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Abstract 

Detecting spatial regularity in images arises in computer vision, scene analysis, military applications, and other areas. In this 
paper we present an 0(n5’*) algorithm that reports all maximal equally-spaced collinear subsets. The algorithm is robust in that 
it can tolerate noise or imprecision that may he inherent in the measuring process, where the error threshold is a user-specified 
parameter. Our method also generalizes to higher dimensions. 0 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Spatial regularity detection is an important prob- 
lem in a number of domains such as computer vi- 

sion, scene analysis, and landmine detection from in- 

frared terrain images [5]. This paper addresses the 

problem of recognizing equally-spaced collinear sub- 
sets of a given pointset, where there may be impre- 
cision in the input data. Kahng and Robins [5] gave 
an optimal O(n*)-time algorithm for the exact ver- 
sion of this problem (i.e., where no noise is allowed in 
the input data); their algorithm was later parallelized 
in [2]. However, inaccuracies inherent in the imaging 
technology may corrupt the data and eliminate exact 
collinearity and equally-spaced relationships. Thus, 
methods which do not compensate for these phenom- 
ena (e.g., those of [2] and [5]) are inadequate in prac- 
tice. 

* Corresponding author. Email: robins@cs.virginia.edu, http: 

//www.cs.virginia.edUrobins/. Professor Gabriel Robins is sup- 

ported by a Packard Foundation Fellowship and NSF Young Inves- 

tigator Award MIP-9457412. 

To address this issue, we develop a robust algorithm 
for spatial regularity detection that can tolerate inac- 
curacies in the data relative to a user-specified error 
threshold. For an input pointset, our algorithm will re- 
port all equally-spaced collinear subsets, where points 
are allowed to drift from their ideal locations by up 
to a given amount. Our algorithm runs within O(n5/*) 
time in the worst case, and we prove a lower bound of 
Q (n* log n) on the time complexity for this problem. 

2. Problem formulation 

Given a finite set of distinct points P c E*, a subset 

p C P is collinear if IpI 3 2 and all points of p 
lie on the same line. A collinear subset p C P is 

equally-spaced if 171 3 3 and the points of? are 
equally-spaced along their containing line. ’ We use 
the term reguZar to refer to a sequence that is both 
collinear and equally-spaced. A sequence of points is 

’ That is, a sequence p = (pt.752, . , p,,) is equally-spaced if 

p,-Fi_,=p;+l -pifor2<i<n-1. 

0020-0190/99/$ - see front matter 0 1999 Elsevier Science B.V. All rights reserved. 

PII: s0020-0190(99~00013-7 



190 G. Robins et al. /Information Processing Letters 69 (1999) 189-195 

Fig. 1. An s-regular sequence (solid dots), whose points are within F of the corresponding (ideal) points of a regular sequence (hollow dots). 

s-regular if each of its points can be displaced by at 
most E along each axis to yield a regular sequence 
(Fig. 1); i.e., given a fixed E > 0, a sequence of points 

P=(p1,p2,..., pn) c E2 is s-regular if there exists 
a regular sequence P = (p,, p2, . . . , P,) such that 
/xi - Yi 1 < E, Iyi - yi 1 6 E for all 1 < i < n, where 
pi = (xi, yi) and pi = (X;, yi). We refer to points in 
p as the ideal points, and to points in P as the actual 

points. Note that a regular sequence is simply an E- 
regular sequence with E = 0. Finally, a maximal F- 

regular sequence is one that is not properly contained 
as a contiguous subsequence in any other &-regular 
sequence. 2 

Our problem can now be formulated as follows. 

Maximal e-regular Sequences Problem. Given E > 
0 and a finite pointset P c E2, find all maximal s- 
regular sequences contained in P . 

Unfortunately, this formulation is intractable since it 
allows an exponentially large output size. We therefore 
propose a modification in order to make possible an 
efficient algorithm: 

Stipulation. Each interpoint distance in the input data 

must be greater than 8~. 

As we will see, this stipulation precludes cases with 
exponentially-sized output. If the input does not sat- 
isfy this condition,’ a slight variation on our pro- 

? Thus, according to this definition, if (a, b, c,d. e) is an E- 

regular sequence, then so is (a, c, e). Since detecting all maximal 
s-regular sequences does not require asymptotically more time 

than detecting only those not properly contained in other s-regular 

sequences, this definition suffices and also results in a streamlined 

exposition and analysis (note that any “redundant” subsequences 

may later be removed in a post-processing step). This approach 

is also consistent with the application area of landmine detection, 

where false positives are preferable to false negatives. 

’ This assumption is not unrealistic for applications such as 
landmine detection, since the sizes of mines and their potential drift 

are considerably smaller than typical inter-mine separation. 

posed algorithm will still produce a correct solution 
(although a polynomial runtime is no longer guaran- 
teed). Existing methods for detecting collinearity, such 
as ones based on Hough transforms [1,3,7], are not 
sensitive to equally-spaced constraints and are thus not 
applicable to our problem. Some algorithms for deal- 
ing with imprecision in computational geometry were 
introduced in [4], but they do not address our problem 
either. This work builds upon the approach introduced 
in Robins and Robinson [8]. 

3. Tools and techniques 

Our overall strategy is based on starting with a 
pair of points and repeatedly extending it into an E- 
regular sequence, until it is no longer possible to do so. 
Each extension involves finding a new point to convert 
the last pair of the current s-regular sequence into 
an s-regular triple, and then verifying if the current 
sequence with the new point added is still s-regular. 
The rest of this section develops techniques that will 
perform these operations efficiently. 

3.1. Finding e-regular triples 

Given a pair of points (~1, p2), a naive algorithm to 
extend it into an c-regular triple would be to consider 
each of the remaining n - 2 points in turn and check if 
any of them formed an s-regular triple with the given 
pair. Each check would take constant time, resulting 
in a linear-time algorithm. We now develop a more 
efficient way of finding all possible triples, using the 
following observation. 

Lemma 1. Given the first two points of an E-regular 

triple, (x1, ~1) and (x2, y2), the thirdpoint (x3, y3) of 
the triple must lie in the range ((2x2 -xi) &4~, (2~2 - 

Yl) f 4e). 
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Fig. 2. The dashed square on the right is the region in which p3 must lie if the actual points (pt , ~2, ~3) are an E-regular sequence. The large 

solid square on the right denotes the region in which the ideal point corresponding to p3 must lie. 

Proof. Given the first two points of the triple, p] = 

(XI, y]) and p2 = (x2, y2), let the corresponding ideal 

points be (X] (7,) and (X2, ST?) (Fig. 2). Then we have: 

X] -& 6x1 6 X] +c, X2 - E < 72 < X2 + E, 

YI-E<Y,<J’i+E, Y2-&<72<Y2+&. 

Since the ideal points are equally-spaced and collinear, 

we have, X3 - X2 = Y_z - X] and 7s - y2 = y2 - y] . 

The third ideal point is given by (X3,73) = (2X2 - 

X], 2y2 - 7,). Substituting for X], Xz,y] and u2, we 

obtain: 

(2x2 - X]) - 3e < xj < (2x2 -x1) + 3&, 

(2Y2 - YI) - 3E < 73 6 (2Y2 - YI) + 3c. 

The third actual point, (x3, y3) can be displaced from 

the third ideal point by as much as E in any direction. 

Thatis,x3-&~xs6x3+Eandy3-E~y~6js:,+&. 

Hence, we have: 

(2x2-X])-4&<X3<(2X2-x])+4&, 

(2y2 - )‘I) - 4F < y3 < (2)‘~ - y]) + 46. 0 

Our 8~ stipulation ensures that for every pair, the 

range that needs to be searched contains at most a 
single point, which can be found out in O(logn) time 

using range searching techniques. 

3.2. Linear programming 

Given an c-regular sequence (~1, ~2, . . . , pt) and 

an e-regular triple containing the last pair, (p,_ 1, pI, 

pt+l),thesequence(p1,p2,...,pt,pt+~)isnotnec- 
essarily s-regular, since additional constraints need to 

be satisfied. Fortunately, these constraints can be ex- 

pressed as a low-dimensional linear program (LP). 

For simplicity, let us first look at the one-dimension- 

al case. If a given sequence P = (~0, PI , . . , pn_ I ) 
is to be c-regular, there must exist a corresponding 

regular sequence of ideal points 

=(P,,~o+d&+2d ,..., 7&J+(n-l)d), 

where d is the distance between successive points in 

p. Since pi - E 6 pi 6 pi + 8, we obtain: 

Po+id-E<pi, Po+id+E>pi. 

Thus to check for E-regularity of a sequence P = 
(PO, ~1, ~2, . . , pn_ ] ), we create an LP consisting of 
the inequalities above for all 0 < i < n - 1, and solve 

it to determine if feasible values for PO and d exist. If 
so, the sequence is E-regular. 

Moving into two-dimensions, we observe that a 
sequence is regular iff its orthogonal projections onto 
the x and y axes are also regular. Recall that in an 
c-regular sequence, the projection of an actual point 
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pi onto any axis must be within distance E of the 
projection of the corresponding ideal point pi. We thus 
formulate the following constraints in our LP, where 
d, , dy , PO, and PO,, are variables: 

Since the constraints along one axis are completely 
independent of the constraints along the other axis, 
this system of constraints can be expressed as a pair 
of two-dimensional linear programs. Linear program- 
ming in fixed dimension (i.e., the number of variables) 
can be accomplished in time linear in the number of 
constraints [6]. Since the dimension of each of our LPs 
is fixed at two, the time required for verification of E- 
regularity is proportional to the length of the sequence 
examined. 

4. An efficient algorithm 

Our algorithm repeatedly extends point pairs into 
maximal s-regular sequences by adding points which 
form an s-regular triple with the last pair of the cur- 
rent sequence, and then verifies the s-regularity of the 
complete sequence. We utilize Lemma 1 in conjunc- 
tion with geometric range searching to find new points 
to be added, and we rely on linear programming to 
verify the .s-regularity of the sequence. 

4.1. Preprocessing 

The preprocessing phase involves verifying that the 
8s stipulation holds (which can easily be done in 
0(n2) time), and then suitably organizing the data. 
In order to apply Lemma 1, we need to be able to 
query efficiently for the existence of a point in the 
required 8s region. To accomplish this, we conceptu- 
ally partition the plane into a grid of granularity 8s. 
For each point we compute the coordinates of the grid 
cell which it occupies. 4 These coordinates are stored 
along with the points and used to index the points in 
subsequent searching. Finally, we sort all the points by 
their cell coordinates, which enables logarithmic-time 

4 If E = 0, the cell coordinates are equal to the coordinates of the 
points themselves and no grid is constructed. 

binary search queries. The preprocessing cost is dom- 
inated by the 0(n2) verification step. 

4.2. Finding all maximal e-regular sequences 

Our approach is to extend a pair of points into a 
maximal E-regular sequence. At each step of the al- 
gorithm we seek a single additional point which may 
be included into the current sequence while preserv- 
ing the E-regularity of the sequence. We refer to this 
process as extending the sequence, since it finds a 
point which would form an c-regular triple with the 
last pair of the current sequence. The preprocess- 
ing ensures that this operation can be performed in 
O(logn) time. If such a point exists, verifying the E- 

regularity of the complete sequence entails solving an 
LP which takes time proportional to the length of the 
sequence. A single extension step in the worst case 
thus takes time O(logn + k), where k is the length 
of the current sequence. An extension fails if a suit- 
able point cannot be found, and a maximal E-regular 
sequence is detected when no further extension is pos- 
sible in either direction. 

All maximal sequences could be enumerated by 
starting from each of the (“2) pairs and repeating the 
process above; however, to avoid redundant compu- 
tations, we exploit two observations. First, we note 
that any contiguous subsequence of an c-regular se- 
quence is itself E-regular; thus, we do not need to 
reconstruct any subsequence which is a contiguous 
portion of a previously-found maximal s-regular se- 
quence. Specifically, after extending a so-called seed 
pair into an initial maximal sequence, we remove the 
leftmost 5 point of the sequence, leaving an E-regular 
subsequence which we then extend to the right. 

Each time a maximal sequence is found, we remove 
the leftmost point and extend to the right as much as 
possible. When it is no longer possible to continue 
in this manner (i.e., when the remaining subsequence 
contains only a single point), we repeat this entire 
process starting with the current initial sequence, ex- 
cept that this time we remove the rightmost point and 

5 One end of the sequence is chosen arbitrarily to be lefhnost, with 

the the other end being rightmost. Thus, the terms “left” and ‘right” 

are not related to X or Y coordinates, but rather are used to refer to 

the two opposite directions along a sequence, and as such the terms 
“left” and “right” are symmetric and interchangeable. 
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Maximal E-regular Sequences Algorithm 

Input: A pointset P c E2 
Output: LIST of all maximal E-regular sequences 

1: LIST=@ 
2: For all unmarked pairs S = (pi, pj ) 
3: Call Procedure Initialize S 
4: Let INIT = S, AVXLIST = (S] 

r” INIT is now the initial sequence */ 
5: Call Procedure March(right) 
6: Let S = INIT 
7: Call Procedure March(left) 
8: Mark all pairs in all elements of AVXLIST 
9: Let LIST = LIST U AVXLIST 

Procedure Initialize S 

l:MarkS 
2: While S can be extended to the left Do 

Extend S to the left 
3: While S can be extended to the right Do 

Extend S to the right 

Procedure March(direction) 
/* (opposite direction) is ‘right’ if (direction) is ‘left’ 

and vice-versa */ 
1: Remove the (opposite direction)-most point from S 
2: While ISI > 1 
3: If S is extendable to the (direction) Then 

/++ Extendable means there exists a point 
such that extended sequence is s-regular and 
has no marked pair */ 

4: Repeat (Extend S to the (direction)) 
Until S cannot be extended to the (direction) 

5: Let AVXLIST = AVXLIST U (S) 

6: Remove the (opposite direction) -most point 
from S 

Fig. 3. An algorithm for enumerating all maximal E-regular se- 

quences. 

extend to the left. We refer to this process of remov- 
ing and extending as marching. Thus, the process of 
marching begins by operating on an initial sequence, 
and repeatedly (1) removing an endpoint of the current 
maximal s-regular sequence, and (2) extending the re- 
sulting sequence in the opposite direction until another 
maximal a-regular sequence is obtained. 

Our second observation is that contiguous pairs in 
an already-found maximal c-regular sequences need 
not be considered as seed pairs in future sequence 
searches. We thus explicitly murk such pairs and 
ignore them from further consideration (all pairs are 

unmarked when the algorithm starts). The complete 
algorithm therefore involves repeated iterations of the 
marching process described above, starting with an 
unmarked pair as the seed each time, until there are 
no unmarked pairs left. A formal description of the 
algorithm is shown in Fig. 3. 

5. Lower bound on output size 

Consider a pointset distributed along an arc in such 
a way that although every contiguous subsequence of 
4r1 points is a-regular, there is no s-regular sequence 

of length greater than irr (Fig. 4). Such a pointset 

has ire E-regular sequences of length in, irr c-regular 

sequences of length $n, irz &-regular sequences each 

of length in, etc. In general, $rr s-regular sequences 

of length in/k are determined by starting from any 

of the first $rr points and selecting every kth point on 
the arc. Thus, the sum of the lengths of the maximal 
c-regular sequences in the example of Fig. 4 is given 
by ;n(;n+ $z+ in+. ..+3) = 0(n210gn), andthe 

output size for this pointset is Q (n2 log n). 

6. Time complexity 

Each extension in the marching process results in 
the insertion of a new point (if the extension succeeds), 
or the removal of a point (if the extension fails). In the 
worst case, each extension requires a search time of 
O(logn), and a verification time of O(k) where k is the 
length of the s-regular sequence under consideration; 
we assign this cost of extension to the point being 
added or deleted. 

Define a p-initiated sequence as an s-regular se- 
quence beginning with point p. Each time a point 
p is encountered and added during the extension 
process, the resulting sequence is a p-initiated se- 
quence. Similarly, when a point p is removed while 
marching, the sequence before deletion is also a p- 

initiated sequence. Moreover, the sequence in ques- 
tion is maximal among all p-initiated sequences. Each 
time the point p incurs a cost, the associated maxi- 
mal p-initiated sequence is unique. The search time 
is bounded by O(log n), while the verification time is 
proportional to the length of the associated p-initiated 
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Fig. 4. In this example, the maximal &-regular sequences are (pi, ~2,. , p7), (~2, p3, , ps), , (pg, ~9,. . , ~14). 

sequence. If the maximum number of maximal p- 
initiated sequences is m, the total cost incurred by all 
searches is bounded by O(m logn), while the time for 
all verifications is bounded by the sum of the lengths 
of all the maximal p-initiated sequences. 

Because of the 8~ stipulation, each of the other n - 1 
points can occur in the second position in at most 
one maximal p-initiated sequence. Thus, the number 
of p-initiated sequences is always less than n. Hence 
m c n, and the total search time for all maximal p- 

initiated sequences is bounded by O(n logn). We now 
prove an upper bound on the cost to verify each new 
point. 

Lemma 2. There exists a total order on the points 

such that all p-initiated sequences are subsequences 

in this order. 

Proof. We order the points by their distance to p, 

with ties broken arbitrarily. Since every p-initiated 
sequence starts with p and every successive point is 
at least as far from p as the previous one, a p-initiated 
sequence is a subsequence of this total order. 6 q 

Each maximal p-initiated sequence can then be 
expressed as a series of numbers (al, a2, . . . , a4), 

where ai is the rank of the i th point of the sequence in 
the total order with respect to p and q is the sequence 
length. Since the sequence is a subsequence of the 
total order, ai < ai+t for all 1 6 i < q, and since the 
sequence is p-initiated, al is always 1. 

We represent a sequence (al, a2, . . . , a4) as a series 
of“hops”(a2-al,a3-az,ad-a3,...,aq-aaq_l). 

Since al is always 1, the points in the sequence can 

6 Note that this lemma does not actually require explicit sorting 

inside the algorithm; rather, we use the implicit ordering established 

by the lemma as an aid in deriving an upper bound on the time 

complexity of the algorithm. 

be regenerated from this sequence of hops. For a 
maximal p-initiated sequences stored as a series of 

hops (bl,bz,..., b,), the length of the sequence is 
r + 1. Since the last point has an rank less than n + 1 in 
the total order, the sum of the hops bl + b2 +. . . + b, < 

n. 

Consider a multiset S containing all the hops of 
all maximal p-initiated sequences. Since there are no 
more than n such sequences and the sum of hops 
in each is less than n, the sum of all the hops in S 
cannot exceed n2. Since the number of hops in each 
sequence is one less than the sequence length, the size 
of S is at most n less than the sum of the lengths of 
all maximal p-initiated sequences. Since a contiguous 
pair can occur in only one of the maximal p-initiated 
sequence, there are no more than n - 1 possible hops 
of size 1 in the total order, no more than n - 2 possible 
hops of size 2, etc. Under these constraints, we seek to 
maximize the size of S, in order to determine an upper 
bound on the sum of lengths of all maximal p-initiated 
sequences. 

LetScontainhihopsofsizei,forl<i<n-1. 
The constraints above can then be expressed as 
(1) hi<n-iforalll<i<n, 

and we seek the maximum possible value of h I+ h2 + 

. . . + h,_l . In the interest of simplicity we relax the 
first constraint to 
(1’) hi <n, for 1 < i <n, 

which is permissible since it can only increase the 
value of the upper bound. 

Lemma 3. There is a solution to the maximization 

problem above having the form hi = n for 0 < i < 1, 

andhi =Oforl <i <n. 

Proof. Consider an optimal solution (hl , h2, . . . , h,) 
not having the above form. If there exist i, j with 
i < j, such that hi c n and hj > 0, then, hi can be 
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incremented by one and hj can be decremented by 
one, while satisfying both the constraints of the prob- 

lem and not decreasing the function to be maximized. 
This can be done repeatedly until there exists t such 

that hi = n for i < t. For n = (h), t = I and hi = 0 
for i > t, there exists a new optimal solution having 

the required form. The second constraint becomes an 
equality and no more increment-decrement operations 

are possible. q 

Without loss of generality, let IZ = (i) for some 1. 

Thus 1= O(A) and 

,I- I l-l I-1 

xh; =xh; =~n=O(n,/i) 
i=l i=I i=I 

Thus, the sum of all maximal p-initiated sequences 
cannot exceed O(nfi). Since the total cost incurred 

by a single point is bounded by O(n log n + nfi) = 
O(n&), the overall cost for all points is bounded 

by 0(n5/‘), which is the time complexity of the 
algorithm. 

Although the above analysis holds for only specific 

values of II = (k), we can always add dummy points 

to the input pointset in order to ensure that n = (‘2) for 
some r; in such a case a maximal sequence is listed in 

the output iff it does not contain any dummy point. 

Since (‘:I) - (;) = r, we never have to add more 
than n dummy points, and the overall time complexity 

remains unchanged. 

Finally, note that even if the input does not satisfy 
the 8s stipulation, a slight variation on our main al- 
gorithm will still produce a correct solution, although 

a polynomial time bound is no longer guaranteed. In 

such a case, a pair of points may participate in more 
than two distinct triples; more than one point may 

therefore be a suitable candidate for extension of an 

c-regular sequence under consideration. All the pos- 

sibilities would then have to be explored, which may 

result in a non-polynomial runtime. However, for typi- 

cal inputs, such pathological behavior is very unlikely. 
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