leaves than the sum of the leaves in all of the
other (disjoint) components. 0

Placing the root r of the 1-star SI at a center of the tree T
minimizes the edge reuse of SI, as follows.

Lemma 2: Let 7 be a center of the tree T with the set of leaves
L. The 1-star SI with the root r and leaves L costs no more than
(ILI/2) cost(T).

Proof: Since r is a center of T, reuseT(Sl) is not larger
than I L I /2 [See Fig. 6(b)]. Indeed, the reuse of an edge c of T is
the number of root-to-leaf paths in T that contain C. Since r is
a center, any edge of T lies on at most half of all such paths. 0

We now construct a 2-star S2 from the tree T with cost no
more than 2 * +/jW * cost(T), where L is the set of leaves of T.
Note that a center r of the tree T will serve as a root of both S1

and S2 . Note also that S2 and T (and S1 ) have the same set of
leaves, namely L. Let Ci be connected components of T-{r7}.
In order to connect nodes in different Ci, we must pass through
the root r. Define Ti as a component Ci plus the root r and the
(unique) edge between the root and Ci [Fig. 6(a) shows three
such components Ci]. Finally, we denote by Li = Ci n L the
set of leaves of T that are contained in Ti. Because the root r is a
center of T, the size of Li is at most L /2 in each rooted subtree
Ti. We construct a 2-star S2 for the entire tree T by taking the
union of the 2-stars for each of the subtrees Ti. Note that the
edge reuse of S2 in T is the maximum of the edge reuses over
all Ti. We define a node u as an ancestor of v if the path trom
the root to v passes through u.
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(a) (b)

Fig. 6. (a) When a tree center is removed, no subtree has more than ILI/2 leaves. (b) When we place the root at a center of the tree, no edge is reused more than
IL1/2 times (in dashed paths). In this example, the edge reuse of the 1-star is 7.

a a

(a) (b)

Fig. 7. Triangles represent depth-first -ordered subtrees. (a) Type (i) paths
which reuse the edge (u, v) terminate at intermediate nodes below v (there are
no more than IL I/b of these). (b) Type (ii) paths which reuse the edge (u, v)
terminate at leaves that lie in the leftmost and the rightmost blocks that together
contain at most 2 * (b - 1) leaves.

Now we determine an appropriate set of intermediate nodes
for a 2-star S2 in each Ti. First, we label the leaves of Ti in an
arbitrary depth-first manner, lI1 12 .... , IIr,, . Next, we partition
this sequence into fixed-size blocks of contiguously numbered
leaves. Finally, we choose the intermediate nodes of our 2-star
for Ti as the set of least common ancestors 7 of the leaves in
each of the blocks. In our 2-star, the root is connected to these
intermediate nodes, and each intermediate node is connected to
the leaves of the corresponding block.

Note that the edge reuse is determined by two kinds of paths:
(i) paths from the root to intermediate nodes [Fig. 7(a)], and (ii)
paths from intermediate nodes to leaves [Fig. 7(b)]. The number
of paths of type (i) is clearly bounded by the number of blocks,
i.e., I/LiIb, where b is the block size.

We now estimate the contribution to edge reuse of paths
of type (ii). Since we have ordered the nodes in a depth-first
manner, any node v will be a common ancestor for a sequence
of contiguously numbered leaves, say 1, lX+i, . .. , 1.. Clearly,
v is an ancestor of the least common ancestors of all blocks that
are contained completely in this sequence. Because the edge
between v and its parent a does not lie on the paths from the
intermediate nodes to leaves of such blocks, we are concerned
only with paths to the leaves outside of such blocks. Such
leaves may occupy only the first or the last b -1 positions in

7A common ancestor of a set of nodes is the least common ancestor if it is
not an ancestor of any other common ancestor of these nodes.

the sequence lx ... , I., This induces a bound of 2- (b -1) on
the contribution of type (ii) paths to the reuse of edge (u, v).

Thus, the total edge reuse is at most (ILJl/b) + 2 b.
Choosing b = j/2 yields an upper bound on edge reuse
of 2 2 I. Since the root is the center of T, we have
ILi < 1 L , and the edge reuse is at most 2 +/X. This
proves that for any tree T with the set of leaves L and a center
77, there is a 2-star rooted at 77 with the same set of leaves L, and
with cost at most 2 - / cost(T). If we define T to be an
optimal group Steiner tree with k = ILI leaves,8 then the above
argument implies that there exists a group Steiner 2-star of cost
at most 2 -/T* cost (T), where k is the number of groups. We,
therefore, obtain the following result.

Theorem 1: Let Opt be an optimal group Steiner tree, let k
be the number of groups, and let r be a center of Opt. Then

1) the cost of an optimal Steiner 1-star rooted at 77 is at most
(k/2) cost(Opt); and

2) the cost of an optimal Steiner 2-star rooted at 77 is at most
2 -/72. cost(Opt).

III. A PROVABLY-GoOD HEURISTIC

We have established that an optimal Steiner 2-star is a reason-
able approximation of an optimal group Steiner tree, denoted
Opt. It can be shown that even the problem of approximating
an optimal Steiner 2-star is as difficult as approximating a min-
imum set cover (see the Appendix). Therefore, for any c > 0, it
is unlikely that there exists a polynomial-time heuristic with per-
formance ratio (1- c) *ln k, where k is the number of groups [6].
We present an algorithm for approximating a Steiner 2-star with
performance ratio 2 + ln(k/2) 1.307 + In k. Therefore, the
overall performance bound for our Group Steiner Minimal Tree
heuristic will be the product of these two factors (namely the
approximation bound of 2-stars with respect to optimal, times
the bound with which we can approximate 2-stars themselves).

Theorem 1 states that there exists a low-cost Steiner 2-star
with the root placed in a center of an optimal group Steiner tree
Opt. Although we do not know which node of the graph G is

8
Note that by the transformation described in Fig. 4, at most one leaf node in

each group will be spanned by an optimal group Steiner tree and, therefore, we
can set k = ILI here.
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Fig. 8. Our main approximation algorithm for the group Steiner problem on
arbitrary graphs produces a low-cost Steiner 2-star.
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Fig. 9. (a) A Steiner 2-star, and (b) the corresponding optimal 1-star.
The shaded area in (a) is representative of our so-called "partial stars," the
determination of which is essential to our algorithm.

a center of Opt, this is not an obstacle: for each node r of G,
we construct a low-cost Steiner 2-star ApproX2 (r) with root r,
and then we select the least-cost ApproX2 (r) over all possible
choices of r (see Fig. 8). Thus, we only need to specify how we
will construct a Steiner 2-star ApproX2 (r) with a given root r.

Let Optl(r) be the optimal Steiner 1-star rooted at r, and
let Opt2 (r) be the optimal Steiner 2-star rooted at r. The main
idea in constructing ApproX2 (r) is to successively refine an
initial approximation coinciding with Optl(r). There are two
advantages to using Optl(r) as an initial approximation for
Opt 2 (r): first, unlike Opt2 (r), the 1-star Optl(r) canbe com-
puted efficiently; secondly, the cost of Opt, (r) is bounded by
(k/2) cost( Opt) if r is a center of Opt (see Theorem 1). There-
fore, to measure the approximation quality of a 2-star, we will
compare its cost to the cost of an optimal 1-star with the same
root and with leaves taken from the same groups spanned by the
2-star.

Formally, let S be a 2-star with a root v e V and let
groups(S) be the set of groups spanned by S. We de-
note by S' an optimal 1-star with the root r connected
to groups(S) (see Fig. 9). We define the norm of S as
norm(S) = cost(S)/cost(S').

In order to specify our low-cost 2-star ApproX2 (r), we need
to select the intermediate nodes and also to determine the set
of groups that should be connected to each intermediate node.
It is, therefore, natural to represent ApproX2 ( r) as a union of
subtrees, each consisting of a single intermediate node that is
connected to the root as well as to certain leaf ports. Such rooted
subtrees will be called partial stars [see Fig. 9(a)].

We select the partial stars for ApproX2 (r) in the following
greedy manner. First, we find a partial star P with the minimum
norm (i.e., the minimum ratio of the cost of P over the cost of
the corresponding 1-star). Next, we remove the groups that it

Group Steiner heuristic for arbitrary weighted graphs
Input: A graph G = (V, E), a family N

of k disjoint groups N 1 , . . ., Nk C V
Output: A low-cost tree Approx spanning

at least one vertex from each group N,
For each node r e V do

Find a low-cost 2-star Approx2 (r) rooted at r
intersecting each group Ni, - 1.k

Output the least-cost 2-star Approx,
i.e. cost(Approx) = mingv cost(Approx2 (r))

cost(v, Nj) cost(P)

cost(r,Nj) - cost(P)'
(1)

It is sufficient to show that if we connect v to the contiguous
sequence of groups N1 , N 2 , . .. , Nj, then the norm of P may

9The proof of the property is as follows: (a/b) < (c/d) if and only if ad <
be which is true if and only ifboth ad + ed < be + ed and ad + ab < be + ab

which holds if and only if (a/b) < (a + c/b + d). We can similarly obtain the
analogous form (a/b) < (c/d) if and only if (a + c)/(b + d) < (c/d).

spans [i.e., groups(P)] from the set of all groups. Finally, we
determine the next partial star with minimum norm, and iterate
until all groups are spanned. Fig. 10 gives a formal definition of
this procedure.

In order to complete the description of our heuristic, we will
next present an efficient procedure that, given a root r and set of
groups M, finds a minimum-norm partial star P(r, M) rooted
at r and spanning some of the groups in M. This procedure is
formally described in Fig. 12. Note that in this procedure we use
cost(u, Nj) to denote the cost of the shortest edge between a
and any node in group Ni. Fig. 11 illustrates our main heuristic
from Fig. 8.

For the remainder of this section, we analyze our heuristic,
which is formally described in Figs. 8, 10, and 12. Lemma
3 establishes the correctness of the Minimum-Norm Partial
Star Algorithm (Fig. 12), proving that it actually finds the
minimum-norm partial star. Lemma 4 yields a performance
ratio for the Rooted Steiner 2-star Heuristic (see Fig. 10).
Together with Theorem 1, this will imply our main result,
namely Theorem 2.

Lemma 3: Given a family M C N of groups, the Min-
imum-Norm Partial Star Algorithm (Fig. 12) outputs a min-
imum-norm partial star.

Proof: Let v be the intermediate node of the min-
imum-norm partial star P with root r. The Minimum-Norm
Partial Star Algorithm (Fig. 12) sorts the family of groups
ME {Nl,..., NjA} such that for any ifrom IM

cost(v, N;) cost(v, N;+i)

cost(r, N1) - cost(r, NJ+l)

We exploit the ratio property9 which states that a/b < c/d
if and only if a/b < (a + c)/(b + d) < c/d for any posi-
tive a, b, c, d. Let Nj be the last group (in the sorted family of
groups) which is connected to v in P. Since P is optimal, dis-
connecting v from Nj can only increase the norm of P. Let P'
denote the optimal 1-star corresponding to P. Then

n p) cost(P) < cost(P) -cost(vNj)

cost (P') - cost (P') -cost (r, Nj)

cost(v, Nj) -cost(P)

cost(r, Nj) -cost(P')

By the ratio property, this implies

cost(P)+(cost(vNj) -cost(P)) cost(P) -cost(vNj)

cost(P')+(cost(r,Nj)-cost(P') cost(P')-cost(r,Nj)

cost(v, Nj) < cost(P) -cost(vN j)

cost(r, Nj) cost(P')-cost(r, Nj)

and, therefore
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Fig. 10. The greedy heuristic for a given fixed root. At each iteration of the loop, we add the minimum -norm partial 2-star to the solution, and remove its groups
from future consideration. The algorithm terminates when no groups remain to be spanned. At this point, all groups are in the solution, which is the output of this
heuristic.

(a) (D 4 r

(e)

(c)

Fig. 11. Given an instance of the group Steiner problem, for each possible root r our heuristic: (a) finds the optimal 1 -star, (b) finds the minimum-norm partial
star (shaded region), (c) stores this star in the solution and removes its groups from future consideration, (d) finds the next minimum-norm partial star (shaded
region), (e) repeat step (c) for the new partial star, and finally (f) finds the last minimum-norm partial star and outputs the union of all stored partial stars.

Fig. 12. Our algorithm for finding a minimum-norm partial star. For each
candidate v for the intermediate node, we sort groups Ni according to the
potential improvement of inserting v between the root r and each group. Then,
we add consecutive groups from the list while the addition decreases the norm
of the partial star.

only decrease. Let v and a group Ni with i < j, be nonadjacent
in P. Then we have

cost(v, Ni) < cost(v, Nj) < cost(P)

cost(r,Ni) - cost(r,Nj) - cost(P')

The ratio property together with inequality (1) yields

cost(P) + cost(v, Ni) < cost(P)

cost(P') + cost(r, Ni) - cost(P')

Thus, connecting v to Ni cannot increase the norm of P. H
Lemma 3 allows us to substitute the Minimum-Norm Par-

tial Star Algorithm of Fig. 12 into the Rooted Steiner 2-star
Heuristic of Fig. 10. With the algorithm completely described,
we are now ready to prove bounds on its performance.

Rooted Steiner 2-star Heuristic
Input: A graph G = (V, E), a family N of k disjoint groups

N1,..., Nk C V and a root r E V
Output: A low-cost 2-star ApproX2 (r) with the root r

intersecting each group N,
Approx22(r) <- {r}
N' - N /* We begin with all groups remaining */
While N' # 0 do

Find a partial star P = P(r, N') with the minimum norm (see Figure 12)
N' <- N' - groups(P)
App'roX2 (r) 4- ApproX2 (r) U P

Output Approxs,(r)

Minimum-Norm Partial Star Algorithm
Input: A graph G = TV, E), a family M of k disjoint groups

Nl,...,NkC andarootreV
Output: The minimum-norm partial star P(r, M) with the

root r and leaves from some groups of M
For each v E V do

Sort M = {N,, ...,Nk} such that cost vN, <cost N i)

Find j E {1.k} that minimizes
cost(r,,)+E' cost(v,N,)

norm(v) = -t' E' cost(r,N,)
M(v) +- N1,...,Nj}

Find v with the minimum norm(v)
Output the partial star P(r, M) with the intermediate node v

adjacent to the root r and groups M(v)
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Lemma 4: Let Optd(,7), d = 1, 2, be an optimal Steiner
d-star rooted at r. The cost of the output of the Rooted Steiner
2-star Heuristic (Fig. 10) is at most

Cost(APProX2(r7)) <_ In cost(°ptl(r7)) + 2)

ost(Opt2 (r)).

Proof: To prove the lemma, we must compare the optimal
2-star rooted at r to the approximate solution produced by our
heuristic. Since the root r is fixed, we will omit it from the
notation in the proof. The optimal 2-star Opt2 can be parti-
tioned into partial stars denoted R 1 , ... , R,. The approximate
Steiner 2-star ApproX2 is a union of t minimum-norm par-
tial stars PI, P2 ,.. Pt selected by the Rooted Steiner 2-star
Heuristic.

Our algorithm works by greedily choosing partial stars, re-
moving the groups spanned by the newly chosen partial star, and
iterating until no groups remain. At each iteration, the algorithm
chooses a minimum-norm partial star Pi with the greatest im-
provement over the corresponding optimal one-star (hereafter,
denoted Pi'). Let Ci denote the cost of the optimal Steiner 1-star
at the ith iteration of the loop when groups groups(Pi) U ... U
groups (Pi) have been removed. Recall that groups (Pi) denotes
the set of groups that are spanned by the partial star Pi. In the
first iteration, we have Co = cost(Opt1 ). Inductively, we ob-
tain

Substituting relationship (3) into relationship (2) gives us

Ci < Ci 1 (I cost (Pit))
cost(oPt2)) J

Unraveling the inequalities above, we obtain

n (

Cn < Co II I

i=l

cost(Pi)
cost( OPt2 ) J

CoT n r logarI CoSt(pi) we 1ge
n Li1 cost(OPt2) J

Taking the natural logarithm of both sides, we get

Coin >on- i[I ( cost(0Pt2))]

cost(Pi))

cost Opt2)) -

Using the fact that In(1 + x) < x and thus In(1 -x) <
conclude

n

E cost(Pi)
1 Co > i=_

G,- COStOOPt2)

C, = Q-1 -cost(Pi), i = 1,..., t.

We may consider the partial stars of the optimal Steiner 2-s
R1, . . ., R,, to be sorted by nondecreasing order of their nor
Applying the ratio property, we obtain

SZ cost(Rj)

norm(Ri) < •

S cost(Rj )
*=1

cost(OPt2 )

Co

Therefore, by our greedy choice of Pi, we have

cost (Pi)) cost( OPt2 )

cost(Pi) norm(Pi) C oorm(Ri) •

After the removal of groups(Pi) the cost of the Steiner 1-star
rooted at r reduces to C = Co -cost (P,), and we find the op-
timal Steiner 2-star Opt' over the remaining groups. We com-
pare P2 with R' to get

cost(P2 ) cost( Opt2)

cost(P) =norm(P2 ) < norm(R') <

< cost(Opt2 )
- C,

Applying this observation inductively, we get

cost(Pi) < cost(Opt2 )

cost(Fi') - CQ-1

cost(Pi) >_ cost(Opt)

i= 1,...,t

(2) Since Ct = 0, there exists an n such that C. > cost( Opt2 ) >
Cn+l (see Fig. 13). Note that cost(Pn+i) < Cn. Therefore,

;tar, inequality (3) yields
Ms.

cost(Pn+i) < Cost(Pn+l) <

cost(OPt 2 ) Cn
(5)

The performance ratio of the Rooted Steiner 2-star Heuristic can
be bounded as follows:

t

E cost(Pi)
cost(ApproX2 ) i=

cost(OPt2 ) cost(Opt2 )
n

< iKl

cost (Pi) + cost (P.+i) + Cn+i

cost( Opt 2 )
n

E cost(Pi)
< i= +cost(Pn+i) + Cn+1

cost(Opt2 ) cost(Opt2 ) cost(Opt2 )

Finally, because of inequalities (4) and (5) and because
cost(Opt2 ) > C,+, (see Fig. 13), we get

cost(ApproX2 ) < in Co + I + I
cost(Opt2 ) Cn

< l cost(Opt1) 2
cost(Opt2 )

Lt
(3) Together with Theorem 1, Lemma 4 implies our main result.

-x, we

(4)
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cost(Opt1 (r)) = Co

cost(OPtd(v)). Vd

C 2  Cn I C t 1 I C I=
--- I---

Cl

- cost (Pi) + cost (P2 )-A K cost K(P) cost(Pti )A

Fig. 13. The rooted Steiner 2-star heuristic (Fig. 10) iteratively modifies the problem instance by repeatedly removing groups associated with minimum-norm
partial stars Pi . The cost of the optimal 1 -star Co originally exceeds (or is equal to) the cost of the optimal 2-star cost( Opt2 ), but finally becomes equal to zero
at step t. Therefore, there exists an n between one and t such that cost(Opt, ) drops to strictly less than cost(Opt2) between steps n and n + 1.

Theorem 2: The group Steiner heuristic (Figs. 8, 10, and
12) solves the group Steiner minimal tree problem with perfor-
mance ratio 2 * (2 + ln(k/2)) * V, where k is the number of
groups.

Proof: Our overall group Steiner heuristic (Fig. 8) runs the
rooted Steiner 2-Star heuristic (Fig. 10) for all possible roots r e
V. If the root is a center r, of the optimal group Steiner tree Opt,
then from Theorem 1, we know that cost(Opt1 (r,)) < (k/2)

cost(Opt) < (k/2) * cost(Opt2 (rc)), where k is the number
of groups. Therefore, Lemma 4 implies that the cost of the tree
produced by our main algorithm is at most 2 + ln(k/2) times
the cost of the optimal Steiner 2-star. Finally, using Theorem 1,
we obtain a group Steiner tree that costs no more than 2- (2 +
ln(k/2)) * / times the optimum. E

IV. RUNTIME AND PRACTICAL OPTIMIZATIONS

In this section, we first estimate the runtime of our heuristic,
and then we propose several ways to improve its runtime and
performance in practice. Let n denote the total number of ports
in all of the groups, i.e. n uf'1  Nil. Let a denote the
time complexity of computing all-pairs shortest paths in the
graph G = (V, E). As part of our preprocessing, we shall
also compute in time O(n -VI) all vertex-to-group distances
(i.e., distances between each vertex and the closest port in each
group). The time complexity of the Minimum-Norm Partial Star
Heuristic (Fig. 12) is O(IV- k log k). Therefore, the Rooted
2-star Heuristic (Fig. 10) has runtime °(lVI I k 2 

* log k), where
k is the number of groups. Thus, we obtain the following result:

Theorem 3: The total runtime of the group Steiner heuristic
(Fig. 8) is O(cx + IVl2 -V logk), where k is the number
of groups, and a is the time complexity of computing all-pairs
shortest paths.

The performance ratios derived in previous sections pertain
to worst-case analysis. However, in practice we are also inter-
ested in the average-case behavior of our heuristics, in terms of
both the solution quality and the runtime. One such practical
improvement entails omitting the removal of the set of groups
spanned by the minimum-norm 2-star (see the inner loop of the
algorithm in Fig. 10). Instead, every time we accept an intenne-
diate node, we update the best possible current star by calcu-
lating the distance to a particular group, not from the root, but
rather from the closest already-accepted intermediate node. We
then use this distance to sort the groups in the minimum-partial
star algorithm (Fig. 12).

Another practical enhancement entails computing a group
minimum spanning tree instead of a group Steiner minimal tree,
that is, a minimum spanning tree for a set of nodes containing
exactly one port from each group. It can be shown that the op-
timal group minimum spanning tree is at most twice as long as

the optimal group Steiner minimal tree. Thus, in approximating
the group Steiner minimal tree by a group minimum spanning
tree, we lose only a factor of two, which does not asymptotically
increase the overall bound of 2 * (2 + ln(k/2)) * V, yet yields
substantial savings in runtime.

We may further modify our algorithm with a post-processing
step which finds the minimum spanning (or approximate
Steiner) tree for the set of intermediate nodes and ports chosen
by the group Steiner heuristic (Fig. 8). We may also make local
(one at a time) node substitutions in groups to re-arrange the
tree topology and reduce the overall cost.

Although provably good heuristics are frequently out-
performed by local optimization methods, the output of the
former can serve as a good starting point for local-improve-
ment post-processing schemes. For example, it was shown
that Christofides' heuristic (i.e., the best-known heuristic for
traveling salesperson in graphs) also provides excellent initial
traveling salesperson tours for further local rearrangements
[17], [20].

V. INSTANCES WITH DEGENERATE GROUPS

We now show how to more effectively handle instances of
the group Steiner problem with some degenerate groups, i.e.
groups of size one. We will see that treating degenerate groups
differently will yield improvements in solution quality as well
as in runtime.

The degenerate groups by themselves induce an instance of
the classic Steiner problem, and such an instance can be approx-
imated efficiently by known methods (with a constant perfor-
mance ratio). Thus, to solve the SMT problem for degenerate
groups, we may choose a provably good heuristic from among
the numerous existing ones [4], [7], [12], [13], [16], [21]. For
example, in time O(QV13 ) we may find a Steiner tree which is

at most 11/6 times longer than the optimal [22]. The remaining
issue now is how to combine the Steiner minimal tree over the
degenerate groups with a tree spanning the other, nondegenerate
groups.

More formally, let N = M1 U M2 be a partition of all
the groups in N into those containing one terminal (M1 ), and
those containing at least two terminals (M 2 ). We define the
combined group Steiner heuristic as follows. First, we find the
usual Steiner tree Approx 1 for the terminals M1 using the algo-
rithm from [22]. Next, using our group Steiner heuristic (Fig. 8),
we find the group Steiner tree ApproX2 for the family of groups
that includes M 2 and a single arbitrary group from All,. Finally,
we output a minimum spanning tree over the union Approx 1 U

ApproX2 (see Fig. 14).
If the number of degenerate groups is large, then the com-

bined group Steiner heuristic will enjoy considerable runtime

0
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Eig. 14. We span the set of degenerate groups (MI) with an approximate
Steiner tree (on the right). Then we span all nondegenerate groups (M2 ),
together with an arbitrary degenerate group, with a group Steiner tree.

savings as compared to the group Steiner heuristic (Fig. 8).
Moreover, the following theorem shows that this heuristic also
enjoys an improved performance bound.

Theorem 4: The combined group Steiner heuristic solves the
group Steiner problem with a performance ratio of at most:

I6I + 2 *5(2 + I )n *

where M 2 is the set of groups of size at least two, and k'=
M2 1 +1.

Proof: The optimal Steiner tree for Ml, denoted by Opt1 ,
cannot cost more than the optimal group Steiner tree (denoted
by Opt), i.e.

cost(Approx1 ) < 6 cost(Opt1 ) < K cost(Opt)

Moreover, if we remove from N all but one of the degenerate
groups, then the cost of the optimal group Steiner tree over the
remaining groups can not be more than Opt.

cost (ApproX2 ) < 2 *(2 + il 2)

<2- (2+1n.k 2)

* 1k-7 27 cost(OPt2 )

* I'7 - cost(Opt)

Therefore, the cost of the combined tree (i.e., the union of the
two trees constructed above) is at most:

cost(Approx1 U ApproX2 )

< 1 ± +2(2±+1n t) k' cost(Opt)

VI. BOUNDED-RADIUs GROUP STEINER TREES

The objective of delay-minimization can induce wiring ge-
ometries that are substantially different from those dictated by
an optimal-area objective, particularly in deep submicrometer
regimes. This has motivated a number of bounded-radius'0

routing constructions [1], [2], [5], [13], [14]. Our basic
group Steiner tree approach can be easily extended to a
bounded-radius construction, thereby yielding routing trees
with source-to-sink pathlengths bounded by a user-specified
parameter.

'°The radius of a graph is defined as the maximum pathlength of any shortest
source-sink path. Note that 2-stars implicitly have a radius bound of 2 * OP T,
although an MST post-processing step does not preserve this bound.

Eig. 15. The RW heuristic for the group Steiner problem [19].

For example, we can utilize the tree produced by our main
algorithm (Fig. 8) as the starting point in the bounded-ra-
dius/bounded-cost construction of [5]. For an arbitrary instance
of the group Steiner problem (with k groups), this hybrid
approach yields a routing tree with radius (1 + e). OPTradius

and total cost (1 + (2/c)) -2- (2 + ln(k/2)) - OPTCOS, for
any user-specified parameter c > 0.

VII. EXPERIMENTAL RESULTS

We have implemented our heuristic for the group Steiner
problem using the Java programming language. Our implemen-
tation can be executed on the Web at:

http://www.cs.virginia.edu/robins/groupSteiner
We compared our heuristics with the heuristic proposed by

Reich and Widmayer [19], henceforth, referred to as "RW."
Their heuristic begins by first finding the minimum spanning
tree T for the entire set of nodes of all the groups. If a leaf node
is not the last member of its group in the tree T, then it may be
removed. The heuristic then repeatedly deletes such a leaf node
which is incident to the longest edge among all such nodes (see
Fig. 15 for a formal description of this algorithm).

Table I compares two versions of our heuristic (Fig. 8) to
the RW algorithm [19] (Fig. 15). We created each group by
first defining a randomly placed square area of predetermined
size, and then uniformly and independently distributing nodes
inside this square-shaped area. We varied the predetermined
group areas among 10%, 50%, and 100% of the overall square
routing region. All table numbers represent the average relative
improvement over 100 trials, given as a percent improvement
over the tree cost of the RW algorithm [19] (negative numbers
represent disimprovements).

In the context of VLSI layout, we are primarily concerned
with the rectilinear (or Manhattan) plane, where the cost of
routing between two nodes (a,, a.) and (be, by) is defined to
be Ia,- b, + lay- b . While our implementation uses the
rectilinear metric to determine the distances between ports, our
algorithms are general and apply to arbitrary weighted graphs,
including the rectilinear case.

The first version of the group Steiner heuristic (Fig. 8) that
we implemented has the following three modifications.

1) Intermediate nodes are selected strictly from among
the ports (i.e., all of the constructions benchmarked are
spanning trees-they do not use Steiner nodes other than
ports).

2) The root of the 2-star is selected from a single randomly
chosen group.

The RW heuristic for the group Steiner problem [19J
Input: A graph G = (V, E), k disjoint groups Nl,.. .,Nk C V
Output: A low-cost tree T spanning > 1 nodes from each Nj
M e u-LN,
Find minimum spanning tree T over M, i.e. T v- MST(M)
Rep eat forever

For each leaf 1 node of T do
Find the group N(Q) = Ni containing 1
If N() n T = I, then mark I

If all leaves of T are marked, then exit repeat
Find an unmarked leaf 1 incident to the longest edge
Remove I from T, i.e. T v- T - 1

Output the tree T
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TABLE I
EXPERIMENTAL RESULTS: ALL NUMBERS REPRESENT THE AVERAGE
PERCENT IMPROVEMENT OVER 100 TRIALS, WITH RESPECT TO THE

COST OF THE OUTPUT TREE OF THE RW ALGORlTHM [19] (NEGATIVE
NUMBERS REPRESENT DISIMPROVEMENTS)

Area of each group is 10% of total routing region
number group ize = 3 group size = 5 group ize

of 2-star 2-star 2-star -sar 2-star -sar
groups +MST +MST +MST

5 -6.2 4.6 -2.0 5.6 -1.2 8.5
10 -23.0 6.5 -14.6 10.1 -10.5 11.0
20 -40.0 8.0 -32.2 12.3 -26.0 16.1
30 -52.2 9.8 -34.8 10.9 -36.1 18.5

Average -123

Area of each group is 50% of total routing region
number group size = 3 rou size = 5 group size = 8

of 2-star -2star 2-star .- star 2-star -star
grops +MST l +MST +MST

5 4.5 10.4 1 16.4 21.2 23.6 27.6
10 -3.4 15.2 9.0 23.0 20.3 32.4
20 -21.9 14.5 -7.2 23.1 11.2 34.3
30 -28.8 16.7 -8.5 19.8 3.0 30.9

Average - 13.4 | 5.0-20.5 166 0.

Ar.ea of each group is 100% of total routing region
number group size = group size = group size =

of 2-star 2-star 2-star -star l2-star 2-star
g Ps+MST N- . +MTl +MSTsi -13.9 13.9 28.0 3 80.;1.4 31.4

5 11.8 17.7 25.9 30.2 28.5 31.3
10 -1.9 14.1 16.8 29.6 26.8 36.2
20 -13.9 18.0 6.6 31.4 15.4 37.2
30 -22.2 28.8 -1.6 22.2 12.0 35.2

Average . 8.5 28.3

3) After accepting an intermediate node in the inner loop of
Fig. 12, the node is removed from further consideration
in subsequent iterations.

The second version that we implemented is a hybrid ap-
proach, which is our main algorithm discussed above, except
the solutions are then post-processed with a minimum spanning
tree algorithm (i.e., we output the minimum spanning tree
over the nodes selected by the modified heuristic described
above). The table column labeled "2-star" shows the average
percent improvements of our modified heuristic over the RW
algorithm, while data for the hybrid approach is given in the
column labeled "2-star + MST." As can be seen from the
table, the hybrid approach significantly outperforms the RW
algorithm as the group sizes and the group areas increase.

VIII. CONCLUSION

We have addressed the problem of minimum-cost routing
of multiport terminals, a direct generalization of the Steiner
problem. Our main result is the first known heuristic with a sub-
linear performance bound. In particular, for a net with k mul-
tiport terminals, our construction has a performance bound of
2- (2 + ln(k/2)) . v/7k. OPT. Our implementation and bench-
mark results indicate that our approach is effective in practice.
Future work includes further reducing the bounds, and also im-
proving the time complexity of the algorithms.

APPENDIX

GROUP STEINER TREE APPROXIMATION COMPLEXITY

It is known that the group Steiner tree problem is not easier
to approximate than the set cover problem [11]. Combining this
result with the recent result of Feige [6], we obtain the following.

Theorem 5: Unless NP C DTIME[nloglog n], the group
Steiner tree cannot be approximated to a factor of better than
(1 -o(l)) in k, where k is the number of groups.

Now we will show that even approximating depth-2 group
Steiner tree with the given root r7 is not easier than approxi-
mating the set cover problem. On the other hand, in Section III
we described a Steiner 2-star heuristic (Fig. 10) for finding
a depth-2 group Steiner tree with the approximation ratio
2 + ln(k/2). We, therefore, conclude that set cover and finding
depth-2 group Steiner tree have the same approximation
complexity.

Theorem 6: Unless NP C DTIME[nloglog n], a depth-2
group Steiner tree with the given root r cannot be approximated
to a factor of better than (1 -o(l)) in k where k is the number
of groups.

Proof: An instance I of the set cover problem consists of
a finite set X = {x 1 ,. .. , X and a family of subsets of X

namely P = {pi, , pnl } C 2X. The set cover problem seeks
a minimum-size subfamily M C P that covers X, i.e. such that
X C U {pilpi e M}. In order to prove the theorem, we will give
polynomial-time L-reduction from the set cover problem to the
group Steiner problem. Formally, we will construct an instance
I' of the group Steiner problem (i.e. a graph G with a node r
and groups of terminals Ni, i = 1, ... , k), such that

1) any subfamily M C P that covers X will correspond
to a Steiner 2-star M' rooted at r for I' such that
cost(I') = IMI;

2) any Steiner 2-star M' rooted at r7 for I' will corre-
spond to a subfamily M C P that covers X such that
cost(M') = IMI; and

3) given I, the corresponding I' can be found in polyno-
mial time and the correspondence M <-~ M' is also
polynomial.

First, we construct a graph G for the instance I'. The node set
of G consists of the pairs (i, j) such that xi e pj and an auxiliary
pair r = (0, 0). The cost of an edge between (i, j) and (i', j')
equals zero if j = j' and one otherwise. Given i = 1, . .. , k the
group of terminals Ni consists of all pairs (i, j). Now we are
ready to prove (1)-(3).

(1) Given M C P, in each pj e M we fix one el-
ement xi e pj. In the 2-star M', we connect each
such node (i, j) with the root r = (0, 0) and all nodes
that are within distance zero from (i, j). Clearly, if M
covers the entire set X, then the 2-star M' intersects
all groups. Moreover, M' contains exactly IMI edges
of cost one (they are incident to the root r).

(2) Given a Steiner 2-star M', we build a subfamily M
from the sets pj's for which there are intermediate
nodes (i, j) in the 2-star M'. Clearly if M' intersects
all groups, then M covers the entire set X, and the
number of sets in M is equal to the number of inter-
mediate nodes of M' which is the cost of M'.

(3) Clearly, all reductions above can be done in polynomial
time. H
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