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1 
PRELIMINARIES 

1.1 PREFACE 

This book discusses problems of "optimal interconnection" and describes effi­
cient algorithms for several basic formulations. Our domain of application is 
the computer-aided design (CAD) of very large-scale integrated (VLSI) circuits, 
wherein interconnection design is now one of the most actively studied areas. 
However, much of what we develop can be applied to other domains ranging 
from urban planning to the design of communication networks. Because most 
formulations that we study are intractable, the term "optimal" in some sense 
is a misnomer: rather, our focus is on the reasoned and principled development 
of good heuristics. 

This book is an outgrowth of the 1992 Ph.D. dissertation of Gabriel Robins 
[203] at the UCLA Computer Science Department. As such, it retains a highly 
personal perspective: it gives a retrospective of our own research, and it is col­
ored by our research interests and our background in discrete algorithms and 
optimization. Our treatment also attempts to convey a sense of history - how 
our field has co-evolved with an emerging "science ofVLSI design". With recent 
years having seen VLSI designs become increasingly performance-dominated, 
and thus interconnect-dominated, VLSI interconnections are ind.eed a rich do­
main for this historical view. In particular, our research on interconnection 
design has spanned the field's rapid transition from purely geometric formula­
tions to more "physically-motivated" formulations. 

Although we do not attempt an encyclopedic treatment, we do describe key 
relevant works, and the discussion is largely self-contained. We envision that 
this book will be useful as a reference for researchers and CAD algorithm de-

1 



2 CHAPTER 1 

velopers, or as reading for a seminar on VLSI CAD, heuristic algorithms, or 
geometric optimization. Our own codes, which are cited throughout the book, 
are freely available to interested parties; see our contact information below. 

1.2 THE DOMAIN OF DISCOURSE: ROUTING IN VLSI 

PHYSICAL DESIGN 

Let us first outline the context for our particular subfield of VLSI CAD, namely, 
the global routing phase of physical design. For more complete reviews of VLSI 
design, and physical design in particular, the reader is referred to [168, 182, 194, 
216]. 

The goal of VLSI CAD is to transform a high-level system description into a 
set of mask geometries for fabrication. This is typically accomplished by the 
following sequence of stages (see Figure 1.1). 

• Design Specification: Starting from a real-world requirement (e.g. "se­
cure communication"), a high-level system description (e.g., the "DES" 
data encryption standard) is developed which includes such parameters as 
architecture, performance, area, power, cost and technology. 

• Functional Design: The design is transformed into a behavioral specifi­
cation which captures the system 1/0 behavior using mathematical equa­
tions, timing diagrams, instruction sets and other devices. 

• Logic Design: The functional design is represented in logical form, typ­
ically via Boolean expressions which may be subsequently optimized to 
reduce the complexity of the system description. 

• Structural Design: The logic design is represented as a circuit using 
components from an available library of modules (e.g., NAND and NOR 
gates, standard cells, or building-block macros); this may also involve tech­
nology mapping steps. 

• Physical Design: The structural design is transformed into the mask 
geometry for fabrication while adhering to underlying design rules for the 
chosen technology. 

The last stage in this process, physical design, contains our area of interest. 
Physical design consists of two major steps. First, the placement step maps 
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functional units (modules) onto portions of a layout region, e.g., the surface of 
a chip. Second, the routing step interconnects specified sets of terminals, i.e., 
the signal nets of the design, by wiring within routing regions that lie between 
or over the functional units. (A signal net consists of a module output terminal 



4 CHAPTER 1 

together with the various module input terminals to which the output signal 
must be delivered.) 

Within the field of physical design, prevailing objectives have evolved over the 
years in response to advances in VLSI technology. When system operating 
frequencies were dominated by device switching speeds, placement and routing 
optimizations centered on reduction of total routing area. Subsequent advances 
in fabrication technology have increased packing densities, allowing more and 
faster devices to be placed on larger ICs. Leading-edge fabrication technology 
now goes well into submicron feature sizes, and circuit speeds are approaching 
gigahertz frequencies. The reduced feature size implies more resistive inter­
connects, and increased system complexity implies larger layout regions. Thus, 
minimization of interconnection delay has become the major concern in physical 
design. 

In light of this trend, performance-driven physical design has seen much re­
search activity within the past five years. Early works focused on performance­
driven placement, with the standard objective being the close placement of 
modules belonging to timing-critical paths. However, performance-driven place­
ment algorithms will achieve their intended effect only when the associated 
routing algorithms can realize the full potential of a high-quality placement. 
Thus, the emphasis in routing objectives has shifted from area minimization 
to delay minimization, and more recently to the control of interconnect delay 
(e.g., by limiting skews or delays at particular terminals). This range of routing 
objectives - area, delay, skew and beyond - defines the scope of this book. 

Once an objective has been established, the actual routing of a given signal 
net can be decomposed into global and detailed routing. The global routing 
phase is a higher-level process during which the routing topologies of signal 
nets are defined over the available routing regions. Then, the detailed routing 
phase produces the actual geometries which realize the required connectivity 
on the fabricated chip. Our work applies to the global routing phase of physical 
design. 1 

We assume that during the global routing phase, all module and terminal lo­
cations have already been fixed in the plane, so that we need only ensure 

1This traditional taxonomy may seem ambiguous. We do not address standard "detailed 
routing" topics such as switchbox routing or river routing. However, optimizing routing 
area and performance requires a. concern with the specific geometry of the routing. In our 
discussion, we will define a routing topology by specifying for each edge its length and widt.h, 
and the location of its endpoints; our work addresses "global routing" in that. the particular 
detailed embedding of an edge between its endpoints does not matter. 
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electrical connectivity of the signal nets. With standard-cell or gate-array de­
sign methodologies, which have many small functional modules, global rout­
ing may be viewed as taking place in Manhattan geometry, i.e., distances be­
tween terminals are given by rectilinear distance. In other words, these design 
methodologies possess sufficiently high porosity that the routing problem can 
be formulated in the geometric plane. On the other hand, building-block design 
methodologies involve larger functional blocks or macro cells. Since these are 
often treated as obstacles, the routing problem is formulated with respect to a 
weighted routing graph that represents the available routing area. A standard 
model is the channel intersection graph (CIG), where each edge represents a 
channel(i.e., the empty rectangular space between adjacent modules) and each 
vertex corresponds to the intersection of two orthogonal channels [193] (see 
Figure 1.2). The edge weights of the CIG can be used to model channel width 
or congestion. 

Figure 1.2 A channel intersection graph induced by a set of mod­
ules, and a routing tree that connects the highlighted terminals. 
The source is shown by a hollow dot. 
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A "true" global router processes multiple signal nets simultaneously using such 
techniques as simulated annealing, multicommodity flow or mathematical pro­
gramming. However, many existing codes are sequential, or "net-at-a-time", in 
that they establish a heuristic ordering of nets for routing and use ripup-and­
retry techniques when the routing fails. (There are also even more fine-grain 
methods which route individual two-terminal subnets of signal nets.) With 
either type of global router, the key operation is to compute a good routing 
topology over a single signal net: hence, this book deals exclusively with meth­
ods that route a single net at a time. 

As with previous routing constructions that have formed the basis of new global 
routers (e.g., "Steiner min-max trees"), each method that we develop can be 
transparently integrated into existing global routing approaches. In the math­
ematical programming approach, finding a routing solution for a given net 
generates a new entering basis column within a primal-dual iteration. In the 
sequential approach, routing solutions are found for the highest-priority nets 
first, leaving lower-priority nets to encounter more congestion and blockage. 
After each net is routed, the routing region costs (e.g., CIG edge weights) can 
be updated before the next net is processed. 

We conclude this section with a review of basic conventions and terminology 
used throughout the book. We define a terminal to be a given location in the 
layout region. A signal net S = {so, s1, s2, ... , Sn} is a set of n + 1 terminals, 
with one terminal s0 E S a designated source and the remaining terminals sinks. 
A routing solution is a set of wires that connects, i.e., spans, the terminals of a 
net so that a signal generated at the source will be propagated to all the sinks. 

The rectilinear wiring technology implies an underlying "Manhattan" geome­
try, where the distance between points a and b is d(a,b) = Jax -bxl +Jay- byJ, 
i.e., the sum of the differences in their x- and y-coordinates. A segment is 
an uninterrupted horizontal or vertical wire, and any connection between two 
terminals will consist of one or more wire segments. VLSI and printed circuit 
board technologies admit multiple routing layers, where a preferred-direction 
routing methodology is used to facilitate design, manufacturability and reliabil­
ity. In other words, the available wiring layers are partitioned, with horizontal 
wire segments preferentially routed on certain layers, and vertical wire seg­
ments routed on the other layers. A connection between two wire segments 
from different layers is called a via. 

Sometimes it is convenient to embed S in an underlying routing graph G = 
(V, E), consisting of a set of vertices V and a set of edges E ~ V x V. Thus, 
the set of terminals is someS~ V. A subgraph of G is a graph G' = (V', E') 
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with V' ~VandE'~ E, and E' ~ V' x V'. A routing solution is a subgraph 
of G that spans S. A path between two vertices x, y E V is a sequence of k 
edges of the form (x,v;1),(v;11 v;J, ... ,(v;k,y), where (v;.,.,v;.,.+1) E E for all 
1 $ m $ k - 1. A graph is connected if there exists a path between each pair 
of vertices. A graph is a tree if it is connected but the removal of any edge 
will disconnect it. Since a tree topology uses the fewest edges of any spanning 
graph over the signal net, i.e., lSI- 1 = n edges, routing formulations typically 
seek a tree topology. 

A weighted graph has a non-negative real weight assigned to each of its edges. 
The cost of a weighted graph is the sum of its edge weights. A shortest path in 
G between two vertices x, y E V, denoted by minpatha(x, y), is a minimum­
cost path connecting x andy. In a tree T, minpathr(x, y) is simply the unique 
path between x and y. For a weighted graph G we use dista(x, y) to denote 
the cost of minpatha(x, y). The distance from the source to a given sink s; in 
a tree is denoted as /; = distr (so, si). 

Because a signal net is inherently oriented from its source to its sinks, we use 
the special notation Ri to denote the cost of the shortest so-s; path in G, i.e., 
R; = dista (so, s;). We use R to denote the maximum R; value over all sinks 
s;, and say that R is the radius of the signal net. The radius of a routing tree 
T is r(T) = m!'J.X /;. Additional terminology will be developed throughout the 

l<a<n 
following chapt;rs, as needed. The reader is referred to, e.g., [67] or [92] for a 
more rigorous development of basic graph-theoretic concepts. 

As noted at the outset, most problems encountered in VLSI CAD, including 
all of the interconnection formulations that we address, are intractable. While 
we resort to heuristic solutions, a basic precept in our work is to prove that our 
proposed heuristics perform well. For example, we often strive to show that 
the heuristic solution cost in the worst case (or average case) is no more than a 
constant factor from optimal. Since the practical relevance of a heuristic may 
hinge on issues beyond asymptotic time and space complexity, we also augment 
our performance bounds with empirical simulations using standard test cases 
from the literature, e.g., those maintained by ACM SIGDA (currently available 
by anonymous ftp to <mcnc.org> ). 
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1.3 OVERVIEW OF THE BOOK 

Beyond its sketch of our application domain of VLSI routing, the present chap­
ter also surveys the main results contained in this book. Chapters 2, 3 and 4 
are respectively entitled Area, Delay, and Skew. These form the core of the 
book, and address three fundamental routing objectives: (i) minimization of 
total wirelength, (ii) minimization of signal delay, and (iii) minimization of 
skew among signal arrival times. Chapter 5 provides new frameworks for the 
simultaneous optimization of multiple competing objectives; one such frame­
work allows various unifications of the techniques developed in the preceding 
three chapters. The following subsections summarize the key developments of 
each chapter. 

1.3.1 Minimum Area: The Steiner Minimal Thee Problem 

VLSI design rules dictate a minimum separation between wires, and therefore 
the area occupied by the routing on a chip is roughly proportional to the total 
wirelength of the routing. Added wirelength generally increases signal delay 
and power consumption due to increased resistance and capacitance. Other 
system cost measures, e.g., those based on fabrication cost, yield and reliability, 
also increase with chip area. Thus, a fundamental objective is to minimize the 
total wirelength required to connect a prescribed set of points in the plane, i.e., 
the terminals of a given signal net. The subject of Chapter 2 is the Steiner 
minimal tree (SMT) problem, which for a given net S asks for a set S' of Steiner 
points such that the total edgelength of the minimum spanning tree (MST) 
over S U S' is minimized. The main insight is that the points of S' will serve 
as internal nodes of the tree - "intermediate junction points" - which reduce 
the interconnection cost. Without introducing such points, the minimum-cost 
solution would simply be a minimum spanning tree overS. 

The SMT problem is well-studied in combinatorial optimization and network 
design; see the monographs (138] and (139]. The geometry of VLSI, which 
usually allows only vertical and horizontal wiring directions, has motivated 
studies of the rectilinear version of the problem, typically for the wirelength 
estimation and global routing phases of layout design. With only a few highly 
constrained exceptions, existing variants of the SMT problem are NP-complete. 
Most SMT heuristics in the literature have analogies to classic minimum span­
ning tree constructions; this is in part due to the MST being a constant-factor 
approximation to the SMT, with performance ratio ~ in the rectilinear metric. 
However, the first result of Chapter 2 defines a general class of "MST-based" 
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SMT heuristics, and shows that such methods cannot have performance ratio 
better than that of the simple MST approximation. 

The focus of Chapter 2 lies in developing the Iterated !-Steiner (llS) heuris­
tic, which iteratively finds optimal Steiner points that are added directly into 
the set S. The llS construction thus avoids traditional analogies to minimum 
spanning tree solutions, and in practice achieves good performance even on 
inputs that are pathological for previous heuristics. For random 8-point planar 
instances, llS solution costs are optimal for 90% of all instances, and average 
within 0.25% of optimal overall. (The llS approach also applies to graph in­
stances and higher-dimensional geometric instances.) The chapter describes a 
straightforward, efficient implementation of ns, along with such enhancements 
as a parallel implementation that achieves near-linear speedup. Similarities 
between llS and the recent method of Zelikovsky are also discussed. 

Finally, Chapter 2 develops the result that any pointset in the Manhattan plane 
has an MST with maximum degree 4, and that in three-dimensional Manhattan 
space the maximum MST degree is 14 (the best previous bounds were 6 and 26, 
respectively); this improves llS runtimes and is also of independent theoretical 
interest. The chapter concludes with a discussion of the Steiner problem in 
graphs. 

1.3.2 Minimum Delay: Toward Optimal-Delay Routing Trees 

Chapter 3 considers minimization of signal delay, which is synonymous with 
"performance-driven" system design. As VLSI technology scales to smaller fea­
ture sizes and larger layout areas, signal delays become interconnect-dominated, 
i.e., signal delay through interconnects increasingly dominates delay through 
devices. In leading-edge technologies, minimum-delay wiring topologies can 
differ substantially from minimum-area (SMT) wiring topologies. 

The signal delay objective takes us from the unoriented pointset of the Steiner 
minimal tree problem to an oriented collection of terminals in the layout plane. 
Such a collection of terminals, which we call a signal net, has one identified 
source terminal; the remaining terminals are sinks. Typically, the source ter­
minal is the output of a gate, and the sinks are the fanins for that. output signal 
at inputs of other gates. 

The discussion of Chapter 3 centers on four issues which have guided re­
cent progress in minimum-delay routing heuristics. First, there is the issue 
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of technology-dependence in the routing construction, e.g., a simple analysis of 
·Elmore delay in distributed RC trees shows that routing objectives should be 
dependent on parameters of the prevailing interconnect technology. We thus 
give a taxonomy of methods based on their tunability to specific technology 
parameters and signal net criticalities, and demonstrate the advantages of such 
tunable methods as the "Elmore routing tree" approach and the Prim-Dijkstra 
tradeoff. 

Second, the chapter compares "actual delay", versus geometric, routing objec­
tives. To a first-order approximation, signal delay from the source to a given 
sink is proportional to the source-sink pathlength in the routing tree. This lin­
ear delay approximation suggests minimizing the maximum source-sink path­
length in the routing tree (i.e., a geometric "minimum-radius" criterion). On 
the other hand, reducing the total cost of the routing tree will reduce its lumped 
capacitance (i.e., a geometric "minimum-cost" criterion). We review how early 
works employed geometric criteria to achieve tractability in both the design 
and the analysis of routing heuristics. Of particular interest is a "bounded­
radius, bounded-cost" (BRBC) approach which seeks a minimum-cost routing 
tree subject to a given bound on tree radius; we describe an algorithm which 
simultaneously minimizes both tree cost and tree radius to within constant 
factors of optimal. The BRBC approach and its analysis generalize to Steiner 
routing and to routing in arbitrary weighted graphs that capture the variation 
of routing costs over the layout region. The chapter gives details of recent meth­
ods, notably the "Elmore routing tree" variants which obtain reduced signal 
delays by optimizing higher-order delay estimates directly. 

Third, we discuss minimization of sink-dependent delay, as opposed to net­
dependent delay. Here, the key observation is that timing-driven placement and 
routing are typically iterated with static timing estimation, so that critical-path 
information is available during the routing tree construction. With this in mind, 
the traditional objective of minimizing maximum sink delay is "net-dependent" 
in that it ignores available path-dependent information. An approach which 
optimizes delay to identified critical sinks, such as that given in 1993 by Boese, 
Kahng and Robins [34], seems better matched to modern design methodologies. 
More recent work of Boese et al. provides an interesting addendum to the 
earlier SMT discussion: it generalizes Hanan's theorem to Elmore delay-optimal 
Steiner trees and gives a new "peeling" decomposition for optimal Steiner trees. 

Finally, Chapter 3 addresses the issue of demonstrable quality for minimum­
delay routing heuristics. Analogous to the empirical studies of the IlS SMT 
heuristic in Chapter 2, we present empirical studies showing near-optimality of 
a construction for minimum Elmore delay at prescribed critical sinks. The chap-
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ter concludes with a review of two other recent advances in performance-driven 
interconnect design; these involve wiresizing and non-tree routing techniques. 
An Appendix provides the basic theory behind several efficient delay estimates, 
and also discusses measures of accuracy and fidelity for the linear, Elmore, and 
two-pole delay approximations. 

1.3.3 Minimum Skew: The Zero-Skew Clock Routing Problem 

In a high-performance VLSI design, circuit speed is limited not only by the 
signal propagation within and between circuit elements, but also by the skew 
between signal arrival times. The form of skew most often studied is clock 
skew, i.e., the difference between longest and shortest arrival times of a clock 
signal at synchronizing elements of the circuit. Clock skew minimization, and 
in particular the "zero-skew clock routing" problem, has become a central issue 
in the design of leading-edge systems. However, it should be noted that skew 
control for arbitrary signal nets is also of increasing importance, as are related 
problems of prescribed-skew or bounded-skew routing. 

Chapter 4 discusses clock tree construction to minimize skew and wirelength as 
a combination of two processes: topology generation, and geometric embedding 
of the topology. We present methods which accomplish each of these processes 
using either the linear or Elmore delay model to guide the construction. Our 
discussion focuses on so-called "exact zero skew" clock routing constructions. 

The first part of Chapter 4 uses the linear delay model to motivate a pathlength­
balanced tree problem formulation, which seeks a minimum-cost tree with all 
source-sink pathlengths of equal length. We describe a simple approach, based 
on iterative geometric matching, for generating a clock tree topology while 
simultaneously embedding it in the layout region. 

The second part of the chapter describes the Deferred-Merge Embedding (DME) 
algorithm, which embeds any prescribed connection topology (i.e., a binary tree 
with the clock sinks at the leaves), so as to create a clock tree with zero skew 
while minimizing total wirelength. The algorithm runs in linear time, and 
always yields exact zero skew trees with respect to a given monotone delay 
model such as linear or Elmore delay. The DME method achieves substantial 
cost reductions over earlier constructions, and can be combined with previous 
methods that concentrate on generation of the clock tree topology. 
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Finally, the third part of the chapter unifies the topology generation and geo­
metric embedding of exact zero-skew clock trees. Under the linear delay model, 
the two phases of the DME algorithm (bottom-up identification of loci for "zero­
skew balance points", followed by top-down selection of these balance points 
within a minimum-delay zero-skew embedding) can be replaced by a single top­
down phase. Where DME would nominally require a prescribed topology as 
input, this top-down construction allows the clock tree topology to be deter­
mined dynamically and flexibly while being optimally embedded at the same 
time. A natural outgrowth is a DME-like algorithm for single-layer, exact 
zero-skew clock routing; such a construction is increasingly sought to minimize 
signal attenuation through vias, simplify buffering optimizations, and maximize 
process-variation independence. 

Chapter 4 also describes extensions of these clock routing methods to "min­
max" delay constraints and bounded-skew routing for general signal nets. The 
chapter concludes by noting additional issues and problem formulations, includ­
ing optimal buffering hierarchies for minimum phase delay, and multiple-level 
clock trees for multi-chip module packaging. 

1.3.4 Multiple Objectives 

The last chapter of the book, Chapter 5, discusses frameworks and techniques 
which enable the simultaneous optimization of multiple competing ~bjectives. 
Section 5.1 notes that beyond the nominal total wirelength, the grid-based 
structure of VLSI routing resources provides additional information for deter­
mining the impact of a given routing solution on layout area. The discussion 
explores a new minimum density objective for spanning and Steiner tree con­
structions, which seeks to balance the use of horizontal and vertical routing 
resources. We describe two heuristic constructions for low-density spanning 
trees whose outputs are within small constants of optimal with respect to both 
tree cost and density. (The proof techniques suggest a constructive lower bound 
scheme which affords tighter estimates of solution quality for a given problem 
instance.) Of particular interest is that the minimum density objective can 
be transparently combined with, e.g., minimum radius or minimum skew -
without affecting asymptotic solution quality with respect to these competing 
objectives. 

While previous chapters each focus on a fundamental routing criterion (i.e., 
area, delay or skew), many secondary objectives may exist, including con­
gestion avoidance, jog minimization, reliability, etc. Section 5.2 develops a 
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general framework of multi-weighted graphs, in which multiple competing ob­
jectives can be simultaneously optimized. This is accomplished by assigning 
to each edge a vector of weights, corresponding to the various optimization 
criteria; graph searches are then guided by the weighted average of the edge 
weights according to designer-specified tradeoff parameters. This framework is 
applicable to graph-based routing regimes, such as building-block design and 
field-programmable gate array layout. 

Finally, we describe optimization within the framework of a continuously­
weighted layout region, which can be induced by the simultaneous consideration 
of multiple criteria (e.g., reliability, thermal density, and routing congestion). 
Within this framework, we consider a problem which has applications ranging 
from circuit board routing to vehicle navigation, namely, finding a minimum­
cost prescribed-width path connecting a given source and destination [131]. 
Previous path routing approaches such as Dijkstra's algorithm implicitly as­
sume that the path is of zero width, but this assumption is usually not realistic 
(e.g., consider routing a wide bus, or traces on a circuit board). Section 5.3 
develops a network-flow based approach to prescribed-width routing in a con­
tinuously weighted region. Interestingly, the extension to higher dimensions 
can solve a discrete version of Plateau's problem, which seeks a minimum-area 
surface that spans a given closed curve [130]. 
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AREA 

Overview 

To achieve a minimum-area layout, circuit interconnections should in general 
be realized with minimum total wirelength. This chapter discusses the cor­
responding Steiner minimal tree (SMT) problem, which seeks to connect a 
given set of points in the plane using the minimum amount of wiring. The 
SMT problem is central to VLSI global routing and wiring estimation; it also 
arises in such non-VLSI applications as communication network design. Re­
cent reference books treat the Steiner problem in detail [138, 139]. Thus, in 
this chapter we will limit our discussion to the rectilinear SMT formulation, 
which reflects the Manhattan geometry of VLSI layout. The discussion focuses 
on an iterative construction, called Iterated 1-Steiner, that eschews traditional 
analogies to minimum spanning tree solutions. Practical implementation issues 
are discussed as well. 

Our development will be as follows. We first demonstrate that many existing 
SMT heuristics have a performance ratio of ~ in the Manhattan plane, which is 
the same bound achieved by the minimum spanning tree (MST) construction. 
We then develop the Iterated 1-Steiner (US) heuristic, an iterative construc­
tion that can achieve good performance even on inputs that are pathological for 
previous methods. For uniform distributions of 8-point instances in the plane, 
US obtains solution costs that are optimal for 90% of uniformly distributed 
instances, and average within 0.25% of optimal overall. (The IlS approach 
also applies to graph instances and higher-dimensional geometric instances.) 
We present a straightforward implementation of IlS, along with a parallel im­
plementation that achieves near-linear speedup. Similarities between US and 
the recent method of Zelikovsky are also discussed. Finally, we show that any 
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pointset in the Manhattan plane has an MST with maximum degree 4, and 
that in three-dimensional Manhattan space the maximum MST degree is 14 
(the best previous bounds were 6 and 26, respectively): this result improves 
IlS runtimes and is of independent theoretical interest. The chapter concludes 
with a discussion of the Steiner problem in graphs. 

2.1 INTRODUCTION 

In the Manhattan, or Lt, plane, the distance between points (ax, ay) and (bx, by) 
is given by lax- bxl +jay- byj. This is also known as rectilinear distance, and 
reflects the cost of wiring between two points in a VLSI layout. 1 Given a set 
P of n points in the plane, we often wish to connect these points using as 
little wire as possible. This objective arises in minimum-area VLSI global rout­
ing (since minimum-spacing design rules imply a roughly linear relationship 
between wirelength and wiring area), with P corresponding to the set of termi­
nals in a signal net. In succeeding chapters, each terminal in the signal net will 
be distinguished as either a "source" or "sink", i.e., the interconnecting wire 
will have an implicit orientation. However, in this chapter we cast our descrip­
tion in terms of generic points in the plane since a solution to the problem of 
minimum-wirelength interconnection is inherently unoriented. 

When all wires are "point-to-point", with no intermediate junctions other than 
points of P, the optimum solution is a minimum spanning tree (MST) over 
P, denoted as M ST(P). However, in VLSI routing it is possible to introduce 
intermediate junctions - called Steiner points- in connecting the points of P. 
The resulting planar Steiner minimal tree (SMT) problem is the subject of this 
chapter. 

The Steiner Minimal Tree (SMT) Problem: Given a set P of n points in 
the plane, determine a set S of Steiner points such that the MST over PUS 
has minimum cost. 

An optimal solution to this problem is referred to as an SMT over P, or 
SMT(P). Here, an edge in a tree T has cost equal to the distance between its 
endpoints; the cost ofT itself is the sum of its edge costs, and is denoted by 
cost(T). 

1 More generally, the distance between two points in the Lp plane is given by 

\f(Lix)P + (Liy)P. Thus, p = 1, p = 2 and p = oo define the Manhattan, Euclidean and 
Chebyshev norms. 
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We will focus on the rectilinear Steiner minimal tree problem, where every edge 
is embedded in the plane using a path of one or more alternating horizontal and 
vertical segments between its endpoints. Where no confusion is possible, we 
will overload the two concepts of a graph edge and a "physical" (i.e., embedded 
in the plane) edge, for example, when we speak of "connecting a point to an 
edge". Implicitly, we also assume that only a shortest-possible path of segments 
can be used to embed a given edge. Thus, an edge is embedded using some 
monotone, or "staircase", path between its endpoints. The bounding box of 
a pointset P denotes the minimum rectangle which contains all points of P 
and whose sides are oriented parallel to the coordinate axes. If an edge is 
embedded with minimum cost, its routing will remain within the bounding box 
of its endpoints. 

Beyond its application to VLSI global routing, the rectilinear SMT problem 
also arises in wirelength estimation for circuit layout. Figure 2.1 shows an 
MST and an SMT for the same pointset in the Manhattan plane. 

Figure 2.1 An MST (left) and an SMT (right) for a pointset with 
n = 4; hollow dots represent the original pointset P, and solid dots 
represent the set S of Steiner points. 

Three results have greatly influenced the progress of research on the SMT 
problem. First, consider the set H(P) of intersection points that are obtained 
when horizontal and vertical gridlines are drawn through every point of P. 
Hanan [116] showed that there exists an SMT whose Steiner points S are all 
chosen from H(P), which we call the Steiner candidate set or the set of Hanan 
points (see Figure 2.2). 2 Snyder [222] has generalized Hanan's result to all 
higher-dimensional Manhattan geometries, and extensions to certain allowed­
angle geometries [210] seem possible. 

2 Hanan's proof relies on a perturbative argument: if an edge of an SMT does not lie in 
the "Hanan grid", it can always be shifted onto a gridline without increasing the tree cost. 
Similar arguments have been applied by Chiang et a!. (53] to prove a Hanan-like result for 
the SMT problem in a planar layout with varying routing region costs. 
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Figure 2.2 Hanan's theorem: there exists an SMT with all Steiner 
points chosen from the intersection points of horizontal and vertical 
lines drawn through points of P. 
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Second, Garey and Johnson showed that despite this restriction on the set of 
possible Steiner points, the rectilinear SMT problem is NP-complete (106) . Only 
a very few special cases have been solved optimally, e.g., a linear-time solution 
exists when all points of P lie on the boundary of a rectangle [2, 59), and 
pseudopolynomial algorithms have been proposed for the case when there are a 
limited number of rectilinear obstacles in the plane [52, 184). Many heuristics 
have been proposed for the general problem, as surveyed in (138, 139). 

In attacking intractable problems, a standard goal is to achieve a "provably 
good" heuristic, typically in the sense of having constant-factor performance 
ratio. 3 In light of the intractability of the rectilinear SMT problem, a third 
fundamental result is that of Hwang [135), who showed that the MST over 
P is a fairly good approximation to the SMT, with performance ratio ~, i.e., 
cost(M ST(P)) 3 ( · l l cost(SMT(P)) 2) f · p B 
cost(SMT(P)) :S 2 or eqmva ent y, cost(MST(P)) ?: 3 or any pomtset . e-
cause the proof of this result is not trivial, and because several details will later 
prove useful, we first digress to sketch Hwang's proof. 

Theorem 2.1.1 (Hwang, 1976) For any pointset P, ~:;:(~~~~~Jl ?: ~. 

Proof: The proof is by induction on the size of P. Given pointset P = 
{po, Pl, ... , Pn-d, let M be the set of all SMTs over P . Partition M into M 1 

and M 2 , where an SMT m is in M 1 exactly when all nodes of P have degree 

3 The performance ratio of a heuristic is its asymptotic worst-case error from optimal. Let 
I denote an instance of a problem with optimal solution cost opt(!), and let H(I) denote the 
cost of the solution returned by heuristic H on instance I. Then, the performance ratio of H 
. I. _IjJJJ_ 
IS lmn-oo SUPJ!J=n opt[l)• 
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= 1 in m (i.e., each node of Pis a leaf in m; such a topology has been termed 
a full Steiner topology in the literature). All other SMTs are in M 2 • For any 
m E M2, we can split m into two components at a node having degree ;::=: 2, 
and apply the induction hypothesis to each component separately. Thus, we 
need only prove the theorem for m E M1. For any SMT m E M1, observe that 
all Steiner points of m lie on a straight line, except perhaps the last one (see 
Figure 2.3). 

Po 

Po 
ho P, 

h, v, 
v, h, 51 

s, p, v. h. p2 
ho 

v. 52 

p2 52 

5n·2 Pn·2 5n·3 pn·3 
Vn·1 Yn·2 

Pn·1 
h •. , 

Sn-1 pn·2 
v. v,., 

h. Pn 
S n·1 

Pn 

P •. , 

TYPE 1 TYPE 2 

Figure 2.3 Two types of SMTs in M1: Type 1 has all of its Steiner 
points on a line; Type 2 has all but one of its Steiner points on a 
line. 

The strategy is to split m at some Steiner point s9 to yield subtrees m1 and 
m2, with m1 being the induced sub graph over {po, P1, ... , Pq-1} plus the edge 
(sq-bsq)· Consider the subtree m1 . Assume that we can construct a path X 1 

which visits the points {po, P1, ... , Pq- 1} in sorted order such that 

2 3 · cost(Xl) $ cost(ml). 

Referring to Figure 2.3, this is equivalent to the existence of some k, 1 $ k $ 
n - 2, for which 
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(2.1) 

Note that the terms on the left side of (2.1) represent the "zig-zag" path X1 
from p0 to Pk-1, and that this path is one possible spanning tree. Then, we are 
done since i · cost(MST(m2)) $ cost(m2) by the induction hypothesis. 

If there is no such Steiner point Bq, then (2.1) does not hold for any k, 1 $ k $ 
n - 2. Manipulating the sum of the resulting inequalities yields 

k k 

Ev; $ Eh; + (h~c- ho), 1 $ k $ n- 2. (2.2) 
i=l i=l 

Next, observe that we can assume the existence of some index j such that h; > 
hi-2 for all i = 2, ... ,j-1, and hi $ hi-2· In other words, the splitting point of 
the tree can be chosen so that some initial portion of m1 looks like a "Christmas 
tree", as shown in Figure 2.4. This special structure of the h; values, 0 $ i $ j-
1, allows us to set q = j and connect (Pi,Pi-2•Pi-4 1 ••• ,po, ... ,Pi-3,Pi-1•Pi) 
in that order to yield a new tour t. The cost of tour t is equal to the perimeter 
R of the bounding box of points Po, ... , Pi. 

A path over Po, ... , Pi can be obtained by deleting an edge of the tour t. Observe 
that the four edges Pi-4--+ Pi-2--+ Pi --+ Pi-1 --+ Pi-3 in t have total cost given 
by 

j-4 i-3 
R- hj-3- hi-4- I: v;- I: v;, 

i=l i=1 

where the negative terms represent the cost of the sub tour from Pi _3 to Po and 
from Po to Pi-4· By (2.2), this quantity is 

> R- hi-3- hj-4- (~ h; + (hi-3- ho)) - (~ h; + (hi-4- ho)) 
•=1 •=1 

i=O 

= R · (1- 40) 

where 0 = (l:{~; h;)/ R. If we delete from t the edge with maximum cost 
among these four edges, we obtain a path (i.e., a spanning tree) X2 over the 
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bounding box 
P0 h0 with length A 
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Figure 2.4 Cost of tour t in (a) is equal to the perimeter R of the 
bounding box of points Po, ... , Pi in (b). 

points po, ..• ,pj with 

1 3 
cost(X2) $ R- 4R · (1- 40) = R · (4 + 0). 

The cost of the SMT m1 is 

j -1 j j -3 1 1 
L h; + L Vi = L h; + - R = R. (- + 0) 
i=O i=l i=O 2 2 

and we conclude that 

0 

Hwang's result implies that any approach which improves upon an initial MST 
solution will have performance ratio at most ~. Thus, many SMT heuristics 
in the literature resemble, or are otherwise based on, classic MST construc­
tions [138]; we call such heuristics MST-based strategies. A leading example 
is the SMT heuristic of Ho, Vijayan and Wong [124], which exploits flexibil­
ity in the embedding of each rectilinear MST edge. Recall that in general, an 
edge between two points in the Manhattan plane will have many minimum-cost 
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embeddings; in the example of Figure 2.1, simply choosing the alternate "L" 
embedding for two of the three MST edges will cause the maximum possible 
overlapping of edges, and result in the SMT solution when redundant (over­
lapped) wire is removed. The authors of [124] give a linear-time construction 
for the optimal rectilinear Steiner tree derivable from a given MST in the sense 
of being embedded within the union of the bounding boxes of the MST edges. 
A second MST-based strategy due to Hasan, Vijayan and Wong [118] also be­
gins with an MST topology, and iteratively adds as many "locally independent" 
Steiner points as possible to reduce the tree cost. 

For over 15 years after the publication of [135], the fundamental open problem 
was to find a heuristic with (worst-case) performance ratio strictly less than ~· 
A complementary research goal has been to find new heuristics with improved 
average-case performance. In practice, most SMT heuristics - including MST­
based strategies -exhibit very similar performance. The standard experimental 
test bed consists of uniformly random instances ( n points chosen from a uniform 
distribution in the unit square), which reflects observed terminal distributions 
from actual VLSI placements.4 On such instances, heuristic Steiner tree costs 
usually average between 7% and 9% less than corresponding MST costs [138]. 
Results of Steele [229] establish the theOI"etical result that the average ratio 
~::! ~~~) for random pointsets should converge to a constant as n grows large.5 

Bern and de Carvalho [27] estimated the average value of the ratio ~::!(~~~ 
to be 0.88; more recently, Salowe [208] has given an empirical estimate of this 
average ratio for n up to 100, using the most efficient known branch-and-bound 
code currently available (see Section 2.8 below). 

4 At least, such has been the claim throughout the literature. Optimization of abutments, 
vertical cell alignments, use of feedthroughs, and other criteria in module placement can result 
in highly non-random terminal placements for signal nets. For example, vertical alignment 
and feedthrough reduction will often cause the bounding box of a signal net to have very 
large aspect ratio, that is to say, ratio of the length of the larger side to the length of the 
smaller side. 

5 A more oblique motivation for MST-based approaches follows from asymptotic behavior 
of subadditive functionals of uniformly random pointsets in the Manhattan plane [23, 229]. 
Such functionals include the MST cost and the SMT cost, as well as the optimal traveling 
salesman tour cost, the optimal matching cost, etc. Steele [229] has shown that optimal 
solutions to random n-point instances of these problems have expected cost {3,fii, where 
the constant {3 depends on both the problem, e.g., SMT versus MST, and the underlying 
Lp norm. Thus, we expect the average MST cost and the average SMT cost to differ by a 
constant factor. (Of course, this result does not apply on an instance-by-instance basis.) The 
theory of subadditive functionals can have other implications for VLSI CAD optimizations. 
For example, VLSI layout engines (e.g., TimberWolfSC (212] ) often use the semiperimeter 
of the pointset bounding box as a fast estimate of SMT cost. The fo growth rate implies 
that this estimate can be refined by using a 9( fo) scaling factor at negligible added CPU 
cost; see the related work of Chung and Graham [55]. 
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The worst-case bound of Hwang and the average-case analysis of Steele [229] 
together provide strong motivation for MST-based strategies. However, there 
are also reasons to consider alternative approaches. Section 2.2 shows that the 
~ bound is tight for any of a wide range of MST-based strategies [152), i.e., 
the MST for such instances is essentially unimprovable. This suggests that 
MST-based heuristics are unlikely to achieve performance ratio strictly less 
than ~- Section 2.3 introduces the focal point of the chapter - the Iterated 
!-Steiner (118) heuristic - whose simple iterative scheme avoids analogies to 
classic minimum spanning tree solutions. Key developments in the remainder 
of the chapter include: 

• Bounds on the llS performance ratio. In particular, the method has per­
formance ratio ~ on all "difficult" instances for which ~~:! ~~) = ~- We 
also contrast llS with the recent breakthrough due to Zelikovsky, Berman 
and coauthors, namely, a heuristic which achieves performance ratio of 181 

for the rectilinear SMT problem. 

• Performance enhancements to the llS method, including a "hatched" strat­
egy, a perturbative strategy, and a randomization scheme for tie-breaking. 
Together, these bring 118 performance to within a small fraction of one 
percent from optimal for typical instance sizes. Tradeoffs between runtime 
and solution quality are also discussed. 

• Practical implementation options, notably an implementation of the hatched 
11S variant that runs within time 0( n3 ) per "round". This method is based 
on a dynamic M8T update scheme, and is simple to code and considerably 
faster than the naive implementation. We also describe a parallel ver­
sion of 118 that achieves near-linear speedup within a prototypical CAD 
environment consisting of a network of workstations. 

• Extensions of IlS and its variants to three dimensions, and to the "two 
and one-half dimensional" case where all the terminals lie on L parallel 
planes (see, e.g., three-dimensional VLSI technology [117] and the design 
of buildings [221]). 

• Two new bounds on the maximum node degree in an MST under the 
Manhattan metric. Specifically: (i) every two-dimensional pointset has an 
MST with maximum degree at most 4; and (ii) every three-dimensional 
pointset has an MST with maximum degree at most 14. (The best previous 
bounds were 6 and 26, respectively.) These degree bounds allow speedup 
of the ns implementation and are of independent interest in algorithmic 
complexity theory. 
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• Extension of the IlS construction to arbitrary weighted graphs. A general 
methodology for increasing the power of heuristics using iterated construc­
tions is described. 

• Experimental results for IlS and its variants. 

2.2 PERFORMANCE BOUNDS FOR MST-BASED 

STRATEGIES 

Recall that the~ performance ratio of the MST approximation motivates MST­
based strategies, which improve an initial MST solution by various means. Such 
strategies are enhanced by the efficiency of the MST computation for a planar 
pointset [114]. 

Trivially, an MST-based Steiner tree construction which has cost no greater 
than the MST cost will have performance ratio at most i· However, the actual 
performance ratio for many MST-based methods has remained unknown. It was 
believed that certain methods might be provably better than the simple MST 
approximation ( cf. [137]), with the algorithms of Bern [26] and Ho, Vijayan 
and Wong (124] being two examples. 

This section shows that any Steiner tree heuristic in a general class C of greedy 
MST-based methods will have worst-case performance ratio arbitrarily close to 
~.i.e., the same bound as the MST approximation. By "arbitrarily close", we 
mean performance ratio > ~ - t 'Vt > 0. Performance ratios are thus resolved 
for a number of heuristics in the literature with previously unknown worst-case 
behavior [26, 27, 103, 118, 124, 137, 202, 215] since they can be shown to belong 
to the class C. The enabling construction also serves to correct a claim in [124] 
and establish a lower bound of ~ on performance ratios for some heuristics not 
inC, e.g., (137, 164, 220]. Analogous constructions in d-dimensional Manhattan 
geometry, with d > 2, show that all of these heuristics have performance ratio 
at least 2di 1 [97]. 

2.2.1 Counterexamples in Two Dimensions 

We now describe two prototypical heuristic approaches, called MST-Overlap 
and Kruskal-Steiner, for the rectilinear SMT problem. We then unify these 
approaches under a general template for greedy MST-based strategies. The 
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first approach starts with a rectilinear MST and obtains a Steiner tree by over­
lapping edge embeddings. In other words, a monotone (staircase) embedding is 
selected for each MST edge, and then all superposed segments are merged since 
they represent redundant wiring. Alternatively, we may view this approach as 
starting with an MST over P, then determining the minimum-cost Steiner tree 
which lies completely within the union of bounding boxes of the MST edges. 
Figure 2.5 illustrates this strategy with respect to the original example from 
Figure 2.1. The resulting Steiner tree has cost no greater than the MST cost. 

Figure 2.5 Optimal overlap of MST edges within their bounding 
boxes. 

This approach has been studied by Hasan, Vijayan and Wong (118], Ho, Vi­
jayan and Wong (124], Hwang (136], Lee, Bose and Hwang (164], and Lee and 
Sechen (165]. Ho, Vijayan and Wong (124] have given the best-possible result, 
namely, a linear-time algorithm for computing the optimal rectilinear Steiner 
tree derivable in this fashion. Their construction requires that no two edge 
bounding boxes of the MST intersect or overlap, unless the edges are adjacent. 
This property of the MST, known as separability, enables a dynamic program­
ming approach. A method which determines a separable MST for any pointset 
P was given in [124]. 

Since the algorithm of Ho et al. dominates all other algorithms that share 
the goal of overlapping MST edges within the union of bounding boxes, we will 
treat it synonymously with the general approach itself, and use the name MST­
Overlap to indicate either. It was conjectured that the worst-case performance 
ratio of MST-Overlap is less than ~-

The example of Figure 2.6 results in an MST-Overlap performance ratio of 
exactly ~ - However, this example is not separable. If the starting MST is 
separable, a performance ratio arbitrarily close to ~ can still result : Figure 
2.7(a) shows a separable MST over a pointset for which the strict equality 

~~;!W~~~ = ~ holds; Figure 2. 7(b) shows a perturbation of the point loca-



Area 

() 

,.. ,.. 

( 

- - -
( ( ( 

,..._ 1"0. - -
( 

F . E l 'th t · t }'t co&t(MST-Overlap) 3 
1gure 2.6 xamp e Wl s nc equa 1 y cost(SMT) = 2· 

On the left is the SMT (cost = 20); any Steiner tree derived from 
the MST on the right will have cost = 30. 

27 

tions such that the MST is unique; and Figure 2.7(c) shows the optimal SMT 
topology for both cases. 

The second type of MST-based strategy builds a Steiner tree by emulating the 
standard MST constructions of Kruskal [160) or Prim [196), with connections to 
new Steiner points replacing direct connections between points in P. Examples 
of this strategy are discussed by Bern [26), Bern and Carvalho [27), Richards 
[202] and Servit [215]. Typically, embeddings of edges within their bounding 
boxes are left unresolved for as long as possible during the construction, which 
allows the greatest possible freedom to make a short connection. 

We call this second MST-based strategy the Kruskal-Steiner approach. It 
begins with a spanning forest of n isolated components {the points of P) and 
repeatedly connects the closest pair of components in the spanning forest until 
only one component (the Steiner tree) remains. Richards [202) characterizes 
Kruskal-Steiner and its variants as a "folklore" heuristic; the method has also 
been ascribed to Thomborson by Bern [26, 27). Variants in the literature differ 
primarily in their definition of the "closest pair" of components, but the ex­
ample of Figure 2. 7(b) is immune to these distinctions. When any variant of 
Kruskal-Steiner is executed on the pointset of Figure 2. 7(b), it will start at the 
leftmost points and alternate among the middle, top, and bottom rows, adding 
a single horizontal to each in turn. The E perturbations in Figure 2. 7(b) force 
the alternation between rows and make the construction completely determin­
istic. The resulting Steiner tree will consist entirely of horizontal segments 
except at the left end, and its cost will be arbitrarily close to ~ times optimal. 
Hwang et al. [138) note that for random instances, results are similar to those 
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trarily close to ~· For n points, any Steiner tree derivable from 
the separable MSTs of (a) or (b) will have cost 2(n- 2), while the 
SMT (c) has cost ~(n -1), yielding a performance ratio arbitrarily 
close to ~ for large enough n. In (d), we show the best possible 
rectilinear Steiner tree that can be produced by any MST-Overlap 
or Kruskal-Steiner heuristic. 

obtained by MST-Overlap variants, i.e., the heuristic Steiner tree cost averages 
between 7% and 9% less than the MST cost. 

An algorithm is said to be greedy if it constructs a solution by iteratively se­
lecting the best among all remaining alternatives [189]. We now show that 
MST-Overlap and Kruskal-Steiner belong to a general class of greedy Steiner 
tree heuristics, and that the example of Figure 2.7 is pathological for this class. 
Recall that without loss of generality, a Steiner tree may be viewed as a min­
imum spanning tree over P U S, where P is the input pointset and S is the 
added set of Steiner points. We are interested in Steiner tree constructions 



Area 29 

which induce new edges, and possibly new Steiner points, using the following 
types of connections within an existing spanning forest over PUS: (i) point­

point connections between two points of P; (ii) point-edge connections between 
a point of P and an edge, which may induce up to one new Steiner point in 
S; and (iii) edge-edge connections between two edges, which may induce up to 
two new Steiner points in S. To reflect the fact that the embedding of a given 
edge is indeterminate, we say that any edge between two points of P U S can 
be arbitrarily re-embedded by the Steiner tree construction. Figure 2.8 defines 
a class of Steiner tree heuristics which we call C. All heuristics H E C are 
greedy with respect to Manhattan edge length. 

Heuristic H E C: greedy Steiner tree construction 
Input: n isolated components (points of P) 
Output: Rectilinear Steiner tree over P 
While there is more than one connected component Do 

Select a connection type r E { point-point, point-edge, edge-edge } 
Connect the closest pair of components greedily with respect to r 

Optionally at any time, Re-embed any edge within its bounding box 
Optionally at any time, Remove redundant (overlapped) edge segments 

Output the single remaining component 

Figure 2.8 The class C of greedy Steiner tree heuristics. 

Theorem 2.2.1 Every H E C has performance ratio arbitrarily close to ~. 

Proof: The MST of the pointset depicted in Figure 2. 7 (b) is unique since 
all interpoint distances < 3 are unique. Thus, all connections in the MST are 
horizontal point-point connections except for exactly two connections, one from 
the top row to the middle row and one from the middle row to the bottom row. 
The greedy routing of every edge but these two is unique since all edges except 
these two have degenerate bounding boxes. No improvement is possible by edge 
re-embedding within these degenerate bounding boxes. Therefore, no heuristic 
in C can do better than the result in Figure 2. 7( d). The optional re-embedding 
within the two non-degenerate bounding boxes is negligible as n grows large, 
hence the performance ratio is arbitrarily close to ~· 0 

There are many heuristics in the literature with previously unknown perfor­
mance ratio, which by Theorem 2.2.1 have performance ratio arbitrarily close 
to ~· Greedy Kruskal-like constructions include the methods of [136] and [165], 
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in addition to the methods described by Bern (26, 27), Gadre et al. (103), 
Richards (202] and Servit [215]. Algorithms which start with an initial MST 
and then overlap edges within their bounding boxes, such as those of [118] and 
(124), also belong to C: an MST can be constructed using only point-point 
connections, and the optional re-embedding is then used to induce edge over­
laps. Exponential-time methods can also belong to the class C, notably the 
suboptimal branch-and-bound method of Yang and Wing (250]. Theorem 2.2.1 
implies that all of these methods have the same worst-case error bound as the 
simple MST. 

The counterexample of Figure 2. 7 also establishes lower bounds arbitrarily close 
to ~ for the performance ratios of several heuristics not in C, such as the three­
point connection methods of Hwang [137], Lee, Bose and Hwang (164], and the 
Delaunay triangulation-based method of Smith, Lee and Liebman [220]. This 
is easy to verify using the pointset in Figure 2.7(b): as with the heuristics in 
C, these latter methods are severely constrained by the nature of the unique 
minimum spanning tree. Finally, we note that De Souza and Ribiero [72] con­
struct an instance similar to that of Figure 2.7 and also discuss the worst-case 
performance of several rectilinear Steiner tree heuristics. Shute [218] gives a 
somewhat less general construction, also with the goal of showing a ! perfor­
mance ratio for MST-like heuristics. 

2.2.2 Counterexamples in Higher Dimensions 

The rectilinear SMT problem remains well-defined when the points of P are 
located in d-dimensional Manhattan space with d > 2. Most heuristics, includ­
ing those in the class C defined above, readily extend to higher dimensions. 
However, the construction of Figure 2.7 also extends to d dimensions, where 
it again provides a lower bound for the performance ratio of heuristics in C. 
In d dimensions, the Figure 2.7 construction generalizes to n = k(2d- 1) + 1 
points, for any given k. As Figure 2.9 illustrates for d = 3, the cost of the op­
timal Steiner tree is at most 2~;_-/>; the cost of the (unique, separable) MST 
is 2(n- 1); and the cost of the best Steiner tree obtainable from the MST by 
edge-overlapping is 2(n- d). Thus, in d dimensions the performance ratio of 
a heuristic in class C will be arbitrarily close to 2dil. This slightly improves 
on the previous lower bound of 2(d;t) given by Foulds (97] for the performance 
ratio of the MST approximation in d dimensions. 
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Figure 2.9 For d = 3, the SMT (top) has cost ~(n- 1), while 
any Steiner tree derivable from the MST by re-embedding edges 
(bottom) has cost 2(n- 3), yielding performance ratio arbitrarily 
close to i as n grows large. 

2.3 ITERATED I-STEINER (ItS) 
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We now develop an effective SMT heuristic that avoids analogies to traditional 
MST constructions. The approach is greedy: we iteratively find optimum single 
Steiner points for inclusion into the pointset. 

Given two pointsets A and B, we define the MST savings of B with respect to 
A as 

ilMST(A, B)= cost(MST(A))- cost(MST(A U B)). 

Recall that H(P) denotes the Steiner candidate set, i.e., the set of intersection 
points of all horizontal and vertical lines passing through points of P. For 
any pointset P, a 1-Steiner point of P is a point x E H(P) which maximizes 
ilMST(P, {x}) > 0. Starting with a pointset Panda set S = 0 of Steiner 
points, the Iterated 1-Steiner (llS) method repeatedly finds a !-Steiner point 
x of PUS and sets S +- S U { x }. Note that the stated initial conditions of the 
algorithm imply that the Steiner candidate set H(P US) at each iteration will 
be identical to H(P). The cost of MST(P US) will decrease with each added 
point, and the construction terminates when there no longer exists any point 
x with ilMST(PUS,{x}) > 0. 

While there is always an optimal Steiner tree with at most n- 2 Steiner points 
(this follows from simple degree arguments [109]), liS can add more than n-2 
Steiner points. Therefore, at each step we eliminate any extraneous Steiner 
points which have degree ~ 2 in the MST over P US. Figure 2.10 describes 
the algorithm formally, and Figure 2.11 illustrates a sample execution. This 
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method was first described in [150, 151, 203]. Minoux [183] has independently 
described an algorithm similar to IlS for the Steiner problem in graphs. 

Algorithm Iterated 1-Steiner (US) 
Input: A set P of n points 
Output: A rectilinear Steiner tree over P 
S=0 
While Cand_set = {x E H(P u S)I6MST(P uS, {x}) > 0} =/= 0 Do 

Find x E Cand_set which maximizes 6MST(P US, {x}) 
S=SU{x} 
Remove points in S which have degree ~ 2 in M ST( P U S) 

Output MST(P uS) 

Figure 2.10 The Iterated !-Steiner (llS) algorithm. 

(a) (b) (c) (d) 

Figure 2.11 Example of the execution of Iterated 1-Steiner (IlS). 
Note that in step (d) a degree-2 Steiner point results; llS will elim­
inate this point from the topology. 

To find a 1-Steiner point, it suffices to construct an MST over IPU Sl + 1 points 
for each of the O(n2) members of the Steiner candidate set, and then pick a 
candidate which minimizes the MST cost. This follows from a perturbative 
argument similar to that used by Hanan. Each MST computation can be 
performed in O(nlogn) time [195], yielding an O(n3 logn) time method to find 
a single 1-Steiner point. A more efficient algorithm presented in the next section 
finds a new 1-Steiner point in O(n2 ) time. A linear number of Steiner points 
can therefore be found in O(n3 ) time, and solutions with a bounded number of 
::::; k Steiner points require O(kn2) time. 
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2.3.1 Finding 1-Steiner Points Efficiently 

Georgakopoulos and Papadimitriou (107) give an O(n2) method for computing 
a 1-Steiner point in the Euclidean plane. Their method can be adapted to 
Manhattan geometry, via the following sequence of observations (see (107) for 
a more detailed account) . 

• Observe that a point p E P cannot have two neighbors in M ST( P) which 
lie in the same octant of the plane with respect to p. (The octants of the 
plane with respect to p are defined by passing lines through p with slope 
0, 1, oo and -1.) 

• Observe that two directions 81 and 82 in the plane, together with a point 
location x, define a cone C( x, 81, 82). For any p E P, the set of all x such 
that p is the closest point to X in the set p n C( X' (}1' ()2) forms a (possibly 
unbounded) polygon known as an oriented Dirichlet cell. For fixed ()1 and 
82, the oriented Dirichlet cells over all points of P will partition the region 
of the plane that lies "in front of" the pointset P with respect to the 
directions 81 and 82 (see Figure 2.12). The eight pairs of directions 81, ()2 

that define the octants of the plane will define eight plane partitions. 

( unbounded regions ) 

Figure 2.12 The oriented Dirichlet cells with respect to directions 
()1 and ()2 for three points. In this example, all three regions of the 
planar partition are unbounded. 
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• These eight plane partitions can be computed and superposed to yield a 
"common partition" of the plane within 0( n 2 ) time. It can be shown that 
the 0( n 2) regions of the common partition possess the so-called isodendral 

property: the topology of MST(PU{x}) is constant for all points x within 
any given region. However, we need only know that for x in any given 
region, the common partition indicates the set of(~ 8) possible neighbors 
ofx in MST(PU{x}). 

• M ST( P) can be constructed in 0( n 2 ) time, and by performing 0( n2 ) 

preprocessing we can update the MST to include any new point x f/:. P 
in constant time. This is accomplished by precomputing, for every edge 
e E { P x P} not in M ST( P), the shortest edge in the unique cycle formed 
when e is added into the tree. When x is added into the spanning tree, it 
will effectively introduce an "edge" between each pair of its neighbors; the 
precomputation allows edges to be deleted from M ST( P) as appropriate. 

• Finally, the essence of the method is as follows. (1) If we know that the new 
Steiner point x is to be located in a given region of the common partition, 
we already know the (~ 8) possible neighbors of x in MST(P U {x}). 
(2) Notice that some subset of these possible neighbors will actually be 
adjacent toxin MST(P U {x}), and there are 0(1) such subsets. (3) 
We simply try every subset of possible neighbors: for each, we can find 
the optimal location of x in 0(1) time (since this is a Steiner instance 
of bounded size), and we can also check the resulting cost savings when 
xis added to the MST in 0(1) time by virtue of the preprocessing. (4) 
Recalling that there are only O(n2 ) regions in the common partition, we 
can return the lowest-cost MST over the points in P U { x}, using a total 
of O(n2 ) time. Thus, the total time for all phases is O(n2 ). 

A linear number of iterations will imply O(n3 ) overall time complexity. In 
practice, for uniformly random pointsets the number of iterations performed 
by llS averages less than ~. 

2.3.2 The IlS Performance Ratio 

In this section, we first completely characterize the class of instances having 

~~:!t~~j = ~, and then show that llS will always find a 1-Steiner point for 

such instances. Thus, the output of IlS can never be as bad as ~ times optimal. 
We also show that for this class of "difficult" instances, llS has performance 

0 4 
ratiO~ 3 . 
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Lemma 2.3.1 

Proof: For !PI = 2, ~::! ~t~ ;)) = 1. For !PI = 3 we have cost(SMT(P)) = 
f, where R is the perimeter of the bounding box of P. On the other hand, 
the pigeonhole principle implies cost( M ST( P)) ~ ~ R. If two points of P 
lie on the rectangle that defines the bounding box, then cost( M ST( P)) = 
cost(SMT(P)). If three points of P lie on this rectangle, then removing the 
largest segment of the bounding box perimeter that lies between two points of 
P will leave a spanning tree over P having cost at most ~R. It follows that 
coat MST P < 11! 4 
cost SMT(P)) - f = 3 · 0 

Definition: A plus is an SMT over 4 points {(x-r, y), (x+r, y), (x, y-r), (x, y+ 
r)} with exactly one Steiner point at the center (x, y) of the plus. 

Lemma 2.3.2 For IPI = 4 and lSI = 1, a plus is the only configuration that 
h . ,J' t. cost M ST 1 tl 3 ac zeves a perJormance ra zo cost SMT o exac y 2· 

Proof: If SMT(P) has one degree-three Steiner point, then we have the per­
formance ratio cost(MST(P))jcost(SMT(P)) < 3/2. Thus, SMT(P) must 
have the same topology as a plus. Since the possibility of overlapping wire 
would imply at least two Steiner points, the pointset must have coordinates of 
form P = {(x- h1, y), (x + h2, y), (x, y- Vt), (x, y + va)}. Let Ragain denote 
the perimeter of P's bounding box. SMT(P) has cost ~. while a pigeonhole 
argument implies that M ST(P) has cost ~ R- tR (we obtain a spanning 
tree by deleting the longest of the four edges comprising the bounding box). 
This implies that ~::! ~ 5~ ; ~ ! with equality holding only when the longest 
edge length around the bounding box is not greater than ;tR, i.e., all four edges 
around the bounding box have equal length. Therefore, ht = h2 and Vt = v2. 

We write h = ht = h2 and v = Vt = v2, and without loss of generality assume 
that h ~ v. Then: 

cost(MST(P)) = 2(v +h)+ 2h = 1 _h_ < ~ 
cost(SMT(P)) 2(v +h) + v + h - 2 

with equality holding when h = v. D 

Definition: A union of pluses is a Steiner tree with lSI= k and !PI= 3k + 1, 
and with exactly four edges of equal length incident to any Steiner point. 
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Theorem 2.3.3 Any planar pointset having ~~;:~~~~l = ~ has an SMT which 
is a union of pluses. 

Proof: Recall from the proof of Theorem 2.1.1 that any pointset P has an SMT 
that is composed of connected components, each of which has all its Steiner 
points forming a chain. Recall also that all the Steiner points on any such 
chain are collinear, with the possible exception of the Steiner point at the end 
of the chain (Figure 2.3). Using the same upper bound for MST cost and the 
exact expression for SMT cost as in the Theorem 2 .1.1 proof, we can equate 
expressions for~· cost(MST) and cost(SMT) for the points of any chain: 

1 2 1 
R. ( 2 + 3. e)= R. ( 2 +e) 

where R is the perimeter of the bounding box of the points in the chain, and e 
is defined such that R · e is equal to the sum of the distances from all (except 
the last) points of P to their adjacent Steiner points in the chain. The above 
equality implies that e = 0, and hence all but one of the original points have 
the same coordinates as their adjacent Steiner points, a contradiction unless 
there is only one Steiner point (i.e., the last) in this chain. From Lemma 2.3.2, 
any chain which has only one Steiner point and which exactly achieves the ~ 
ratio must be a plus. Therefore, any SMT which exactly achieves the ~ rati~ 
is decomposable as a union of pluses. - 0 

Theorem 2.3.3 completely characterizes the pointsets for which ~~::~~~~~~ IS 

exactly equal to ~. 

Theorem 2.3.4 The performance ratio of IlS is< ~-

P f If cost(M ST(P)) 3 h .f I S d fi d S . . roo : cost(SMT(P)) < 2, t en even 1 1 oes not n any temer pomts, 

it will have performance ratio < ~- From Theorem 2.3.3, any P for which 
cost(MST(P)) 3 ·11 h SMT(P-) h · · f J · I 
cost(SMT(P)) = 2 WI ave t at IS a umon o p uses; m sue 1 a case 
IlS will select and add the center of some plus at the first iteration, yield­
ing performance ratio strictly Jess than ~. To see this, note that a spanning 
tree with cost ~ · cost(SMT(P)) is obtained simply by replacing each plus in 
SMT(P) by an arbitrary spanning tree over the four points of P in the plus 
(see Figure 2.13). 

(The center of the plus is one of the Steiner candidates considered during the 
first iteration of llS. Even if there are other Steiner candidates within the 
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• • 

Figure 2.13 Locally replacing each plus (left) with an MST over 
the four points in P (right). 

convex hull of the four points of the plus, the center gives the greatest possible 
cost savings of exactly one-third.) 0 

Theorem 2.3.5 For pointsets P with SMT(P) a union of pluses, the perfor­
mance ratio of IlS ~ ~· 

Proof: When IlS selects the center of a plus as a !-Steiner point, at most 
three centers of other pluses are excluded from future selection. By the greedy 
selection nile of IlS, any center that is excluded belongs to a plus that induces 
less cost savings than the selected plus.6 Thus, even if IlS selects a plus that 
is not in SMT(P), the cost savings will be at least as great as the savings that 
would have been realized by selecting the largest of the (up to three) pluses 
that are now excluded due to topological constraints (see Figure 2.14). 

Each plus represents a savings of ~ of the MST cost over the points of P 
in the plus, so even if we use simple MST edges to connect the remaining 
affected points to the selected plus, the total heuristic cost is no more than 
cost(MST)- A· A· cost(MST) = ~ · cost(MST). Therefore, the performance 

. f liS . h !..cost(M ST) 4 
ratio o IS no greater t an f·co&t(MST) = 3· 0 

This bound can likely be tightened by more exhaustive case analysis. Since 
most signal nets in VLSI designs have six or fewer terminals, we briefly discuss 
known IlS performance bounds for small values of IPI· 

Theorem 2.3.6 IlS is optimal for IPI ~ 4 points. 

6 The cost savings of a plus are with respect to the MST over the four points in the plus. 
These savings are proportional to the "size" of the plus: larger pluses induce greater savings. 
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Figure 2.14 Each selected 1-Steiner point may exclude at most 
three potential 1-Steiner points from future selection; thus at least 
~ of the maximum possible savings is achieved. 

Figure 2.15 The two possible Steiner tree topologies on 4 points. 

o--41l.._-<o)--el-o 
Figure 2.16 A 5-point example where the IlS performance ratio is 
~· The optimal SMT (left) has cost 6, while the (possible) heuristic 
output (right) has cost 7. 

Proof: When SMT(P) has less than two Steiner points, llS is optimal since 
it examines all candidates. For !PI = 3, there can be at most one Steiner point. 
For !PI = 4 and lSI = 2, Hwang [135) showed that an SMT must have one of 
the two topologies shown in Figure 2.15. A case analysis shows that llS always 
selects both Steiner points. 0 
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Figure 2.17 A 9-point example where the IlS performance ratio is 
i~; the optimal SMT (left) has cost 11, while the (possible) heuristic 
output (right) has cost 13. 

1-£ 

1-£ 

£ 2 1-£ 1+£ 

Figure 2.18 A 4-point instance on which MST-based heuristics per­
form arbitrarily close to ~ times optimal (left); the (optimal) liS 
solution is also shown (right). 
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In contrast to IlS, MST-based methods are generally not optimal for IPI = 4; 
Figure 2.18 shows that performance ratios approaching ~ are possible. As 
shown in Figure 2.16, the worst-case performance ratio of IlS for IPI ~ 5 is 
conjectured to be ~· Figure 2.17 shows a 9-point instance on which the IlS 
tree cost is i~ times optimal. 

Finally, an elegant iterated construction due to Berman, Fossmeier Karpinski, 
Kaufmann and Zelikovsky [24, 255] shows that the performance ratio of IlS 
has a lower bound of 1.3. Figure 2.19 reproduces the construction, which has 
point coordinates as follows: 

• ai=(4·4i,O),i=O, ... ,k 

• a~ = (0, 4 · 4i), i = 0, ... , k 



40 CHAPTER 2 

• b; = (2. 4i, -4i-l),i = 1, ... , k 

• bl - ( 4i-l 2 4j) . - 1 k i- - , 0 , z- , ... , 

• Cj = (3·4i,4i-l),i= 1, ... ,k 

• I (4i-1 3 4i) ' 1 k C; = 1 • 1 Z = 1 ... 1 

For any value of k, this construction yields an instance whose SMT consists of 
conjoined Steiner minimal trees over the sets {a; -1, b;, c;, a;} and {a~ _1, b~, c~, a;} 

along with the edge (a0 , a~); this SMT has cost 10 4k3 1 + 2. IlS will return 
1-Steiner points that are adjacent to triples of points {a;_ 1, c;, en, which im-
plies cost 13 4k3 1 + 2. Thus, the construction establishes the lower bound on 
performance ratio of 

y 
a~ 

a; ----------- ,~2 .;. : , '' 
• I I 

L--a 1 X 
.. I ,T ... 

.• a~·. 

Figure 2.19 The construction of Berman et al. which establishes 
a lower bound of 1.3 on the ns performance ratio. 
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2.3.3 The Method of Zelikovsky 

Berman and Ramaiyer [25), and Zelikovsky and coauthors [24, 9.5, 2.)3, 255), 
have recently developed several SMT heuristics that are similar to llS, and 
have performance ratios substantially less than ~. These methods derive from 
a breakthrough technique developed by Zeliko;sky for the SMT problem in 
graphs [254]. The results of [25, 253] in 1992 settled in the affirmative the long­
standing open question of whether there exists a polynomial-time rectilinear 
SMT heuristic with performance ratio < ~. 7 Here, we briefly review key ideas 
in this sequence of works, following the discussion of [24]. 

Given a Steiner tree T over pointset P, any subtree T' is a full Steiner compo­
nent if every point of P in T' has degree one. As noted in the earlier discussion 
of Hwang's theorem, any Steiner tree T can be partitioned into edge-disjoint 
full Steiner components. (Recall that Figure 2.3 showed the two possible types 
of full Steiner components.) A Steiner tree T is k-restricted if each of its full 
Steiner components has at most k leaves. Thus, for example, an optimal 2-
restricted tree over P is exactly an MST over P. We may use tk to denote 
the cost of the minimum-cost k-restricted Steiner tree over P; thus, for exam­
ple, t2 = cost(MST(P)) and tn = cost(SMT(P)). Hwang's theorem states 
that t2 ~ ~tn; Zelikovsky [253] showed that i3 ~ ~tn; and Berman and Ra­
maiyer [25] showed that t1c ~ ~Z=~tn. Zelikovsky pioneered the approach of 
approximating the optimal k-restricted Steiner tree for some small value of k, 
as opposed to approximating the SMT itself. 

For expository reasons, we will begin by describing the heuristic of Berman 
and Ramaiyer, which is called A~c; the time complexity and performance ratio 
of Ak depends on the value of k. For k = 3, Ak has performance ratio ~1 
and time complexity O(n3·5 ). The heuristic Ak begins with some AfST(P). 
then considers all optimal Steiner trees over subsets of P of size k or less. 
A~c is similar to IlS, in that it will consider adding Steiner points one at a 
time from the Hanan candidate set, and in that it uses some measure of cost 
improvement to evaluate the utility of each candidate Steiner point .. However, 
instead of adding a new Steiner point into the tree, A3 replaces two edges from 
the current MST with two "abstract edges" having the same endpoints but 
reduced cost. The cost of each new abstract edge is equal to the cost of the 

7 Interestingly, we conjectured in (150, 151) that llS has performance ratio strictly less 
than t. but could not prove this. There are clear similarities between the "hatched" llS 
variant that we discuss below and the method of [2.53), suggesting that "hatched" IlS has 
performance ratio at most 1j- = 1.375. Recently, Zelikovsky [252) has stated that llS 
actually has performance ratio upper-bounded by 1.312.5 (and lower-bounded by 1.3 per the 
construction of Figure 2.19). 
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edge it replaces, minus the cost improvement, or "gain", that would be achieved 
by inserting the new Steiner node. 

Conceptually, As merges the current M ST(P) with the optimal Steiner tree 
over the k = 3 points of P, and updates the MST over P within the resulting 
graph. More specifically, let r be the optimal Steiner tree over a given three 
points of P, and consider the graph formed by the union of edges in r and 
MST(P). This graph will contain two cycles C1 and C2, with the longest edge 
in each cycle respectively being c1 and c2 • Removing c1 and c2 yields a new 
minimum spanning tree T' over the graph. The "gain" associated with r is 
given by gain(r) = cost(MST(P))- cost(T'). Fori= 1, 2 an abstract edge is 
inserted between the two leaves of r through which cycle Ci passed; the cost 
of the abstract edge is cost(ci)- gain(r). 

In Berman and Ramaiyer's algorithm, the new abstract edges are added only 
if the gain value is greater than zero. Because the gain is subtracted from both 
new edges, however, the cost of the new MST is optimistically small. Beyond 
the consideration of candidate Steiner points in arbitrary order, this concept of 
"optimistic gain" is the main difference between As and US. 

As works in two main phases: in the "evaluation" phase all ('~') triples of 
points from P are considered in arbitrary order. If adding the Steiner node for 
a triple r would reduce the cost of the current MST (i.e., gain(r) is positive), 
then two abstract edges are added as we have described. In the "selection" 
phase, triples with positive gain are considered in reverse order. If the abstract 
edges of a triple are still used in an MST over P in which abstract edges from 
all triples with positive gain are considered, then the Steiner point for that 
triple is included in the output construction. 

Berman and Ramaiyer prove that in algorithm Ak, the MST containing abstract 
edges has cost less than the optimal k-restricted tree. In As, the cost reduction 
from the abstract edges is at most twice the cost reduction obtained by actually 
adding the new Steiner points. Hence, the performance improvement for As 
versus MST is at least one-half the performance improvement of the optimal 
3-restricted tree. Berman and Ramaiyer establish a performance ratio rk for 
the optimal k-restricted Steiner tree: rk ~ 1 + 1/(2k- 2). (To prove this bound, 
they show how to construct 2k - 2 k-restricted Steiner trees over S such that 
their total cost is at most 2k - 1 times that of the minimum-cost Steiner tree.) 
This gives a 5/4 performance ratio for the optimal 3-restricted tree, and an ~1 
performance ratio for As. 
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Zelikovsky's method [253] is greedier than that of Berman and Ramaiyer, and 
is extremely similar to the "hatched" variant of IlS that we discuss below. 
Zelikovsky's method finds and incorporates the triple T with largest gain( r), 
adding three zero-cost edges between pairs of leaves of T into the graph noted 
above. The largest-gain triple is found in the new graph, and the process 
terminates when there is no remaining triple with positive gain. A performance 
ratio of ~ was shown in [253]. 

Subsequent work has improved on the O(n3 ·5 ) time complexity ofA3 . An 1i 
performance bound with an 0( n 1.5 ) implementation was achieved by Fossmeier 
et al. [95], who show that only a linear number of triples need to be considered 
in A3 . More recently, the five authors of [24] and [255] have together shown 
that Zelikovsky's algorithm has performance ratio between 1.3 and 1.3125, and 
that Berman and Ramaiyer's algorithm has performance ratio at most 1.271; 
the latter algorithm can also be implemented to run in 0( n log2 n) time. 

2.4 ENHANCING US PERFORMANCE 

In this section, we discuss variations of the IlS approach that can yield lower­
cost solutions or runtime reductions in practice. These variations include an 
amortization of the 1-Steiner point computation via addition of an entire set 
of "independent" or "non-interfering" !-Steiner points in a single iteration, as 
well as a perturbative variant. 

2.4.1 A Batched Variant 

Although a single 1-Steiner point may be found in O(n2) time, the required 
computational geometry techniques have large hidden constants in their time 
complexities and are difficult to implement. We now describe a batched IIS 
variant which amortizes some of the computational expense by adding an entire 
set of "independent" Steiner points in a single round. 

The Batched 1-Steiner (B1S) variant computes ~MST(P, {x}) for each can­
didate Steiner point x E H(P). Two candidate Steiner points x and y are 
independent if 

A.MST(P,{x})+AMST(P,{y}) ~ A.MST(P,{x,y}), 
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i.e., introducing one does not reduce the potential MST cost savings of the 
other. Given pointset P and a set of Steiner points S, each round of B1S 
greedily selects a maximal independent set of Steiner points, then adds this set 
to S. The algorithm terminates when a round fails to produce a new Steiner 
point. A single round of B1S is described as follows: 

• In O(nlogn) time, compute both MST(P) and the Delaunay triangula­
tion [219] over P (the Delaunay triangulation is the geometric dual of the 
Voronoi tesselation of the plane). 

• Compute the 0( n2) isodendral regions over P, and for each region deter­
mine the 0(1) potential neighboring points in the MST as in [107]. This 
requires a total of O(n2) time. 

• Using O(n2 logn) time and O(n2 logn) space, preprocess the O(n2 ) iso­
dendral regions, now treated as a planar subdivision, so that determining 
the region in which a given point lies may be performed in O(log n) time. 
This is the problem of planar subdivision search [195]. 

• For each candidate Steiner point x, compute ~M ST( P, { x}). Determine 
the isodendral region to which x belongs via O(log n) time planar subdivi­
sion search, and let X be the set of potential MST neighbors of x. For each 
subset Y s;; X, add the weighted edge set {( x, y) I y E Y} to the graph 
G. The MST of a planar weighted graph can be maintained dynamically 
using O(log n) time per addition/insertion of a point or edge [88]. Since 
lXI = 0(1) and therefore IYI = 0(1), we can determine in O(logn) time 
the MST cost savings for each candidate Steiner point. Since there are 
O(n2 ) candidate Steiner points, the total time for this step is O(n2 log n). 

• Sort the O(n2) Hanan candidates in order of decreasing MST cost savings; 
this requires O(n2 log n) time using any efficient sorting algorithm. 

• Determine a maximal set S of independent candidate Steiner points to 
be added during this round, by greedily adding candidates in order of 
decreasing MST cost savings as long as each added Steiner point is inde­
pendent of all Steiner points previously added during this round. In other 
words, for an original pointset P, a set of already added candidate points 
S, and a new candidate x, add x to S if and only if ~M ST( P, { x}) $ 
~MST(PUS, {x}). Again, MST cost savings due to the addition or dele­
tion of a single point can be determined in time O(log n) [88], bringing the 
total time for this entire step to O(n2 logn). 
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The total time required for each round is O(n 2 logn). The resulting BlS algo­
rithm is summarized in Figure 2.21. Empirical data indicates that the number 
of rounds required grows much more slowly than the number of Steiner points 
produced. For example, on pointsets of size 300, BlS produces an average 
of 138 Steiner points (with a maximum of 145), while the average number of 
rounds is only 2.5 (with a maximum of 4); see Section 2.8 for more details. We 
conjecture that the number of rounds grows sub-linearly with the number of 
points. 

0 

0 
0 

0 

a-{ ~ 
Figure 2.20 The Batched 1-Steiner heuristic: selecting a maximal 
independent set of candidate Steiner points in one round. 

Algorithm Batched !-Steiner (BlS) 
Input: A set P of n points 
Output: A rectilinear Steiner tree over P 
While T = {x E H(P)Jt:::..MST(P, {x}) > 0} ::f. 0 Do 

5=0 
For x E {T in order of non-increasing t:::..M ST} Do 

If t:::..MST(P uS, {x}) 2: t:::..MST(P, {x}) Then S = S u {x} 
P=PUS 
Remove from P Steiner points with degree $ 2 in MST(P) 

Output MST(P) 

Figure 2.21 The Batched !-Steiner (BlS) algorithm. 

Empirical studies indicate that only a small fraction of the Hanan candidates 
have positive MST savings in a given BlS round. Furthermore, candidates with 
positive MST savings in an earlier round are more likely to produce positive 
MST savings in subsequent rounds. Therefore, rather than examine the MST 
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savings of all Hanan candidates in a given round, subsequent rounds may con­
sider only the candidates that produced positive savings in the previous round. 
In practice, this strategy significantly reduces the time spent during each round 
without substantially affecting the solution quality. 

2.4.2 A Perturbative Variant 

At each iteration, US selects a 1-Steiner point greedily. This may preclude 
additional savings in subsequent iterations. Suboptimalities may also occur due 
to tie-breaking among 1-Steiner points that induce equal savings. The examples 
of Figures 2.16 and 2.17 show that an unfortunate choice of a 1-Steiner point 
can result in a suboptimal solution. 

Empirical tests indicate that multiple 1-Steiner points (i.e., points in H(P) with 
equal MST savings) occur quite often. To avoid a deterministic tie-breaking 
rule that could preclude possible future savings, we may randomly select one 
of the 1-Steiner candidates and proceed with the algorithm execution. It is 
reasonable to then run this randomized IlS variant m times on a given input, 
where m is a user-defined parameter, and select the best of the m solutions. 

To further avoid possible shortcomings of a deterministic greedy strategy, we 
also propose a mechanism that allows US to select as the 1-St.einer point any 
x E H(P) whose MST cost savings is within {i of the best candidate's cost 
savings; again, 6 is a user-supplied parameter. This strategy would enable a 
slightly suboptimal choice which could perhaps enable greater overall savings 
in future iterations. 

Finally, performance may be improved if instead of looking for 1-Steiner points, 
we search for pairs of Steiner candidates that offer maximum savings with re­
spect to other candidates or pairs of candidates. Such a 2-Steiner algorithm 
would optimally solve the pointset of Figure 2.16. In general, a k-Steiner al­
gorithm will search for sets of k candidate Steiner points which maximize the 
MST cost savings. 

Combining the three techniques of (i) non-deterministic tie-breaking, (ii) near­
greedy search, and (iii) k-Steiner selection, we obtain a Perturbative It.erated 
k-Steiner algorithm (PikS), as detailed in Figure 2.22. Note that IlS is equiv­
alent to PikS with k = 1, m = 1, and 6 = 0. The PikS scheme can be further 
extended using an "independence" criterion as in Section 2.4.1 to yield a Per-
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turbative Batched k-Steiner algorithm (PBkS), where a maximal number of 
Steiner points are added during each round. 

Algorithm Perturbative Iterated k-Steiner (PikS) 
Input: A set P of n points, integer parameters 6 ~ 0, k ~ 1, and m ~ 1 
Output: A rectilinear Steiner tree over P 
T= MST(P) 
Do m times 

8=0 
While C = {X~ H(P) I lXI :$; k, !:l.M ST(P US, X)> 0} ¥= 0 Do 

Find Y E C with maximum !:l.M ST(P US, Y) 
Randomly select Z E C with !:l.M ST( P u S, Z) > !:l.M ST( P uS, Y) - 6 
S=SUZ 
Remove from S points with degree :$; 2 in M ST(P US) 

If cost( M ST( P u S)) < cost(T) Then T = M ST( P uS) 
Output T 

Figure 2.22 The Perturbative Iterated k-Steiner (PikS) method. 

For applications to multi-layer routing and three-dimensional VLSI structures, 
PlkS extends to the case of points lying on L parallel planes. The general three­
dimensional SMT problem corresponds to L -+ oo, and the planar formulation 
corresponds to L = 1. The different costs of routing between layers and routing 
on a given fixed layer may be modeled by varying the distance between the 
parallel planes. 

In three dimensions, PlkS exploits the generalization of Hanan's theorem to 
higher dimensions [223), namely, that there always exists an optimal Steiner 
tree whose Steiner points are chosen from the 0( n3 ) intersections of all planes 
that are orthogonal to some coordinate axis and pass through a point of P. 
The three-dimensional analog of Hwang's result suggests that the Steiner ratio, 
0 h ° COlt M ST t" J: h d' 0 0 t 5 h I.e. t e maximum colt SMT ra 10 tor t ree 1mens10ns 1s a most 3; owever, 
there is no known proof of this. An example consisting of six points located in 
the middle of the faces of a rectilinear cube establishes that ~ is a lower bound 
for the Steiner ratio in three dimensions. 
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2.4.3 Parallel Implementation 

The IlS and BlS algorithms are highly parallelizable since each one of p pro­
cessors can compute the MST savings of 0( nl) candidate Steiner points. We 
have undertaken a parallel implementation J'f IlS, where all processors send 
their best candidate to a master processor, which selects the best of these 
candidates for inclusion into the pointset. This procedure is iterated until no 
improving candidates can be found. The Parallel Virtual Machine (PVM) sys­
tem [230] was used for initiating processes on other machines and for controlling 
synchronization and communication among processes.8 

2.5 PRACTICAL IMPLEMENTATION OPTIONS FOR IlS 

This section describes practical ways to reduce the time complexity of an IlS 
implementation. We present three techniques: (i) an incremental MST update 
scheme, (ii) distribution of the computation over, e.g., a network of worksta­
tions, and (iii) use of tighter bounds on the maximum rectilinear MST degree 
in both two and three dimensions. 

2.5.1 Incremental MST Updates in Hatched 1-Steiner 

In computing the MST savings of each of the O(n2 ) Steiner candidates, a key 
fact is that once we have computed an MST over the pointset P, the addition 
of a single new point x into P induces only a constant number of changes 
between the topologies of M ST( P) and M ST( P U { x}). This follows from the 
observation that each point can have at most eight neighbors in a rectilinear 
planar MST, i.e. at most one per octant [124]. Thus, to update an MST with 
respect to a newly added point x, it suffices to consider only the closest point 
to x in each of the eight plane octants with respect to x (below, we refine this 
result and show that for each point it suffices to examine at most four potential 
candidates for connection in the MST). 

8 Initially, the "master" processor sends equal-sized subsets of the Steiner candidate set to 
the available processors, and the computation/response time of each processor is tracked. If 
any individual processor is determined to be considerably slower than the rest, it is henceforth 
given smaller tasks to perform. If a processor does not complete its task within a reasonable 
time, it is sent an abort message, and the task is reassigned to the fastest idle processor 
available. This prevents individual slow (or crashed) processors from seriously impeding the 
overall computation. Empirical result on this parallel implementation are given in Section 
2.8. 
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These observations suggest the following linear-time algorithm for dynamic 
MST maintenance: connect the new point x to each of its 0( 1) potential neigh­
bors (i.e, the closest point to x in each of the octants around x ), and delete 
the longest edge on any resulting cycle. Using this dynamic MST maintenance 
scheme, the MST savings of each Hanan candidate can be computed in linear 
time, and therefore the MST savings of all O(n2) Hanan candidates may be 
computed in time O(n3 ). This method was first described in [20]. 

(a) 

~~--
longest 
edge in 

(b) cycle (c) (d) 

Figure 2.23 Dynamic MST maintenance: adding a point to an 
existing MST entails connecting the point to its closest neighbor in 
each octant, and deleting the longest edge on each resulting cycle. 
The Euclidean metric has been used for clarity in this example. 

During each round of B1S we: (1) compute in O(n3 ) time the MST savings 
of all Hanan candidates, (2) sort them by decreasing MST savings in time 
O(n2 log n), and (3) march down the sorted list and add into the pointset those 
candidates with "non-interfering" MST savings (at linear time per candidate 
according to our dynamic MST maintenance scheme described above). Thus, 
an entire round of B1S can be implemented in this straight-forward manner in 
time O(n3 ). An execution example is shown in Figure 2.23, and Figure 2.24 
describes the algorithm formally. A similar method was used in [251] to obtain 
a sub-quadratic MST algorithm in higher dimensions, but no attempt was made 
to optimize the number of necessary regions. 9 

9 Frederickson [98) has given a sublinear-time algorithm for dynamic MST maintenance, 
but we prefer the linear-time scheme above due to its simplicity and ease of implementation. 
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Dynamic MST Maintenance 
Input: A set P of n points, M ST(P), a new point x 
Output: MST(P u {x}) 
T = MST(P) 
For i = 1 to #regions Do 

Find in region R, ( x) the point p E P closest to x 
Add edge (p, x) to T 
If T contains a cycle Then remove from T the longest edge on the cycle 

Output T 

Figure 2.24 Linear-time dynamic MST maintenance. 

2.5.2 MST Degree Bounds 

The complexity of dynamic MST maintenance, and thus the complexity of 
B1S, improves when we observe that only four regions suffice for dynamic MST 
maintenance in the Manhattan plane. These four regions are defined by the 
two lines oriented at +45 and -45 degrees (Figure 2.25(a)); we call this division 
of the plane the diagonal partition. A key property for regions and partitions 
in dynamic MST maintenance is the uniqueness property [113] [204]: 

The Uniqueness Property: Given a point pin d-dimensional space, a region 
R has the uniqueness property with respect to p if for every pair of points 
u,w E R, either d(w,u):::; d(w,p) or d(u,w):::; d(tt,p), where d(u,w) is the 
distance between u and w. 

A partition is said to satisfy the uniqueness property if each of its regions 
satisfies the uniqueness property. Any partition having the uniqueness property 
is useful for dynamic MST maintenance, since each region will contain at most 
one candidate for connection in the MST (recall the earlier use of "oriented 
Dirichlet cells" in the construction of Georgeakopoulos and Papadimitriou). 
We can show that the diagonal partition enjoys the uniqueness property. 

Lemma 2.5.1 For any point pin the Manhattan plane, the diagonal partition 
with respect top has the unzqueness property. 

Proof: The two diagonal lines through p partition the plane into four disjoint 
regions R1 through R4 (Figure 2.25(a)). Points on the boundary between two 
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neighboring regions may be arbitrarily assigned to either region. Consider any 
of the four regions, say R1, and points u, wE R1 (Figure 2.25(b)). Without 
loss of generality assume that d(u,p) ~ d(w,p). Consider the diamond Din R1 

with one corner at p, and with u on the boundary of D (see Figure 2.25(c)). Let 
c be the center of D, so that cis equidistant from all points of D, and let the ray 
from p through w intersect the boundary of D at b. By the triangle inequality, 
d(w,u) $ d(w,b)+d(b,c)+d(c,u) = d(w,b)+d(b,c)+d(c,p) = d(w,p). Thus, 
w is not closer top than to u, and the region has the uniqueness property. It 
follows that the diagonal partition has the uniqueness property. 0 

(a) (b) (c) 

Figure 2.25 The diagonal partition of the plane (a) into four regions 
with respect to a point p has the uniqueness property: for every 
two points u and w that lie in the same region (b), either d(w, u) ~ 
d(w,p) or else d(u,w) ~ d(u,p) (c). 

For any given dimension and metric, it is natural to seek an optimal partitioning 
scheme, i.e., one with the smallest possible number of regions. The set of five 
points consisting of the origin and the four corners of the diamond forces the 
MST to have degree four in the Manhattan plane. Thus, the diagonal partition 
is optimal. 

Even in three dimensions, the addition of a single new point p into P can 
induce at most a constant number oftopological changes between MST(P) and 
M ST( P U {p}). This follows from the fact that in any fixed dimension, each 
point can have at most 0(1) neighbors in a rectilinear MST. Therefore, the MST 
savings in three dimensions can be efficiently calculated by partitioning the 
space into 0(1) mutually disjoint regions R; such that each has the uniqueness 
property. This would enable a linear-time procedure to compute the MST 
savings of a given Steiner candidate. 

Using insights similar to those which led to Lemma 2.5.1, we can exhibit a 
partition of three-dimensional Manhattan space into 14 regions, with each re-
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gion having the uniqueness property. This partition corresponds to the faces 
of the solid that is obtained by chopping off the corners of a cube to yield 
six square faces and eight equilateral triangular faces (Figure 2.26( a-b)). This 
solid is known as a "cuboctahedron" [177]. The 14 regions of this partition 
are induced by the 14 faces of the cuboctahedron, and consist of six pyramids 
with square cross-section (Figure 2.26( c)) and eight pyramids with triangular 
cross-section (Figure 2.26( d)). Again, points located on region boundaries may 
be arbitrarily assigned to either adjacent region. We call this partition the 
cuboctahedral partition, and refer to the two types of induced regions as square 
pyramids and triangular pyramids. The following theorem implies that for any 
given pointset P and new point p in three-dim~nsional Manhattan space, there 
exists some MST over P U {p} in which p has degree ~ 14. 

Theorem 2.5.2 Given a point p in three-dimensional Manhattan space, each 
of the 14 regions in the cuboctahedral partition with respect top has the unique­
ness property. 

Proof: Consider any of the square pyramids R with respect to p (Figure 
2.26( c)), and let u, w E R. Assume without loss of generality that d( u, p) ~ 
d( w, p). Consider the locus of points D C Rat distance d( u, p) from p (Figure 
2.26(e)); D is the upper half of the boundary of an octahedron. Let c be the 
center of the octahedron determined by D, so that c is equidistant from all 
points of D. Let b be the intersection of the surface of D with a ray from p 
that passes through w. By the triangle inequality, d(w, u) ~ d(w, b)+ d(b, c)+ 
d(c, u) = d(w, b)+ d(b, c)+ d(c,p) = d(w,p). Thus, w is not closer top than to 
u, and the region R has the uniqueness property. 

Next, consider any of the triangular pyramids R with respect to p (Figure 
2.26(d)), and let u, wE R. Assume without loss of generality that d(u,p) ~ 
d( w, p ). Consider the set of points D C R at distance d( u, p) from p (Figure 
2.26(f)). Let b be the intersection of D with the ray from p that passes through 
w. By the triangle inequality, d( w, u) ~ d( w, b)+ d(b, u) ~ d( w, b)+ d(b, p) = 
d( w,p). Thus, w is not closer top than to u, and the region R has the uniqueness 
property. 0 

Theorem 2.5.3 There are three-dimensional pointsets for which the maximum 
degree of any MST is at least 13. 

Proof: Consider the pointset P= {(0,0,0), (±100,0,0), (0,± 100,0), (0,0,±100), 
(47,-4,49), (-6,-49,45), (-49,8,43), (-4,47,-49), (-49,-6,-45), (8,-49,-43), (49,49,2)f, 
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Figure 2.26 A truncated cube (a-b) induces a three-dimensional 
cuboctahedral space partition where each region has the uniqueness 
property. The 14 regions consist of six square pyramids (c), and 
eight triangular pyramids (d). Using the triangle inequality, the 
uniqueness property may be shown to hold for each region (e-f). 
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The distance between every point and the origin is exactly 100 units, but the 
distance between any two non-origin points is strictly greater than 100 units. 
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Therefore, the MST over P is unique (i.e., all 13 points must connect to the 
origin in the MST) and the origin point will have degree 13 in the MST. 0 

Given that each point can connect to at most 14 neighbors in the MST, linear­
time dynamic MST maintenance in three dimensions is accomplished by con­
necting the new point in turn to each of$ 14 potential neighbors, then deleting 
the longest edge on each resulting cycle. This method was first described in 
[21]. It is still an open question whether for three dimensions the cuboctahe­
dral partition is optimal (i.e., whether there exists a partition of space into 13 
regions having the uniqueness property). 

2.6 ON THE MAXIMUM MST DEGREE 

Although the llS algorithm described in Section 2.3.1 runs within time O(n3 ), 

the constant hidden in this asymptotic notation is exponential in the maximum 
MST degree. In this section we show that every pointset in the Manhattan 
plane has an MST with maximum degree $ 4. This result reduces the running 
time of the US implementation, and is of independent theoretical interest [204). 

Even though the degree of any single node in a rectilinear MST can be made 
$ 4, Theorem 2.5.1 does not imply that the degrees of all nodes can be made$ 4 
simultaneously. For example, decreasing the degree of one node may increase 
the degree of neighboring nodes. It turns out, however, that ties for connection 
during MST construction can always be broken appropriately so as to keep 
the maximum MST degree low. We begin by defining a strict version of the 
uniqueness property: 

The Strict Uniqueness Property: Given a point p in d-dimensional space, 
a region R has the strict uniqueness property with respect to p if for every pair 
of points u,w E R, either d(w,u) < d(w,p) or d(u,w) < d(u,p). 

Each d-dimensional region that satisfies the strict uniqueness property may 
contribute at most one to the MST degree at p. Using a perturbative argument, 
we can prove that by breaking ties judiciously, the maximum MST degree is 
no larger than the number of d-dimensional regions in a partition having the 
strict uniqueness property. 
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Theorem 2.6.1 If there exists a partition of d-dimensional space into r re­
gions, with r' $ r of these regions being d-dimensional and satisfying the strict 
uniqueness property {the rest of the r - r' regions are lower-dimensional, and 
are not required to satisfy the uniqueness property), then the maximum MST 
degree of any pointset in this space is r' or less. 

Proof: Given a pointset P, perturb the coordinates of each point by a tiny 
amount so that the lower-dimensional regions with respect to each point do 
not contain any other points. This is always possible to do, and yields a new 
perturbed pointset P'. Because interpoint distances in P' differ by only a tiny 
amount from the corresponding interpoint distances in P, the cost of the MSTs 
over P' and P will differ by only a similarly tiny amount which we can make 
arbitrarily small. But the MST over P' has maximum degree r', since only 
the r' d-dimensional regions of the partition are nonempty with respect to the 
points of P', and these regions satisfy the strict uniqueness property. We now 
use the topology of the MST for P' to connect the corresponding points of P, 
inducing an MST over P having maximum degree r'. 0 

Applications of this technique to two and three dimensions are immediate: 

Corollary 2.6.2 Every pointset P in the Manhattan plane has an MST with 
maximum degree $ 4. 

Proof: Modify the diagonal partition into a strict diagonal partition hav­
ing a total of eight regions incident to each point of P: four two-dimensional 
open wedges (i.e., not containing any of their own boundary points), and four 
one-dimensional rays (i.e., the boundaries between the wedges). By arguments 
similar to those of Theorem 2.5.1, each of the open wedges possesses the strict 
uniqueness property, and thus by Theorem 2.6.1 points lying on the boundaries 
between wedges can be perturbed into the interiors of the wedges themselves, 
leaving the one-dimensional regions empty of points. The maximum MST de­
gree given such a partitioning scheme is ~ 4. 0 

This bound is tight, e.g., for the center and vertices of a diamond. The best 
previous bound was that the maximum MST degree in the Manhattan plane is 
~ 6 [124]. 

Corollary 2.6.3 Every pointset in three-dimensional Manhattan space has an 
MST with maximum degree ~ 14. 
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Proof: Modify the cuboctahedral partition into a strict cuboctahedral par­
tition having a total of 38 regions incident to each point of P: 14 three­
dimensional open pyramids (i.e., eight triangular pyramids and six square 
pyramids, each not containing any of their own boundary points), and 24 
two-dimensional regions (i.e., corresponding to all the boundaries between the 
pyramids). By arguments identical to those of Theorem 2.5.2, each of the open 
pyramids possesses the strict uniqueness property, and thus by Theorem 2.6.1, 
points lying on the boundaries between the 14 pyramids can be perturbed into 
the interiors of these pyramids. The maximum MST degree given such a par­
titioning scheme is ~ 14. 0 

The best previous bound for the maximum MST degree in three-dimensional 
Manhattan space was 26 [69, 238]. it is still open whether there exists an 
example which forces a node in the MST to have degree 14. Interestingly, 
Corollaries 2.6.2 and 2.6.3 also settle some open questions in complexity theory. 
It is known that the problem of finding a degree-bounded MST is NP-complete, 
even when the degree bound is fixed at two (yielding the Traveling Salesman 
Problem), or at three [190]. Corollary 2.6.2 implies that the degree-bounded 
MST problem in the Manhattan plane is solvable in polynomial time when the 
degree bound is fixed at five or at four, since we have shown how to find an 
MST that meets these maximum degree constraints. Similarly, Corollary 2.6.3 
implies that the degree-bounded MST problem in three-dimensional Manhattan 
space is solvable in polynomial time when the degree bound is ~ 14. The work 
of Robins and Salowe [204] investigates the maximum MST degree for higher 
dimensions and other Lp norms, and relates the maximum MST degree to the 
so-called "Hadwiger" numbers. 

2.7 STEINER TREES IN GRAPHS 

Given a weighted graph G = (V, E), E ~ V x V, and N ~ V, the graph 
version of the SMT problem seeks a minimum-cost tree in G that spans N 
[48, 91, 166]. Any node in V- N is a potential Steiner point. Each graph edge 
eii has a weight Wij, and the cost of a tree (or any sub graph) is the sum of the 
weights of its edges. The graph Steiner problem arises when we wish to route a 
signal net in the presence of obstacles and congestion [104], or in the presence 
of variable-cost routing resources, as are present in field-programmable gate 
arrays [5, 7, 8]. 
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The Graph Steiner Minimal Tree (GSMT) problem: Given a weighted 
graph G = (V, E), and a set of nodes N ~ V, find a minimum-cost tree 
T = (V', E') with N ~ V' ~ V and E' ~ E. 

The GSMT problem is NP-complete, since the geometric SMT problem is a 
special case. The heuristic of Kou, Markowsky and Berman (KMB) (159) solves 
the GSMT problem in polynomial time with performance ratio ~ 2, using the 
following three basic steps (see Figure 2.27). 

• Construct the complete graph G' over N with the weight of each edge 
eii equal to the cost of the corresponding shortest path in G between ni 
and ni. We call this shortest path path( ni, ni), and its cost is denoted 
dista(ni,ni)· 

• Compute MST(G'), the minimum spanning tree of G', and expand each 
edge eij of MST( G') into the corresponding path( ni, ni) to yield sub graph 
G" that spans N. 

• Finally, compute the minimum spanning tree MST(G"), and delete pen­
dant edges from MST( G") until all leaves are members of N. 

The resulting tree is an approximation to the GSMT that has cost no more 
than 2 · (1- t) times optimal, where Lis the minimum number of leaves in 
any optimal Steiner tree solution (159). 

The Kou, Markowsky and Berman (KMB) Algorithm 
Input: A graph G = (V, E) with edge weights Wij and a. set N ~ V 
Output: A low-cost tree T' = (V', E') spanning N (i.e. N C V' and E' C E) 
G'- (N,N x N), with edge weights wii = dista(n;,nj) 
ComputeT= (N, E") = MST(G') 
G" = Ue;jEE" patha(n;, ni) 
ComputeT'= MST(G") 
Delete pendant edges from T' until all leaf nodes are in N 
Output T' 

Figure 2.27 The KMB heuristic for the GSMT problem. 

The Iterated 1-Steiner approach can be generalized to solve the Steiner problem 
in arbitrary weighted graphs, by combining the geometric IlS heuristic with 
the KMB graph algorithm. The resulting hybrid method inherits the good 
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average performance of the Iterated 1-Steiner method, while also enjoying the 
error-bounded performance of the KMB algorithm. We refer to this hybrid 
method as the Graph Iterated 1-Steiner (GilS) algorithm. The GUS method is 
essentially an adaptation of IlS to graphs, where the "MST" in the inner loop 
is replaced with the KMB construction. That is, instead of using an "MST" 
subroutine to determine the "savings" of a candidate Steiner point/node, we 
use the KMB algorithm for this purpose. Thus, given a graph G = (V, E), a 
set N <;;; V, and a set S of potential Steiner points, we define the following: 

.6-KMB(N, S) = cost(KMB(N))- cost(KMB(N US)) 

The GllS algorithm (Figure 2.28) repeatedly finds Steiner node candidates 
that reduce the overall KMB cost and includes them into the growing set of 
Steiner nodes S. The cost of the KMB tree over N U S will decrease with 
each added node, and the construction terminates when there is no x E V with 
.6-KMB(N US, {x}) > 0. 

Graph Iterated 1-Steiner (GilS) Algorithm 
Input: A weighted graph G = (V, E) and a set N ~ V 
Output: A low-cost tree T' = (V', E') spanning N (i.e. N ~ V' C F and E' C E) 
S=0 
While T = {x E V- N I ~KMB(NuS, {x}) > 0} -:f; 0 Do 

Find x E T with maximum ~KMB( N U S, { x}) 
S=SU{x} 

Return KMB(N uS) 

Figure 2.28 The Graph Iterated !-Steiner algorithm (GilS). 

Given a weighted graph and an arbitrary set of nodes N, a performance ratio 
for GllS of 2 · (1- t) follows from the KMB bound and the fact that the cost of 
the GUS construction cannot exceed that of the KMB construction. If INI ~ 3 
(e.g., a VLSI signal net with three or fewer terminals), GUS is guaranteed to 
find an optimal solution. Although the worst-case performance ratio of GllS 
is the same as that of KMB, in practice GllS significantly outperforms KMB 
[7, 8]. Given a faster implementation of the KMB method [249], the GllS 
algorithm can be implemented within time O(INI · IGI + INI4 log INI), where 
INI ~ lVI is the number of nodes to be spanned and IGI = lVI +lEI is the 
size of the graph. Other works that address Steiner routing in a graph include 
[48, 104, 166]. 
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Note that the GIIS template above can be viewed as an Iterated J( M B (IKMB) 
construction, and that KMB inside the inner loop may be replaced with any 
other graph Steiner heuristic, such as that of Zelikovsky (ZEL) [254], yield­
ing an Iterated Zelikovsky (IZEL) heuristic. IZEL enjoys the same theoretical 
performance bound as ZEL, namely 161 • Experiments have shown that these 
heuristics in order of increasing empirical average performance are: KMB, ZEL, 
IKMB, and IZEL [9]. Thus, iterating a given Steiner heuristic is an effective 
general mechanism to improve empirical performance without sacrificing theo­
retical performance bounds. 

2.8 EXPERIMENTAL RESULTS 

We have implemented both serial and parallel versions of the IlS, B1S, and 
PI2S algorithms, using C in the Sun workstation environment. We compared 
these with the fastest known optimal Steiner tree algorithm (OPT) of Salowe 
and Warme [208] on up to 10000 pointsets of various cardinalities. Random 
instances were generated by choosing the coordinates of each point indepen­
dently from a uniform distribution in a 10000 x 10000 grid; such instances are 
statistically similar to the terminal locations of actual VLSI nets and are a 
standard testbed for Steiner tree heuristics [138]. Both IlS and B1S have very 
similar average performance, approaching 11% improvement over MST cost 
(Figure 2.30(a)). 10 The average number of rounds for B1S is 2.5 for sets of 
300 points, and was never observed to be more than 5 on any instance (Figure 
2.30(b)); over 95% of the total improvement occurs in the first round, and over 
99% of the improvement occurs in the first two rounds. The average number 
of Steiner points generated by BlS grows linearly with the number of points 
(Figure 2.30(c)). An example of the output of BlS on a random 300-point set 
is shown in Figure 2.29. 

Figure 2.31(a) shows the performance comparison of B1S, PI2S, and OPT on 
small pointsets. We observe that the average performance of PI2S is nearly 
optimal: for n = 8, PI2S is on average only about 0.11% away from optimal, 
and solutions are optimal in about 90% of the cases (Figure 2.31(b)). Even 
for n = 30, B1S is only about 0.30% away from optimal, and yields optimal 
solutions in about one quarter of the cases. 

10 Recently, other Steiner heuristics with performance approaching that of ItS were pro­
posed by Borah et al. [36], Chao and Hsu [ 43], and Lewis et al. [171]. 
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Figure 2.29 An example of the output of BlS on a random set of 
300 points (hollow dots). The Steiner points produced by BlS are 
denoted by solid dots. 

We timed the execution of the serial and parallel versions of BlS, using both a 
naive O(n4 logn) implementation and the O(n3 ) implementation which incor­
porates the efficient, dynamic MST maintenance as described in Section 2.5. 
The parallel implementation (see 2.4.3used nine Sun 4/40 SPARCl worksta­
tions, with a Sun 4/75 SPARC2 as the master processor. For n = 100, the 
fast serial implementation is 247 times faster than the naive implementation, 
and the parallel implementation running on 10 processors is 1163 times faster 
(Figure 2.30( d)). Even for small pointsets, the enhanced implementation is 
considerably faster than the naive one: for n = 5, the serial BlS is on average 
more than twice as fast as the naive implementation, while for n = 10 the se­
rial speedup factor approaches 7. Notice that the serial speedup increases with 
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problem size; the parallel speedup (defined as the parallel time divided by the 
serial time) also increases with problem size, reaching about 7.2 for n = 250 
using 10 processors. 

The average running times of the algorithms for various pointset cardinalities 
are compared in Figure 2.30( d). The most time-efficient of the heuristics is 
B1S, requiring an average of 0.009 CPU seconds for n = 8, and an average 
of 0.375 seconds for n = 30. Using PikS (or PBkS) with k > 2 improves 
the performance, but slows down the algorithm. Recall that for arbitrary k, 
PlkS (PBkS) always yields optimal solutions for ~ k + 2 points, but has time 
complexity greater by a factor of n2(k-l) than PllS (PBlS). While this enables 
a smooth tradeoff between performance and efficiency, the performance of the 
PBkS algorithm with k = 2 is already so close to optimal that use of k > 2 is 
not likely to justify the resulting time penalty in most applications. 

In three dimensions, we observed that the limit when the number of planes L 
approaches oo, the average performance of PBlS approaches 15% improvement 
over MST cost, and the performance increases with L (Figure 2.31( c)). Recall 
that the average savings over MST cost in three dimensions is expected to 
be higher than in two dimensions, since the worst-case performance ratio is 
higher also (i.e., ! for three dimensions vs. ~ for two dimensions). The number 
of added Steiner points in three dimensions grows linearly with the pointset 
cardinality (Figure 2.31(d)). In all cases, the L parallel planes were uniformly 
spaced in the unit cube (i.e., they were separated by !j; units apart, where 
G = 10000 is the gridsize). The OPT algorithm of Salowe and Warme [208) 
does not generalize to higher dimensions, and thus we were not able to compare 
the three-dimensional version of PBlS against optimal solutions. As in two 
dimensions, the average number of rounds for BlS is very small. 
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Figure 2.30 (a) Average performance of BlS, shown as percent 
improvement over MST cost. (b) Average number of rounds for 
BlS. (c) Average number of Steiner points induced by BlS (verti­
cal bars indicate the range of the minimum and maximum number 
of Steiner points added) (d) Average execution times (in CPU sec­
onds) for BlS, for both the naive implementation, as well as the 
"fast" BlS which uses the incremental MST maintenance scheme 
(also shown are OPT and the parallel version of BlS). 
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Figure 2.31 (a) Average performance in two dimensions of PI2S, 
BlS, and OPT; note that PI2S is only 0.25% (or less) away from 
optimal. (b) Percentage of all cases when the heuristics find the 
optimal solution (note that PI2S yields optimal solutions a large 
percentage of the time). (c) Average performance of PB lS in three 
dimensions for various values of L = number of parallel planes. (d) 
Average number of Steiner points added by BlS in three dimensions 
for L = oo. 
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Overview of the Chapter 

This chapter considers the problem of minimizing signal delay for performance­
driven system design. The signal delay objective moves us from the unoriented 
pointset P of the Steiner problem to an oriented signal net S which has an 
identified source. Optimal-delay wiring geometries can differ substantially from 
those of optimal-area (Steiner minimal tree) solutions, particularly as technol­
ogy moves into submicron regimes and layout dimensions continue to increase. 
Our discussion reflects the history of our recent research, which has addressed 
four major issues. 

First, there is the issue of technology-dependent methodologies versus technology­
independent methodologies. Analysis of the Elmore delay formula for dis­
tributed RC trees motivates a cost-radius tradeoff that is clearly dependent 
on technology, as has been discussed in [13, 16, 17, 62, 63, 156]. Thus, routing 
tree constructions that are based on aspects of technology, net criticality, or 
other factors can potentially improve over static, "oblivious" methods. 

Second, there is the issue of "actual delay" versus geometric objectives. Many 
early works used geometric objectives, e.g., tree cost or tree radius, essentially 
for algorithmic convenience and tractability of analysis. By contrast, the class 
of objectives proposed by Boese et al. [32, 34]leads to improved performance by 
optimizing Elmore delay directly. A review of the various delay estimates, along 
with data establishing their respective fidelities to SPICE-computed delay, is 
given in the Appendix. 

64 
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Third, there is the issue of minimizing net-dependent delays versus sink­
dependent delays. Because timing-driven placement and routing will usually be 
iterated with static timing estimation, critical-path information is often avail­
able during the routing tree construction. Thus, a formulation which optimizes 
delay to a set of critical sinks, as in the work of Boese, Kahng and Robins [34), 
is of interest. 

Finally, the fourth issue involves quantifying the the near-optimality of minimum­
delay routing heuristics. Just as empirical studies showed that IlS averages 
within a fraction of one percent from optimal for the rectilinear SMT problem, 
the "SERT-C" heuristic proposed in [34] is actually very close to optimal in 
terms of weighted critical sink delays. Boese and coauthors [32] established 
a basis for this assessment by showing how to construct Steiner trees with 
optimal Elmore delay. Their proof of correctness uses (i) a generalization of 
Hanan's theorem to Elmore delay-optimal Steiner trees, and (ii) a "peeling" 
decomposition for optimal Steiner trees. 

In addition to these issues and their solutions, we will describe a number of 
confirming experimental results. The chapter concludes with a survey of other 
recent advances in performance-driven interconnect design, notably the ap­
plication of non-tree topologies and wiresizing techniques to improve circuit 
performance. 

3.1 PRELIMINARIES 

With the scaling of device technology and die size, interconnection delay now 
contributes up to 70% of the clock cycle in dense, high performance circuits 
[18, 77, 234]. As a result, performance-driven layout design has been studied ac­
tively since the late 1980's. Because module placement has a significant effect on 
the space of achievable signal delays, initial research centered on timing-driven 
placement, in which the objective is for adjacent modules on critical paths to be 
placed close together. Examples of timing-driven placement algorithms include 
a "zero-slack" algorithm proposed by Hauge et al. [119]; the fictitious-facilities 
and floating-anchors methods of Marek-Sadowska and Lin [178); and a linear 
programming approach by Jackson et al. [140). Several other timing-driven 
placement approaches, including methods based on simulated annealing, have 
been proposed in [77, 173, 234]. Since in general no global routing solution is 
available at the placement step, each of these methods uses a simple estimate 
of interconnection delay, such as those discussed below. 



66 CHAPTER 3 

Given a timing-driven module placement, the corresponding timing-driven rout­
ing algorithm minimizes average or maximum signal delay from the source ter­
minal to the sink terminals of a signal net. An example method is that Dunlop 
et al. [79], which determines net priorities based on static timing analysis; nets 
with high priorities are processed earlier using fewer feedthroughs. Jackson et 
al. [142] outlined a hierarchical approach, and Prasitjutrakul and Kubitz [192] 
proposed a router for building-block design based on the A* search algorithm. 
These results have had great influence on succeeding works, but fall short of 
providing general, well-motivated solutions to the problem of optimal-delay 
routing. In what follows, all of our methods will be motivated by a simple, 
recurring question: what is the proper objective for optimal-delay routing tree 
construction? 

3.1.1 Definitions 

We define a signal netS= {so,sl, ... ,sn} to be a set of n + 1 terminals, 
with so the source and the remaining terminals sinks. Performance-driven 
interconnection problems have two basic flavors: geometric instances arising 
in cell-based design, and weighted graph instances arising in building-block 
design. In cell-based design, routing cost is closely approximated by Manhattan 
distance, while in building-block design, routing cost is typically given by the 
cost of a shortest path in the channel intersection graph of the layout (see 
Section 1.2). Thus, the signal netS is more generally viewed as being embedded 
in an underlying routing graph G = (V, E) with S ~ V. The graph G is 
connected and has variable edge weights (costs): each edge ei; E E has a cost 
d( Vi, v;) equal to the routing cost between Vi and v;. We seek a routing tree T 
in G that spans S. The cost ofT is defined to be cost(T) = l::e; ·eT d( Vi, v; ). 
When V = S, the spanning tree with minimum cost is the MST dr TM. 

The cost of a path in G is defined as the sum of its edge costs. The minimum­
cost path in G between two vertices Vi and v; is denoted minpatha (Vi, v;), and 
we use dista(vi,v;) to denote its cost. In a routing tree, minpathT(Vi,Vj) is 
simply the unique Vi-Vj path. The distance in a tree from the source to a given 
sink Si is. specially denoted as I, = distT (so, Si). 

In much of the following discussion, the radius of either a signal net or a routing 
tree will hold special interest. The radius of a routing tree T is r(T) = rll!'JX li. 

l<a<n 
Given signal net S and an underlying routing graph G, we use Ri to denote 
the cost of the shortest so-si path in G, i.e., Ri = dista(so, si)· A shortest 
paths tree, denoted as an SPT or Ts, has li = Ri for all sinks Si. At times, 
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we use R to denote the maximum R; value over all sinks s;, and we say that 
R is the radius of the signal net. Much of our discussion will concern the case 
of S being embedded i~ geometry, so that G is a complete graph with each e;j 

having cost equal to the Manhattan distance, d;j, between v; and Vj. In this 
case, R; = d0; for all sinks s;. Finally, a vertex v that is embedded in the plane 
has :c- and y-wordinates v., and Vy, respectively. 

3.1.2 The Linear and Elmore Delay Approximations 

The proper objective to use in efficiently constructing a "high-performance 
routing tree" over a given signal net is not yet established. Many works rely o~ 
the linear delay model, where the signal delay from s; to Sj is proportional to 
the length of the s;-si path in the routing tree. The linear model can be used 
to motivate essentially geometric routing constructions (e.g., a shortest paths 
tree has optimum delay at every sink according to the linear model). However, 
valuable insights are also obtained by considering the Elmore delay model, i.e., 
the first moment of the impulse response for a distributed RC representation 
of the routing tree [87]. 

Elmore delay in an RC tree is defined as follows [205, 240]. Given routing tree 
T rooted at the source s0 , let ev denote the edge from node v to its parent 
in T. The resistance and capacitance of edge ev are denoted by r •· and c •• , 
respectively. Let Tv denote the subtree ofT rooted at v, and let Cv denote 
the sink capacitance of v (we assume that Cv = 0 if v is a Steiner node). We 
use Cv to denote the tree capacitance of Tv, defined to be the sum of sink and 
edge capacitances in Tv (note that when Tv is a single (leaf) node, Cv is equal 
to the corresponding sink capacitance cv ). Using this notation, the Elmore 
delay along edge ev equals r •• ( .:r + Cv ). Let rd denote the on-resistance of 
the output driver at the source. Then the Elmore delay tEv(s;) at sinks; is 

tEv(si) = rdCa 0 + L r •• (;· + Cv) 
e.Epath(so,s;) 

(3.1) 

A fundamental property of this expression, which has been noted by Lin and 
Mead [176], Rubinstein et al. [205), Tsay [240] and others, is that tED ( s;) can 
be evaluated for all i = 1, ... , n in 0( n) time. Two depth-first traversals of the 
tree are sufficient: the first traversal calculates all Cv values and the delays on 
each edge, while the second adds up the delays on each source-sink path. This 
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calculation is enabling to the efficient methodologies described in Section 3.3 
below. 

In the Appendix, we review the underlying theory behind several efficient de­
lay approximations, including Elmore's approximation and the class of two-pole 
(moment-matching) methods. The Appendix also reviews recent work of Boese 
et al. (30, 31, 32, 33, 34] which shows that Elmore delay has high fidelity with re­
spect to SPICE-computed delay over a wide range of technologies. It turns out 
that although Elmore's formula can yield inaccurate delay estimates, the rank­
ing of alternate routing tree solutions by Elmore delay closely reflects the rank­
ing obtained using SPICE3e2. Similar results have been obtained by Kim et al. 
(157], who simulated critical-path delays over a suite of 209 ripple-carry adder 
implementations and found near-perfect correlation between SPICE-computed 
and Elmore delays. A theoretical motivation for this correspondence, based on 
group delay, was given in (245]. These results form the basis of our focus on 
Elmore delay at the end of this chapter. 

If re. and ce. are proportional to the length of ev (with unit resistance and 
unit capacitance given by r and c), then the rd · C~ 0 term in Equation 3.1 
has linear dependence on cost(T), while the summation term has quadratic 
dependence on I;. As a result, we can distill an essential "cost-radius conflict" 
inherent in routing tree design: (i) when rd is relatively large, the rd . c~o 
term dominates the summation and suggests a minimum-cost routing solution, 
but (ii) when rd is relatively small, the quadratic dependence on source-sink 
pathlength dominates, and suggests a "star-like", shortest paths tree topology. 

An essentially similar insight was derived in [28, 65, 257] from the simple upper 
bound on Elmore delay due to Rubinstein et al. (205]. The Elmore delay upper 
bound for a tree T is simply the summation, over all nodes in T, of the RC 
product arising when each node capacitance sees all the resistance between the 
node and the source.1 Note that this upper bound applies generically to delay at 
every sink, unlike the sink-specific expression of Equation 3.1. The upper bound 
can be re-expressed as the sum of four terms: one term is minimized when T has 
minimum cost; a second term is minimized when T is a shortest paths tree; a 
third term is minimized when T is what the authors call a "quadratic minimum 

1 Let sj be one of a. finite number of points used to represent the tree, a.nd let c' 1 denote the 
total capacitance a.t sj (when the tree is modeled a.s composed of a. finite number of segments, 
c' j indicates the sum of the internal capacitance (e.g., if sj is a sink) and the wire capacitance 
between sj a.nd the nearest point on the sj-so path). If Rj denotes the total resistance on 

the sj-so path, then the upper bound on a.ny sink delay in T is tED $ I: j Rj c1 j, where the 

summation is taken over a.ll points in the tree, not just the sinks s;. 
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Steiner tree"; and the fourth term is a constant. As in the analysis of Equation 
3.1, it is the relative size of rd which indicates the dominant term in the delay 
expression. The size of rd relative to the unit resistance r is a "resistance 
ratio" [28, 65, 256) that captures the technology vis-a-vis routing tree design. 
Values of r;- have typically decreased in current submicron CMOS and MCM 
substrate technologies (see Table 3.1), suggesting that the traditional minimum­
cost objective is becoming less germane to performance-driven routing. 

Name ICl IC2 IC3 MCM 
Technology 2.0 p,m 1.2p,m 0.5 p,m MCM 

Td 164.0 0 212.1 0 270.0 0 25.0 0 
r 0.033 0/ p,m 0.073 0/ p,m 0.112 0/ p,m 0.008 0/ p,m 
c 0.019 !Ffp,m 0.022 /Ffp,m 0.039 f F / p.m 0.06 /Ffp.m 
c; 5.7 JF 7.06 !F 1.0 JF 1000 JF 

!f (x 106 p.m) 0.0050 0.0029 0.0024 0.0031 
chip size lxl cm2 lxl cm2 lxl cm2 lOxlO cm2 

Table 3.1 Interconnect parameters for three CMOS IC technolo­
gies and an MCM technology. Parasitics for the ICl and IC2 tech­
nologies are provided by the MOSIS project at the USC Informa­
tion Sciences Institute; IC3 parasitics are courtesy of the Micro­
electronics Center of North Carolina; MCM interconnect parasitics 
are courtesy of Professor Wayne W.-M. Dai of UC Santa Cruz and 
correspond to data provided by AT&T Microelectronics Division. 
Unit inductance for the MCM interconnect is 380/ H / J.lm, and is 
assumed negligible for IC interconnect. The rd values are scaled 
driver resistances. Sink loading capacitances (Ci) are derived for 
minimum-size transistors. 

3.2 GEOMETRIC APPROACHES TO DELAY 
MINIMIZATION 

The above analysis of Elmore delay provides a retrospective validation of several 
minimum-delay routing tree heuristics which trade off between tree cost and 
tree radius. In this section, we first survey two early works that adopt such 
geometric "cost-radius" intuitions, and then present three effective classes of 
heuristics that are also based on purely geometric objectives. 



70 CHAPTER 3 

3.2.1 Early Cost-Radius Tradeoffs 

An early work of Cohoon and Randall [57] is notable for its prescient insights. 
For any given signal net, [57] proposed the construction of a "maximum per­
formance tree" corresponding to "a shortest path tree ... with minimum total 
length", and noted that such a tree seems difficult to construct. While the 
minimum-cost shortest paths (spanning) tree is easily computed2 , the Steiner 
version of Cohoon and Randall's question is precisely the rectilinear Steiner 
arborescence problem discussed in Section 3.2.4 below. A heuristic was given 
which determines a central trunk for the Steiner topology, then "attempt[s] 
to combine the best features of an RMST and an RSPT", i.e., a rectilinear 
minimum spanning tree and a rectilinear shortest paths tree. This idea, too, is 
interesting in light ofthe various cost-radius tradeoffs that are discussed below. 
The heuristic in [57] connects the most distant sink directly to the source with 
a wire of length R, then proceeds with an MST-like construction; if a terminal 
Si is about to be added into the tree with li > R, then the method reverts back 
to an SPT-like construction. In this way, all source-sink paths are guaranteed 
to be of length ~ R. A final phase of the heuristic performs edge-overlapping 
to further reduce the Steiner tree cost. 

The work of Cong et al. [61], which was contemporaneous with [57], also 
observed the existence of conflicting min-cost and min-radius objectives in 
performance-driven routing. While the shortest paths tree (SPT, or Ts) has 
the smallest possible radius of any routing tree, its cost might be O(jSj) times 
greater than the cost of the minimum spanning tree (MST, or TM ); see Figure 
3.1. On the other hand, the radius r(TM) can be much larger than 1·(Ts ). 

To address both tree radius and tree cost in the routing construction, [61] 
proposed the following: 

The Bounded-Radius Minimum Routing Tree (BRMRT) Problem: 
Given a parameter t: ;::: 0 and a signal net with radius R, find a minimum­
cost routing tree T with radius r(T) ~ (1 + t:) · R. 

The parameter t: specifies a tradeoff between the minimum-radius and minimum­
cost objectives. When t: = 0, a minimum-radius spanning tree is obtained, and 
as t: increases, the weaker radius restriction allows further reduction of tree 
cost. When t: = oo, a minimum-cost spanning tree is obtained. Figure 3.2 gives 

2 We call such a tree a minimum-cost spanning arborescence. It may be comput.ed by 
executing Dijkstra's single-source shortest paths algorithm, and breaking ties in each pass 
so that the clos.est possible node is chosen among all possible parents of the new permanent 
node. 
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(a) (b) (c) 

Figure 3.1 Three interconnection trees for the same signal net with 
so at the center: (a) the shortest paths tree Ts; (b) the minimum 
spanning tree TM; and (c) a "tradeoff" between the two construc­
tions. 
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an example with three distinct spanning trees obtained using different values 
off: Figure 3.2(a) shows a minimum-radius spanning tree corresponding to 
the case f = 0, with r(T) = 6; Figure 3.2(b) shows a solution with e: = 1 and 
r(T) = 10; and Figure 3.2(c) shows the minimum spanning tree corresponding 
to the case f = oo, with r(T) = 14. The complexity of the BRMRT formulation 
for spanning trees is still open; when Steiner points are allowed in the routing 
tree, choosing e: = oo yields the Steiner minimal tree formulation. 

3 3 

6 
4 

4 3 3 3 

(a) £ = 0, cost(T) = 17, r(T)=6 (b) £ = I, cost(T) = 15, r{T)= 10 {c) E =oo, cost{T) = 14, r{T)= 14 

Figure 3.2 Increasing f may result in decreased tree cost, but in­
creased tree radius. 
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The Bounded-Prim (BPRIM) Algorithm 

Recall that in cell-based design methodologies, routing costs are closely approx­
imated by geometric distance, and the underlying routing graph is essentially 
the complete graph G = (V, E) with V = S. In this regime, spanning tree solu­
tions will be of interest, even for performance-driven routing formulations: (i) 
spanning trees are often easier to compute than Steiner trees, and (ii) a span­
ning solution can be easily converted into a corresponding Steiner solution by 
edge-overlapping, while retaining essentially identical radius parameters. For 
the BRMRT variant which seeks a bounded-radius spanning tree, an effect.ive 
heuristic follows the general scheme of Prim's minimum spanning tree con­
struction [196]. This "Bounded-Prim" (BPRIM) algorithm (Figure 3.3) grows 
a tree T = (V', E') which initially contains only the source so. At each step, 
terminals Si E V' and Sj E S - V' are determined such that d( Si, Sj) is mini­
mum. If adding the edge ( Si, Sj) to T does not violate the radius constraint, 
i.e., /; + d( s;, s;) :::; (1 +c) · R, the edge ( Si, s;) is added to T. Otherwise, the 
algorithm "backtraces" along the path from Si to so in T, and finds the first 
terminal s;• such that the edge ( Si', Sj) is appropriate, i.e., /;• + d( s;•, Sj) :::; R. 
The edge ( s;•, Sj) is then added to the tree. In the worst case, the back tracing 
will terminate with s;• = s0 , since edge ( s0 , Sj) is certain to be appropriate. 

Note that the back tracing chooses s;• so that li' + d( Si', Sj) :::; R, instead of the 
more obvious condition :::; (1 +c) · R. This introduces some "slack" at Sj, so 
that terminals added later within an c · R neighborhood of s; will not cause 
additional backtracing. Limiting the amount of backtracing in this way keeps 
the cost of the resulting tree closer to that of the minimum spanning tree, while 
still guaranteeing that backtracing is always possible. By contrast, the method 
of Cohoon and Randall always enforces c = 0 in its construction. The most 
direct implementation of BPRIM requires 6(n2 ) time since each new terminal 
can force examination of most of the previously added terminals. 

It is easy to see that r(TBPRIM) is never greater than r(TM) if the MST TM 
is unique. 

Lemm,a 3.2.1 If the MST TM is unique, then r(TBPRIM):::; r(TM ). 

Proof: If r(TM) :S ( 1 + c) · R, then r(TBP RIM) = r(TM) since TBP RIM and 
TM will each be uniquely constructed, and will be identical to each other. 
Otherwise, r(TBPRIM) :::; (1 +c)· R < r(TM) by construction. 0 
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Algorithm BPRIM: Computing a bounded-radius spanning tree 
Input: Net S with radius R, source so; parameter f ~ 0 
Output: Spanning tree TBPRIM with r(TBPRIM) < (1 +f)· R 
T = (V ,E') = ({so},0) 
While IV'I <lSI 

Selects; E V' and Sj E S- V' minimizing dist(s;, sj) 
If l; + dist(s;, Sj) :5 (1 +f)· R Then s;• = s; 
Else find the first terminal s;• along the path in T from s; to so 

such that I;• + dist( s;•, Sj) :5 R 
V'=V'U{sj} 
E' = E' U {(s;•,Sj)} 

Output TBPRIM = T 

Figure 3.3 Algorithm BPRIM: computing a bounded-radius span­
ning tree TBPRIM for a given signal netS, with source so E Sand 
radius R, using parameter f ~ 0. 
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When TM is not unique, the radii of different minimum spanning trees can vary 
by an unbounded amount, and r(TBPRIM) may be greater than r(TM ). Thus, 
Lemma 3.2.1 will not hold for all choices of TM. In the example of Figure 3.4, 
a Prim-like minimum spanning tree algorithm may choose a connection to Yl 
instead of Xt, or Y2 instead of x2, etc., such that r(TBP RIM) ~ r(TM) even 
though the two trees have identical cost. Of course, r(TBPRIM) cannot exceed 
the maximum possible r(TM ). Choosing a minimum-radius TM when the MST 
is not unique has unknown complexity. 

In general, the worst-case cost performance ratio between cost(TBPRIM) and 
the cost of the optimal bounded-radius minimum spanning tree will depend 
on the f and lSI. Experimental results [63] show that coa:~~(!j.~t), which is 
clearly an upper bound on the cost performance ratio, is in practice bounded 
by a small constant even when lSI is large. However, the cost performance ratio 
is not bounded by a constant for any value of f. 

Theorem 3.2.2 For any value oft:, the ratio of cost(TBPRIM) to the cost of 
the optimal bounded-radius minimum spanning tree can be arbitrarily large. 

Proof: The construction of Figure 3.5 shows that BPRIM will have unbounded 
cost performance ratio. The optimal solution is shown on the left with all 
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Figure 3.4 A construction for which the radius of an MST {right) 
is arbitrarily larger than that of a minimum-radius MST (left). 

source-leaf pathlengths equal to R. Terminal y is situated so that the path­
length from the source to any leaf via y is slightly greater than ( 1 +f) · R. This 
will cause the BPRIM construction to backtrace all the way back to the source 
from every leaf, yielding an unbounded performance ratio. For any value off. 
y can be replaced by many closely spaced terminals so that BPRIM creates an 
appropriately long path between so and x. 0 

Extensions of BPRIM 

The bounded-radius construction can also be applied to minimum spanning 
tree methods other than Prim's algorithm. A more general algorithm template 
is given in Figure 3.6. 

Many distinct variants are possible, depending on how the pair of terminals Si 

and Sj are selected inside the inner loop. The following variants Hl, H2 and 
H3 have improved performance over the original BPRIM algorithm [61. 63]. 
These three variants afford progressively more freedom in the choice of Sj and 
its point of connection to the existing tree. Whereas BPRIM connects SJ using 
the first appropriate edge to s;' along the s;-s0 path, Hl picks the minimum­
length appropriate edge to any s;' on the path; H2 finds the minimum-length 
appropriate edge to any s;' E V'; and H3 finds the minimum-length appropriate 
edge between any s;' E V' and any Sj E S- V'. 
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Figure 3.5 The value of cost(TBPRIM) is not bounded by any con­
stant factor from optimal for any value of f. The optimal solution 
is shown on the left, and TBPRIM is shown on the right. 

Algorithm Extended-BPRIM: Computing a bounded-radius spanning tree 
Input: NetS with radius R, source so; parameter t:;:: 0 
Output: Spanning tree T with r(T) < (1 + t:) · R 
T= (V',E') = ({so},0) 
While IV'I < lSI 

Select two terminals s; E V' and s j E S - V' 
with l; + d(s;, Sj) $ (1 +c)· R 

V'=V'u{si} 
E' = E' U {(s;, Sj)} 

Output T 

Figure 3.6 A more general BPRIM template. 
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• Hl - Find s; and Sj as in BPRIM, and select the terminal s;' along 
the path in T from s; to so which yields an appropriate edge ( s;', Sj) of 
minimum length. 

• H2 - Finds; and Sj as in BPRIM, and select the terminals;' E V' which 
yields a minimum-length appropriate edge ( s;', Sj ). 
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• H3 - Find a pair of terminals Si E V' and Sj E 5 - V' that yield a 
minimum-length appropriate edge (si, Sj ). 

Figure 3.7 Construction showing that the cost performance ratio of 
both H2 and H3 is not bounded by a constant for any f. The optimal 
solution is shown on the left; both TH2 and TH3 will be identical to 
the tree shown on the right. As with Figure 3.5, the construction 
can be changed to fit any given value of f by introducing paths of 
closely spaced points between s0 and x. 

The time complexity of variants Hl and H2 is 0(151 2), while variant H3 can 
be implemented to run in time 0(1513 ). Lemma 3.2.1 holds for each of Hl, H2, 
and H3. However, Figure 3.5 shows that variant Hl will also have unbounded 
cost performance ratio, and the example of Figure 3.7 establishes unbounded 
performance ratio for variants H2 and H3. Notice that while Hl, H2 and 
H3 appear ordered by increasing power and flexibility, Figure 3.8 shows that 
BPRIM can outperform these more complicated variants. 

3.2.2 Shallow-Light Constructions 

In order to bound both the worst-case radius performance and the worst-case 
cost performance of the routing tree, "shallow-light" tree constructions have 
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Figure 3.8 Example for which BPRIM (left) outperforms variants 
H2 and H3 (right); 8 is a very small real number and f = (2-
38)/(2 + 38). 
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been proposed which capture properties of both TM and Ts simultaneously to 
within constant factors of optimal.3 

Definition: Given a signal net S and parameter a ~ 1, a shallow-light tree 
T = (S, E') is a spanning tree over S that satisfies: (i) l; ~ a· R;, 1 ~ i ~ n, 
and (ii) cost(T) ~ j3 · cost(TM) with the constant j3 depending only on a. We 
call such a tree an (a,/3)-tree .. 

Works by three separate groups provide shallow-light constructions [17, 63, 156). 
All three groups use the following general technique, pioneered by Awerbuch 
et al. in [16]:4 

1. construct TM; 

2. visit the terminals of S in the order of a depth-first traversal of TM; 

3 The term "shallow-light" seems to have originated in the work of Awerbuch eta!. [16], 
and indicates a tree with bounded radius (i.e., "shallow") and bounded cost or weight (i.e., 
"light"). 

4 This basic technique of Awerbuch et al. (16] can be traced further back to literature in 
the sparse graph spanner area of computational geometry, e.g., see the work of Levcopoulos 
and Lingas [170]. Generally speaking, techniques used for sparse graph spanners have strong 
resonances with VLSI routing objectives (e.g., see [42, 191]). However, a graph spanner 
has bounded pathlengths between all pairs of nodes in a given graph, which is too strong a 
constraint for our (single-source) routing application. 
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3. whenever violations of the prescribed radius bound are observed, insert or 
delete edges as necessary; and 

4. return the shortest paths tree (with respect to the single source s0 ) over 
the resulting graph. 

Cong et al. [63] proposed the "Bounded Radius, Bounded Cost" (BRBC) 
algorithm for performance-driven global routing; this algorithm is the focus of 
the present subsection. The unpublished manuscript of Awerbuch et al. [17] 
describes an algorithm that is identical to BRBC, and shows that it yields a 
shallow-light, (1 + 2t:, 1 +~)-tree for parameter f > 0. Finally, the method 
of Khuller et al. [156] obtains a ( 1 + f, 1 + ~) shallow-light construction by 
"relaxing" edges, in contrast to the earlier works of [17, 63] which add complete 
source-sink shortest paths when violations of the radius bound occur. 

In surveying these results, which have occurred in rapid succession over the 
past several years, several aspects of their precise history should be noted. The 
seminal work of Awerbuch et al. [16] gave a "diameter shallow-light" tree con­
struction, with simultaneous low diameter and low cost, to enable efficient mes­
sage passing and global function computation over a communication network.5 

The authors of [16] achieved tree diameter within a factor 1 + 2t: of optimal, 
and tree cost within a factor 2 + ~ of optimal, for parameter f > 0. The BRBC 
method may be viewed as a straightforward "radius shallow-light" extension 
of Awerbuch et al.'s method in [16]. However, the motivating BRMRT prob­
lem formulation is actually quite distinct from the notion of "shallow-light": 
the definition of "shallow-light" implies a sink-dependent radius bound, but 
the results originally proved for BRBC establish a net-dependent radius bound. 
Specifically, [63] showed that BRBC achieves li $ (1 +f) · R, 1 $ i $ n, while 
maintaining tree cost within 1 + ~ of optimal. The stronger result, that BRBC 
is also shallow-light, was obtained in [17]. 

The following discussion assumes a routing graph G = (V, E) with V = S. For 
ease of notation, we sometimes refer to sinks without subscripts, e.g., v, x, y, 
etc. 

5 Ho et al. [121, 123] have also proposed heuristics for a minimum-cost bounded-diameter 
spanning tree formulation. 
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The BRBC Algorithm 

The basic idea of the "shallow-light" recipe is to construct a subgraph Q of G, 
such that Q spans S and has both small cost and small radius. The shortest 
paths tree of Q will also have small cost and radius since it is a subgraph of 
Q, and will therefore serve as a good routing solution. The BRBC algorithm 
is outlined as follows (Figure 3.10 gives a more formal description): 

• Compute a shortest paths tree Ts of G, and compute a minimum spanning 
tree TM of G. Also, initialize the graph Q to be equal to Tu. 

• Let L be the sequence of vertices corresponding to any depth-first tour of 
TM; the tour will traverse each edge of TM exactly twice (see Figure 3.9), 
and hence the cost of this tour is 2 · cost(TM ). 

• Traverse L while keeping a running total, Sum, of traversed edge costs. As 
the traversal visits each vertex Li, check whether Sum> f · dista(so, Li). 
If so, reset Sum to 0 and merge the edges of minpatha(so, Li) into Q. 
Continue traversing L while repeating this process. 

• Output TBRBC = a shortest paths tree over Q. 

Figure 3.9 A spanning tree and its depth-first tour. 
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Algorithm BRBC: Computing a bounded-radius, bounded-cost spanning tree 
Input: Graph G = (V, E) (with radius R, source s0 E V), f;::: 0 
Output: Spanning tree TBRBC with r(TBRBC) $ (1 + t:) · R 

and cost(TBRBC) < (1 + ~) · cost(TM) 
Q=TM 
L = depth-first tour of TM 
Sum =0 
For i = 1 to ILl - 1 

Sum= Surri + dist(L;, L;+l) 
If Sum;::: f · disto(so, Li+l) Then 

Q = Q U { edges in minpatho(so, L;+l)} 
Sum= 0 

Output TBRBC = shortest paths tree of Q 

Figure 3.10 The BRBC algorithm. TBRBC will have radius at most 
{1 +E) · R, and cost at most (1 + ~) · cost(TM ). 

Theorem 3.2.3 For any weighted graph G and f ;::: 0, r(TBRBC) ::; ( 1 +E) · R. 

Proof: For any v E V, let Vi-1 be the last node before v on the MST traver­
sal L for which BRBC added minpatha(so, v;-1) to Q (see Figure 3.11). By 
construction, distL(Vi-1, v) ::; E • R. We then have 

distTBRBC(so, V) < distTBRBC(So, Vi-1) + distL(Vi-1 1 V) 

< dista(so, Vi-d + E • R 
< R+t:·R 
= {1 +E)· R 

0 

Theorem 3.2.4 For any weighted graph G and parameter E ~ 0, cost(TBRBC) ::; 
(1 + ~) · cost(TM ). 

Proof: Let v1 , v2, ... , Vm be the set of nodes to which BRBC added shortest 
paths minpatha(s0 , v;) from the source node, and let vo =so. We have 

m 

cost(TBRBC) ::; cost(TM) + 2: dista {so, vi) 
i=1 
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since TBRBC is a subtree of the union of TM with all of the edges in the 
added shortest paths. By construction, distL(v;_ 1, vi)~ f · dist0 (s, vi) for all 
i = 1, ... , m, implying 

cost(TBRBC) < 

< 

m 1 
cost(TM) + L- · distL(v;-1, v;) 

i=l f 

1 
cost(TM) +- · cost(L) 

f 

2 
cost(TM) + - · cost(TM) 

f 

2 
(1 + -) ·cost(TM) 

f 

Figure 3.11 The BRBC construction. 

0 

Theorem 3.2.4 suggests that for f = 0, the ratio co::m~"::)c) is not bounded 

by any constant; this is illustrated by the example of Figure 3.1, for which 
co6t TsRBC · n(ISI) 

cost TM lS H . 

Bounded-Radius Steiner Trees 

BRBC generalizes to the case where we seek to connect a subset of the vertices 
in the routing graph, and can use the remaining vertices as Steiner points. 6 The 
BRMRT problem then becomes the "Bounded-Radius Optimal Steiner Tree" 

6 This is the case for building-block VLSI design, where the underlying routing graph is the 
channel intersection graph as defined by Preas [193), Dai, Asano and Kuh [70] and Kimura 
[158]. Other very similar routing graphs have been proposed in the context of escape lines by 
Hightower [120] and in the context of line intersection routing by Cohoon and Richards [58]. 
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(BROST) problem, which simplifies to the NP-complete Steiner problem in 
graphs when the radius bound is set to +oo. 

Observe that in the BROST problem, constructing a "minimum spanning tree" 
for S in G is itself an instance of the graph Steiner problem. A BRBC analog 
for the Steiner case must therefore first approximate the minimum-cost Steiner 
tree that connects S within G.7 Given an approximate minimum-cost Steiner 
tree i', the same shallow-light construction will immediately yield a routing tree 
with radius bounded by (1 +f)· r(T), and cost bounded by (1 + ~) · cost(T). 

The heuristic of Kou, Markowsky and Berman (KMB) [159, 249] can be used 
to build a Steiner tree T = TKMB in the underlying routing graph, such that 
cost(TKMB) will be at most twice the cost of an optimal Steiner tree Topt· 8 We 
may traverse a depth-first tour L of TKMB, adding into TKMB the edges in 
selected shortest paths from the source to vertices of L, just as in the original 
BRBC method. We then compute the shortest paths tree in the resulting graph 
and output the union of all shortest paths from the source to terminals in S 
(this will include intermediate non-terminals on the shortest paths as Steiner 
points). We call the resulting method the BRBC_S algorithm. 

Theorem 3.2.5 For any weighted routing graph G = (V, E), set of signal net 
terminals S ~ V, and parameter f, r(TBRBc_s) $ (1 +f)· R and 
cost(TBRBc_s) $ 2 · (1 + ~) · cost(Topt)· 

Proof: By the previous arguments, r(TBRBc_s) $ (1 +f)· R. In addition, 
cost(TBRBc_s) $ (1 + ~) · cost(TKMB). Since cost(TKMB) $ 2 · cost(Topt), we 
have cost(TBRBC_s) $ 2 · (1 + ~) · cost(Topt), thus yielding the cost bound.9 0 

7 Strictly speaking, this analogy is not a requirement. While we have used L = a depth­
first tour of a spanning tree, any tour of the vertices- hopefully with reasonably small cost 
- will suffice (e.g., a traveling salesman tour). The only requirement for the tour is that it 
visit every node in S. 

8 Recall from Section 2.7 that the KMB algorithm works as follows. Given a graph G = 
(V, E) and a signal net S ~ V, construct the complete graph G' over the vertices in S, 
with each edge weight equal to the cost of the corresponding shortest path in G. Then, 
compute M ST G'• the minimum spanning tree of G', and expand each edge of M ST G' into 
the corresponding shortest path; this yields a subgraph G" of G that spans S. Finally, 
compute MSTan and delete pendant edges from MSTau until all leaves are vertices inS. 
Output the resulting tree as TK M B· 

9 Using the graph Steiner heuristic of Zelikovsky [254], this cost bound may be further 
reduced to Jt · (1 + ~) times optimal, and other bounds may similarly be reduced by the 
factor 1/12. Howeve;, we state all of our analyses in terms of the KMB bound since the 
fractions are simpler, and KMB is more widespread in the current literature (cf. works of 
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Improvements in Geometry 

If the routing is in the geometric plane, so that we can introduce Steiner points 
at arbitrary locations, the basic algorithm of Figure 3.10 can be modified to 
introduce Steiner points on the tour L whenever Sum = 2f · R. For each of these 
Steiner points, we construct a shortest path to the source and add it to Q as in 
the original BRBC algorithm. Each node in the tour L will be within distance 
f · R of a Steiner point, i.e., within (1 +f)· R of the source. In some sense, 
each shortest path to the source "services" points on L within distance f · R 
on either side of the Steiner point. Because this variant relies on an underlying 
geometry, we call it the BRBC_G algorithm. The following radius and cost 
bounds hold, with the proofs of these bounds following along the same lines as 
the proofs of Theorems 3.2.3 and 3.2.4. 

Theorem 3.2.6 In the geometric plane, r(TBRBC _G) ~ (1 + f) · R and 
cost(TBRBC_G) ~ 2 · {1 + t) · cost(Topt). 0 

Well-known results which bound the worst-case ratio between the optimum 
Steiner tree cost and the optimum spanning tree cost in various geometries can 
yield even better bounds for the above scheme. Two examples are as follows. 

Corollary 3.2.7 In the Manhattan plane, r(TBRBC_G) ~ (1 +f) · R and 
cost(TBRBC-G) ~ ~ · {1 + t) · Topt· 

Proof: By the result of Hwang (135), the rectilinear minimum spanning tree 
gives a ~ approximation to the optimal rectilinear Steiner tree. 10 We then 
apply arguments similar to those used for Theorems 3.2.3 and 3.2.4. 0 

Corollary 3.2.8 In the Euclidean plane, r(TBRBC _a) ~ ( 1 + f) · R. and 
cost(TBRBC_G) ~}a· {1 + t) · Topt· 

Proof: By the result of Du and Hwang (78], the Euclidean minimum spanning 
tree gives a }3 approximation to the optimal Euclidean Steiner tree. We again 
apply the arguments of Theorems 3.2.3 and 3.2.4. 0 

Cohoon and Ganley [104] and Chiang et al. [53] which use techniques similar to Kl'v!B for 
global routing). 

10 Recall that the result of Berman and Ramaiyer [25] and Zelikovsky [253] imply that this 
constant may be further reduced to Jt, or even less [24]. 
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This result improves with increased flexibility in the wiring geometry, e.g., if 
octolinear or 30-60-90 degree wiring is allowed instead of rectilinear wiring. By 
applying the result of [210] for >.-geometries (allowing angles;{), a cost bound 
of '73 cos f · (1 + ~) may be established. When >. approaches oo, this bound 
approaches the bound of Corollary 3.2.8 above. 

We now close the discussion of the BRBC algorithm by showing how the 
BRMST and BROST formulations diverge from the original shallow-light cri­
terion above. 

Sink-Dependent Bounds and the Shallow-Light Result 

For certain applications, one may wish to impose different wirelength con­
straints on different source-sink paths within a given signal net, since the cir­
cuit timing is path-dependent rather than net-dependent. Any timing-critical 
path between a primary input and a primary output has two components: (i) 
internal module delays, and (ii) one or more source-sink connections, each of 
which is part of a signal net that connects an output of one module to an input 
of another module. Intuitively, any source-sink connection on a timing-critical 
path will require a small value of f, whereas a source-sink connection that is 
not on any critical path might allow a larger value off in order to reduce tree 
cost. (This issue will become the focus of Section 3.3.2 below.) With this in 
mind, [63] addressed the following variant formulation: 

The Non-Uniform Bounded-Radius Minimum Routing Tree Problem: 
Given a signal net with source sa and radius R, and given values f; 2:: 0 associ­
ated with the sinks s;, find a minimum-cost routing tree T with It :S ( 1 + f;) · R 
for each s;. 

The BRBC method is easily modified to handle this variant, by changing 
the condition inside the Figure 3.10 loop from "Sum 2:: f · dista(s, L;+l)" to 
"Sum 2:: fi+l · dista(s, L;+t)". We call this variant the BRBC_f; algorithm. 
Extensions to (geometric) Steiner routing are also straightforward. The fol­
lowing source-sink pathlength bound is obtained analogously to the result of 
Theorem 3.2.3: 

Lemma 3.2.9 For any weighted routing graph G with source sa, radius R, and 
parameters f 1 , f2 , ... , fn, distTsRsc_,, (sa, s;) :S (1 + f;) · R for each sink s;. 0 
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Application of earlier arguments yields the cost bound 

and the analysis in [63] establishes a somewhat better bound: 

Lemma 3.2.10 For any weighted routing graph G with source so and parame­

ters f1 5 f2 5 ... 5 fn, cost(TBRBC_£;) 5 (1 + k~ 1 · HM(£ 1 ,~2 , ... ,fn)) · cost(TM ), 

where HM denotes harmonic mean and k = r 2 ·ct~~ Tft 1· 0 

All of these bounds for the BRBC algorithm are in terms of the "net-dependent" 
radius objective that is inherent in the BRMST formulation, i.e., all li are 
bounded by multiples of R. Because R can be much greater than a given sink 
radius Ri, a bound of h 5 (1 + fi) · R may not be meaningful in practice. 
Thus, a stronger and more compelling result is that of Awerbuch et al. [17], 
who showed that the BRBC algorithm is actually shallow-light. Recall that the 
proof of Theorem 3.2.3 showed 

distTBRBc(so, v) < distTBRBc(so, Vi-1) + distL(vi-1 1 v) 

< dista(so, Vi-d + distr(vi-1, v). 
/ 

·' 
Awerbuch et al. (see Lemma 2.2 of [17]) use the "other triangle inequality" in 
observing that 

dista(so, Vi-1) 5 dista(so, v) + distL(vi-t. v). 

This can be combined with the above relation to yield 

distT8 R8 c(so, v) < dista(so, v) + 2 · distr(vi-1. v) 

< (1 + 2e") · Rv 

where Rv = dista(so, v). 

Theorem 3.2.11 BRBC constructs a shallow-light, ( 1 + 2f, 1 + ~)-tree for pa­
rameter f ~ 0. 0 
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The KRY Algorithm 

The algorithm of Khuller, Raghavachari and Young (KRY) (156) provides what 
is essentially a best-possible shallow-light tree construction. The KRY method 
also follows the basic template of Awerbuch et al. in performing a DFS traversal 
of TM. However, when an analog of the Sum variable exceeds the prescribed 
radius bound, KRY adds only a piece of the shortest path back to the source, 
i.e., it adds edges from the shortest path one at a time until the distance to the 
source is sufficiently reduced. By not adding complete shortest paths as in the 
BRBC approach, the cost of the construction is kept low. 

For each sink v E S, v '# so, KRY maintains both a source-sink pathlength 
upper bound U B[v] and a parent pointer p[v]. The value U B[v] is an upper 
bound on the cost of traveling from v to so in the current graph via parent 
pointers. All pathlength upper bounds are initially set to U B[v] = +oo, and 
all parent pointers initially point to p[v] =so. The key operation is a "Relax" 
step which resembles a typical shortest-paths recurrence. Relax( u, v) checks 
whether there is a "shorter" path to v through u, vis-a-vis the pathlength upper 
bound. In other words, if UB[v] > UB[u] + d(u,v), then the algorithm sets 
U B[v] - U B[u] + d(u, v) and p[v) - u. By calling Relax(u, v) with u being 
the parent of v in Ts, the Relax operation can be used to add an edge of the 
v-so shortest path into the solution. Figure 3.12 gives a high-level description 
of KRY, following the presentation in [156). 

Because each edge is relaxed exactly twice during the depth-first traversal, and 
because at most a linear number of relaxations can result from calls in the 
subroutine Add-Path, KRY is a linear-time algorithm. However, it requires 
precomputation of both TM and Ts, which cannot be achieved in less than 
6( n log n) time in the geometric plane. The following results of Khuller et al. 
establish the shallow-light and "unimprovable" qualities of the KRY construc­
tion. 

Theorem 3.2.12 KRY constructs a shallow-light, (1 + f, 1 + ~)-tree for pa­
rameter f ~ 0. 0 

Theorem 3.2.13 For any f > 0 and any {3 with 1 $ {3 < 1 + ~. there exist 
graphs for which no spanning (1 + E, {3)-tree exists. 0 

Khuller et al. further show that for such values of f and /3, it is NP-cornplete 
to even determine whether a given G = (V, E) with source so E V contains a 
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Algorithm KRY: Computing a (1 + E, 1 +~)-tree 
Input: Vertex setS with source so; TM; Ts; f;::: 0 
Output: Spanning tree TK RY with I; :::; (1 +E)· R; Vs; E S 

and cost(TK RY) < (1 + £.) · cost(TM) 
Initialize UB[v] = oo, p[v] =so for all v E S- {so} 
Call DFS(so) 
Return tree TKRY = {(v,p[v]l v E S- {so}} 

Subroutine DFS(u) : Traverse subtree of TM rooted at u, 
relaxing edges to add partial paths from Ts 

If U B[u] > (1 +f)· Ru Then 
Add-Path(u) 

For each child v of u in TM Do 
Relax(u, v) 
DFS(v) 
Relax(v, u) 

Subroutine Add-Path(v) : Relax along the v-so shortest path 
If U B[v] > Rv Then 

u = parent of v in Ts 
Add-Path(u) 
Relax(u, v) 

Figure 3.12 The KRY algorithm. TKRY will have radius at most 
(1 +E)· R, and cost at most (1 + ~) · cost(TM ). 
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spanning (1 + E, 11)-tree. Improvements for the Steiner and geometric cases are 
straightforward, and can employ approximations of TM and Ts as described 
earlier for the BRBC method. It is interesting to note that analogous shallow­
light properties hold for KRY even when the signal net contains multiple sources 
[156]. This can be particularly relevant for routing of large critical nets on-chip, 
where a balanced tree of buffers is used to drive the many fan-ins and reduce 
rise-time delays. Essentially, the leaves of the buffer tree will correspond to 
multiple sources in the net routing problem. 11 

11 Other applications of multiple-source routing arise in clock distribution, e.g., with a very 
large monolithic buffer that must be treated as multiple sources (76, 17.5], with a hierarchical 
buffering scheme, or with two-level clock routing in MCM packaging (260]. Clock routing 
generally also demands skew control, so there is only a partial connection to the present 
discussion. 
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3.2.3 The Prim-Dijkstra Tradeoff 

It is well-known that the min-cost and min-radius objectives can be separately 
addressed by Prim's MST algorithm [196] and Dijkstra's SPT algorithm [74], re­
spectively. Tarjan [235] discusses the similarity between the Prim and Dijkstra 
algorithms: each is a variant of the "labeling method" that builds a spanning 
tree from a fixed source by adding the edge that minimizes an algorithm-specific 
key. In the following, the min-cost and min-radius objectives are addressed si­
multaneously via direct combinations of the Prim and Dijkstra constructions. 
The combination of competing objectives, via a tradeoff of algorithms that are 
respectively optimal for each objective, is somewhat unusual. While the two 
Prim-Dijkstra tradeoff constructions that we discuss are not shallow-light, they 
can be implemented to run in O{n2 ) time and in practice yield lower signal de­
lays than the shallow-light constructions. Our discussion is cast in geometry, 
but the methods involved are applicable to general weighted graphs. 

The PD 1 Tradeoff 

Prim's algorithm begins with the tree consisting only of so. The algorithm 
then iteratively adds edge e;j and sink Bi to T, where Si and Sj are chosen to 
minimize 

d;j s.t. Bj E T, Bi ES-T (3.2) 

Dijkstra's algorithm also begins with the tree consisting only of s0 . The al­
gorithm then iteratively adds edge e;j and sink Bi to T, where si and Sj are 
chosen to minimize 

lj + d;j s.t. Bj E T, Bi E S- T (3.3) 

The similarity between (3.2) and (3.3) is the basis for the PDl tradeoff, which 
iteratively adds edge eij and sinks; toT, where Bi and Sj are chosen to minimize 

(c·lj)+dii s.t. Sj ET, Si ES-T (3.4) 

for some choice ofO ~ c ~ 1. When c = 0, PDl is identical to Prim's algorithm 
and constructs trees with minimum cost. As c increases, PDl constructs a tree 
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with higher cost but lower radius, and is identical to Dijkstra's algorithm when 
c = 1. Sample executions of PD1 for c = k and c = ~ are shown in Figure 
3.13( a)-(b ). The following properties of the PD1 tradeoff were shown by Alpert 
et al. in [13, 14] . 

(a} PO I : c = I /3 (b) PO I : c = 2 /3 

(c) PD2 : d = 3 (d) PD2 : d = 3 I 2 

Figure 3.13 Execution of PDl and PD2 on an 8-sink instance in 
the Euclidean plane. Edge labels indicate the order in which the 
algorithms add edges into the tree. PD1 is illustrated in (a) with 
c = ! (radius= 15.91, cost= 26.43), and in (b) with c = ~ (radius 
= 10.32, cost = 29.69). PD2 is illustrated with "corresponding" 
parameterizations (see Table 3.2 below) in (c) with p = 3 (radius 
= 17.00, cost= 23 .63), and in (d) with p = ~ (radius= 10.00, cost 
= 30.28) . 

Lemma 3.2.14 PDJ constructs a tree TpDl with c ·I; :S: R; for all sinks s;. 0 

Lemma 3.2.15 For any fixed values of c and B with 0 < c < 1 and B > 0, 

there exists an edge-weighted graph instance G = (S, E) for which PDJ will 

yield a tree with cost(TPDl) > B · cost(TM ). 0 
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Subsequently, Lenhof, Salowe and Wrege [169] showed a bound for the PD1 
tree cost in geometry: 

Lemma 3.2.16 For instances embedded in Euclidean space of any dimension 
d, PDl constructs a tree with cost within an O(log n) factor of cost(TM ). 

This result provides some encouragement regarding the still-open conjecture in 
[12, 13] that PD1 is actually shallow-light for geometric instances. 

The PD2 Tradeoff 

The notation Lp, as defined in Chapter 2, usually denotes a vector norm for 
p > 0. Here, we say that the Lp sum of quantities Xt, x2, ... , Xn has value 
(xtP + x2P + ... + xnP) 11P, and we write this as llxt, x2, ... , Xn llv· Now, observe 
that within the framework developed by [235], Dijkstra's algorithm can be 
viewed as using a key that is the Lt sum of edge costs in the source-sink path. 
This observation suggests a second Prim-Dijkstra tradeoff, which we call PD2: 
iteratively add edge eii and sink Si toT, where Si and Sj are chosen to minimize 

Ill/ , diillv s.t. Sj E T, Si ES-T (3.5) 

for some choice of 1 ~ p < oo, where 1/ denotes the Lp sum of edge costs in 
the so-s; path in T. Sample executions of PD2 for p = 3 and p = ~ are shown 
in Figure 3.13( c)-( d). 

Lemma 3.2.17 When p = oo, PD2 is identical to Prim's algorithm. 0 

Lemma 3.2.18 When p = 1, PD2 yields a shortest path tree. 0 

When p = oo, the PD2 objective reduces to max{llil,dij}, which corresponds 
to the bottleneck shortest paths formulation. In other words, if the cost of a 
path is the cost of the longest edge in that path, then PD2 constructs a shortest­
path tree in this sense when p = oo. Notice that once a bottleneck edge with 
large cost is present in some source-sink shortest path, a bottleneck shortest­
path tree is maintained as long as we append any edge that has less cost than 
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the bottleneck edge. Thus, the optimal bottleneck tree is not unique. So that 
PD2 with p == oo will capture the limiting behavior from large finite values of 
p, and furthermore return a minimum spanning tree, Alpert et a!. specify that 
ties in Equation (3.5) should be broken by choosing the s; which also minimizes 
d;j. This tie-breaking rule allows (3.5) to capture a Prim-Dijkstra tradeoff. In 
other words, PD2 returns Ts for p == 1, and returns TM for p == oo when the 
tie-breaking rule is applied. 

The PD2 tradeoff was discovered independently by Alpert et a!. [14] and by 
Sal owe, Richards and Wrege [207), with the work of both groups prompted by 
the original PDI tradeoff [12, 13). Salowe et a!. discovered PD2 by apply­
ing Tarjan's general single-source shortest path labeling method [235] to the 
"bottleneck shortest paths" problem, 12 i.e., they use the label max{ Jlj J, d;j}, 
where Jl; J denotes the largest edge cost in the s0-s; path, thus generalizing the 
objective of Equation (3.5). 

Salowe eta!. [207] have shown that PD2 constructs a tree T with l; ~ R; ·nl-l/p 

for all sinks s;, and that this bound is tight. For any finite value of p, PD2 may 
yield a tree with cost an unbounded factor greater than the MST cost, even in 
geometry. 

3.2.4 Rectilinear Steiner Arborescences 

So far, this section has developed essentially geometric methods that are tun­
able to given technology parameters via the cost-radius (or TM-Ts) tradeoff that 
follows from analysis of Elmore delay. One non-tunable method has been mo­
tivated by the Elmore delay upper bound of Rubinstein, Penfield and Horowitz 
[205]. Recall that this Elmore delay upper bound is obtained by summing the 
product of a node's capacitance and its "upstream" resistance (i.e., between 
the node and s0 ), over all node locations in the routing tree. Minimizing the 
value of this upper bound is a net-dependent objective, in that the same up­
per bound applies to every sink in the tree. Cong, Leung and Zhou [65] show 
that a routing tree which minimizes this objective will combine elements of the 
minimum spanning tree, the shortest paths tree, and the "quadratic minimum 
Steiner tree" (a tree that minimizes the summation of source-node pathlengths, 
taken over all possible node locations). Therefore, a minimum-cost rectilinear 
Steiner arborescence is of interest since it heuristically addresses all of these 
terms in the decomposed upper bound at once. 

12 Cf. the "min-max" routing trees in weighted layout regions of Chiang eta!. [51]. 
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Definition: Given a signal net S in the Manhattan plane with source s0 , a 
rectilinear Steiner arborescence (RSA) is a Steiner tree T that spans S, with 
I; = R; for all sinks s;. 

The RSA Problem seeks a minimum-cost RSA, i.e., a "minimum-cost shortest­
path Steiner tree" (recall the "maximum-performance tree" sought by Cohoon 
and Randall [57]) as shown in Figure 3.14. The RSA problem has been reviewed 
at length by Rao et al. [201], who ascribe it to the 1979 Ph.D. work of Ladeira 
de Matos [71]. The problem's complexity is still open; cf. the works of Trubin 
[239] and Rao et al. [201]. Ho et al. [122] note that an RSA may be viewed as 
a "rectilinear multicast" in contexts outside of VLSI routing. Previous analysis 
has often dealt with the case where all sinks of S lie in the first quadrant, with 
so at the origin (e.g., [201]). If this case can be solved in polynomial time, there 
is an easy polynomial-time solution for the general case of sinks located in all 
four quadrants (e.g., [65, 122]). 

So 

Figure 3.14 A minimum-cost rectilinear Steiner arborescence. 

Given a signal net located in the first quadrant of the Manhattan plane, the 
heuristic of [201] maintains a set called ROOT consisting of roots of subtrees 
which will eventually merge to form the heuristic RSA solution. Initially, 
ROOT contains the roots of n trivial trees (the sinks in S, located in the 
first quadrant with respect to the source). The method then iteratively re­
places a pair of roots by a single "merged" root that is as far as possible from 
the source, and terminates when !ROOT!= 1. More formally: 
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1. Given signal net S with so at the origin and sr, ... , Sn in the first quadrant, 
place the n sinks of S in ROOT. Initialize the output tree T to be empty. 

2. LOOP: 

3. Find p, q E ROOT which maximize the sum min(p.,, q.,)+min(py, qy), i.e., 
the sum of the minimum x- and y-coordinates of p and q. 

4. Update ROOT by replacing p and q by a new root with coordinates 
(min(p.,, q.,), min(py, qy)). 

5. Update T by adding edges to the new root from p and from q. 

6. UNTIL !ROOT!= 1. 

Figure 3.15 shows how the construction maintains the feasibility of achieving 
shortest-possible paths from the source to all sinks. The tree is constructed 
bottom-up ("outside-in"), always choosing a new root that is dominated by 
two existing roots and that allows the greatest flexibility for later roots. Note 
that it is possible for the new root to be either p or q, e.g., if p dominates q, 
then the new root will be q itself. 

~~ 

I 
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5 - 1 -4 

3 
6 -

SoD-

Figure 3.15 Illustration of the RSA heuristic of Rao et al. 

Under certain conditions, Rao's heuristic "does the right thing", i.e., two roots 
are merged or a single root is partially extended without worsening any previous 
suboptimality in the construction. For example, consider two roots p, q E 
ROOT with q being the root with minimum d(p, q) that is that is dominated 
by p (if there are ties, let q be the rightmost such root). Let closesLx denote 
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the root which is to the upper left of p and has maximum X- coordinate, if such 
a root exists. Similarly, let closesLy be the root which is to the lower right of p 

and has maximum y-coordinate, if such a root exists. If Px -closesLxx 2:: d(p, q) 

and Py- closesLyy 2:: d(p, q), then it is clearly optimal for p to connect directly 
to q. Cong et a!. [65] call such a connection a safe move because it cannot 
worsen the suboptimality of an existing set of roots; see Figure 3.16(a) for an 
illustration. 
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(a) (b) 

Figure 3.16 Illustration of safe moves in the heuristic RSA con­
struction. 

A second example involves root p with Px - closesLxx 2:: d(p, q) and Py -

closesLyy < d(p, q). In this case, it is safe to introduce a tree edge from p down­
ward top', where p~ = Px and p~ = max(closesLyy, qy); Figure 3.16(b) shows 
the two possible results. The symmetrical configuration has Px - closesLxx < 
d(p, q) and Py- closesLyy 2:: d(p, q), and introduces a safe connection from p 

leftward top' = (max( closesLxx, qx), Py). In this symmetrical case, q must be 
the leftmost root with minimum d(p, q) that is dominated by p. 

When no safe move is possible, (65) applies the method of Rao et al., and 
terms the resulting connection( s) to the new root ( min(px, qx), min(py, qy)) 

a "heuristic move". The resulting strategy is called the A-tree algorithm. 
A construction that uses only safe moves will be optimal, and techniques to 
bound the suboptimality associated with heuristic moves give rise to an optimal 
algorithm with exponential worst-case runtime. [65] reports that for 4-, 8-
and 16-sink nets, the A-tree method produces trees with cost within 4% of 
the optimal RSA cost. However, despite using only "heuristic" moves, the 
algorithm of Rao et a!. has essentially the same empirical performance as A­
tree. (An interesting question is whether there are examples "with no ties" for 
which A-tree is better than the method of Rao et al.) 
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With respect to performance bounds, Rao et al. prove that their heuristic has 
performance ratio :-::; 2 when instances lie in the first quadrant. Since the A-tree 
algorithm uses either safe moves or the same moves as Rao et al., it trivially 
also has performance ratio :-::; 2. The example of Figure 3.17 shows that these 
bounds are tight, i.e., both algorithms can be forced to return tree cost that 
approaches twice optimal. The construction in the figure consists of an array of 
sinks with vertical distance = 2 and horizontal distance = 1 between adjacent 
sinks in the array. The column of sinks at the right is offset downward by 
distance 1 - t: so that there are no ties and no safe moves. 

(a) (b) 

Figure 3.17 A pathological instance for both A-tree and the 
method of Rao et al. The solution (a) is optimal, while the so­
lution (b) will be returned by either heuristic. 

Interestingly, the llS approach of Chapter 2 can be modified to yield an ef­
fective "Iterated 1-Arborescence" (IlArb) methodology. As one would expect, 
llArb iteratively selects single Steiner points to minimize the cost of the span­
ning arborescence over the sinks and Steiner points selected thus far (recall 
that optimal spanning arborescences are efficiently computable). Alexander et 
al. [4) report that this approach is attractive for a variety of reasons, including 
its more natural ability to address the general case where sinks occur in all 
four quadrants. On uniformly random inputs, llArb has essentially the same 
performance as A-tree and Rao et al. for small examples, and slightly outper­
forms these previous heuristics for n > 20. IlArb also escapes such pathological 
instances as the one illustrated in Figure 3.17: we do not yet know of examples 
for which the IlArb tree cost is greater than t times optimal in one quadrant, 
or greater than ! times optimal in all four quadrants. 
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3.2.5 Experimental Results and Discussion 

We now discuss experimental results for the cost-radius tradeoffs achieved 
by the geometric approaches in this section, as well as the implications for 
minimum-delay signal routing. 

Comparison of Cost-Radius Tradeoffs 

All of the algorithms discussed in this section were implemented using ANSI 
C in the Sun environment. Tests were made using signal nets having up to 
50 sinks, with sink locations randomly generated from a uniform distribution 
in the 1000 x 1000 grid. Figures 3.18(a)-(b) show that BPRIM produces a 
smooth tradeoff between tree cost and tree radius, 13 and a similar tradeoff is 
seen for BRBC in Figures 3.18( c)-( d). As f decreases, each of the cost and 
radius curves shifts monotonically from that of the minimum spanning tree to 
that of the shortest paths tree. 

For any given value off, the BPRIM approach is greedier than the BRBC 
approach, and tends to yield a routing solution with small cost but radius ap­
proaching (1 + t) · R. The BRBC approach is more conservative, and tends 
to yield a routing solution with slightly larger tree cost but radius noticeably 
smaller than (1 + f) · R. Thus, the cost-radius curve for BRBC is shifted 
slightly from that of BPRIM. In practice, efficiency and provability would sug­
gest choosing BRBC or another shallow-light method over BPRIM. 

More detailed experiments in [14] have compared the Prim-Dijkstra tradeoffs 
PDl PD2, the KRY construction, the BRBC construction, and the standard 
MST construction. Notice that for a given signal net instance, each cost-radius 
tradeoff generates a family of spanning trees corresponding to the range of 
parameter values. The study of such families of output trees is useful for 
determining the parameter values best suited to particular technology or area­
performance requirements. 

For each signal net, we generated a "family" of 51 output trees for PDl with 
values of the parameter c ranging from 0 to 1 at intervals of 0.02. To generate 
corresponding families of trees for PD2, KRY and BRBC, input parameters 

13 Cong et al. [63] report that on average, variant Hl dominates BPRIM, H2 dominates Hl, 
and H3 dominates H2; here, "dominates" implies a smaller average cost for any given radius 
bound. The qualitative nature of the tradeoff remains for all variants, with the cost curves 
simply being shifted downward for the more sophisticated variants. It should be noted that 
while f = 2.00 does not guarantee that TsPRIM = TM, this generally holds in practice. 
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Figure 3.18 Tradeoff between tree cost and tree radius produced 
by the BPRIM (a-b) and BRBC (c-d) algorithms. As the parameter 
f increases, the tree cost approaches cost(TM ). 
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were matched with the PDl parameter values according to relationships in­
ferred from the algorithms' limiting behaviors (see Table 3.2). Use of these 
relationships generally leads to a good sampling of the families of trees gener­
ated by PD2 and KRY. However, since BRBC tends to generate trees virtually 
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identical to TM for f 2:: 1.5, we study the family of 51 trees generated by BRBC 
with f ranging from 0 to 1.5 at intervals of 0.03. 

PDl PD2 BRBC KRY 
User parameter c p f (X 
Yields TM when c=O p = 00 £ = 00 (X= 00 

Yields Ts when c=l p=l £=0 cx=l 
Relation to c c p=~ £- .!..=£ - c ex=~ 

Table 3.2 Equivalences of algorithm parameters. 

Each algorithm was executed over its family of parameter values, for signal nets 
of 16 sinks chosen randomly from a uniform distribution in a 1cm by 1cm Man­
hattan square. The results are shown in the graphs of Figure 3.19; each point 
in the graphs represents an average over 250 such instances. All four algorithms 
"smoothly" trade off between cost and radius, with PD 1 being clearly superior, 
i.e., for any desired cost-radius tradeoff, PD1 performs uniformly better than 
the other algorithms. The utility of PD1 is especially clear for the tradeoff 
region that is of likely practical interest, when we wish to reduce tree radius 
without sacrificing more than 10% or 20% extra tree cost. While PD2 does 
not do as well as PD1, it nevertheless seems to provide superior cost-radius 
tradeoffs when compared against KRY or BRBC. 

Comparison of Signal Delays 

In [14), other experiments compared the signal delays of the various tree con­
structions, using uniformly random signal nets of 4, 8 and 16 sinks (PDl dom­
inates the performance of PD2, and so we discuss results only for the former). 
For each of the four interconnect technologies in Table 3.1, delays at all sink 
nodes were computed using the Two-Pole simulator code developed by Zhou 
et al. [256] and corrected by S. Muddu [187]. The Two-Pole simulator uses 
moment-matching techniques to model the response of distributed RLC inter­
connects, and has been reported to produce very accurate results when tested 
against SPICE3e [256]; cf. the discussion of accuracy and fidelity in the Ap­
pendix. Delay was measured as the rise time to a stable value of 0.9 times 
the reference voltage for a step input. For each instance, each algorithm was 
executed with each of the 51 user parameters described above, and the lowest 
delay value of any tree in the family was recorded. 
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the algorithm performance for a specific parameter value, averaged 
over 250 instances. The graph (a) shows results for spanning tree 
topologies, and (b) shows the same experiments with tree edges 
overlapped to induce a Steiner topology. 
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Table 3.3 shows the resulting maximum sink delays, normalized to the corre­
sponding value for the MST routing, and averaged over 250 instances. Analo­
gous results for average sink delay are qualitatively similar [14). The table also 
shows the average value of each algorithm's best parameterization, which indi­
cates how the ideal cost-radius tradeoff parameter is correlated with technology 
and net size (for example, the best PDl c parameter for 16 sinks is 0.23 for ICl 
and 0.73 for MCM). If only one spanning tree construction is allowed, it seems 
that the "best" parameter will generally yield a tree with low delay. The delay 
reductions achieved by the Prim-Dijkstra tradeoff reinforce the intuition that 
minimum-cost routing trees are less useful for newer interconnect technologies. 

The KRY delays are surprisingly good in view of the algorithm's inferior cost­
radius tradeoff. While PDl seems to yield a more "natural" tree (e.g., the 
KRY tree is often self-intersecting - see Figure 3.20), KRY does benefit from 
its tendency to branch early from the source so, which results in relatively 
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Spanning Trees Avg sink delay vs. MST (best parameter) 
#sinks Method IC1 IC2 IC3 MCM1 

4 

8 

16 

PD1 0.911 ( 0.10) 0.866 ( 0.32) 0.854 ( 0.34) 0. 712 ( 0.55) 
KRY 0.912 (19.56) 0.866 (16.22) 0.854 (15.83) 0.712 ( 8.10) 
BRBC 0.928 ( 0.09) 0.891 ( 0.10) 0.880 ( 0.10) 0.768 ( 0.11) 
PDl 0.808 ( 0.15) 0.778 ( 0.47) 0. 759 ( 0.49) 0.540 ( 0. 75) 
KRY 0.850 ( 9.42) 0. 781 ( 4.83) 0.760 ( 3.96) 0.540 ( 1. 79) 
BRBC 0.899 ( 0.08) 0.848 ( 0.06) 0.834 ( 0.05) 0.678 ( 0.04) 
PDl 0.800 ( 0.20) 0.720 ( 0.48) 0.697 ( 0.50) 0.429 ( 0.82) 
KRY 0.808 ( 3.57) 0.723 ( 1.99) 0.696 ( 1.87) 0.424 ( 1.19) 
BRBC 0.893 ( 0.12) 0.839 ( 0.13) 0.824 ( 0.13) 0.648 ( 0.12) 

Table 3.3 Average source-sink delay in the best tree for each al­
gorithm. Values are given as a ratio to corresponding MST delay 
values, averaged over 250 random instances. Numbers in paren­
theses give the average best parameter value for each algorithm. 

little off-path tree capacitance for any given source-sink path. While the Prim­
Dijkstra methods offer advantages over previous performance-driven routing 
constructions, the success of KRY underscores the continuing need for better 
routing tree analysis and design techniques. 

Steiner Routing 

Recall that many global routing approaches require rectilinear Steiner tree con­
structions. As we have discussed, a popular approach (cf. the MST-Overlap 
discussion in Chapter 2) converts a spanning tree to a Steiner tree by overlap­
ping the embeddings of tree edges within the union of their bounding boxes. 
This has the advantage of preserving the spanning tree radius within the even­
tual Steiner tree output. While Ho et al. [124] provided the optimal edge­
overlapping construction, it cannot always be applied to the present spanning 
constructions. This is because high-degree nodes may occur, so that the span­
ning tree fails to be separable. Thus, in the following we discuss simulation re­
sults for Steiner trees that are obtained by applying a greedy edge-overlapping 
algorithm to the spanning constructions. Our greedy method considers each 
pair of adjacent edges in the tree, and calculates the cost reduction achiev­
able by optimally overlapping these two edges (i.e., inducing a Steiner point). 
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Figure 3.20 Execution of PD1 with c = 0.5 (a) and KRY [156] 
with a= 1.5 (b), on a 100-sink example using Euclidean distance. 
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The candidate Steiner point (i.e., the overlapping of two edges) which yields 
maximum cost savings is iteratively added until no further cost reduction is 
possible. 14 

Figure 3.19(b) and Table 3.4 show that the performance-driven spanning tree 
constructions with lowest delay still have lowest delay when Steiner points 
are incorporated. Interestingly, the average best values of the input param­
eters shift to more star-like spanning topologies when the Steiner conversion 
is employed. This is because edge-overlapping decreases. cost without affect­
ing radius, so that it is advantageous to use spanning trees with higher cost 
and lower radius. Some anomalies may result since the overlapping process 

14 The output of this heuristic is nearly identical to that of the optimal edge-overlapping 
algorithm of Ho et al. (called S-RST in .[124}). For random 10-node instances, greedy 
edge-overlapping averages 8.8% cost reduction from an input minimum spanning tree, while 
S-RST is reported to average 9.0% reduction. For random 25-node instances, the greedy 
heuristic averages 9.3% percent cost reduction over the minimum sparming tree, while S­
RST is reported to average 9.5% reduction. 



102 CHAPTER 3 

diminishes the star-like nature of the tree topology, i.e., a Steiner tree can have 
greater sink delay than its spanning tree precursor. 15 

Steiner Trees A vg sink delay vs. MST (best parameter) 
#sinks Method IC1 IC2 IC3 MCM1 

4 

8 

16 

PD1 0.807 ( 0.25) 0. 775 ( 0.27) 0.763 ( 0.28) 0.694 ( 0.32) 
KRY 0.807 (26.12) 0. 776 (24.37) 0.763 (24.56) 0.694 (21.85) 
BRBC 0.817 ( 0.06) 0.787 ( 0.05) 0. 775 ( 0.06) 0.716 ( 0.06) 
PDl 0.749 ( 0.50) 0.696 ( 0.55) 0.680 ( 0.56) 0.551 ( 0.64) 
KRY 0. 751 ( 9.86) 0.698 ( 6.15) 0.682 ( 5.55) 0.550 ( 3.38) 
BRBC 0. 777 ( 0.18) 0. 735 ( 0.15) 0.720 ( 0.17) 0.625 ( 0.13) 
PD1 0. 711 ( 0.52) 0.644 ( 0.60) 0.624 ( 0.62) 0.443 ( 0. 75) 
KRY 0. 715 ( 3.99) 0.647 ( 2.48) 0.628 ( 2.28) 0.445 ( 1.29) 
BRBC 0.765 ( 0.24) 0.719 ( 0.25) 0. 702 ( 0.25) 0.579 ( 0.29) 

Table 3.4 Average source-sink delay in the best tree for each al­
gorithm, after edge-overlapping has been used to induce a Steiner 
routing. Values are given as a ratio to corresponding MST delay 
values, averaged over 250 random instances. Numbers in parenthe­
ses give average best parameter value for each algorithm. 

Finally, we observe that the tunable cost-radius tradeoffs are more useful than 
leading "fixed" methods, which cannot be parameterized to change with the 
interconnect technology. In particular, the improvements afforded by PD1 
over the fixed constructions discussed above (A-trees or MST-Overlap heuristic 
SMTs) can be substantial. Alpert et al. [14] have described a simple compar­
ison versus the A-tree results reported in [65], based on normalizing to the 
performance of BRBC with f = 1.0 (this is possible since identical MCM in­
terconnect parameters and Two-Pole simulation methodology were used in [14] 
and [65]). Even with a fixed "best" parameter value for the technology, PD1 
has over 25% expected delay reduction versus A-tree. We have found that delay 
reductions of similar magnitude are expected over the traditional MST -Overlap 
construction for minimum-cost routing trees. 

15 Highly star-like topologies can possibly introduce other difficulties such as crossing wires, 
nodes with degree > 4, and coupling effects. These effects are ignored in this chapter, since 
they are generally transparent to the SPICE and Two-Pole simulation methodologies. 
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3.3 MINIMIZATION OF ACTUAL DELAY 

The geometric minimum tree cost, bounded tree radius, and cost-radius trade­
off objectives of Section 3.2 were motivated by analysis of the Elmore delay 
approximation (see also the detailed discussion in the Appendix). However, 
such objectives are abstractions; they do not directly optimize Elmore delay. 
Indeed, the relevance of a given geometric objective often depends on the pre­
vailing technology, on the particular distribution of sink locations for a given 
signal net, and on the user's ability to find the parameter value ( f in BRBC, 
or c in PD1) which yields a good solution for a particular instance. Thus, 
we now discuss methods which remove any abstraction of delay in the routing 
objective, in that a high-quality delay estimate is optimized directly. 

3.3.1 Greedy Optimization of Elmore Delay 

Much of this section will focus on variants of a greedy, yet demonstrably near­
optimal, approach to minimum-delay routing that was proposed by Boese, 
Kahng and Robins in (34]. This method optimizes Elmore delay directly as 
the routing tree is constructed. The simplest embodiment of this Elmore-based 
approach is the Elmore routing tree (ERT)spanning tree construction (Figure 
3.21). The ERT algorithm is analogous to Prim's MST construction (196]. It 
starts with a trivial tree T = (V, E) con~aining only the source so, and itera­
tively finds the terminal Si E V and the sink Sj E S- V such that adding edge 
(si, Sj) toT results in a tree with minimum Elmore delay. In other words, each 
added sink minimizes max,kevtEv(sk), the maximum Elmore delay at any 
sink in the growing tree. 16 This approach recalls the method of Prasitjutrakul 
and Kubitz (192], which uses A* search and the Elmore delay formula in a 
performance-driven routing tree construction. The method of (192] also grows 
a routing tree over S starting from the source so; A* search in a routing graph 
(e.g., the channel intersection graph) is used to find the Elmore delay-optimal 
Steiner connection from a new sink to the existing tree. The key distinction 
from ERT is that Prasitjutrakul and Kubitz do not allow any choice in picking 
this new sink: their algorithm always adds the sink that is closest to the existing 
tree, and thus ignores the underlying Elmore delay criterion. This difference in 
the order of adding sinks can be seen in Figure 3.22, which depicts the progress 
of the ERT variant which returns a Steiner, rather than spanning, topology. 17 

16 Recall that tED (s;, Bj) is the Elmore delay between sinks s; and Bj 1 and that tED(s;) is 
the shorthand notation for tED (so, s;). When no particular delay model is assumed, t( s;, s j) 
or t(s;) will be used to denote the analogous quantities. 

17Jn the example shown, Prasitjutrakul and Kubitz would add sink 3 before sink 2, and 
sink 5 before sink 4. An instance with a much greater difference between ERT and the 
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The greedy approach implicit in the ERT algorithm can be generalized to any 
delay model by applying the appropriate estimator in Line 3 of Figure 3.21. For 
example, Zhou et al. [258] propose the use of calls to their Two-Pole simulator 
within a similar greedy construction; Sriram and Kang [228] also suggest this 
strategy for MCM routing using a second-order delay model. 

ERT Algorithm 
Input: signal net S with source so E S 
Output: routing tree T over S 
1. T = (V, E)= ({so},0) 
2. While lVI <lSI do 
3. Finds; E V and Sj E S- V that minimize the maximum Elmore 

delay from so to any sink in the tree (V U { Sj }, E U {(s;, Sj)}) 

4. V=VU{si} 
5. E = E U {(s;, Sj)} 

6. Output resulting spanning tree T = (V, E) 

Figure 3.21 The ERT Algorithm: direct incorporation of the El­
more delay formula into a greedy routing tree construction. 

Fact 3.3.1 The ERT algorithm can be implemented to run in O(n3 ) time, 
assuming that unit wire resistance, unit wire capacitance, and sink loading ca­
pacitance are all fixed constants. 

Proof: If a new tree edge incident to sink Si E V (Line 3 of Figure 3.21) 
minimizes the maximum Elmore delay max8 kevtEv(sk), it must connect s; to 
the sink Sj ¢ V that is closest to Si. Thus, at each pass through the while loop, 
we simply compute the shortest "outside connection" for each possible Si E V 
in O(n2 ) time, and then add each of the O(n) shortest outside connections to 
T in turn. Evaluating the Elmore delays at all sinks in each of the resulting 
trees requires O(n) time per tree. Hence, each pass through the while loop 
requires O(n2) time, implying O(n3) total time complexity. 0 

The same ERT approach can yield a Steiner routing when the new sink Sj is 
allowed to connect to an edge of the existing tree, possibly inducing a Steiner 

algorithm of [192] would consist of many sinks closely spaced along a long path. The method 
of [192] forces the sinks to be added into the tree according to the path order, which can 
be suboptimal. Another difference from the method of [192] is that ERT does not consider 
obstacles, i.e., it still maintains a largely geometric perspective. 
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node on this edge at its point closest to Sj. (The embedding of each L-shaped 
edge remains undetermined until a Steiner node is placed on it.) Because star­
like topologies can be optimal, we also allow a connection directly to the source. 
Thus, the number of ways in which Sj fl. V can be added is at most the number 
of nodes in the current tree. The resulting Steiner Elmore routing tree (SERT) 
algorithm modifies Line 3 in Figure 3.21 to find Sj fl. V and (v, v') E E, such 
that connecting s i to the closest point x on edge ( v, v') minimizes the maximum 
source-sink Elmore delay in the resulting tree. Assuming that x is distinct from 
v and v', Line 4 is then modified so that V = V U { Sj, x} and Line 5 is modified 
so that E = EU {(v, x), (v', x), (x, Sj)}- {(v, v')}. Figure 3.22 shows the SERT 
construction for an 8-sink signal net using the IC2 technology parameters from 
Table 3.1 above. 

No SERT implementation is known that is faster than O(n4 ). Obstacles to a 
faster implementation seem to be: (i) in the modified Line 3 of the algorithm 
template, 0(n2) Steiner connections must always be considered, and (ii) it is 
possible that the connection which minimizes maxkten(sk) does not minimize 
the delay at any individual sink in T. 

3.3.2 The Critical-Sink Routing Tree Problem 

Within our taxonomy of minimum-delay routing heuristics, ERT and SERT are 
"generic", net-dependent approaches. This terminology becomes clear when we 
consider the role of signal net routing in the overall layout process. In broad 
terms, performance-driven layout of cell-based designs entails determination of 
timing-critical paths by static timing analysis, after which cells in these paths 
are placed close together (see, e.g., (77, 119, 140, 173, 178, 234]). The static 
timing analysis thus iteratively drives changes within both the cells placement 
and the global routing phases. 

Existing performance-driven placement algorithms may be classified as either 
net-dependent or path-dependent. Net-dependent placement typically uses 
centroid-connected star cost [227], probabilistic estimates of Steiner tree cost 
[141], minimum spanning tree cost [77] or bounding box semiperimeter [178] to 
estimate wire capacitance and signal delay for a multi-terminal net. From this 
information, critical timing paths between primary inputs and primary outputs 
are computed, and module placements are then updated to reduce these "net­
dependent" objectives for signal nets along the critical paths. Path-dependent 
placement considers the delay between the source and a particular critical sink 
of a multi-terminal net. The critical sink is typically determined via timing 
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Figure 3.22 The SERT Steiner tree construction for an 8-sink sig­
nal net, using IC2 parameters. The source terminal is labeled 1, 
and sinks are numbered in order of distance from the source. 

analysis using known module delays and estimated path delays. For example, 
Lin and Du (173] use the linear delay approximation so that their method up­
dates the module placement to reduce the rectilinear distance between sources 
and critical sinks. Other path-dependent methodologies include those of Hauge 
et al. (119] and Teig et al. (236]. 
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If a timing-critical path passes through a given net, the path-dependent ap­
proach can provide an explicit bound on the allowable delay at that net's crit­
ical sink. The net-dependent approach arguably provides only implicit routing 
constraints, but identification of critical sinks is possible after timing analysis, 
or a priori by finding paths that contain more module delays. By contrast, 
observe that the routing constructions discussed so far generally address only 
net-specific objectives: minimumcost (TM orT11s), minimumradius (Ts), cost­
radius tradeoff (TBRBC, TKRY, Tpm, etc.), or maximum Elmore delay (TERT 
or TsERT ). Boese, Kahng and Robins [34] noted the resulting "placement­
routing mismatch": generic, net-dependent methods fail to exploit the critical­
path information that is available during iterative performance-driven layout. 
As a result, designers cannot realize the full potential of high-quality timing­
driven module placements. The following critical-sink routing problem formu­
lation is therefore of interest. 

Critical-Sink Routing Tree (CSRT) Problem: Given a signal netS= 
{so, St, ... , sn} C ~2 with source s0 and sink criticalities a; ~ 0, i = 1, ... , n, 

n 

construct a routing tree T(S) such that La;· t(s;) is minimized. 
i=l 

This CSRT formulation seeks a routing tree T(S) that minimizes a weighted 
sum of delays at critical sinks. Implicitly, we will evaluate sink delays according 
to Elmore delay, tEv(s;). Also, our discussion will not consider any of the 
buffering or wiresizing optimizations that can also be used to reduce sink delays. 

The CSRT formulation can be coerced into capturing traditional routing ob­
jectives (e.g., average delay to all sinks is minimized by using all a; = c for 
some positive constant c. However, the case most relevant to current design 
practice identifies exactly one critical sink, denoted sc. (Our discussion centers 
on this case, but the methodologies that we develop can be generalized to the 
case where a small number of critical sinks are specified.) Figure 3.23 shows 
how the presence of a critical sink can affect the optimal routing solution. The 
figure shows a signal net with critical sink sc, along with three routing trees: 
(a) the optimal (minimum-cost) Steiner tree, (b) the optimal RSA (A-tree), 
and (c) the optimal-delay CSRT with respect to critical sink sc. Part (d) of 
Figure 3.23( d) shows two distinct, optimal RSA's (A-trees) for a three-sink 
net. Some reflection on these examples and Equation 3.llead to the following 
observations: 

• The minimum-cost Steiner tree solution (a) has large delay to the critical 
sink sc due to its long source-sink path. 
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• In an optimal SPT or RSA (b), the requirement of a monotone path to 
every sink can result in large tree capacitance which again leads to large 
delay at Be. 

• The optimal-delay CSRT construction (c) reflects both the minimum-cost 
and the SPT solutions, and illustrates the dependence of the optimal rout­
ing topology on the choice of critical sink. 

• Finally, Equation 3.1 implies that the number of Steiner points in the so­
Be path should be minimized, and the Steiner points "shifted" toward so 
(i.e., branches off of the s 0-se path should occur as close to the source as 
possible). Figure 3.23(d) shows two trees which are both shortest-path 
trees and Steiner minimal trees, yet the tree at right has less signal delay 
at Be. 

That CSRT is intractable is not surprising, since choosing r d large enough 
will make the Co term dominate Equation 3.1 and yield an SMT formulation. 
Boese et al. [33] have given a succinct proof (Figure 3.24) that for any choice 
of technology parameters r, c, rd, and Ci, the SMT problem can be reduced to 
CSRT with a single critical sink, proving that CSRT is NP-hard. The generic 
version of CSRT (i.e., with the maximum sink delay criterion) is also NP-hard; 
this is proved by modifying the example of Figure 3.24 so that Be is located far 
enough from so that it has largest sink Elmore delay. 

Geometric CSRT Heuristics 

The examples of Figure 3.23 suggest that the optimal CSRT solutions tend to 
minimize total tree cost, subject to the path from s0 to Be being monotone (i.e., 
of minimum possible length). This is basically a simultaneous consideration of 
(geometric) radius and cost parameters, akin to the methods of the previous 
section but with modifications to account for the critical sink. Based on this 
intuition, Boese, Kahng and Robins [34] suggested the CS-Steiner approach 
(Figure 3.25). 

CS-Steiner first constructs a heuristic minimum-cost Steiner tree over all ter­
minals of S except the critical sink, then adds Be into the tree so that tEv(se) 

is small. Boese et al. studied several variants which use US to construct the 
initial tree To in Line 1. Then, Line 2 is accomplished as follows: 

• HO- Introduce a single wire from Be to so. 
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Figure 3.23 Parts (a)-(c): Steiner minimal tree (cost 2.0 em, 
t(sc) = 3.34 ns); optimal SPTor RSA (cost 2.5 em, t(sc) = 2.26 ns); 
and optimal-delay critical-sink routing tree (cost 2.2 em, t( sc) = 
1.67 ns) for the same signal net. Coordinates shown are in mm, 
and the l.2J.l IC2 technology parameters in Table 3.1 were used 
with the Two-Pole simulator of Zhou et al. [256) and a 90% rise 
time delay criterion, Part (d): two distinct optimal SPT or RSA 
solutions for a signal net with three sinks. 
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• Hl- Introduce the shortest possible wire that can join sc to To, subject 
to the so-sc path being monotone. 

• HBest- Try all shortest connections from Sc to edges in T0 , as well as 
from sc to so; perform timing analysis on each of these routing trees and 
return the tree with lowest delay at sc. 

The time complexities of these variants are dominated by the construction of 
the heuristic SMT To (Line 1), or possibly by the timing analysis in the case 
of the HBest variant. 
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Figure 3.24 The CSRT problem with a single critical sink is NP­
hard for any choice of technology parameters. A rectilinear SMT 
instance S is transformed into a CSRT instance S' = S U {Be} 
which has critical sink Be directly left of so E S which has smallest 
x-coordinate. The optimal CSRT solution consists of a rectilinear 
SMT overS, plus the edge (Bo,Bc)· 

Algorithm CS-Steiner 
Input: signal net S; source so E S; identified critical sink Sc E S 
Output: heuristic CSRT solution T 
1. Construct heuristic minimum-cost tree To overS- {sc}· 
2. Form T by adding a direct connection from Sc to To, 

i.e., such that the so-sc path in T is monotone. 

Figure 3.25 The CS-Steiner heuristic. 

An interesting complement to the CS-Steiner construction is Global Slack Re­
moval (GSR), a postprocessing algorithm due to [34] which shifts edges to 
remove "U" and "V" configurations from the routing tree. Intuitively, such 
configurations correspond to the "slack" in non-monotone source-sink paths. 
The GSR algorithm has similarities to the method developed independently by 
Chen and Sarrafzadeh for wirelength minimization in single-layer routing (49]. 18 

However, the method of Chen and Sarrafzadeh is aimed at reducing tree cost, 
which is unnecessary here since CS-Steiner begins with a (near minimum-cost) 
118 construction. The salient property of GSR is that it maximizes the mono-

18 Similar "clean-up" techniques have been proposed in a number of contexts over the 
years. For example, the 1981 survey of Soukup [225) attributes such a method to Akers in a 
switchbox routing application. 
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tonicity of all source-sink paths and reduces Elmore delay to all sinks. This is 
accomplished without increasing tree cost. 

v1 
r3 

v1 w1 Tv3 
soo-·"1 ---1 so o-·" • I 

v2 v2 

(a) (b) 

~v 
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Figure 3.26 Removal of a V (top) or aU (bottom) by the GSR 
algorithm. 

A "V" is defined to be a subpath of three consecutive nodes on a source-sink 
path in the routing tree, such that the cost of the subpath is greater than the 
distance between its endpoints (see subpath v1-v3 in Figure 3.26(a)). Similarly, 
a U is a subpath of four consecutive nodes on a source-sink path such that 
the cost of the subpath is greater than the distance between its endpoints (see 
subpath v1-v4 in Figure 3.26( c)). The nodes of a V or a U can be either 
Steiner nodes or terminals in S. A V is removed by introducing a Steiner node 
to eliminate the overlap between the two edges in the V, as in Figure 3. 26(b). 
If aU (say, v1v2v3v4 ) does not contain any V's, then its middle edge (v2,v3) 
must be either completely horizontal or vertical; the U-removal corresponds to 
shifting this middle edge and adding up to two new Steiner nodes as shown in 
Figure 3.26(d). 

Figure 3.27 more precisely describes the GSR algorithm. In the figure, aU (V) 
is said to be located at v when v is the node of the U (V) topologically furthest 
from s0 . The term children( v) denotes the set of nodes that are children of v 
when the tree is rooted at so; parent(v) denotes the parent of v in the rooted 
tree. The variable Q indicates a queue which ensures that each node in the 
tree is processed before its children (e.g., depth-first preorder). We make three 
observations: 
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Algorithm Global Slack Removal (GSR) 
Input: Steiner tree T with source so 
Output: Steiner tree T with all U's removed 
1. Remove all Steiner nodes of degree :5 2 from T; 
2. Q +-{so}; 
3. While Q =I 0 
4. v +- Dequeue(Q); 
5. For each node v' E children(v) do 
6. Q +- Enqueue(v'); 
7. If there is a V located at v' 
8. Remove_V(v') 
9. If there is a U located at v' 
10. Remove_U(v') 
11. Clean_U p( v') 
12. Remove all Steiner nodes of degree :5 2 from T; 

Subroutine Clean_Up(node: v') 
Cl. If there is a V located at parent( v') 
C2. Call Remove_V(parent(v')) 
C3. If there is a U located at v' 
C4. Call Remove_U(v') 
C5. Call Clean_Up( v') 
C6. Else 
C7. If there is a U located at parent( v') 
C8. Call Remove_U(parent(v')) 
C9. Call Clean_Up(parent(v')) 

Figure 3.27 Pseudo-code for the Global Slack Removal (GSR) al­
gorithm. Local variables include a queue Q and nodes v and v'. 
Remove_V(v) and Remove_U(v) are as illustrated in Figure 3.26. 

• The "top-down" order enforced by Q is necessary because processing nodes 
after their children can introduce new U's that remain in the output tree. 
While distinct top-down orderings can produce distinct output trees, any 
output tree will satisfy the properties listed in Theorems 3.3.2 and 3.3.3 
below. 

• Removing a V or U at a node can possibly create new V or U configura­
tions that must be removed along the path back to so by the Clean_Up 
subroutine. Accounting for the possibility that Clean_Up processes any 
source-sink path up to a linear number of times, an O(n2 ) runtime upper 
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bound follows from the algorithm description. While examples exist for 
which llS creates an input tree that forces O(n2) runtime [34], in practice 
multiple calls to the subroutine Clean_Up occur for very few nodes, and 
GSR exhibits close to linear time complexity. 

• Finally, examples are easily constructed which show that Steiner nodes 
of degree :::::; 2 can be introduced which inhibit removal of some U config­
urations. Since such low-degree Steiner nodes are superfluous, they are 
removed after every iteration. 

Boese et al. [34] showed that the tree returned by GSR has noV's or U's, and 
that it dominates the input tree in terms of total tree cost, path length from 
the source to each sink, and Elmore delay at each sink. 

Theorem 3.3.2 Given any tree T as input, GSR returns a tree T' containing 
noV's and no U's. D 

Theorem 3.3.3 Given any tree T as input, GSR will return a tree T' such 
that (i) cost(T') ::5 cost(T); {ii) for each i > 0, distT•(so, s;) ::5 distT(so, s;); 
and (iii) the Elmore delay tED(s;) at each Bi in T' is less than or equal to the 
Elmore delay tED(s;) in T. D 

Another geometric approach that addresses the CSRT problem (with a single 
critical sink) was proposed by Hong et al. [126]. This "Constructive Force­
Directed " (CFD) algorithm is essentially another cost-radius tradeoff, but in 
a novel form: wires are grown from each sink to follow a weighted combination 
of the direction to so and the direction to the closest growing ends of other 
wires. Intuitively, these directions correspond to attractive forces which direct 
the routing construction. The CFD approach seems reasonable (e.g., simple 
weighting schemes will yield a plausible RSA heuristic). [126] discusses specific 
weighting schemes and algorithmic issues (e.g., how a new growing end is deter­
mined once two growing ends meet), and describes the associated performance 
of the method. Since the CFD solution can have many jogs and detours, a 
clean-up phase similar to GSR may be useful. 

CSRT Heuristics That Optimize Elmore Delay Directly 

To address the CSRT formulation, Boese et al. modify their SERT method to 
yield the "Steiner Elmore Routing Tree with identified Critical sink", or SERT­
C, algorithm. SERT-C begins with a tree containing the single edge (so, se) 
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and then continues as in the SERT algorithm, minimizing tEv(sc) rather than 
max,kevtEv(sk)· The algorithm is formally described in Figure 3.28. 

SERT-C Algorithm 
Input: signal net S with source so E S, critical sink Sc 
Output: critical-sink routing tree T over S 
1. 
2. 
3. 

4. 
5. 
6. 

T = (V, E)= ({so, sc}, {(so, sc)}) 
While lVI < lSI do 

Find Sj E S- V and (v, v') E E such that connecting s1 

to the closest point x on ( v, v') minimizes tED ( sc) 
in the tree (VU{s1 ,x},EU{(v,x),(v',x),(x,sj)}- {(v,v')}) 

V=VU{s1 ,x} 
E = Eu {(v,x),(v',x),(x,sj)}- {(v,v')} 

Output resulting Steiner tree T = (V, E) 

Figure 3.28 The SERT-C Algorithm: direct incorporation of the 
Elmore delay formula into a greedy critical-sink routing tree con­
struction. Note that it is possible for x = v or x = v' in Line 3. 

In some sense, SERT-C takes the complete opposite approach from CS-Steiner. 
CS-Steiner begins with a heuristic minimum-cost Steiner tree over S - { Sc}, 
then perturbs it to include Sc with minimum delay t(sc)· By contrast, SERT-C 
starts with the required so-sc connection, then grows the routing tree around 
it while keeping tEv(sc) as small as possible. As with the ERT and SERT 
algorithms, SERT-C's direct optimization of Elmore delay within the construc­
tion allows flexibility with respect to parameters of the technology and the 
input instance. Interestingly, the critical-sink problem formulation allows the 
path-dependent SERT-C algorithm to have nearly quadratic speedup over the 
generic net-dependent SERT algorithm. 

Fact 3.3.4 The SERT-C algorithm can be implemented to run in O(n2 log n) 
time. 

Proof: The effect on tEv(sc) of inserting a new edge (v, Sj) into T arises only 
in the Ck terms of Equation (3.1), and is an additive constant no matter when 
(v, Sj) is added into the tree. Initially, compute the best connection from each 
non-critical sink to the tree that contains only the edge (so, sc)· For each new 
sink added, at most three new edges will be inserted into the tree. It requires 
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constant time to calculate the effects of connections from a given sink outside 
T to these three new edges; all previously computed effects remain unchanged. 
Using a priority queue, for each s; fl. V the delay effects of connecting to these 
new edges can be recorded in O(log n) time, and the current minimum-cost 
connection for s; can be retrieved in O(log n) time. Thus, each pass through 
the while loop of Figure 3.28 can be accomplished in 0( n log n) time, giving 
an overall time complexity of O(n2 logn). 0 

Figure 3.29 shows SERT-C constructions for various choices of critical sink, 
again using the IC2 technology parameters and the same 8-sink signal net in 
Figure 3.22. The tree constructed when sc is node 2 or node 6 is also the IlS 
solution, and the tree constructed when sc is node 7 is also the generic SERT 
result. 

3.3.3 Experimental Results 

CS-Steiner Trees 

Table 3.5 compares the outputs of liS and the CS-Steiner variants HO, Hl and 
HBest, with GSR post-processing applied, for random signal nets of 4 and 8 
sinks, and technology parameters corresponding to those in Table 3.1. Results 
are given for tree cost (WL) and 50% rise time computed using the Two-Pole 
simulator of [256]; the HBest variant also uses calls to the Two-Pole simulator 
in its delay analysis of candidate connections. 19 

llS, like BRBC, KRY, PDl, A-tree, etc., is net-dependent and returns the same 
tree for a given net no matter which sink happens to be critical. Thus, the IlS 
sink delays t(si) are "generic". On the other hand, the CS-Steiner variants 
can return a different tree for each choice of critical sink. Thus, for each CS­
Steiner variant we record the delay t(si) in the specific tree that results from 
identification of Si as the critical sink. Each entry in Table 3.5 represents an 
average taken over every sink node (i.e., all possible choices of critical sink) in 
100 random signal nets. The results show that the simple strategy of connecting 
the critical sink directly to the source (i.e., HO) is quite successful. Variants 

l9 That HO+GSR outperforms HBest+GSR is due to an inconsistency in the use of the Two­
Pole simulator by HBest. To speed the evaluation of all candidate connections, HBest models 
each edge of a candidate tree with a single RLC segment during its calls to the Two-Pole 
simulator. Unfortunately, this does not capture the moments of the interconnect accurately 
(see the discussion in the Appendix), and HBest can choose a suboptimal connection. On 
the other hand, when evaluating the sink delays of the final output tree, each tree edge is 
modeled using a large number of RLC segments, resulting in greater simulation accuracy. 
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Figure 3.29 SERT-C tree constructions for an 8-sink net, showing 
variation of solution with choice of critical sink sc. 

HO and HBest significantly reduce delay to the critical sink, particularly when 
MCM interconnect parameters are used. 
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lSI= 5 IC1 IC2 IC3 MCM 
llS 0.549 ns 0.331 ns 0.218 ns 2.31 ns 

Critical llS+GSR .978 .970 .968 .952 
Sink HO+GSR .980 .876 .849 .550 

Delay Hl+GSR .960 .934 .922 .857 
HBest+GSR .929 .867 .844 .593 

llS 1.48em 1.48em 1.48em 14.8 em 
Ave WL HO+GSR 1.29 1.29 1.29 1.29 

Hl+GSR 1.04 1.04 1.04 1.04 
HBest+GSR 1.07 1.10 1.11 1.22 

lSI= 9 IC1 IC2 IC3 MCM 
llS 0.848 ns 0.520 ns 0.342 ns 4.09 ns 

Critical llS+GSR .964 .954 .950 .927 
Sink HO+GSR .824 .700 .664 .333 

Delay Hl+GSR .883 .827 .810 .665 
HBest+GSR .817 .721 .693 .340 

llS 2.18 em 2.18 em 2.18 em 21.8em 
Ave WL HO+GSR 1.22 1.22 1.22 1.22 

Hl+GSR 1.06 1.06 1.06 1.06 
HBest+GSR 1.11 1.12 1.12 1.21 

Table 3.5 Comparison of C5-5teiner variants against 115. Each 
critical sink delay value corresponds to an average over each possi­
ble critical sink in 100 random signal nets. 115 results are reported 
in the physical units (nanoseconds or centimeters) while other re­
sults are reported relative to 115. 115+G5R produced essentially 
the same average WL values as 115. 

117 
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Elmore Routing Trees 

Tables 3.6 and 3.7 compare outputs of the ERT,SERT and SERT-C heuristics 
against those of the MST, PDI and liS constructions for 5- and 9-terminal 
nets. The algorithms were executed on the same sets of random inputs used in 
the CS-Steiner experiments, and the same delay simulation methodology was 
used. In general, these results show the Elmore-based "Elmore routing tree" 
approach of Boese, Kahng and Robins to be quite effective. 

lSI= 5 IC1 IC2 IC3 MCM 

MST 0.645 ns 0.395 ns 0.262 ns 2.82 ns 
Critical PD1 .904 .863 .885 .777 

Sink ERT .879 .804 .782 .472 
Delay liS 0.549 ns 0.331 ns 0.218 ns 2.31 ns 

SERT .967 .921 .908 .584 
SERT-C .947 .870 .839 .567 

MST 0.758 ns 0.485 ns 0.326 ns 3.86 ns 
Maximum PD1 .876 .835 .822 .759 

Sink ERT .855 .786 .764 .544 
Delay liS 0.627 ns 0.393 ns 0.262 ns 3.06 ns 

SERT .955 .919 .908 .699 
SERT-C .970 .962 .954 .859 

MST 1.64 em 1.64 em 1.64 em 16.4 em 
PD1 1.16 1.16 1.16 1.04 

Average ERT 1.10 1.18 1.19 1.61 
WL liS 1.48ern 1.48em 1.48em 14.8 em 

SERT 1.06 1.11 1.13 1.66 
SERT-C 1.06 1.15 1.16 1.28 

Table 3.6 Comparison ofERT, SERT and SERT-C variants against 
the MST, PDI and liS constructions for 5-terminal nets. Each 
critical-sink entry corresponds to an average over delay computa­
tions for all possible choices of critical sink in each of 100 random 
signal nets. Spanning ERT constructions are compared with MST 
and PDl; Steiner SERT and SERT-C constructions are compared 
with llS. The MST and llS results are reported in the physical 
units (nanoseconds or centimeters); other results are reported rela­
tive to these values. 
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lSI= 9 IC1 IC2 IC3 MCM 

MST 0.984 ns 0.609 ns 0.403 ns 4.80 ns 
Critical PD1 .837 .770 .749 .608 

Sink ERT .837 .741 .702 .329 
Delay llS 0.848 ns 0.520 ns 0.342 ns 4.09 ns 

SERT .884 .806 .781 .384 
SERT-C .847 .735 .693 .340 

MST 1.213 ns 0.792 ns 0.533 ns 7.05 ns 
Maximum PDI .805 .747 .730 .632 

Sink ERT .790 .699 .668 .399 
Delay llS 1.028 ns 0.664 ns 0.444 ns 5.92 ns 

SERT .853 .780 .759 .481 
SERT-C .914 .892 .892 .846 

MST 2.43em 2.43 em 24.3 em 24.3 em 
PD1 1.09 1.09 1.09 1.07 

Average ERT 1.15 1.25 1.27 2.15 
WL llS 2.18 em 2.18 em 2.18 em 21.8em 

SERT 1.09 1.18 1.22 2.27 
SERT-C 1.06 1.11 1.14 1.22 

Table 3.7 Comparison ofERT, SERT and SERT-C variants against 
the MST, PD1 and llS constructions for 9-terminal nets. 
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If no critical sink is specified during the routing construction, a net-dependent 
spanning implementation of ERT will still reduce the delay to whatever sink 
eventually turns out to be critical. This is verified by measuring delays at 
randomly chosen critical sinks: for 8-sink nets, this delay reduction is 16%, 
26%, and 30% in the three IC technologies and is 67% in the MCM technology. 
ERT also improves upon PD1 by 0% (IC1), 4% (IC2), 6% (IC3), and 46% 
(MCM), even though PD1 is allowed to output the best tree over all parameter 
values c for each instance. For Steiner routing, SERT is also a good "generic" 
construction: with 8-sink nets, improvements in delay to a random critical 
sink are, e.g., 19% for IC2 and 62% for MCM, when compared to IlS. In 
terms of the net-dependent maximum sink delay criterion, which is the natural 
measure for the ERT and SERT constructions, improvements over MST and 
llS are similar (the percentages are somewhat greater for IC technologies, and 
somewhat smaller for MCM). 
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Due to limitations of the present modeling and simulation methodology, delay 
reductions may not attain these magnitudes in practice. However, the conclu­
sions as to relative delays of the various constructions are almost certainly valid 
( cf. the discussion of accuracy and fidelity of delay estimators in the Appendix). 
It should also be noted that the ERT and SERT constructions can be some­
what star-like, especially for MCM parameters, due to the maximum sink delay 
criterion. Since the resulting tree costs will be significantly higher than those 
of ns, practitioners may smoothly recapture wirelength (e.g., when the net is 
not on any critical path) by simulating a larger rd value in the construction. 

When a critical sink Be is known, further reductions in delay can be achieved. 
For example, the SERT-C algorithm improves over SERT by additional reduc­
tions in critical-sink delay of 5%, 7% and 6% for the three IC technologies, 
and 8% for MCM. More significant advantages from knowing Be are gained 
in terms of tree cost. Particularly for MCM parameters, SERT-C trees have 
much less cost than SERT trees, even while improving the critical-sink delay. 
An interesting side note is that the SERT-C maximum sink delay also decreases 
relative to IlS. It is thus likely that the overall delay skew in the routing tree 
will be reduced even when the user addresses the path-dependent critical-sink 
criterion, as opposed to the net-dependent maximum delay criterion. Finally, 
SERT-C produces very similar delays and costs when compared to the CS­
Steiner variants HBest and HO. However, SERT-C is more practical since it 
runs in O(n2 log n) time and does not require any simulator calls as does HBest 
(the underlying llS call in CS-Steiner itself requires O(n3 ) time). 

3.3.4 Optimal-Delay Routing Trees 

Given the success of the geometric performance-driven routing heuristics, and 
the further success of the Elmore-based methods, it is natural to ask whether 
substantial further advances are possible. In other words, we seek to define the 
achievable envelope of routing tree designs with respect to performance. The 
study of delay-optimal trees can provide a bound on possible gains from future 
work in performance-driven routing. This, in turn, can provide impetus toward 
research in other performance-driven layout techniques, such as driver- and 
wire-sizing. The characterization of optimal-delay trees also yields improved 
layout and performance estimators for placement, floorplanning and high-level 
synthesis. 
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Spanning Trees and BBORT 

For the maximum sink delay objective, Boese et al. [30, 31] have used branch­
and-bound to find a spanning optimal routing tree (ORT) solution according 
to Elmore delay. Starting with a trivial tree containing only s0 , the algorithm 
incrementally adds one edge at a time to the growing tree while updating the 
the maximum sink delay. If this delay value exceeds the maximum sink delay in 
any complete candidate tree seen so far, the search backtracks to use a different 
edge at the previous step. A recursive implementation of this Branch-and­
Bound Optimal Routing Tree (BBORT) search is shown in Figure 3.30. BBORT 
adds sinks in a breadth-first manner, with the children of any parent added in 
increasing order of their indices. It can be seen that there is a unique sink 
ordering corresponding to each tree topology, and that each topology will be 
visited at most once. In Figure 3.30, Lines 7-9 embody the branch-and-bound 
search. If the current tree T' has delay greater than or equal to tmin (the current 
best-known delay for a complete tree), then procedure Add_Edges terminates 
and the algorithm backtracks. Otherwise, if T' is a complete spanning tree, 
then tmin is set to the delay ofT', or if T' is a partial tree, then Add_Edges 
recursively adds more edges to T'. 

Algorithm BBORT 
Input: signal net S with source so E S 
Output: optimal-delay tree Topt over S 
1. T = (V, E)= ({so},0) 
2. tmin = 00 

3. Call Add_Edges(T) 
4. Output Topt 
Procedure Add-Edges(Tree: T = (V, E)) 
5. While there exist s; E V and s1 ~ V such that 

T' = (VU {s;},Eu {(s;,sj)}) is a new tree topology Do 
6. Compute maximum sink delay t(T') 
7. If t(T') < tmin Then 
8. If IT' I = lSI Then Topt = T' ; fmin = t(T') 
9. Else Call Add-Edges(T') 

Figure 3.30 The Branch-and-Bound Optimal Routing Tree 
(BBORT) algorithm (recursive implementation). 

Table 3.8 compares the maximum sink Elmore delays and the tree costs of t.he 
ORT (i.e., found by BBORT), ERT, SPT and MST solutions. The SPT is 
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a rectilinear spanning arborescence, i.e., the minimum-cost spanning tree in 
which all source-sink paths are monotone. Each entry in the table represents 
an average over 200 randomly generated signal nets, with the same technology 
parameters and delay simulation methodology as above. Delay for each tree is 
normalized to the ORT delay of the same net, and tree cost is normalized to 
the MST cost of the net. 

lSI= 5 IC1 IC2 IC3 MCM 
delay cost delay cost delay cost delay cost 

ORT 1.0 1.103 1.0 1.140 1.0 1.146 1.0 1.432 
ERT 1.007 1.104 1.010 1.159 1.011 1.172 1.009 1.585 
SPT 1.085 1.290 1.058 1.290 1.054 1.290 1.089 1.290 
MST 1.169 1.0 1.272 1.0 1.311 1.0 1.894 1.0 

lSI =7 IC1 IC2 IC3 MCM 
delay cost delay cost delay cost delay cost 

ORT 1.0 1.133 1.0 1.175 1.0 1.190 1.0 1.547 
ERT 1.017 1.142 1.022 1.215 1.027 1.252 1.024 1.892 
SPT 1.130 1.395 1.096 1.395 1.091 1.395 1.161 1.395 
MST 1.282 1.0 1.451 1.0 1.499 1.0 2.457 1.0 

Table 3.8 Near-optimality of Elmore delays and tree costs of vari­
ous constructions, using ICl, IC2, IC3 and MCM parameters. Tree 
cost is normalized to MST cost, and delay is normalized to ORT 
delay. 

For 7-terminal nets in the ICl technology, the ERT has maximum sink Elmore 
delay averaging only 1.7% greater than optimal; by contrast, the MST has max­
imum sink Elmore delay averaging 28.2% greater than optimal. For 5-terminal 
nets, ERT delays average 0.7% above optimal, while MST delays average 16.9% 
above optimal. The confidence in these estimates of ERT suboptimality is very 
high, e.g., the 1.7% suboptimality obtained for 7-terminal nets and the ICl 
technology has 95% confidence interval (i.e., within twice the standard error of 
the average) between 1.3% and 2.1 %. Even with the worst results in the table, 
for IC3 parameters and 7-terminal nets, ERT remains within 2.7% of optimal 
Elmore delay, with 95% confidence interval for this estimate between 2.2% and 
3.2%. 
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Toward Elmore Delay-Optimal Steiner Trees 

To completely delimit the "performance envelope" for routing trees and to as­
sess the near-optimality of the SERT and SERT-C constructions, it is necessary 
to compute Elmore delay-optimal Steiner routing trees. Both the Steiner op­
timal routing tree (SORT), which minimizes ma:c8 ,tED(si), and the Steiner 
optimal routing tree with identified critical sink (SORT-C), which minimizes 
tED(sc), are of interest. At first glance, computing either of these trees seems 
difficult: since there are potentially an infinite number of candidate Steiner 
node locations, even branch-and-bound may be infeasible. 

Two theoretical results obtained by Boese et al. [32, 33) enable exact determi­
nation of the performance envelope for routing trees. The first result limits the 
Steiner nodes of Elmore-optimal trees to the same "Hanan grid" that contains 
the Steiner candidate set of an SMT instance. This implies that a finite algo­
rithm exists which determines optimal CSRT solutions for any positive com­
bination of Elmore delays to critical sinks. The second result gives a "peeling 
decomposition" of any Elmore-optimal Steiner tree into a sequence of subtrees, 
each of which adds a sink by a closest connection to some edge of the previous 
subtree. Together, these results afford a branch-and-bound search method that 
extends BBORT to optimal critical-sink Steiner topologies. A brief review of 
the results in [32, 33) is as follows (again, all delays t(si) are assumed to be 
Elmore delay). 

n 

Let T* be a CSRT solution that minimizes f = L: O:i • t(si)· Without loss of 
i=l 

generality, assume that all O:i > 0 and that T* contains no degree-2 Steiner 
nodes. A tree will be considered to be a collection of nodes (possibly terminals 
of S) and edges, so that v E T for node v and e E T for edge e are both 
meaningful. A straight edge is an edge that is completely vertical or horizontal; 
other edges are L-shaped. 

The closest connection between three nodes is the location of the single Steiner 
node in a minimum-cost Steiner tree over the three nodes. This unique location 
has coordinates given by the medians of the :c- and the y- coordinates of the 
three nodes. The closest connection between a node v and an edge e is the 
closest connection between v and the two endpoints of e. If a Steiner tree T 
over S is rooted at s0 , define T\v to be the tree induced by removing node 
v and all its descendants from T, and then removing all remaining degree-2 
Steiner nodes. Node vET is connected to an edge e E T\v if its parent node in 
Tis located on edge e. If parent( v) is located at the closest connection between 
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v and an edge e E T\v to which vis connected, then vis said to make a closest 
connection to e in T. 

An enabling observation is that in the optimal tree T*, Elmore delay at every 
sink is a concave function of the distance x that separates the closest connection 
between v and e from their actual connection point. Any linear combination 
of concave functions is itself concave; thus, any positive combination of sink 
Elmore delays is also concave in x. Using the fact that a concave function 
defined over a convex domain takes on its minimum value at an extreme point 
of the domain, Boese et al. showed that T* is composed of closest connections: 20 

Lemma 3.3.5 Suppose node v E T*, v f so, is connected to edge e E T*\v. 
Then either parent( v) = so or v makes a closest connection to e in T*. 0 

For any routing tree T rooted at so and for any v E T, let Tv to be the subtree 
ofT rooted at v. A segment is a contiguous set of straight edges in T which are 
either all horizontal or all vertical; a maximal segment (MS) is a segment that is 
not properly contained in any other segment. Let M be an MS in T. The node 
in M closest to so on a source-sink path containing M is called the entry point 
of M. A segment containing all points in M to one side of M's entry point is 
called a branch (sometimes a branch will include the entire MS). A branch b is 
a branch off of MS M' if M' and b are incident at a single node which is not 
the entry point to M'. L-shaped edges are also defined as branches. 

An MS M divides the plane into two half-planes: the half-plane containing the 
edge between M's entry point and its parent is the near side of M, and the 
other half-plane is the far side of M. Branches off of M that are located on 
its near (far) side are called near (Jar) branches. In addition, a sink located on 
M is defined to be a far branch off of M if it is not the entry point to a larger 
far branch. For any segment S, N ear(S) (resp. Far(S)) denotes the set of 
near (resp. far) branches off of the maximal segment containing S. Figure 3.31 
gives an example of an MS M with endpoints Pl and p2, entry point po, and 
four branches, including near branch b1, far branches b2 and b4, and another 
far branch consisting only of sink s3 . 

Two more lemmas from [32] respectively follow from (i) basic properties of the 
Elmore delay formula, and an edge-shifting argument applied to the balance 

20 The technique of exploiting concavity is much more powerful tha.n the "segment-shifting" 
that Ha.na.n used to prove his original result for minimum-cost trees. Indeed, the edge shifts 
used by Ha.na.n ca.n be suboptimal in terms of Elmore delay. Applications of this technique 
to more sophisticated delay estimates may be promising. 
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Figure 3.31 Example of a maximal segment M with entry point Po, 
one near branch bt, and three far branches, including b2 . Note that 
by definition, s3 forms a far branch with no edges. Edge (p0, s6) is 
not a far branch off of M because Po is not an entry point to the 
MS containing (po, s6)· 

12.5 

between IFar(M)I and INear(M)I, and (ii) Elmore delay at all sinks being a 
concave function of the position of any maximal segment. 

Lemma 3.3.6 Let M be a maximal segment in T* that does not contain so. 
Then IFar(M)I > INear(M)j. 0 

Lemma 3.3. 7 Any maximal segment in T* must contain either a sink or the 
source. D 

Corollary: Any Steiner node in T* is located on the Hanan grid. D 

Hanan's original theorem may be viewed as being equivalent to a special case 
of this Corollary with rd --> oo. (Hanan proved that all edges of some rectilin­
ear SMT lie on the Hanan grid; this Corollary is stated with respect to node 
locations.) 

Finally, Boese et a!. show that T* can be constructed by starting with the 
trivial tree To = ( {so}, 0) and successively adding sinks according to some 
ordering s 1 , s2, ... , s11 to create trees T1 , T2, ... , Tn = T*, with each Si making 
a closest connection to some edge in 1';_ 1 . This result follows from the existence 
of a reverse, "peeling" decomposition ofT*. 
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Theorem 3.3.8 There is a sequence of trees To = ({so}, 0), Tt, T2, ... , Tn = 
T* such that for each i, 1 ~ i ~ n, (i) there is a sink Si E 7i such that 
1i-1 = T;\si, and {ii) either Si is connected to so, or Si makes a closest con­
nection in 7i to some edge in 1i-1· 

Note that this peeling decomposition extends to the classic Steiner minimal 
tree problem when rd -> oo. Similar to the first decomposition theorem in the 
Steiner literature [135], this second decomposition provides both a characteri­
zation of, and an effective means of generating, optimal Steiner trees. 

Steiner Trees and BB-SORT-C 

Based on the the above results, a simple modification to algorithm (BBORT) 
BBORT can find an optimal Steiner routing tree for any linear combination of 
Elmore delays at critical sinks. Rather than considering connections from each 
sink Sj outside the current tree to each sink Si inside the tree as in BBORT, 
the Branch-and-Bound method for Steiner Optimal Routing Trees with Critical 
Sinks (BB-SORT-C) considers connections from Sj to each edge created when Si 
was added to the tree. In other words, each node Si that is already contained in 
Tis replaced as a possible connection point by each of the edges created when 
Si was added to the tree earlier. The branch-and-bound pruning is used to 
reduce the complexity of the search and avoid redundant topologies. Since BB­
SORT-C searches over all possible ways to construct a Steiner tree sequentially 
with each sink added by a closest connection to an edge in the current tree, 
the algorithm returns T*. Interestingly, Boese et al. [33] show that for the 
maximum sink delay objective (the CSRT formulation with all O:i = a constant 
and an £ 00 sum), the Hanan grid result does not hold. In other words, there are 
examples for which no delay-optimal tree lies on the Hanan grid. This suggests 
that the technique used to generalize Hanan's theorem for a concave delay 
function was in some sense sharp: while the positive sum of concave functions is 
always concave, the maximum of concave functions is not necessarily a concave 
function. 

Table 3.9 compares the critical sink Elmore delays ofSERT-C and SORT-C (i.e., 
found by BB-SORT-C) routing trees. Each entry represents an average over 
200 random nets, with the same technology parameters and delay simulation 
methodology as above. Delay for each tree is normalized to the SORT-C delay, 
and tree cost is normalized to the IlS cost. For 6-sink nets and the IC1 technol­
ogy, SERT-C achieves Elmore delay that is on average within 11.1% of optimal; 
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results for IC2, IC3, and MCM parameters are very similar. 21 Although the 
SERT-C algorithm is not as close to optimal as the ERT algorithm for the 
types of delay measures studied here, these results provide strong guidance for 
future efforts in performance-driven routing. Even if future work improves the 
near-optimality of critical sink routing constructions, Table 3.9 shows that any 
future improvement in Elmore delay will be at most from 8% to 12% for signal 
nets with up to 6 sinks. 

lSI =5 IC1 IC2 IC3 MCM 
delay cost delay cost delay cost delay cost 

SORT-C 1.0 1.111 1.0 1.161 1.0 1.175 1.0 1.296 
SERT-C 1.042 1.046 1.049 1.120 1.046 1.140 1.000 1.296 
!-Steiner 1.117 1.0 1.228 1.0 1.275 1.0 1.455 1.0 
lSI= 7 IC1 IC2 IC3 MCM 

delay cost delay cost delay cost delay cost 
SORT-C 1.0 1.112 1.0 1.158 1.0 1.165 1.0 1.262 
SERT-C 1.083 1.047 1.114 1.106 1.112 1.112 1.001 1.256 
1-Steiner 1.200 1.0 1.362 1.0 1.429 1.0 1.634 1.0 

Table 3.9 Near-optimality of Elmore delays and tree costs of var­
ious Steiner tree constructions, using ICl, IC2, IC3 and MCM pa­
rameters. Tree cost is normalized to US cost, and delay is normal­
ized to BB-SORT-C delay. Standard errors for SERT-C delays are 
shown in parentheses. 

3.3.5 Remarks 

This section has introduced both the "direct" optimization of Elmore delay, 
and the critical-sink formulation, and described several heuristics. The greedy 
"Elmore routing tree" variants - ERT, SERT and SERT-C - give promising 
results in terms of both generic (max sink delay) and critical-sink performance­
driven routing. Since the constructions are fairly close to optimal, alternate 
methods of improving delay beyond the routing topology design would seem 
worth pursuing. 22 

21 Average running times for nets with lSI = 5 (in CPU seconds on a Sun 4) are 0.006 
(BB-SORT-C), 0.0004 (SERT-C), and 0.0025 (1-Steiner). Average running times for nets 
with lSI = 7 are 0.46 (BB-SORT-C), 0.0008 (SERT-C), and 0.0074 (1-Steiner). 

22 Combining "fidelity" studies such as those in the Appendix with the above studies of 
Elmore delay suboptimality, one can obtain upper bound estimates of the ERT, SERT and 
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Which of these routing heuristics is most useful will depend on the application. 
CS-Steiner variants HO and HBest yield the smallest delay values for a single 
critical sink, but tend to have high time complexity. The SERT-C heuristic 
has 9(n2 logn) time complexity, and extends to the case of nets with multi­
ple critical sinks (apply SERT with max delay objective to the critical sinks, 
then apply SERT-C with a weighted average delay objective to connect the 
remaining sinks). The "generic" ERT and SERT heuristics can also be applied 
before critical path information becomes available (reduction of the time com­
plexities of ERT and SERT remains an interesting open problem). For nets 
on non-critical paths, minimizing area will take precedence over minimizing 
delay, hence traditional minimum-cost Steiner tree heuristics such as IlS, or 
simulation of a higher rd value in any ERT variant, will be preferable. Both 
the CS-Steiner and ERT approaches extend to incorporate wiresizing and ad­
dress general-cell layout with arbitrary routing region costs. Finally, Vittal and 
Marek-Sadowska [244] have recently given input instances for which ERT and 
SERT return highly suboptimal routing trees. The alphabetic tree based ap­
proach in [244] uses more "global" criteria than the greedy ERT construction, 
and can thus escape such pathological instances. 

3.4 NEW DIRECTIONS 

While existing routing algorithms center largely on topology design, the scaling 
ofVLSI technology has shifted layout optimizations to account for interconnect­
and device-level phenomena. We conclude this chapter by sketching two recent 
directions in the delay-driven design of VLSI interconnects. First, we discuss 
modification of the wire geometry, as opposed to the wire topology, for improved 
signal propagation. A second idea- the use of non-tree routing topologies to 
reduce signal delay- is also quite foreign vis-a-vis our development so far. Ex­
perimental evidence suggests that these approaches can substantially improve 
signal delay as well as skew, reliability, and other attributes of the interconnect 
design. In the future, these forms of interconnect optimization will take on 
greater importance for performance-driven routing applications. 

SERT-C delay suboptimality with respect to SPICE-computed delay. For spanning trees over 
5-terminal nets, Boese et al. [33] estimate that the optimal tree according to Elmore delay 
will be between 3% and 10% above SPICE-optimal, depending on the technology. Since 
the SERT-C heuristic is between 0% and 5% above optimal in terms of Elmore delay for 
5-terminal nets, the SPICE delay suboptimality of SERT-C heuristic can be estimated to 
range from 3% for MCM to at most 12% for 0.5 J.Lm and at most 15% for 1.2J.Lm and 2.0 ILm 
CMOS IC technologies. 
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3.4.1 Wiresizing 

The previous discussion has assumed that VLSI interconnections have uniform 
width and thickness, in that only the length of an interconnection is controlled 
by the designer. However, optimization of wire geometries to improve sig­
nal propagation is an established precept, e.g., in microwave and analog cir­
cuit design. A large body of parameter extraction, process simulation, and 
three-dimensional electromagnetic simulation techniques all address the three­
dimensional - as opposed to one-dimensional - nature of integrated circuit 
wiring. As wire width and spacing continue to decrease, and as device switch­
ing speeds continue to increase, previous "second-order" phenomena (line cou­
pling, deposition profiles, inductive effects, etc.) become more significant. The 
concept of wiresizing is motivated by the basic tradeoff between capacitance 
and resistance in the wire geometry. 

For a given interconnect technology, let us change the definition of "unit resis­
tance" so that r now denotes the resistance of a unit-length, u71it-width wire 
segment; we define unit capacitance c similarly. Then, a segment of width w 
units will have resistance per unit length of f and capacitance per unit length 
of c · w. Given an RC tree with variable wire widths, we can substitute the 
appropriate lumped values for each segment in the distributed representation of 
the tree. The evaluation of signal delays, e.g., according to the Elmore formula, 
remains the same as in our previous discussion. 

Fisher and Kung [94). Zhu et al. [261). and Pullela et al. [198] have used 
wiresizing to optimize the design of clock distribution networks; see Friedman 
[100] for an overview of related techniques. Dutta and Marek-Sadowska [80] 
have previously used wiresizing in the design of power and ground networks, 
where upper bounds on current densities must be satisfied to achieve reliability. 
For performance-driven routing of arbitrary signal nets, Cong et al. (64, 65] 
and Sapetnekar [209] have given the main early results, corresponding to the 
case where the tree layout is prescribed and only the segment widths can be 
varied. 

In (64, 65]. it is assumed that only a small number r of widths W1, W2, ... , Wr 
are available to implement the wire segments in the interconnect tree. The 
resulting discrete wiresizing problem formulation uses the same weighted sum 
of critical-sink delays objective (34] that we have discussed above: 
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The Discrete Wiresizing Problem: Given the set of edges E of a routing 
tree T, n sink criticalities Oi > 0, and a set of r available wire widths W = 
{ W1 , W2, · · · , Wr}, find a wire width assignment f : E -+ W to minimize the 
weighted sum of critical sink delays L Oi · t(si). 

i=l 

Following [65], let Wj = f( ei) denote the width assignment of edge ei. Also, let 
r indicate the optimal wire width assignment, with wJ being r ( ei). We abuse 
notation and allow T to contain more "edges" than sinks (e.g., if T is embedded 
in the grid graph); this allows a given connection to contain multiple segments 
(i.e., edges) with possibly different widths. Let Anc(ei) denote the set of all 
ancestor edges on the unique path from the source to edge ei, excluding ei itself; 
similarly, let Des( ei) denote the set of descendant edges, { ek I ei E Anc( ek)}. 

To make the discrete wiresizing problem tractable, it is assumed that sink 
delays are given either by the Elmore delay upper bound of Rubenstein et al. 
or by Elmore delay itself. Cong et al. state that the following two properties 
hold for the Elmore delay upper bound [65] and for Elmore delay [64]. 

(Monotonicity)23 For any routing tree T, the optimal wire width assignment 
r satisfies w; ~ w; whenever ej is an ancestor of ei. 

(Separability) The optimal width w; of edge ei depends only on the width 
assignments { Wj I ei E Anc( ei) U Des( ei)} of ei 's ancestors and descendants. 

According to [65], once ei and the edges in Ans( ei) have been assigned widths, 
the optimal width assignments for each "single-stem subtree" -i.e., a maximal 
subtree within Des(ei) which has exactly once edge adjacent to ei -can be in­
dependently determined. For example, in Figure 3.32 (reproduced from (209]), 
once wi has been fixed, w2 and wa can be optimized independently. 

Together, these two properties imply that the disjoint maximal subtrees below 
any given edge can be optimized independently (Separability), and only mono­
tone root-leaf width assignments need be considered (Monotonicity). Thus, 
Cong et al. propose an O(IEr- 1) recursive algorithm to solve the discrete 
wiresizing problem, essentially by enumerating all monotone wire width assign­
ments on every source-sink path in T. 

More recently, Sapetnekar [209] has suggested minimization of the maximum 
sink Elmore delay, rather than the weighted sum of sink Elmore delays. For this 

23 Cf. the discussion of synthesis of clock trees and other interconnects in [18). 
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objective, the separability property does not hold, and the solution methods of 
Cong eta!. do not apply. In Figure 3.32, tEv(s2) depends on the widths w1 and 
w2 which define the resistive and capacitive elements of the s0-s2 "main path". 
Separability fails because tEv(s2) also depends on the off-path capacitive load 
defined by w3: minimizingtEv(s2) is achieved by using minimum width for e3 . 

The symmetric situation holds for tEv(s2)· Since minimum width of, say, e2 
implies greater resistivity on the so-s2 path, it is not possible to optimize the 
maximum sink delay by optimizing the two sink delays independently. Sapet­
nekar also treats a continuous version of the wiresizing problem, i.e., the set 
of available wire widths forms an interval W = [wmin, Wma.r]. and proposes an 
efficient heuristic based on sensitivity analysis. 

Figure 3.32 Counterexample to the separability property for the 
maximum sink Elmore delay objective, reproduced from [209]. 

For the discrete wiresizing problem, [64, 65] proposed the following O(IEI2 · 
r) greedy heuristic, which iteratively changes a single wire width to improve 
the delay objective while keeping all other wire widths fixed. The algorithm, 
which we call Static Greedy Wiresizing (SGW), terminates when no single wire 
width change can improve the delay objective. Figure 3.33 gives an equivalent 
description of this strategy, with an arbitrary delay calculation being allowed 
in evaluating the current wire width assignment. The template shows the 
"increasing version" of the algorithm, i.e., we start with minimum wire widths 
and increase the width of individual segments while always reducing the delay 
objective. Symmetrically, it is also possible to run a "decreasing version" of 
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SGW which greedily decreases wire widths starting from an initial maximum­
width wiresizing. 

Algorithm Static Greedy Wiresizing (SGW) (increasing version): 
Input: T = (V, E) rooted at source so, delay objective t(T), 

finite set W = {W1 < W2 < ... < Wr} of discrete edge widths, 
wire width assignments f(e;):: W1 for all e; E E 

Output: Wire width assignment f: E--+ W for tree T 
For each node s; E V such that e =(so, s;) E E Do 

Call SGW on the subtree rooted at s; 
Repeat 

delay old = t(T) 
Increase f(e) from Wk to W~<+l 

Until delaYo!d < t(T) or f(e) = Wr+l 
Decrease /{e) from Wk to Wk-1 

Figure 3.33 The Static Greedy Wiresizing (SGW) algorithm (in­
creasing version). For convenience, we assume the existence of a 
width Wr+l that is greater than the maximum allowed width Wr. 

Given two wire width assignments /1 and 12 for some tree T, we say that /1 
dominates 12 if /1 ( ei) 2: 12 ( ei) for all edges ei. Cong et al. [64, 65] showed the 
following: 

(Dominance) For any tree T with wire width assignment /1, let 12 be a 
wire width assignment obtained by a sequence of single wire width changes, 
each of which improves the delay objective while leaving all other wire widths 
fixed. Then h dominates (is dominated by) /* if and only if /1 dominates (is 
dominated by) r. 
The dominance property implies that the increasing and decreasing versions of 
SGW can provide lower and upper bounds on the optimum wire width for each 
edge in T. 

Dynamic Wiresizing 

The SGW method is called static because the interconnect topology is fixed 
before wiresizing begins. To take advantage of possible synergy between these 
two processes, Hodes et al. [125] have proposed a dynamic wiresizing heuris­
tic which combines the Steiner Elmore routing tree (SERT) and static greedy 
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wires1zmg (SGW) approaches. Starting with only the source terminal, the 
construction iteratively adds a new terminal to minimize the Elmore delay ob­
jective in the resulting wiresized topology. In other words, SGW is called once 
with candidate edge in the construction, and the edge which yields the lowest­
delay wiresized tree is added. It should be noted that the wiresizing serves 
strictly as a guide, in that edges of a partial topology are restricted to have 
minimum width during the construction. Only when the topology spans the 
entire net is SGW invoked a final time and the resulting wiresized Steiner tree 
returned. The resulting DWSERT algorithm is described in Figure 3.34. 

Algorithm Dynamically Wiresized Steiner 
Elmore Routing Tree (DWSERT) 

Input: Signal net S with source so E S 
Output: Wiresized low-delay Steiner tree spanning S 
T = (V, E)= ({so},0) 
M = S- {so} 
While M "" 0 do 

Find u E M, and point w on some edge of E which 
minimizes the maximum Elmore delay from so to any leaf 
in the wiresized tree SGW(V U {u, tv}, E U {(u, tv)}) 

V = Vu{u,w} 
E = Eu {(u,w)} 
M = M- {u} 

Output SGW(T = {V, E)) 

Figure 3.34 Algorithm DWSERT: constructing a dynamically 
wiresized low-delay routing tree. 

Hodes et al. [125] have compared the performance of DWSERT against that of 
llS, SERT, A-tree, and the statically wiresized versions llS + SGW, SERT + 
SGW, and A-tree+ SGW. Their testbed consists of sets of 50 random nets with 
terminal locations chosen from a uniform distribution in the 100000J1 x 100000JI 
grid, and the source terminal randomly chosen in each net. Interconnect pa­
rameters correspond to the MCM technology in Table 3.1, i.e., a regime where 
A-tree and wiresizing achieve performance gains. 

Table 3.10 gives the average percentage reduction in SPICE-computed maxi­
mum sink delay, relative to llS values. Static wiresizing substantially improves 
sink delay when applied to the llS or A-tree topologies. However, SERT topolo­
gies admit less improvement since they are already highly star-like for the MCM 
technology (there is no advantage to widening a direct source-sink tree edge). 
The table also gives the average percentage increase in wiring area, again rela-
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tive to US values. DWSERT, along with A-tree + SGW, appears superior to 
the other methods. Finally, Figure 3.35 shows the wiresized US, A-Tree, and 
DWSERT constructions for a small random net. 

Max Sink SPICE Delay (!) I Wire Area (i) 
Algorithm lSI= 5 lSI= 10 

liS -o.o 1 +o.o -o.o 1 +o.o 
liS+ SGW -28.6 1 +38.2 -34.4 1 +33.5 

A-tree -7.4 1 +0.3 -23.4 1 +5.6 
A-tree+ SGW -38.2 1 +9o.o -53.6 1 +89.3 

SERT -27.2 1 +66.4 -52.2 1 +138.1 
SERT + SGW -31.6 1 +111.1 -54.4 1 + 173.4 

DWSERT -32.2 1 +62.1 -56.2 1 +99.9 

Table 3.10 Performance comparisons for DWSERT and llS, SERT, 
and A-tree constructions, as well as their wiresized ( + SGW) ver­
sions. We show average percentage reduction in maximum sink de­
lay, and average percentage increase in wiring area; both are with 
respect to ns. 

3.4.2 Non· Tree Routing 

An implicit premise of previous methods is that the interconnection topology 
must be a tree. In retrospect, this is natural since a tree achieves electrical 
connectivity with a minimum amount of wire. We conclude this chapter with 
a brief investigation into "non-tree" routing, i.e., the use of arbitrary routing 
graph topologies. While delay minimization remains our central motivation, 
non-tree routing can have other advantages, including reduction of reflections, 
increased reliability, and reduced skew in sink delays. The latter two consider­
ations have led to some previous use of non-tree topologies for VLSI routing: 
(i) for power/ground distribution, graph topologies are used to enhance relia­
bility by lowering current densities and electromigration (80, 89, 90], and (ii) 
for clock distribution, graph topologies are used to control skew and minimize 
the impact of process variation (175]. 

It is easy to see that adding extra wires to an existing routing tree can improve 
certain source-sink delays. While additional wire will always increase the total 
tree capacitance, creating multiple (parallel) paths can substantially lower par­
ticular internode resistances, as shown in Figure 3.36. Consequently, with the 
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(a) (b) 

(c) 

Figure 3.35 Comparison of routing tree constructions for a random 
15-terminal net (hollow dot is s0 ). (a) A-tree + SG W has maximum 
sink delay = 3.00ns; (b) US + SGW has maximum sink delay 
= 4.05ns; (c) DWSERT has maximum sink delay= 2.55ns. 
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trend toward thinner and more resistive VLSI interconnects, the use of non-tree 
routing seems increasingly attractive. 

McCoy and Robins [181] have studied the following Optimal Routing Graph 
(ORG) problem, which is a generalization of the ORT problem discussed above. 

The Optimal Routing Graph (ORG) Problem: Given a signal net S = 
{so, s1, ... , sn} with source so, find a set N of Steiner points and routing graph 
G =(SUN, E) such that G spans Sand minimizes t(G) = qfax t(si). 

t=l 

The ORG problem extends to address a critical-sink formulation by associating 
a criticality parameter ai > 0 with each sink s;. We then seek a routing graph 
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so 

······----~~-...... 
(a) (b) 

Figure 3.36 Adding an extra edge to the MST reduces maximum 
source-sink SPICE delay from 1.3ns in (a) to l.Ons in (b), while 
incurring a wirelength penalty of 9%. Simulation parameters cor­
respond to a MOSIS 0.8p. CMOS process. 

n 

that minimizes L Cl!i • t(si), and for tractability of the delay calculation again 
i=l 

use the distributed RC representation and Elmore's delay approximation. Note 
that the discussion of Section 3.1.2 treats only the computation of Elmore delay 
in an RC tree. Chan and Karplus have given an efficient computation for 
Elmore delay in general RC graph topologies [41) (see also Martin and Rumin 
[179]). The method of Chan and Karplus decomposes the interconnect graph 
into a spanning tree plus a set of m extra edges; the extra edges are added back 
into the graph one by one, and the Elmore delay is updated with each edge. 
The time complexity of this Elmore delay calculation is O(n · m). 

A Simple ORG Heuristic 

In [181), the ORG problem is addressed as follows. Starting with a "reasonable" 
initial topology (e.g., a heuristic SMT or an MST), a new edge is found which 
minimizes the delay objective in the resulting routing graph. This edge is 
then added to the routing graph, and the process is iterated until no edge will 
further improve the delay. Steiner points may be introduced via edge-edge and 
point-edge connections to afford greater flexibility in the delay and wirelength 
optimization. A formal description of the resulting Low Delay Routing Graph 
algorithm is given in Figure 3.37. Although the LDRG complexity is 9(n4 ) 
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per iteration, the method will be reasonably efficient for most nets, e.g., those 
having 10 or fewer terminals. 

Algorithm Low Delay Routing Graph (LDRG) 
Input: signal net S with source so 

Output: low-delay routing graph G = (S, E) 
Compute a Steiner tree G = (S, E) overS= SUN, 

where N are the possible Steiner points, 
and E ~ S X S is the set of Steiner tree edges 

While there is an edge e;j E S x S 
which minimizes t((S,Eu {e;;})) < t(G) 

Do E = E u { e;;} 
Output G 

Figure 3.37 The Low Delay Routing Graph (LDRG) algorithm: 
greedy construction of a low delay routing graph based on a heuris­
tic Steiner tree. Elmore delay iED is used to guide the construction. 

The LDRG heuristic has been tested on sets of 100 random nets for each of 
several net sizes, with terminal locations chosen from a uniform distribution 
in a square layout region. Interconnect technology parameters correspond to 
IC1, IC2 and MCM in Table 3.1. The particular LDRG implementation that 
we discuss begins with the IlS heuristic SMT, and uses the code of Chan and 
Karplus [41] in the Elmore delay computation. For greater accuracy, SPICE3e2 
is used to evaluate signal delays in the LDRG output graph. 

Figure 3.38( a) shows the average percentage reduction in maximum sink delay, 
compared with the llS algorithm. Substantial improvement can be seen for the 
MCM and IC2 technologies; with the former, average delay improvement is 38% 
for 5-terminal nets and 44% for 10-terminal nets. Corresponding increases in 
tree cost, versus llS, are shown in Figure 3.38(b). It appears that for the LDRG 
method, the percentage improvement in delay represents a reasonable return 
on the percentage increase in tree cost. Interestingly, the MCM technology 
seems to admit a regime where the maximum delay and the tree cost are both 
decreasing at the same time. 

Finally, an added benefit of non-tree routing is a significant reduction in signal 
skew (i.e., the maximum difference between signal arrival time between any 
two sinks). Figure 3.38(c) shows the average percentage improvement in signal 
skew versus the IlS Steiner routing. For 10-terminal nets, LDRG yields 44% 
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Figure 3.38 (a) Average percentage reduction in maximum sink 
delay, versus llS routing. In other words, we plot the quantity 
1 - t~~~~f1~f), expressed as a percentage; (b) Average percentage 
increase in tree cost, versus US routing; (c) Average percentage 
reduction in skew of signal arrival times, versus IlS routing. 
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skew reduction for the MCM technology, and 13% and 10% skew reductions for 
the IC2 and IC1 technologies, respectively. 
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In conclusion, non-tree routing topologies seem promising for performance op­
timization, particularly in regimes where long signal routes must be made, or 
where routing densities are low and an area-speed tradeoff is possible (e.g., 
MCM substrate routing). Furthermore, non-tree routings possess such advan­
tages as open-fault tolerance, reduced skew, and reduced signal reflection (40]. 
On the other hand, issues such as signal wavefront interference (due to multiple 
point-to-point conduction paths), and the resulting possibility of false switch­
ing, may need careful investigation. In the future, one can envision extensions 
of LDRG to encompass critical-sink routing and wiresizing, as well as a better 
initial Steiner topology in the construction. 



4 
SKEW 

Overview of the Chapter 

The heart of a digital system is its clock, which is the control signal that syn­
chronizes the flow of data among functional elements. To achieve maximum 
system performance, it is necessary to limit the clock skew, i.e., the maximum 
difference in arrival times of the clock signal at synchronizing elements (se­
quential registers, or clock sinks) of the design. This has been idealized in the 
recent literature as the "zero-skew clock routing problem", which seeks a rout­
ing tree that delivers the synchronizing clock pulse from its source to all clock 
sinks simultaneously. At the same time, the cost of the clock routing tree must 
be minimized in light of system power requirements, signal integrity, and area 
utilization. This chapter views clock tree construction to minimize skew and 
tree cost as a combination of two processes - topology generation and geometric 
embedding - and presents methods which accomplish each of these processes 
using either linear delay or Elmore delay to guide the construction. Our focus 
is on the sequence ofrecent works by Jackson et al. [143], Kahng et al. [144], 
Tsay [240], Boese et al. [29] Chao et al. [44, 45], Edahiro [82, 84], Zhu and Dai 
[259], and Kahng and Tsao [153] which lead to the present state of single-layer, 
exact zero-skew clock tree constructions. 

In the first part of this chapter, the linear delay model is used to motivate a 
pathlength-balanced tree problem formulation. We describe a class of simple 
methods, based on iterative geometric matching, which perform simultaneous 
topology generation and geometric embedding of the clock tree. These meth­
ods typically yield zero pathlength skew for both cell-based and building-block 
designs. 

140 
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The second part of the chapter describes the Deferred-Merge Embedding (DME) 
algorithm, which in linear time embeds any given connection topology into the 
Manhattan plane with exact zero skew and minimum tree cost. The DME al­
gorithm consists of two phases: (i) bottom-up identification of loci for "balance 
points" within a minimum-cost zero-skew tree, followed by (ii) top-down selec­
tion of actual locations for these balance points within the zero-skew solution. 
DME achieves substantial wirelength reductions over previous constructions 
in the literature, and can be applied with any monotone delay model (i.e., 
any model according to which sink delays are monotone in the length of any 
tree edge). Studies of various clock topology generators in conjunction with 
the DME embedding show the contribution of both the topology generation 
and the geometric embedding to successful clock tree synthesis. We also show 
the generality of the DME approach by describing extensions which address 
prescribed-skew clock routing, min-max delay constraints in general signal net 
routing, and a bounded-skew clock routing formulation. 

Finally, the third part of the chapter reviews the topology generation and ge­
ometric embedding of DME's exact zero-skew construction, and unifies these 
ideas with the objective of a single-layer, or "planar-embeddable'', clock routing 
solution. Under the linear delay model, the two phases of the DME algorithm 
can be replaced by a single top-down pass. Whereas the original DME algo­
rithm required a prescribed topology as input, combining the two DME phases 
allows the clock tree topology to be determined dynamically and flexibly, at 
the same time that it is being embedded optimally. This naturally leads to a 
DME-like construction of a zero-skew, single-layer clock tree. 

The chapter concludes by noting several additional issues and problem formula­
tions, including sensitivity to process variation, design of buffering hierarchies 
for minimum phase delay, and design of two-level clock trees for multi-chip 
module packaging. 

4.1 PRELIMINARIES 

In synchronous VLSI designs, circuit speed is limited by two main factors: (i) 
delay on the longest path through combinational logic, and (ii) clock skew, 
which is the maximum difference in arrival times of the clocking signal at the 
synchronizing elements of the design. This is seen from the following inequality, 
which governs the clock period of a design [18]: 
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clock period ~ td + tskew + lsu +ids 

where td is the maximum delay on any path through combinational ~ogic, tskew 

is the clock skew, t,u is the setup time of the synchronizing elements (i.e., 
sequential registers, or clock sinks), and ids is the propagation delay within 
the synchronizing elements. The term td can be further decomposed into td = 
td_interconnect + td_gate•, where td_interconnect is the delay through interconnect, 
and td_gate• is the delay through logic devices on a given critical path. Scaling of 
VLSI technology decreases the terms tsu, tds, and td-gate•, so that td_interconnect 

and tskew increasingly dominate circuit performance. As noted by Bakoglu 
[18], within any given system design it is difficult to accommodate tskew that 
is greater than 10% of the overall system clock period. As a result, there is 
a large literature dealing with the problem of clock skew minimization under 
various assumptions. 

It is important to realize that many disparate architecture and circuit-level 
options exist for system clock distribution, but are not taken into account by 
our treatment. For example: 

• the clocking can be pipelined, which brings into consideration the tradeoff 
between latency and clock frequency [93, 101, 102]; 

• a given clock can be single-phase or multi-phase, and can employ retiming 
or "cycle-stealing" techniques [17 4, 242]; 

• either a buffer hierarchy (possibly with parameterized buffer cells to match 
loading impedances) or a single monolithic buffer [18, 100] can be used to 
drive the clock routing topology; 

• wiresizing, "snaking", or passive delay elements can be used to compen­
sate for variation of interconnect and loading impedances, or to reduce 
sensitivity to process variation during manufacture [198, 240]; and 

• high-level functional partitioning can enable multiple clock signals [99] or 
modular clocking (e.g., for low-power design). 

An excellent review of such system-level design issues is provided in the work 
of Friedman (e.g., see [100]), and a more low-level discussion (e.g., of optimum 
cascaded driver design, interconnect scaling effects, and wire width optimiza­
tion) is provided in [18]. In the following, we will focus on interconnect design, 
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rather than architecture- or device-level issues. Hence, the literature concerning 
several of the above considerations is beyond our present scope. 

A number of clock tree constructions implicitly require small problem com­
plexity. For hierarchical building-block design, Ramanathan and Shin (200] 
proposed a clock distribution scheme which enumerates all possible clock rout­
ings and clock buffer optimizations. The exhaustive search forces the number 
of blocks at each level of the hierarchy to be small. Burkis (37] and Boon et 
al.[35] have also proposed hierarchical approaches to clock tree synthesis in­
volving geometric clustering and buffer optimization at each level, and other 
methods (e.g., Pullela et al. [197] for wire width optimization) similarly use 
exhaustive search of a relatively small solution space. A mathematical pro­
gramming formulation which resynthesizes the clock tree to minimize the clock 
period was given by Fishburn (93]. Such methods have high algorithmic com­
plexity and rely on a hierarchical clustering or a prespecified topology to yield 
practical runtimes. By contrast, we are interested in clock tree constructions 
for "flat" problem instances with many sinks at a single level, as will typically 
occur in large cell-based or multi-chip module designs. In practice, such clock 
routing instances arise after the placement phase of physical layout has deter­
mined the clock sink positions. Large cell-based designs can have clock nets 
with thousands of sinks located arbitrarily in the layout region. 

Clock trees with many sinks were first designed using H-trees (19, 73, 94, 246]. 
The H-tree structure successfully controls clock skew, but applies chiefly when 
sinks have identical loading capacitances and are placed symmetrically, as in 
systolic array architectures. The first general clock tree construction for cell­
based layouts with arbitrary sink locations was proposed by Jackson, Srinivasan 
and Kuh (143): their method of means and medians (MMM) simultaneously 
generates and embeds a topology by recursively partitioning the set of sinks 
into two equally-sized subsets (according to a median x- or y-coordinate), and 
connecting the centroid (i.e., the mean) of the entire set to the centroids of the 
two subsets. The MMM solution exhibits reasonable skew on average, although 
it is possible to construct small examples for which source-sink pathlengths in 
the MMM solution may vary by as much as half of the chip diameter (144]. 

Definition of the Zero-Skew Clock Routing Problem 

Formally, we define a clock routing instance to be a set of n sink locations in 
the Manhattan plane, S = { s1 , s2 , .•• , Sn} C ~2 . The set of sinks S is also 
called a clock net, and we often assume that it is embedded in the L x L grid. 
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A connection topology is a rooted binary tree, G, which has n leaves corre­
sponding to the sinks in S. A clock tree T(S) is an embedding of the connec­
tion topology in the Manhattan plane, i.e., a placement in !R2 that assigns each 
internal node v E G to a location pl(T, v). When no confusion is possible, we 
will denote the placement of v simply as pl( v). The clock routing solution can 
have internal nodes of degree greater than three if some edges of G have zero 
length in its embedding T(S). 

The clock entry point (CEP) of the clock tree is the source, ·"O· A terminal 
generically denotes the CEP of any subtree of the routing solution; note that 
any sink by itself is a degenerate subtree of the clock tree, and is its own CEP. 
Given that the clock tree topology is rooted at the source, any edge between a 
parent node v and its child w may be identified with the child node; we denote 
this edge by ew. The cost of ew is given by its wirelength, denoted lew I, which 
is always at least as large as the Manhattan distance between the endpoints of 
ew, i.e., lewl2: d(pl(v),pl(w)). The cost ofT(S) is the sum of the edge costs in 
T(S). 

For a given clock tree T(S), let t(so, si) denote the signal propagation time on 
the unique path from the source so to the sink s;. The skew of T( S) is the 
maximum value of lt(so, si)- t(so, Sj )I over all sink pairs Si, Sj E S. If the skew 
of T(S) is exactly zero then T(S) is called a zero-skew tree (ZST). 

The Zero-Skew Clock Routing (ZSCR) Problem: Given set S of sink 
locations, construct a ZST T(S) with minimum cost. 

This formulation does not consider the possibility of intermediate buffers be­
tween the source and the sinks. Thus, it is most relevant to a monolithic 
single-buffer (cascaded-driver) design. Bakoglu [18] states that the single-buffer 
approach is more effective than a buffer hierarchy; the Digital Equipment Cor­
poration Alpha microprocessor [76] is a leading example of this philosophy. 
Of course, it should also be noted that the ZSCR formulation, along with its 
variants discussed below, fails to consider several practical issues. 

• We do not consider buffer insertion, wire-sizing, or design issues pertaining 
to signal integrity (e.g., overshoot/undershoot and false switching, incorpo­
ration of slew rate into the delay model, etc.). Nevertheless, in sub micron 
regimes it is becoming easier and more area-efficient to insert buffers rather 
than to add wire in achieving zero skew. Buffer insertion is also very useful 
in maintaining integrity of the clock signal waveform. 
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• Our geometric perspective assumes that interconnect technology parame­
ters are the same on all metal routing layers, and ignores via resistances: 
only in this way can RC parameters of interconnect segments be derived 
from wirelength alone. More realistic formulations would incorporate dif­
ferent electrical parameters on the various metal layers, as well as process 
variation and the objective of process variation-independent skew manage­
ment. 

• The Elmore delay model, which is the most complicated model we use 
for optimization of large clock trees, computes source-sink delays using 
only lumped off-path capacitances. Actual sink delays will depend on the 
specific topology within subtrees that branch off from a given source-sink 
"main path" [205]. 1 

• Finally, "exact zero-skew" is not always a real design goal: a circuit which 
triggers all synchronizing registers simultaneously may consume an un­
acceptable amount of power. Hence, a more realistic objective may be 
to distribute skew such that the registers trigger at different times, but 
without incurring timing violations. 

Despite these limitations, our approach leads to basic techniques that can be 
easily extended to address more sophisticated or "realistic" objectives. For ex­
ample, the discussion below outlines extensions to prescribed-delay or bounded­
skew global routing, to hierarchical clock routing, and to single-layer clock 
routing. 

4.2 AN EARLY MATCHING-BASED APPROACH 

The linear delay approximation allows intuitive geometric ideas to motivate new 
algorithmic approaches to clock routing [29, 44, 45, 73, 82, 259]. For zero-skew 
clock tree routing, linear delay simply compares the lengths I; of source-sink 
paths, and disregards any off-path topology. Although the Appendix observes 
that the linear model has poor accuracy and fidelity with respect to SPICE, 
note that linear delay is exact for emerging optical and wave interconnect [241]. 
In addition, linear delay has been successfully used in clock tree synthesis (e.g., 

1The DME method described below extends to arbitrary monotone delay models (recall 
that a delay model is monotone when increasing the length of a tree edge cannot decrease 
any source-sink delay). However, monotone models are limited in their ability to capture 
voltage response in transmission lines (reflection at discontinuities causes signal delay to be 
nonmonotone). 
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[73]). One possible explanation is that ignoring off-path topology entails "uni­
form error" across all sinks when the topology is balanced and when the dis­
tribution of sinks is uniform in the layout region; such is apparently the case 
with actual clock sink placements and clock tree layouts. 

In this section, we assume the linear delay model and consider the resulting 
pathlength-balanced tree formulation [144]. The formulation relaxes the original 
Zero-Skew Clock Routing problem by allowing non-zero skew. Our focus is on 
a class of heuristics based on iterated geometric matching. The basic approach 
starts with a forest of subtrees, each of which contains a single sink of the clock 
net. At each level of the topology we combine pairs of subtrees into larger 
subtrees, using a heuristic geometric matching over the CEPs in the current 
forest. The end result is an embedded binary tree topology whose leaves are the 
sinks of the clock net and whose root (CEP) is the clock source. The method 
extends to building-block designs via matching in the channel intersection graph 
of the layout. 

Our matching-based approach can guarantee perfect pathlength-balanced trees 
only for inputs with four or fewer sinks. Nevertheless, in practice the algorithm 
will yield essentially zero pathlength skew even for very large instances. The 
performance of this algorithm is "good" in the sense that the output tree cost 
is on average within a constant factor of the optimal Steiner tree cost, and the 
worst-case tree cost is bounded by 0( yin) for n sinks in the unit square, which 
is the same bound as for the worst-case optimal Steiner tree cost. Furthermore, 
the matching-based approach seems to afford a good underlying topology for 
more sophisticated clock tree optimizations. 

4.2.1 Pathlength-Balanced Trees 

Under the linear delay model, clock skew is the same as pathlength skew, i.e., 
the maximum difference between any two source-sink pathlengths. A tree is a 
perfect pathlength-balanced tree if its pathlength skew is zero. It is not difficult to 
construct a perfect pathlength-balanced tree if we can use an unlimited amount 
of wire. For example, we can naively route separate wires of equal length from 
the source to each sink as shown in Figure 4.1(right), but the resulting tree 
cost can be an unbounded factor higher than the SMT cost. On the other 
hand, Figure 4.l(left) shows that minimizing tree cost can result in very large 
pathlength skew. We wish to construct a tree with both pathlength skew and 
tree cost as small as possible. 
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Figure 4.1 Neither the naive pathlength-balanced tree (right) nor 
the minimum-cost tree (left) is a good clock tree. 
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The Pathlength-Balanced Tree (PBT) Problem: Given a set of sinks S 
and a real parameter 'lj;, find a minimum-cost tree over S having pathlength 
skew~ 'lj;. 

By setting '1j; = oo, the PBT problem simplifies to the NP-complete rectilinear 
SMT problem. However, the complexity of finding the minimum-cost perfect 
pathlength-balanced (i.e., zero-skew) tree is still open. In devising a heuristic, 
our first goal is to achieve an expected routing tree cost (for n random sink 
locations in the L x L grid) of O(L · y'n), since this is also the asymptotic 
expected cost of the SMT. 

4.2.2 The Iterated Matching Approach 

Definition: Given a set of k terminals, a geometric matching consists of exactly 
L ~ J edges between the terminals, with no two edges sharing an endpoint. 

The cost of a geometric matching is the sum of the costs of its edges, and 
the matching is optimal if it has minimum cost. Figure 4.2 shows an optimal 
geometric matching over four terminals. 

To construct a tree by iterative matching, we begin with a forest of n terminals 
corresponding to the sinks of the clock net. Each terminal is the CEP of a 
degenerate subtree which consists of a single sink, and we will merge these 
trees in bottom-up fashion until the entire clock tree is obtained. The optimal 
geometric matching on the n CEPs has l ~J edges, each of which defines a 
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Figure 4.2 An optimal geometric matching over four terminals. 

subtree containing two sinks. The optimal (zero skew) CEP for each of these 
subtrees is the midpoint of the corresponding edge. 

In general, each level of the iteration will match terminals corresponding to 
CEPs (roots) of subtrees in the current forest. However, observe that the 
matching calculation is oblivious to varying root-leaf pathlengths among the 
subtrees of the current forest. Thus, when two subtrees are merged into a 
larger subtree, the optimal new CEP is not necessarily equidistant from the 
CEPs of the two subtrees. We choose the CEP of each new merged subtree to 
be the balance point p which (i) lies on the "straight" line segment connecting 
the roots of the two subtrees (i.e., the Euclidean embedding of the matching 
edge) and (ii) minimizes the maximum pathlength skew from p to the sinks 
of the merged subtree. Computing the balance point can be done in constant 
time if we know the minimum and maximum source-sink pathlengths of each 
subtree; the corresponding values for the new merged subtree can be updated 
in constant time. 

At each level we match only half as many nodes as at the previous level, and 
the clock tree solution is obtained after flog n 1 matching iterations. (If a given 
level has 2m+ 1 CEPs, we find the optimal m-edge matching and match m + 1 
CEPs at the next level.) Figure 4.3 gives a formal description of this algorithm, 
which we call CLOCK!, and Figure 4.4 illustrates its execution. 

Two results establish that cost(TcLocKd grows at the same asymptotic rate as 
the worst-case optimal Steiner tree cost, and that cost(TcLocKt) is on average 
within a constant factor of the optimal Steiner tree cost. (Similar bounds have 
been established for more recent clock tree constructions, e.g., [84, 259].) 
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Algorithm CLOCKl: Pathlength-Balanced Tree heuristic 
for cell-based designs 

Input: Clock net S 
Output: Pathlength-balanced tree TcLOCI\l with root CEP 
T=0 
P=S 
While !PI> 1 

M = edges of an optimal geometric matching over P 
P'=0 
For (p!,P2) EM Do 

T1 = the subtree of T rooted at PI 
T2 = the subtree of T rooted at P2 
p = a point lying between Pl and P2 on the line segment 

from PI to P2, such that p minimizes pathlength skew 
of the subtree T1 U T2 U {(p, PI), (p, P2)} rooted at p 

P' = P' u {p} 
T = T U {(p, p!), (p, p2)} 

P = P' (plus one unmatched node if !PI was odd) 
CEP = root ofT= single remaining point in P 
Output TcLOCI\1 = T 

Figure 4.3 Algorithm CLOCK!: matching-based pathlength­
balanced tree heuristic for cell-based designs. 

Theorem 4.2.1 For n arbitrary sink locations in the L x L grid, 
cost(TcLocKd = O(L · yn). 

149 

Proof: For any k terminals in the L x L grid, the maximum possible cost of an 
optimal matching is O(L · Vk) [233]. Since the tree is formed by the edges of 
a matching on n terminals, plus the edges of a matching on I terminals, etc., 
the tree cost is at most 

O(L · y'n) + O(L · ~) + O(L · ~) + ... = O(L · yn). 

0 

This is of the same order as the maximum possible cost of an optimal SMT over 
n terminals in the L x L grid [229]. A second result addresses the instance-wise 
relationship between the CLOCK! tree cost and the optimal Steiner tree cost. 
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Figure 4.4 Example execution of CLOCKl on a 16-sink clock net. 
Solid dots denote terminals, and hollow dots represent the balance 
points of matching edges. At each level, a geometric matching 
is computed on the balance points from the previous level. Note 
that although edges are depicted as straight lines, they are routed 
rectilinearly. 

Theorem 4.2.2 For nets with sink locations randomly chosen from a uniform 
distribution in the L x L grid, cost(TcLocKI) is on average within a constant 
factor of the optimal Steiner tree cost. 

Proof: The expected minimum Steiner tree cost for n terminals randomly 
chosen from a uniform distribution in the L x L Manhattan grid is f3 · L · -/Ti, 
for some constant f3 [229]. The result follows from the O(L · -/Ti) upper bound 
on the optimal matching cost at any level of the construction. 0 
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Figure 4.5 H-flipping to reduce pathlength skew: the "H" configu­
ration at left has no zero-skew balance point along the "bar of the 
H", while the "H" on the right has a zero-skew balance point. 

Practical Improvements 

1.51 

Several enhancements are useful in implementing CLOCKl. First, recall that 
the balance point computation was needed because the matching is oblivious 
to the difference in source-sink pathlength within the matched subtrees. Com­
puting a balance point intuitively entails "sliding" the CEP along the "bar of 
the H" (see Figure 4.4), but this is not always sufficient to balance the source­
sink pathlengths exactly. Thus, a heuristic optimization called H-flipping was 
proposed in [144]; see Figure 4.5. For each edge e which matches CEPs on 
edges e1 and e2, H-flipping compares the "H" formed by e, e1, and e2 with 
the other "H" over the same four terminals, then selects the alternative with 
smaller pathlength skew , breaking ties toward smaller tree cost. When there 
are four sinks in the clock net, H-flipping guarantees zero pathlength skew with 
at most a factor of three increase in tree cost over the original matching-based 
construction; this result was shown in [60]. Although this guarantee does not 
hold for more than four sinks, in practice the H-flipping refinement seems to 
nearly always yield perfect pathlength-balanced trees, and has negligible effect 
on tree cost. Since H-flipping requires constant time per terminal, it does not 
affect the asymptotic time complexity of CLOCK I. 

A second implementation issue concerns the complexity of the matching sub­
routine, which effectively determines the overall CLOCKl time complexity. 
Consider the pog n l matching iterations performed by CLOCK I, and let the 
underlying matching algorithm require time S(n) = O(n) We may write S(n) = 
n · S'(n) where S'(n) = S~n) is monotonically non-decreasing, and the time 
complexity of CLOCK I is: 
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< n · S'(n) + i · S'(n) + ~ · S'(n) + ... 

S'(n) · (n + i + ~ + ... ) 
< 2n · S'(n) = 2S(n) = O(S(n)) 

Weighted matching in general graphs can be solved in O(n3 ) time (163), and 
planar geometry allows a speedup to O(n2·5 logn) time [243]. However, such 
runtimes are still impractical for large instances. Since there is no clear rela­
tionship between the optimality of the iterated matching and the pathlength 
skew of the resulting tree, a practical implementation might employ a more ef­
ficient matching heuristic, such as the 0( n log2 n) greedy approach of Supowit 
[231]. 

Finally, a third practical consideration is that a heuristic matching might con­
tain edges that cross each other when embedded in the plane. Seemingly, the 
output tree can be improved by uncrossing pairs of intersecting edges in the 
heuristic matching: this will reduce the matching cost in any metric. One can 
find the k intersections of n line segments in 0( n log n + k) time [4 7]. 

4.2.3 Extension to Building-Block Design 

Bottom-up iterative matching may also be applied to building-block design, 
where the layout consists of rectangular blocks with arbitrary size and location 
in the L x L grid. Routing is carried out in the regions between blocks (no two 
blocks abut), and is also possible along the perimeter of the layout. We may 
represent the layout using a channel intersection graph (CIG), G [58, 70, 158, 
193]. 

Recall that in a graph G with non-negative edge costs, minpatha(x, y) is a 
minimum-cost path between nodes x and y, and dista(x, y) is the cost of 
minpatha(x, y). In the CIG, routing cost between two terminals is no longer 
approximated by geometric distance, but is instead given by dista(x, y). How­
ever, we assume that every edge weight in the CIG reflects a geometric distance, 
namely, the length of the corresponding channel. Thus, the routing graph can 
be considered to be a subgraph of the L x L gridgraph. Our objective is still 
to construct a tree with both cost and pathlength skew as small as possible, 
subject to tree edges being routed within the routing channels. 
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Definition: Given a graph G = (V, E) with non-negative edge costs and a 
set of vertices S ~ V, a generalized matching M over S is a set of shortest 
paths connecting m disjoint vertex pairs inS, i.e., M = {minpatha(x 1 ,yl), 
minpatha(x2, Y2), ... , minpatha(xm, Ym)}, where all x;, y; E S are distinct. 

A generalized matching over S <; V is complete if m = l ~ j. The cost of a 
generalized matching M is the sum of the costs of the sho"rtest paths in the 

m 

matching, i.e., cost(M) = L: dista(x;, yi). An optimal complete generalized 
i=l 

matching on S <; V is one with minimum cost. 

Lemma 4.2.3 Each edge of G belongs to at most one shortest path in an op­
timal complete generalized matching over S <; V. 

G 

• 
G 

~ ./ .. : ... 
X. 

J 

Figure 4.6 An edge can belong to at most one shortest path in au 
optimal complete generalized matching. 

Proof: Let M be an optimal complete generalized matching over S. Suppose 
edge e appears in distinct shortest paths minpatha( x;, y;) and minpatha ( Xj, Yi) 
in M as shown in Figure 4.6. We have that 

i.e., we can obtain another complete generalized matching over S with smaller 
cost by replacing minpatha(x;,y;) and minpatha(xj,Yj) by minpatha(x;.xj) 
and minpatha(Yi, Yi ). This contradicts the optimality of M. 0 

Lemma 4.2.4 The routing cost between any two terminals of G in the L x L 
grid is~ 2£. 
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Proof: Given terminals x andy in G, let P1 be any monotone (staircase) path 
passing through x and connecting two opposite corners w and w' of the layout 
grid. Clearly, cost(PI) = 2L. Similarly, let P2 be a monotone path passing 
through y and connecting wand w'. Since cost(PI) + cost(P2) = 4L, either w 
or w' will be reachable from both x and y with total routing cost at most 2L, 
implying dista(x, y) $ 2L. 0 

Using the result of Lemma 4.2.4, an optimal complete generalized matching 
over n terminals in G has cost at most 2L · l ~ J $ n · L. Note that this is 
independent of the number of blocks in the layout. 

As before, we may construct a heuristic pathlength-balanced tree via iterated 
generalized matching over a current set of clock terminals (CEPs). We begin 
with a forest of n isolated terminals in G corresponding to the sinks of the 
clock net, and at each level compute an optimal generalized matching over the 
set of CEPs of subtrees in the current forest. The CEP of each new subtree is 
the point on the corresponding shortest path in the matching which minimizes 
pathlength skew among the leaves in the two merged subtrees. Figure 4.7 
formally describes the resulting CLOCK2 heuristic, and Figure 4.8 shows an 
example execution. 

Theorem 4.2.5 For n sinks in the L x L grid, cost(TcLOCK2) $ 2nL. 

Proof: By Lemma 4.2.4, the cost of a generalized matching on n terminals is 
bounded by nL. After each iteration, the number of nodes to be matched is 
reduced by half. Therefore, cost(TcLOCK2) $ nL + n2L + n4L + ... $ 2nL. 0 

To analyze the CLOCK2 time complexity, observe that computing an optimal 
generalized matching over the set of terminals S requires an edge-weighted 
complete graph G' over S, with the weight of each (x, y) edge corresponding 
to dista(x, y). Given G = (V, E), the graph G' can be obtained using an 
O(IEI·IVI + IVI2) implementation of Floyd's all-pairs shortest paths algorithm 
[213]. A channel intersection graph induced by b blocks typically ( cf. [38]) has 
lVI = O(b+n), and typically b = O(n). Since G is planar, lEI= O(jVI). Thus, 
the optimal matching in G' can be obtained in O(b2 + n3 ) time [163]. 

As with CLOCK1, the time complexity of optimal matching may be imprac­
tical, in which case a fast matching heuristic should be used. The heuristic 
complete generalized matching may be improved by removing any overlapping 
edges of shortest paths (cf. Lemma 4.2.3), so that no edge appears in more 
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Algorithm CLOCK2: Pathlength-Balanced Tree heuristic 
for building-block designs 

Input: Clock net S embedded in routing graph G 
Output: Pathlength-balanced tree TcLoc/\2 with root CEP 
T=0 
P=S 
While IPI > 1 

M = optimal complete generalized matching on P 
P' =0 
For {p1,p2} EM Do 

Tt = subtree ofT rooted at p1 
T2 = subtree ofT rooted at P2 
p =balance point on minpatha(pt,P2) minimizing the 

skew of the tree Tt U T2 U minpatha(Pt, P2) 

P' = P' u {p} 
T = T u { {p, Pt } , {p, P2}} 

P = P' (plus one unmatched node if IPI was odd) 
CEP = Root ofT= single remaining point in P 
Output TcLOCK2 = T 

Figure 4.7 Algorithm CLOCK2: matching-based pathlength­
balanced tree heuristic for building-block designs. 

1.55 

than one shortest path. When we use a fast matching subroutine, such as the 
greedy heuristic (224], the time complexity of each CLOCK2 iteration is dom­
inated by the O(b2 ) all-pairs shortest paths computation. Because there are 
O(log n) levels in the tree construction, the overall CLOCK2 time complexity 
in this case is 0( b2 · log n). 

4.2.4 Empirical Tests 

The heuristics CLOCK! and CLOCK2 were implemented in ANSI C; we now 
summarize the experimental results. 

Results for Cell-Based Designs 

Three basic variants of CLOCK! were tested, corresponding to three efficient 
matching subroutines. The first variant, called SP, uses the 0( n) space par-
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Figure 4.8 CLOCK2 execution on an 8-sink clock net in a random 
block placement. Solid dots are roots (CEPs) of subtrees in the 
previous level, and hollow dots are roots of new subtrees at the 
current level. The newly added routing is highlighted at each level. 

titioning heuristic of [232] to induce a heuristic matching through recursive 
bisection of the layout region (by contrast, the MMM method of Jackson et al. 
is based on bisection of the set of terminal locations) . The second variant, called 
GR, uses an 0( n log2 n) greedy matching heuristic [231] which always adds the 
shortest edge between unmatched terminals. The third variant, called SFC, 
uses an 0( n log n) spacefilling curve-based method (22] to map the layout plane 
to a circle, thus inducing an ordering of the terminal locations. The SFC vari­
ant then chooses the better of the two embedded matchings (i.e., either all odd 
edges or all even edges in the induced tour through the terminals). Although 
each of these methods was originally proposed for Euclidean planar match-
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ing, each also performs well in Manhattan geometry. Each of these matching 
variants was tested both with and without the following two refinements: (i) 
removing all edge crossings in the heuristic matching, and (ii) performing H­
flipping as necessary. Since either refinement can be used independently with 
any matching variant, twelve distinct versions of CLOCKl result. These are 
summarized as follows. 

• SP, GR, SFC. 

• SP+E, GR+E, SFC+E- Same as SP, GRand SFC, respectively, ex­
cept that the heuristic matching cost is improved by edge-uncrossing. 

• SP+H, GR+H, SFC+H - Same as SP, GRand SFC, respectively, 
except that pathlength skew and/or tree cost is improved by H-flipping. 

• SP+E+H, GR+E+H, SFC+E+H - Same as SP, GR, and SFC, re­
spectively, except that both edge-uncrossing and H-flipping are performed. 

For comparison, we also implemented 

• MMM - The method of means and medians, similar to the implementa­
tion described by Jackson et al. (143]. 

These 13 algorithms were tested on random clock nets with up to 1024 sinks, 
generated from a uniform distribution in the 1000 x 1000 grid. Results averaged 
over 50 random instances of each size are summarized below: Tables 4.1 and 4.2 
give the average tree costs and Tables 4.3 and 4.4 give the average pathlength 
skews for all heuristics. All data in the tables are in grid units. 

From the tables, we see that the edge-uncrossing and H-flipping refinements 
each improve tree cost and pathlength skew. When the refinements are com­
bined, average pathlength skew is close to zero, and tree cost is generally supe­
rior to that of MMM. The best variant appears to be GR+E+H, i.e., CLOCKl 
with a greedy matching heuristic, edge-uncrossing and H-flipping. 2 (Coinci­
dentally, of the three matching heuristics used, only the greedy method has 

2 Any set of approximation heuristics will induce a meta-heuristic which for any given 
instance returns the best solution found by any heuristic in the set. Interestingly, in our 
experience the meta-heuristic of all12 CLOCK! variants always returns a perfect pathlength­
balanced tree. This is potentially useful since our heuristics are all of similar complexity; for 
example, we can solve the Primaryl benchmark with all twelve variants using approximately 
180 seconds of Sun SPARC-1 CPU time. 
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lSI MMM SP GR SFC SP+E GR+E SFC+E 
4 1197 1155 1136 1140 1129 1129 1130 
8 2136 2075 2032 2031 1990 1990 1992 

16 3506 3582 3409 3527 3343 3326 3343 
32 5598 5922 5481 5788 5342 5277 5326 
64 8377 9184 8526 9048 8100 8032 8068 
128 12276 13793 12632 13656 11912 11725 11976 
256 17874 20765 18625 20354 17573 17024 17768 
512 25093 30443 27055 29618 25341 24548 25720 
1024 36765 44304 38688 42750 36444 35086 37056 

Table 4.1 Average clock tree cost for the various heuristics. 

lSI SP+H GR+H SFC+H SP+E+H GR+E+H SFC+E+H 
4 1125 1125 1125 1125 1125 1125 
8 2027 2028 1994 1971 1979 1980 

16 3502 3416 3428 3333 3322 3329 
32 5860 5628 5577 5329 5273 5304 
64 9226 8794 8748 8076 7982 8047 
128 13997 3315 13159 11871 11697 11914 
256 21307 19611 19713 17457 16955 17629 
512 31646 29175 28688 25188 24465 25483 
1024 46417 42110 41540 36276 34965 36814 

Table 4.2 Average clock tree cost (continued). 

worst-case cost that is asymptotically of the same order as the optimal match­
ing cost [224].) Tables 4.5 and 4.6 highlight the contrast between GR+E+H 
and MMM, showing minimum, maximum and average values of both tree cost 
and pathlength skew. 

Finally, Figure 4.9 depicts the GR+E+H output for the Primary2 test case, 
using the same sink placement as in [143]. Edges in the figure are depicted 
as straight lines, but are actually routed rectilinearly. For this instance,MMM 
results were: tree cost = 406.3 and pathlength skew (measured as standard de­
viation ofpathlengths) = 0.74 [226]. By contrast, GR+E+H results were: tree 
cost = 376.7 and pathlength skew = 0.00. HSPICE simulations confirm sub-
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lSI MMM SP GR SFC SP+E GR+E SFC+E 
4 112.31 3.98 15.52 0.00 0.00 0.00 0.00 
8 186.10 45.79 76.71 4.26 0.66 0.66 0.66 
16 234.72 70.93 141.22 19.47 4.01 3.54 3.66 
32 262.61 143.85 200.33 28.29 8.14 7.85 6.14 
64 229.15 179.83 273.04 51.36 6.93 . 8.65 5.29 

128 201.55 226.61 314.05 64.86 11.52 14.18 11.26 
256 183.28 286.90 324.57 85.10 17.25 13.85 15.04 
512 153.90 321.23 399.29 85.46 14.79 15.26 15.73 

1024 125.34 339.34 402.59 89.75 17.14 16.71 15.35 

Table 4.3 Average pathlength skew for the various heuristics. 

lSI SP+H GR+H SFC+H SP+E+H GR+E+H SFC+E+H 
4 0.00 0.00 0.00 0.00 0.00 0.00 
8 3.38 0.12 0.00 0.00 0.00 0.00 

16 1.80 3.80 0.12 0.00 0.00 0.00 
32 3.53 8.64 0.00 0.00 0.00 0.00 
64 13.17 27.69 1.26 0.00 0.00 0.00 

128 20.79 40.34 3.18 0.00 1.02 0.24 
256 41.79 51.87 7.49 0.00 0.92 0.00 
512 76.35 90.66 13.51 0.39 0.62 0.39 

1024 75.92 94.99 16.62 0.44 0.08 0.38 

Table 4.4 Average pathlength skew (continued). 

nanosecond skew for the GR+E+H routing solution, using MOSIS 2.0p CMOS 
parameters and 0.3pF gate loading capacitance [60]. It is somewhat surprising 
that clock skew can be controlled simply by balancing root-leaf pathlengths; as 
discussed below, this phenomenon may be due to the matching-based approach 
somehow providing an inherently robust topology for clock routing trees. 

Results for Building-Block Designs 

The CLOCK2 heuristic was tested on random clock nets of sizes 4, 8, and 
16 sinks, using random layouts that contained 16 or 32 blocks. Layouts were 



160 CHAPTER 4 

MMM cost GR+E+H cost 
lSI Min Ave Max Min Ave Max 
4 656 1197 1823 555 1125 1668 
8 1089 2136 2943 1123 1979 2810 
16 2841 3506 4221 2793 3322 3993 
32 4813 5598 6216 4695 5273 5866 
64 7624 8377 9266 7372 7982 8556 
128 11439 12276 13136 11052 11697 12243 
256 17220 17874 18549 16379 16955 17543 
512 25093 25666 26291 23866 24465 25325 

1024 36126 36765 37561 34231 34965 36179 

Table 4.5 Minimum, average and maximum tree cost for MMM 
and GR+E+H. 

MMM skew GR+E+H skew 
lSI Min Ave Max Min Ave Max 
4 2 112.31 379 0 0.00 0 
8 46 186.10 407 0 0.00 0 
16 86 234.72 416 0 0.00 0 
32 118 262.61 540 0 0.00 0 
64 141 229.15 337 0 0.00 0 
128 120 201.55 282 0 1.02 30 
256 127 183.28 250 0 0.92 46 
512 103 153.90 203 0 0.62 31 
1024 94 125.34 167 0 0.08 4 

Table 4.6 Minimum, average and maximum pathlength skew for 
MMM and GR+E+H. 

generated by creating the prescribed number of non-overlapping blocks with 
length, width, and lower-left x- and y-coordinates all chosen from a uniform 
distribution over the interval [1, L] with L = 1000. 

For each combination of net size and block cardinality, 100 instances were 
tested; Table 4.7 compares pathlength skew and tree cost of TcLOCK2 against 
the output of the KMB heuristic (159] for the Steiner problem in weighted 
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Figure 4.9 Output of variant GR+E+H on the Primary2 layout. 

graphs (see Section 2.7). The average CLOCK2 pathlength skew is near zero, 
and is never more than 2% of the pathlength skew in the heuristic Steiner 
minimal tree. This skew reduction comes at the expense of between 24% and 
77% increase in tree cost, versus the·heuristic SMT. All data in the table are 
given in grid units. 3 

Remarks 

In retrospect, the matching-based construction of pathlength-balanced trees 
remains interesting not for its skew-minimization properties, but rather for 

3 [60] notes that HSPICE simulations confirm the low skew of the CLOCK2 construction 
for building-block layouts. Also, the "average density" in any routing channel, computed as 
the average of non-zero local column densities over all columns in all channels, is close to 1. 
Thus, although up to log n paths can possibly overlap in a given channel, such overlaps seem 
to occur only rarely. 
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Pathlength skew Tree cost 
#blocks lSI KMB CLOCK2 KMB CLOCK2 

16 4 511.0 0.8 1537 1921 
16 8 794.9 12.9 2328 3478 
16 16 1101.5 22.1 3332 5873 
32 4 445.0 0.4 1401 1729 
32 8 804.4 4.4 2261 3407 
32 16 1136.9 12.0 3357 5847 

Table 4.7 Average tree costs and pathlength skews, in grid units, 
for both the KMB heuristic Steiner minimal tree and the CLOCK2 
output tree. Each value is an average over 100 random instances in 
the 1000 x 1000 grid. 

the directions it leaves open for subsequent work. The original discussion in 
[60, 144] stated the following "extensions": 

1. Toward Exact Zero Skew: Instead of the linear delay model, the 
matching-based approach could use the more accurate Elmore delay model 
to select balance points (CEPs). The matching construction could also in­
corporate varying load capacitances and other design constraints which are 
ignored by the linear delay model. 

2. Loci of Balance Points: In the Manhattan metric, the "balance point" 
of a wire connecting two terminals is not unique but is rather a locus of 
many possible locations (Figure 4.10), with the extremes corresponding 
to the two L-shaped wire orientations. The simulations above set the 
balance point of an edge to be its "Euclidean" midpoint, but there is no 
methodological justification for this. 

3. Lookahead and Deferral: At each level of the matching construction, 
it is possible to use lookahead of one or more levels. For example, if path­
length skew cannot be eliminated by H-flipping, we could "go back" down 
one or two levels, and attempt the alternate "H" configurations within 
these subtrees. More generally, "lookahead" is simply a way of deferring 
commitment to specific elements of either the topology or the geometric 
embedding until more reasoned choices can be made. 
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Figure 4.10 Further optimizations are possible by matching over 
the loci of balance point candidates. 
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For all practical purposes, the work ofTsay [240], solved the question of achiev­
ing exact zero Elmore delay skew. Approaches using "deferral" were proposed 
by Li and J abry [172) and by Edahiro [84], in the sense that each of these works 
uses only a partial greedy matching over an existing set of CEPs to further the 
bottom-up generation of the clock tree. We now describe the "Deferred-Merge 
Embedding" (DME) approach [29, 44, 82], which combines the notions of (i) 
balance point loci, and (ii) deferred embedding of the topology. 

4.3 DME: EXACT ZERO SKEW WITH MINIMUM 

WIRELENGTH 

The geometric matching approach addresses skew minimization only with re­
spect to linear delay, and does not guarantee a zero-skew solution. Tsay [240] 
provided a major advance via a method that guarantees exact zero skew accord-
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ing to Elmore delay. 4 Tsay's algorithm combines pairs of zero-skew subtrees 
at "tapping points" (analogous to the "balance points" in CLOCKl) to yield 
larger zero-skew subtrees, with additional wire introduced as needed to main­
tain the exact zero-skew property. The method is efficient due to the linear-time 
evaluation of Elmore delay at all leaves of a given tree. 

Both the top-down method of [143] and the bottom-up methods of [60, 144, 240] 
center on computing a clock tree topology, and leave unaddressed the minimum­
cost embedding of the topology. In general, these methods fix the embedding 
of each internal node of the topology as soon as the node is defined [144], or 
with just one level of lookahead in the tree construction [143, 240]. However, 
as was demonstrated by "H-flipping" in the CLOCKl algorithm, the ability 
to undo or "defer" embedding choices can lead to substantial cost reductions. 
Certainly, both skew and cost must be considered in a successful clock routing 
scheme. 

This section describes the Deferred-Merge Embedding (DME) algorithm, which 
for any given topology substantially reduces the tree cost while guaranteeing 
exact zero skew, i.e., a ZST solution. DME was discovered independently by 
three groups - Boese et al. [29], Chao et a1.[44], and Edahiro [82] - with the 
earliest of these being Edahiro. 5 

Given a set of sink locations S and topology G, the DME algorithm embeds 
the internal nodes of G in two phases, with the main precept being to defer 
the embedding of each node for as long as possible. First, a bottom-up phase 
constructs a tree of line segments, with each line segment being the locus of 
possible placements for some v E G within an optimal ZST. Once this bottom­
up phase has determined the loci of possible placements for two siblings in G, 
the corresponding locus for their parent (i.e., the "merging segment") can then 
be determined. Second, a top-down phase resolves the exact locations of these 
internal nodes of the clock tree. 

In the linear delay regime, DME produces an optimal (i.e., minimum-cost) ZST 
with respect to the prescribed topology [29], and this tree will also have optimal 

4 "Exact zero skew" is of course a somewhat redundant notion. However, since the pub­
lication of (240) the phrase has permeated the clock routing literature, where it connotes 
"guaranteed zero skew". Our discussion uses the phrase in this accepted sense. 

5 While the work of Edahiro (82) was clearly earliest, its existence was not realized by 
the other two groups. Chao, Hsu and Ho (44) applied DME to the Elmore delay model and 
also proposed the "balanced-bipartition" (BB) technique to generate an underlying clock tree 
topology. Boese and Kahng (29) treat both the Elmore and linear models, and establish many 
of the theoretical results for DME (see also the results for linear delay in [82)), as well as 
counterexamples to Elmore-delay optimality of DME (cf. (44)). 
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source-sink delay (i.e., minimum radius). In the Elmore delay regime, DME 
is also effective but does not guarantee that the output ZST is optimal for 
its given topology. Since DME must be given a prescribed topology G, the 
question of generating the best input topology for DME has become an active 
area of research. The method can be extended to prescribed-skew formulations, 
as well as more general routing optimizations (e.g., DME-like approaches are 
promising for global routing with upper and lower bounds on sink delays). 
Furthermore, by generalizing the concept of a placement locus from a merging 
segment to a merging area, DME can also address a bounded-skew routing tree 
formulation. 

4.3.1 Bottom-Up Phase: The Tree of Merging Segments 

For prescribed sink locations S and connection topology G, DME constructs 
a tree of merging segments. The merging segment of a node v E G represents 
the set of placements of v that are compatible with an optimal ZST solution. 
A merging segment will always be a line segment tilted at 45 degrees from the 
coordinate axes (recall Figure 4.10). It is possible for a merging segment to have 
zero length, i.e., be a single point. The merging segment of a node depends on 
the merging segments of its two children, so G must be processed in bottom­
up order. If node v has children a and b, then edges ea, eb in the topology 
are assigned the minimum possible lengths such that it is possible to balance 
all the sink delays in the merged subtree rooted at v. These lengths must be 
enforced by the top-down embedding phase, when the ZST is created. We now 
develop more precisely the construction of the tree of merging segments. 

In our discussion, the distance between two points p and q is the Manhattan 
distance d(p, q), and the distance between two sets of points P and Q, written 
d(P, Q), is min{d(p, q) I p E P and q E Q}. Let a and b be the children of 
node v in G. We use TSa and TSb to denote the subtrees of merging segments 
rooted at a and b, respectively, and we seek placements of v which allow TSa 
and TSb to be merged with minimum added wire while preserving zero skew. 
Define the merging cost between TSa and TSb to be leal+ hi, where leal and 
lebl denote the lengths to be assigned to edges ea and eb (recall that ea is the 
edge from node a to its parent). These lengths are chosen to minimize merging 
cost while balancing delays at pl(v). (There is a unique optimal solution for 
leal and lebl as long as delay is a monotone increasing function of wirelength.) 

A Manhattan arc is a line segment, possibly of zero length, with slope+ 1 or -1. 
(It will turn out that all merging segments are Manhattan arcs.) The collection 
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Figure 4.11 A TRR with core and radius as indicated. 

of points within a given distance of a Manhattan arc is a tilted rectangular 
region, or TRR, whose boundary is composed of Manhattan arcs (see Figure 
4.11). The Manhattan arc at the center of the TRR is called its core; the radius 
of a TRR is the distance between its core and its boundary. The concept of a 
TRR will be used to construct the tree of merging segments, and to determine 
embedding points in the top-down phase. 

A formal recursive definition of the merging segment of node v, ms( v), is as 
follows. If v is a sink Si, then ms( v) = { si}. If v is an internal node of G 
with children a and b, then ms( v) is the set of all placements pi( v) which allow 
minimum merging cost. That is to say, ms(v) is the set of all points within 
distance leal ofms(a) and within distance lebl ofms(b), where leal and lebl are 
as small as possible while still balancing source-sink delays. If ms( a) and ms( b) 
are both Manhattan arcs, then ms( v) is simply the intersection of two TRRs, 
trra with core ms(a) and radius leal, and trrb with core ms(b) and radius lebl; 
i.e., ms(v) = trra ntrrb (see Figure 4.12). 

The merging cost at v is at least equal to ~ = d( ms( a), ms( b)). If the merging 
cost is greater than ~. i.e., more wirelength is needed to balance the delays, 
then one edge length will equal zero and the other will equal the merging cost. 
Figure 4.12(a) illustrates the algorithm for the case where the merging cost is 
equal to ~. and Figure 4.12(b) illustrates the case where the merging cost is 
greater than ~. An entire tree of merging segments is shown in Figure 4.13; the 
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Figure 4.12 Two cases in construction of merging segment m8(v). 
(a) Merging cost equals K = d(m8(a) 1 m8(b)). (b) Merging cost is 
greater thanK (note that in this example radiu8(trra) =leal= 0). 

Figure 4.13 An example of a tree of merging segments with sinks 
81 1 ••• 1 ss. Solid lines are merging segments; dotted lines are edges 
between merging segments. 
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leaves of the tree of segments are all single points representing the sink locations 
81, •.. , ss, and the internal nodes (solid line segments) are Manhattan arcs. 
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Lemma 4.3.1 Given two TRRs R1 and R2, their intersection iii also a TRR 
and can be found in constant time. If Rt and R2 satisfy radius(Rt)+radius(R2) 
= d(core(Rt), core(R2)), then R1 n R2 is a Manhattan arc. 

y=b4 •••••• . . ... . . . . 
re of co 

int 
the 

ersection 

\ 

~ 
~I 

y=~>;, ...... 

y=b, •••••• .. . . . . .. 

y=b, •••••• 

x=a 3 

Figure 4.14 Intersecting two TRRs after 45-degree rotation. 

Proof: Rotating the plane by 45 degrees, so that each TRR has its boundary 
segments parallel to the coordinate axes (see Figure 4.14), requires constant 
time. The intersection of the rotated TRR's will be either rectangular or empty, 
and can be found using a simple constant-time case analysis. Applying the 
inverse rotation to the intersection yields the TRR Rt n R2 and the first part 
of the claim. 

If radius(Rt) + radius(R2) = d(core(Rt), core(R2)), then decreasing either 
radius will cause Rt n R2 = 0. Hence, R 1 n R2 must have zero width and be 
either a line segment or a single point. Since R 1 n R2 is also a TRR, it must 
be a Manhattan arc. 0 

Lemma 4.3.1 can be used to show that all merging segments are Manhattan 
arcs. First, we show that for any node v E G with children a and b, if ms( a) and 
ms(b) are both Manhattan arcs, then ms(v) is a Manhattan arc. (Case 1) If the 
merging cost at vis equal to "'• we have leal+ lebl = d(core(trra), core(tr1'b)); 
by definition, leal = radius(trra) and lebl = 1·adius(trrb)· According to the 
lemma, d(core(trra), core(trrb)) = 1·adius(trr4 ) + radius(tr1'b) means that 
trra n trrb is a Manhattan arc. (Case 2) If the merging cost is greater than li-, 
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either trra or trrb will be a Manhattan arc whose intersection with any convex 
set (e.g., another TRR) will also be a Manhattan arc. Finally, we note that 
for each sink Si the merging segment ms(s;) is a single point, which is also a 
Manhattan arc. Inductively, all merging segments must be Manhattan arcs. 

Procedure Build-Tree_oLSegments 
Input: Topology G; set of sink locations S 
Output: Tree of merging segments TS containing 

ms(v) for each node v in G, and edge length levi 
for each v =/; so 

For each node v in G (bottom-up order) 
If v is a sink node Then 

ms(v) = {pl(v)} 
Else 

Let a and b be the children of v 
Calculate_Edge_Lengths( lea I, lebl) 
Create TRRs trra and trrb as follows: 

core(trra) = ms(a) 
radius(trra) =leal 
core(trrb) = ms(b) 
radius(trrb) = lebl 

ms(v) = trra n trrb 

Figure 4.15 Construction of the tree of merging segments. 

Figure 4.15 describes the procedure BuiJd_Tree_oLSegments, which constructs 
the tree of merging segments. The Calculate_Edge_Lengths subroutine depends 
on the delay model, and is described below for the separate cases of linear and 
Elmore delay. By Lemma4.3.1, BuiJd_Tree_oLSegments requires constant time 
to compute each new merging segment, and time linear in the size of S to 
construct the entire tree of merging segments. 

4.3.2 Top-Down Phase: Embedding of Nodes 

Once the tree of segments has been constructed, the exact embeddings of in­
ternal nodes in the ZST are chosen in a top-down manner. Initially, for the 
root so any point in ms(so) can be chosen as pl(so). 6 After node v's parent 

6 If a fixed source location s& is specified, we choose pl(so) E ms(so) with minimum 
distance from s~ and connect a wire directly from s~ to p/(so). 
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has been embedded, v can be embedded anywhere on ms(v), as long as the 
distance d(pl( v), pl(p)) is not greater than lev I· Thus, we create a square TRR 
trrp with core {pl(p)} and radius levi; node v can be placed anywhere in the 
intersection ms(v) ntrrp (see Figure 4.16) . 

.· 
• ••. • trrp 

pl(p) 

/. 
, levi • 

. . . ·.F./.·· 
possible 

ms (v) placements 
of v 

Figure 4.16 Procedure Find_ExacLPlacements: finding the place­
ment of v given the placement of its parent p. 

Because ms(p) was constructed such that d( ms( v), ms(p)) ::S lev I, the intersec­
tion ms( v) ntrrp must be nonempty. For the tree of merging segments shown in 
Figure 4.13, the resulting placements are indicated by the points at which the 
segments are connected by dotted lines. Figure 4.17 describes the procedure 
Find_ExacLPlacements, which uses the tree of merging segments to determine 
the final embedding of nodes in the ZST. 

Since each instruction in Find_Exact_Placements is executed at most once for 
each node in G (and the intersection of TRRs ms( v) and trrp can be found in 
constant time, by Lemma 4.3.1), Find_Exact_Placements runs in O(ISI) time. 
Procedure Build_Tree_of..Segments also runs in linear time, and hence DME is 
a linear-time algorithm. 

4.3.3 Application of DME to Linear Delay 

Calculating Edge Lengths 

Calculating the edge lengths lea I and hI is straightforward in the linear delay 
model. Let a and b be children of v with merging segments ms(a) and ms(b), 
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Procedure Find_ExacLPlacements 
Input: Tree of segments TS containing ms(v) 

and levi for each node v in G 
Output: ZST T(S) 
For each internal node v in G (top-down order) 

If v is the root Then 
Choose any pl(v) E ms(v) 

Else 
Let p be the parent node of v 
Construct trrp as follows: 

core(trrp) = {pl(p)} 
radius(trrp) =levi 

Choose any pl(v) E ms(v) n trrp 

Figure 4.17 Construction of the ZST by embedding internal nodes 
of the topology. 
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and let tLD(a) and tLD(b) be the delays from a and b to the sinks in their 
respective subtrees. Then, zero skew at v requires that 

Again, let K. = d(ms(a), ms(b)). If ltLD(a)- tLD(b)l S K., then the merging 
cost is minimized with leal+ iebl = K., i.e., 

I I_ K. + tLD(b)- tLD(a) 
ea - 2 

and 

On the other hand, if ltLD(a) -tLD(b)l > K., then the merging cost is minimized 
when one of the edge lengths is equal to zero. When tLD(a) > iLD(b), we have 
leal = 0 and lebl = tLD(a)- tLD(b); similarly, when tLD(a) < tLD(b) we have 
leal= tLD(b)- tLD(a) and lebl = 0. 
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Optimality of DME for Linear Delay 

In this section, we show two optimality results for the DME algorithm under the 
linear delay model. Our discussion will use the term Manhattan disk to denote 
the special case of a TRR whose core consists of a single point. In other words, 
a Manhattan disk is the set of all points within a given radius of a central point. 
In the Manhattan plane, such a "disk" is actually diamond-shaped (recall trrp 
in Figure 4.16). Let M D(si, r) denote the Manhattan disk with core {si} and 
radius r ~ 0. The diameter of S is defined to be max{ d( Si, Sj) I s;, Sj E S}. 

We first show that under the linear model, DME minimizes the source-sink 
delay in a ZST. Specifically, for any input topology DME constructs a ZST with 
delay equal to one-half the diameter of the sink set S, which is the minimum 
feasible radius for any tree connecting S. This result has also been shown by 
Edahiro [82, 83]. 

Lemma 4.3.2 : Let d be the diameter of sink set S. Then 

n •. es[MD(si,d/2)] f. 0. 

Proof: After a 45 degree rotation (and dilation), the Manhattan metric be­
comes equivalent to the Loo metric, where d[(x, y), (x', y')] = max{ix- x'l, Iv­
y' I}. Hence we need only prove the lemma for the L 00 metric, where TRRs 
are equivalent to rectangles with vertical and horizontal boundaries. Consider 
the smallest rectangle R with vertical and horizontal boundary lines that con­
tains all points in S (after rotation). Let d be the diameter of S. Then both 
the width and height of R must be less than or equal to d (otherwise there 
would be two sinks s; and Sj with d(s;,sj) >d). Consequently, the point at 
the center of R is within distance d/2 of all sinks in S, and is contained in 
n.,es[M D(si, d/2)]. 0 

This shows the feasibility of constructing a ZST over S having linear source­
sink delay equal to one-half the diameter of S. The next lemma states that 
increasing the radii of two TRRs by a constant 6 will increase the radius of 
their intersection by 8 but leave the core of the intersection unchanged. This 
is obvious when the TRRs are rotated by 45 degrees as in the proof of Lemma 
4.3.1 (see Figure 4.14). 
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Lemma 4.3.3 : Let A and B be TRRs, and suppose AnB = C :f; 0. Construct 
TRRs A' and B' such that for 8 ~ 0, core(A') = core(A), radius(A') = 
radius(A) + 8, core(B') = core(B), and radius(B') = radius(B) + 8. If 
C' = A' n B', then core( C') = core( C) and radius( C') = radius( C) + 8. 0 

Theorem 4.3.4 : For any sink setS and topology G, the DME algorithm will 
return a ZST with minimum feasible source-sink delay under the linear model, 
equal to one-half the diameter of S. 

Proof: Let d equal the diameter of S. We assign a TRR, called T RR( v), to 
each node v E G such that (i) if vis a sink, then TRR(v) = M D(pl(v), d/2); 
and (ii) ifv is an internal node with children a and b, then TRR(v) = TRR(a)n 
TRR(b). 

By Lemma 4.3.2, TRR(so) = ns,es[M D(si, d/2)] is non-empty. Let Sj and 
s~c be two sinks in S with d(si, s~c) = d. The intersection of TRR(sj) = 
MS(sj,d/2) and TRR(s~c) = MS(s~c,d/2) must have radius= 0 (by Lemma 
4.3.1), and so TRR(so) must have radius= 0. 

For any node v, let t LD ( v) be the linear delay from v to each of the sinks in 
the subtree rooted at v in the DME output. 

Fact' 4.3.5 For each node v in G, core(TRR(v)) = ms(v) and radius(TRR(v)) = 
d/2- tLn(v). 

Proof of Fact: We apply induction on the maximum number of edges between 
v and sinks in its subtree. If v is a sink, then core(T RR( v)) = { v} = ms( v) and 
radius(TRR(v)) = d/2 = d/2- tLn(v). If vis an internal node with children 
a and b, inductively assume that the Fact holds for a and b. In the linear delay 
model, we have tLn(a) = tLn(v) -leal, implying 

radius(TRR(a)) d/2- tLn(a) 

= d/2- tLn(v) +leal 

and similarly radius(TRR(b)) = d/2- tLn(v) + lebl· 

The TRRs trra and trr6 constructed by Build_Tree_of...Segments will have 
core(trra) = ms(a) and radius(trra) = leal, and core(trrb) = ms(b) and 
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radius(trrb) = hi· This implies that 

radius(T RR( a)) 

radius(TRR(b)) 

d/2- iLD(v) + radius(trra) 

d/2- iLD(v) + radius(trrb) 

whence T RR( a) and T RR( b) can be constructed from trr a and trrb, respec­
tively, by adding the constant d/2- iLD(v) to their radii. Lemma 4.3.3 then 
implies that core(TRR(v)) = ms(v) and radius(TRR(v)) = d/2-tLD(v). This 
proves the Fact. 

Since radius(TRR(s0 )) = 0, we have iLD(so) = d/2, proving the theorem. 0 

In the linear delay regime, DME also has optimal tree cost. The following 
lemma directly implies this result. 

Lemma 4~3.6 Suppose that ZST T has minimum wirelength for sink locations 
S and topology G. Let v be a node in G with children a and b. Also, let La 
denote th~edge length assigned to ea by DME and L(T, ea) denote the length 
of edge ea in T. Then {i) pl(T, v) E ms( v) and {ii) L(T, ea) = La. 

Proof: (See Figure 4.18.) The proof is by contradiction. Suppose that T has 
minimum wirelength for S and topology G and that either (i) or (ii) does not 
hold for some v in G. Let v be the node at the lowest level of G for which 
either (i) or (ii) is violated, i.e., the subtrees ofT rooted at v's children a and b 
can be constructed by DME. We will first construct a tree Tnew with source at 
q = pl(T, v), and then construct a ZST T' by replacing the subtree ofT rooted 
at v with part of Tnew. We will have pl(T', v) = q' as in Figure 4.18, and using 
Theorem 4.3.4 will show that cost(T') < cost(T) if either (i) or (ii) are violated 
in T. 

Let Gv be the subtree of topology G rooted at v, and let Sv be the set of sinks 
in Gv. Suppose that sink Si is the sink in Sv furthest from q. Create a new sink 
z that is located at a point directly opposite of q from Si; i.e., d( q, si) = d( q, z) 
and d(si, z) = 2 · d(q, Si)· Consider the new set of sinks Snew = Sv U {z }. We 
create a topology Gnew for Snew that merges Gv and z at its root, SnewO· We 
then run DME on Snew using topology Gnew to create ZST Tnew. By Theorem 
4.3.4, Tnew will have the minimum feasible delay at each sink, which is equal 
to one-half the diameter of Snew, i.e., d(q, si)· 
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Figure 4.18 Optimal placement of siblings a and b must satisfy the 
distance constraint in the top-down phase Find_Exact_Placements. 
Here, pl(T, a) = a and pl(T', a) = a', etc.; and cost(T') < cost(T). 
In the example shown, changing the placements of nodes a and b 
to locations a' and b' allows the a'-q and b'-q connections to share 
wire on the segment from q' to q. The delay at point q remains 
unchanged. 
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By Fact 4.3.5, ms(snewo) is the set of all points within distance d(q, si) of every 
sink in Snew· Therefore, q E ms(snewo) and Tnew can be constructed so that 
q = pl(Tnew' Snewo). Let a' = pl(Tnew' a), b' = pl(Tnew' b), and q' = pl(Tnew' v). 
We now construct ZST T' for S by cutting off the subtree ofT rooted at q and 
replacing it with Tnew minus the edge between q and z. Since tLn(T',q) = 
d(q, si), it must be that tLv(T', q) :::; tLn(T, q). If the strict inequality holds, 
we add extra wire between q and q' to enforce equality, and thereby retain zero 
skew. 

For convenience, let us use ea' and eb' to represent the embeddings of edges ea 
and e6 in T'. We also use eq' to denote the partial edge between q' and q in 
T'. Because the subtrees of T rooted at a and b were constructed according 
to DME, we have tLv(T,a) = tLn(T',a') and tLv(T,b) = tLv(T',b'). Let leal 
and lebl respectively represent the lengths of ea and eb in T. Then, because 
tLn(T,q) = tLn(T',q) 
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Because the subtrees of a in T and T' can both be constructed using DME, 
they must have the same cost. Similarly, the subtrees of b in T and T' have 
the same cost. Consequently, the costs ofT and T' differ only in edges ea, eb, 
and eq', i.e., 

If T is optimal, then leq•l = 0 and hence (i) q E ms(v) and (ii) L(T, ea) = 
leal= lea' I = La. 0 

The DME optimality result follows directly from Lemma 4.3.6, because DME 
places only two constraints on the placement of a node v in G: (i) pl( v) E ms(v) 
and (ii) d(pl( v ), pl(p)) ~ Lv, where pis the parent of v and Lv is the edge length 
assigned by DME to ev. 

Theorem 4.3. 7 Given a set of sink locations S and a connection topology G, 
the DME algorithm produces a ZST T with minimum cost over all ZSTs for S 
having topology G. 0 

We note that the DME output also has optimal cost for any given topology 
when the source location is predefined ( cf. the construction described in the 
previous footnote). Any tree rooted at a location q (/:. ms( s0 ) will have minimum 
cost only if the two subtrees of G directly below the root are merged at a point 
q' E ms( s0 ) which is then connected to s~ by a single edge. 

4.3.4 Application to Elmore Delay 

Calculating Edge Lengths in the Elmore Delay Model 

In the following, f and c again denote the resistance and capacitance per unit 
length of interconnect. We let Tv denote the subtree ofT(S) rooted at v, and let 
Cv denote the node capacitance of v. We assume Cv = 0 for each non-sink node 
in all of our examples and test cases; however, each sink s; can have loading 
capacitance dependent on the design of the corresponding functional unit. To 
calculate the edge lengths needed to merge two trees of merging segments TSa 
and TSb with minimum merging cost in the Elmore model, we use the analysis 
of Tsay [240], which we now review. 
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Let TSa and TSb have delays t1 = iEv(a) and t2 = tEv(b), and capacitances 
cl and c2, respectively (we know the capacitance values from the edge lengths 
and sink capacitances in subtrees Ta and Tb). Let pi( v) be a merging point 
with minimum merging cost. From the definition of Elmore delay, we have 
tEv(v, a)= rea(~cea + Cl). Thus, pl(v) satisfies: 

( 4.1) 

Let d(ms(a), ms(b)) = K.. Suppose that TSa and TSb can be merged with 
merging cost K; in other words, lea I = x and leb I = K. - x for 0 ::; x ::; K.. Then 
we have resistances rea = fx and reb = f(K.- x) and capacitances Cea =ex and 
Ceb = c(K- x). Substituting into (1) and solving for x yields: 

X= t2- t1 + fK(C2 + !Cic) 
r(C1 + C2 + cK.) 

(4.2) 

Case 1: If 0 ::; x ::; K., then there exists a feasible zero skew merging point of 
TSa and TSb with merging cost K., leal= x and lebl = K.- x. 

Case 2: If x < 0 or x > "'•· then the assumption of merging cost K. results in 
a negative edge length for either ea or eb. In this case, an extended distance 
K.1 > K. is required to balance the delays of the two trees. If x < 0, which means 
t1 > t2, we choose pl(a) as the merging point and set leal = 0 and lebl = K. 1 • 

Then: 

(4.3) 

and we use the quadratic formula to solve for K.1 : 

( 4.4) 

Similarly, if x > K., we set jebl = 0 and 
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leal= K' = ((rC1)2 + 2rc(~~- tl))~- rC1 ( 4.5) 
rc 

The above analysis shows that a zero skew merging point between two ZSTs 
can always be found. The merging cost depends on the distance between the 
two roots of the ZSTs, the delay of each ZST, and the tree capacitance of each 
ZST. However, the DME algorithm is not optimal for all topologies under the 
Elmore delay approximation. 
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Figure 4.19 (a) ZST T which is constructed by the DME algorithm, 
and which has sub-optimal cost for the given topology. (b) ZST T' 
which has optimal cost for the topology in (a), but which violates 
the DME algorithm. In T', the internal nodes placed at Po and 
Pl in T are placed at the same point, p~. (Trees are not drawn to 
scale; lengths of horizontal and vertical segments are as indicated.) 

Suboptimality of DME for Elmore Delay 

The ZSTs T and T' in Figure 4.19 show that DME will not always give a 
minimum-cost zero-skew embedding under the Elmore delay model. T and T' 
connect terminal points s1, ... , ss to source so. Both trees are assumed to extend 
to the right side of so, with their subtrees on the right of so being mirror images 
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of the subtrees to the left of so; this ensures that the source will be at so in the 
optimal tree). We normalize both the unit resistance f and unit capacitance c 
to one, and assume without loss of generality that the loading capacitance of 
each sink is zero. 7 

The ZST T' was constructed so that if points s1 and s2 are merged at point p~, 
then vertical wires from points sa through s6 will merge along the horizontal 
wire from s1 to so with exactly zero skew. If, however, s1 and s2 are merged on 
their merging segment as in tree T, the delay at p~ will increase, and jogs will 
be required in the edges e83 through e86 • In this example, the four required jogs 
are each of length greater than 0.3. Thus, their sum is greater than 1, which 
was the amount of wire saved initially by merging s1 and s2 at Po. Table 4.8 
contains the calculated delay and capacitance at each of the internal nodes of 
T and T'. For example, in T' the capacitance at p~, Cp~, is 33; and the delay 
at node p~ is 

') ') (0.1 ) (11.297)2 
tEv(p2 = tEv(p1 + 0.1 * 2 + Cp~ = 60.5 + 3.305 = 63.8 = 2 

Because the unit resistance and capacitance are both equal to one, and because 
the loading capacitances at the leaves are zero, the tree capacitance of each 
node equals the amount of wire in its subtree. Thus, we see from Table 4.8 
that cost(T)-cost(T') ~ 0.44. It should be noted that Chou and Cheng (54, 50] 
have recently demonstrated the cost suboptimality of DME in the octolinear 
and Euclidean geometries. 

4.3.5 Experimental Results and Discussion 

The DME algorithm has been implemented in C on Sun SPARC-1 worksta­
tions. To distinguish the effects of DME from the effects of various heuristics 
for generation of clock tree topologies, we have applied DME to each of sev­
eral previous constructions in the literature: the MMM method of (143], the 
KCR method of (60, 144], the method of Tsay (240], and the BB ("balanced 
bipartition") method of (44, 45]. These comparisons have been made for both 
the linear and Elmore delay models. Two sets of test cases were used: (i) the 
layouts of Primaryl and Primary2 studied in [143] and provided by Jackson 

7 The example can be easily altered to have non-zero sink loading capacitances: shorten the 
edge adjacent to a given sink s; by a small value c; > 0, and then set the loading capacitance 
of the sink to Ci. 
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Tree T Tree T 
node delay capacitance node delay capacitance 

po 50 20 
PI 64.0 32.0 p~ 60.5 33.0 

P2 67.3 43.7 p~ 63.8 44.4 

P3 71.9 55.8 p~ 68.2 56.2 

P4 77.6 68.4 p~ 73.9 68.4 
so 454.0 2x73.66 so 428.6 2x73.44 

Table 4.8 Delay and capacitance at each internal node in ZSTs T 
and T'. 

et al. (226]; and (ii) the sink placements for circuits r1 - r5 studied by Tsay 
(240]. These seven test cases, which have sizes ranging from 267 to 3101 sinks, 
have emerged as a de facto benchmark suite for clock tree constructions in the 
recent literature. 

Results for the Linear Delay Model 

Experimental results for linear delay are shown in Table 4.9. The cost reduction 
afforded by DME can be substantial, e.g., KCR+DME averages more than 9% 
cost reduction over the original KCR construction. No data for BB in isolation 
is possible, since BB produces only an unembedded binary tree topology. 

Results for the Elmore Delay Model 

DME was tested under the Elmore delay model, using the same benchmark sink 
sets and initial topologies. Results are shown in Table 4.10, and again indicate 
that DME can obtain substantial improvements in tree cost. The results also 
show a clear synergy between the topology generation and embedding phases. 
For example, Tsay's construction does not yield a good initial topology for 
DME: we believe that this is because it already allows deferral of the choice of 
placements for one level in the tree (the two endpoints of each merging segment 
are selected and carried to the next level, where the actual embedding is chosen 
to be the point which allows the minimum connection cost). Indeed, the Table 
shows clearly that the KCR topology is "more promising" vis-a-vis the subse-
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Test number MMM KCR KCR+DME BB+DME 
Case of sinks cost cost cost cost 

Prim! 269 161.7 153.9 140.3 140.5 
Prim2 603 406.3 376.7 350.4 360.8 

r1 267 1815 1627 1497 1500 
r2 598 3625 3349 3013 3010 
r3 862 4643 4360 3902 3908 
r4 1903 9376 8580 7782 8000 
r5 3101 13805 12928 11665 11757 

Table 4.9 Effect of DME on the KCR and BB constructions, under 
the linear delay model. 

Test Tsay KCR Tsay+DME KCR+DME BB+DME 
Case cost cost cost cost cost 

Prim1 * 153.9 * 140.1 140.5 
Prim2 * 376.7 * 345.2 360.8 

rl 1697 1627 1658 1487 1535 
r2 3432 3349 3368 3020 3065 
r3 4407 4360 4333 3867 3962 
r4 8866 8580 8694 7713 8054 
r5 13199 12928 12926 11606 11837 

Table 4.10 Comparison of algorithms for the Elmore delay model. 
Results for [Tsay] are not available for the Primary! and Primary2 
benchmarks. 
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quent application of DME.8 Experimental results reported in (45] also indicate 
a very significant reduction in source-sink Elmore delay, e.g., KCR+DME re­
duces phase delay by 22% over the trees of Tsay. Finally, (45] notes that that 
DME constructions with exact zero Elmore delay skew have essentially zero 

8 The strong performance of the KCR topologies is surprising. For instante, the top-down 
BB topology construction [44, 451 carefully considers capacitances and delays of subtrees, in 
addition to the proximity of their CEPs; this would seem better-suited to the Elmore delay 
model than the bottom-up KCR approach, which was designed for the linear delay model. 
Nevertheless, KCR+DME slightly outperforms BB+DME on the seven benchmarks. 
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skew (i.e., only a few picoseconds) when evaluated using SPICE.9 Figure 4.20 
shows the output of KCR+DME for the same sink placement of Primary2 
depicted in Figure 4.9 above. 

Figure 4.20 Output of KCR+DME on the Primary2 benchmark 
layout. 

9 The SPICE2G.6 simulations reported in (45] were for the BB+DME construction, and 
used the following methodology. Random sink sets were generated, with cardinalities ranging 
from 8 to 64. The routing area was assumed to be 0.5cm X 0.5cm, and interconnect and device 
parameters corresponded to a 1.2JLm CMOS technology. An input clock frequency of 100 MHz 
and a single buffer were assumed; delays were measured at the output node of each inverter 
driving a sink node. Quite possibly, an alternate modeling and simulation methodology could 
change this assessment. An interesting aspect of the SPICE simulations in (45] is that they 
confirm essentially zero skew, but also show a smaller improvement in phase delay than is 
indicated by the Elmore delay model. This reflects the studies in the Appendix: Elmore 
delay is good for predicting skew (i.e., fidelity), but is less useful for predicting absolute delay 
(i.e., accuracy). 
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Remarks 

DME may be integrated into clock routing design in a number of ways. 

• The tree of merging segments allows a choice among alternative minimum­
cost zero-skew embeddings of the clock tree. This is useful in design flows 
where blockages may be introduced before clock routing takes place. 

• DME produces a tree with exact zero skew for any input topology, and may 
thus be applied to previously generated clock trees in order to improve both 
wirelength and delay. 

• DME readily applies to problems of prescribed skew (i.e., "useful" skew) 
[19), where the arrival times of the clocking signal must differ by prescribed 
amounts. This is handled by setting initial delays at the sinks to non-zero 
values. 

• DME can also be used for problems with allowed skew [19, 93, 240), where 
the signal must arrive at each sink within a prescribed time window. Huang 
et al. [133) have extended the concept of a merging segment to a merging 
area, and thus address the problem of minimum-cost bounded-skew rout­
ing; this has applications to both clock distribution and delay-constrained 
global routing. 

• Since both the geometric embedding and the topology generation impinge 
on solution quality, studies of clock distribution topologies hold renewed 
interest for research. 

For integrated topology generation and embedding, a promising approach is 
to run DME concurrently with matching-based and other bottom-up topology 
generating heuristics. Currently, the best DME-based algorithm so far is the 
Greedy-DME approach of Edahiro (the "CL" algorithm in (84]), which deter­
mines the connection topology greedily in bottom-up order, such that each 
merging segment entails minimum increase in total wirelength. Greedy-DME 
achieves nearly 17% wirelength reduction over KCR+DME; while it can result 
in unbalanced leaf depths, it also seems to leave very little room for improve­
ment with respect to total tree cost after DME is applied. 

The work of Chou and Cheng (54, 50] proposes a "grafting" operation which 
perturbs an existing topology by swapping two subtrees. When grafting is used 
as a neighborhood operator, simulated annealing can be used to optimize the 
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topology. Chou and Cheng extend DME to the octolinear and Euclidean ge­
ometries, and observe that DME no longer returns a minimum-cost ZST: in 
these geometries, a larger solution space - outside of the merging segments -
must be searched to embed the internal nodes of the ZST. Thus, the second 
phase of their method applies a Gauss-Seidel iteration to embed the topol­
ogy that was found by simulated annealing. In practice, this approach yields 
excellent results. 

4.4 PLANAR-EMBEDDABLE TREES 

Often, it is not easy to realize the preceding "exact zero skew" clock routing 
solutions by actually placing the wires into the layout plane. Typically, many 
vias must be introduced, which is undesirable. This difficulty was first noted 
by Zhu and Dai [259], who gave compelling reasons to seek a single-layer, or 
"planar-embeddable", clock routing solution. 

• The clock routing layer may be prescribed, or we may prefer the layer with 
smallest RC delay. 

• Routing on fewer distinct layers (i.e., having fewer distinct electrical pa­
rameters to consider) makes the layout more independent of process vari­
ation. Uniform electrical parameters also simplify buffering optimizations. 

• Single-layer routing eliminates the delay and attenuation of the clock signal 
through vias, thus improving both performance and signal integrity. 

Given these observations, the Planar Zero-Skew Clock Routing problem 
is of interest, i.e., given sink set S, find a planar-embeddable ZST T(S) with 
minimum cost. 

Notice that "planar-embeddable" intuitively means that the tree "can be drawn 
in the plane without edges crossing". However, this concept is not easily charac­
terized in the Manhattan plane; existing works [259] implicitly rely on Euclidean 
planar-embeddability being sufficient for Manhattan planar-embeddability (a 
line segment in the Euclidean plane can be approximated to any desired ac­
curacy by a monotone staircase in the Manhattan plane). Thus, we define 
two tree edges as crossing each other precisely when the corresponding open 
line segments in the Euclidean plane properly intersect (i.e., share exactly one 
point). This definition is necessitated by possible degenerate optimal planar 
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clock routing solutions, where the embeddings of edges are superposed. Figure 
4.21 shows this phenomenon: four sinks that are collinear will have an optimal 
"planar" clock tree whose edges pass over each other. Since this sort of over­
lapping can be made planar with minimum increase in wirelength, we accept 
such a degenerate solution as planar. This is also the convention of [259]. 

elk 

!-,\------~-\] p,. c ---1111.. 
~-· .• ~ •. d. __,... elk\. . ' . • • • ' 
i P.'\j : ----------------J 

Figure 4.21 For these four sinks on a line, edges of the optimal 
planar ZST will overlap. We accept this since the ZST can be 
made non-overlapping with minimal increase in wirelength. The 
convex polygon Ps' and the labels Ps; , Ps~, a and b pertain to the 
correctness proofs of the Planar-DME algorithm that we develop 
below. 

The planar clock routing method of [259] is as follows. The method starts with 
a tree containing only a connection from the source node to the furthest sink. 
At each iteration, a sink outside the current tree is connected to a "balance 
point" in the tree, i.e., via a connection to an existing edge such that zero 
pathlength skew is maintained and no tree edges are crossed (the Euclidean 
embedding is assumed). Two rules are applied: (i) the "Min-Rule": a new sink 
is always connected to the balance point which requires the least wirelength 
added to the tree; and (ii) the "Max-Rule": the new sink added to the tree is 
the one which has the greatest distance to its closest balance point. An elegant 
analysis shows that this method always yields a planar-embeddable zero-skew 
solution with minimum possible source-sink pathlength. The time complexity 
of the method is between O(n logn) and O(n2). 

For the case of four sinks at the corners of the unit square, with the clock source 
at the center of the square, the method of [259] will create an "X" clock tree 
with cost = 4, while the optimal "H" solution has cost = 3. A larger 400-point 
example is shown in Figure 4.22: the method of Zhu and Dai returns an "X­
based" configuration, while the Greedy-DME [84] and H-tree [18] constructions 
are essentially optimal. Khan et al. [155] have observed this limitation, and 
have proposed applying the MMM top-down partitioning method [143] for a 
user-specified number of levels, followed by the Zhu-Dai method within each 
of the resulting regions. When the user-specified number of levels is zero, the 
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output is the same as that of the Zhu-Dai method. The authors of [155] claim 
that their algorithm guarantees minimum source-sink pathlength delay; for the 
Primary! and Primary2 test cases, approximately 10% tree cost reduction over 
[259] is obtained. 

(a) {b) 

Figure 4.22 Contrast between (a) an H-tree-like solution and (b) 
the solution of Zhu and Dai. The solution in (a) is actually the 
output of the Planar-DME method described below. 

In the following, we describe an approach due to Kahng and Tsao [153, 154] 
which naturally unifies the DME embedding strategy and the guaranteed-' 
planar routing objective. The method exploits geometric observations to show 
that under the linear delay model, the bottom-up and top-down phases of DME 
can be replaced by a single top-down pass. Whereas DME nominally requires a 
prescribed topology as input, the "Single-Pass DME" result allows a clock tree 
topology to be determined dynamically, and flexibly, at the same time that it is 
being optimally embedded (i.e., with minimum cost and minimum source-sink 
delay). 

Building on this observation, the top-down Planar-DME algorithm determines 
a topology that is guaranteed to be planar-embeddable, and simultaneously 
embeds this topology in the Manhattan plane. Beyond being planar, the re­
sulting tree has provably minimum cost and minimum source-sink delay for its 
topology, since the single top-down pass achieves the same effect as DME. 
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4.4.1 Single-Pass DME 

In this section, we show that under the linear delay model, the tree of merging 
segments constructed in the bottom-up DME phase can actually be generated 
in a top-down manner. This result follows from properties of the minimum­
pathlength zero-skew subtree over any sink set S' (in particular, that the root 
of the subtree over S' must be located at the "center" of S'). 

For any sink subset S' ~ S, recall that diameter( S') = max{ d( si, Sj) lsi, Sj E 
S'}. Define the radius of S' to be radius(S') = diameter(S')/2, and let 
center(S') denote the merging segment of v, where v is the root of the tree 
of merging segments constructed by DME over S'. (We will see that the dis­
tance from center(S') to any sink inS' is at most radius(S'), hence this name.) 
Finally, let c(S') denote the midpoint of center(S'). 

Recall the following two facts from the above discussion of the DME algorithm 
(cf. Theorem 4.3.4 and Fact 4.3.5): 

Fact 4.4.1 For any sink setS and topology G, let Sv be the set of sinks in the 
subtree rooted at v in the DME solution. Let tLn(v) be the linear delay (i.e., 
pathlength) from v to each sink in Sv. Then tLn(v) = radius(Sv). 

Fact 4.4.2 Let G be the connection topology of the ZST T(S) that is produced 
by DME. Let d = diameter(S) and let TRR(v) denote the special tilted rect­
angular region that corresponds to eitherTRR(v) = MD(pl(v),d/2) ifv is a 
sink node, or TRR(v) = TRR(a) n TRR(b) ifv is an internal node of G with 
children a and b. Then for each node v E G, core(TRR(v)) = ms(v) and 
radius(TRR(v)) = d/2- tLn(v). 

Fact 4.4.2 states that for any node v, the merging segment ms( v) is given by the 
center of Sv; Lemma4.3.1 then implies that ms( v) can be constructed in O(ISv I) 
time. Together, facts 4.4.1 and.4.4.2 imply that neither the computation of 
ms(v), nor the delay time tLn(v), will depend on v's children; this will be the 
key to constructing the tree of merging segments in top-down order. A third 
fact is useful in the time complexity analysis: 

Fact 4.4.3 For any sink subsetS' ~ S in the Manhattan plane, radius(S') = 
diameter(S')/2 can be computed in linear time. 
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Theorem 4.4.4 Given a set of sinks S and a connection topology G, we can 
produce the same output ZST T(S) that the DME algorithm will produce under 
the linear delay model, using only a single top-down phase with time complexity 
O(ISI2). 

Proof: We will show that for any node v in G, ms(v) can be found in time 
linear in the total number of descendants of v. Let the terms d and T RR( v) 
be defined as in the statement of Fact 4.4.2. The value of d can be found 
in O(ISI) time (Fact 4.4.3), and in O(ISI) time we can build TRR(s) for all 
sinks s (leaf nodes in G). According to Fact 4.4.2, ms(v) = core(TRR(v)) = 
core(nues. TRR(u)), where Sv is the set of descendants of node v in G. Since 
the intersection of any two TRR's can be found in constant time and is also a 
TRR, we can compute TRR(v) and its core in time proportional to the number 
ofv's descendants (cf. Lemma4.3.1). 

If v is not the root of G, let p be its parent. By Fact 4.4.1, the length 
of the edge incident to node v in G, levi, is equal to tLv(p)- tLv(v) = 
radius(Sp)- radius(Sv ), where Sv and Sp are the sets of descendants of node v 
and p, respectively. Thus, ms( v) and lev I can be computed in 0( ISv I) time, and 
we now have the information that would have been provided by the bottom-up 
phase of Deferred-Merge DME. In the best case, the height of the tree of merg­
ing segments is O(log lSI), so that the overall time complexity is O(ISilog lSI). 
In the worst case, the height of the tree of merging segments is 8(jSI), implying 
O(ISI 2 ) overall time complexity. 0 

Thus, under the linear delay model ms( v) is independent of the connection 
topology over Sv. Furthermore, tLv(v) = radius(Sv) implies that all sinks in 
Sv are within distance radius(Sv) of center(Sv), i.e., center(Sv) is the merg­
ing segment of the root of any ZST over Sv that has minimum source-sink 
pathlength delay. This immediately yields what (153, 154] call the Single-Pass 
DME method. Because Single-Pass DME results in the same optimum ZST 
that DME would achieve, established properties of the output tree (i.e., mini­
mum source-sink pathlength and minimum total tree cost with respect to the 
generated connection topology) are maintained. 

4.4.2 The Planar-DME Algorithm 

The impact of Theorem 4.4.4 may not be immediately apparent, since DME 
can already accomplish the same construction as Single-Pass DME in linear 
time. However, the theorem's proof showed that as soon as Single-Pass DME 



Skew 189 

has been given a partitioning of Sv into Sa and S6 , it can immediately find 
the ms(a) and ms(b) that are compatible with an optimal ZST having this 
"top part" of the clock topology. Thus, Single-Pass DME allows the connec­
tion topology to be determined dynamically in a top-down fashion, yet still 
finds a minimum-pathlength, minimum-cost embedding of whatever topology 
is eventually determined. If Single-Pass DME chooses the connection topology 
and embeds it carefully, then a planar routing can be achieved. 

The Planar-DME algorithm [153, 154] is essentially a version of Single-Pass 
DME wherein the connection topology is determined based on the existing 
routing, such that future routing cannot interfere with this existing routing. To 
describe the algorithm, we require two terms that are defined in the Euclidean 
plane: (i) Ps• denotes any convex polygon containing S', and (ii) convex-hull(S') 
is the Ps• with minimum area. Also, we say that a point p lies inside Ps• if 
p is on the boundary of, or lies strictly interior to, Ps'. The convex polygon 
concept is used to guide the top-down partitioning of both the routing area and 
the set of sinks, as follows. Given a Euclidean convex polygon that contains a 
given set of sinks, we will divide this polygon into two smaller convex polygons, 
in such a way that a minimum-cost ZST is still possible and the routing within 
one polygon cannot interfere with the routing in the other polygon. This will 
be done recursively until every polygon contains exactly one sink. 

More precisely, in each recursive call of Planar-DME, we start with a Euclidean 
convex polygon Ps• containing S' ~ S. The existing routing is outside or on 
the boundary of Ps•, and terminates at some node p of the topology that will 
eventually connect to its child node v. As long as two properties are maintained 
- (i) vis embedded at a point that is compatible with the DME solution, and (ii) 
Ps• is partitioned into two smaller convex polygons such that the routing from p 
to v is on the boundary between the polygons- a planar DME-like solution will 
remain possible. Recall that the topology is determined dynamically: S' = Sv, 
and partitioning S' into S~ and S~ yields the sink sets Sa and Sb for v's children 
a and b. 

Finally, the Planar-DME algorithm of [154] is derived from Single-Pass DME 
by introducing the following rules for embedding the internal nodes of the ZST, 
and for top-down partitioning of the sinks in each subtree. 

The embedding rules embed v inside Ps' such that the embedding is com­
patible with the DME solution, i.e., they maintain the first property above 
(see Figure 4.23). In each recursive call, Planar-DME accepts a subset of sinks 
S' ~ S, some convex polygon Ps• containing S', and some point p inside p,, 
which is to connect to a point von ms(v) = center(S'). The existing routing 
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Figure 4.23 Rules to choose the embedding point of v (the root of 
the subtree over sink setS'~ Sin any minimum-radius ZST), and 
to choose the the splitting line to partition the sink set S' based on 
the relative positions of v's parent p and center(S'). If we denote 
the coordinates of c(S') by (xc, Yc), then the regions are defined by 
the following inequalities: Region 1: x ~ Xc, y ~ Yc; Region II.l: 
y ~ -x+yl +x1, y $ Yc, y ~ Y2; Region II.2: x ~ x2, y $ Y2; and 
Region 11.3: y $ -x+yl +x1, x ~ Xc, x $ X1. Regions Ill, IV.l, 
IV.2,and IV.3 are defined similarly. 

is outside Ps', so if we can select a feasible embedding point v inside Ps', then 
the routing from p to v will not interfere with any routing that is external to 
Ps'· As a consequence, the resulting routing will be planar. The point p is 
the embedding of v's parent, and has been determined earlier in the top-down 
pass. 10 The merging segment ms( v) = center( S') has endpoints Pl and P2 in 
the figure. To be compatible with the DME solution, we choose to embed v 
on the portion of center(S') that is closest to the location of p. Furthermore, 
to ensure that v is embedded inside Ps', we embed v at a point on this cho­
sen portion of center(S'), as close as possible to the midpoint of center(S'), 
denoted c(S'). This guarantees an embedding point inside Ps' [153]. 

10 We use, e.g., p to denote either a node in the tree topology or the point at which that 
node has been embedded in the Manhattan plane (that is to say, pl(p)). 
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The actual embedding rules for v depend on p's location, as follows (see Figure 
4.23). 

• Region I, I II: v = c(S') (since this is one of the points on center(S') that 
is closest to p). 

• Region ll.1, IV.1: v is the point of intersection of center(S') with the 
horizontal line through point p (in this case and the following cases, we 
embed v at a point on center(S') that is closest top, and as close to c(S') 
as possible). 

• Region ll.3, IV.3: v is the point of intersection of center(S') with the 
vertical line through point p. 

• Region ll.2: v = P2· 

• Region IV.2: v = Pl· 

The partitioning rules for S' are also straightforward: the goal is to find 
an appropriate splitting line that divides Ps1 into two convex polygons and 
thus also partitions the sink set between the two subtrees that are below v. 
Essentially, we can use any line through p and v as a splitting line. 

• If p # v we extend the line segment pv to be a splitting line pv which 
divides Ps' into two convex polygons Ps1 and Ps' . Any sink lying inside 

I 2 
one of the convex polygons is assigned to that polygon, thus determining 
membership in either S~ or S~; a sink on pv can be assigned to either 
polygon as long as neither S~ or S~ is empty. For example, in Figure 4.21 
S' = {a, b} is divided into S} = {a} and S~ = { b }, and Ps' is divided into 
Ps~ and Ps~ accordingly. 

• The case where p = v is resolved as follows: if p 'I c(S') then the line 
segment center(S') is extended to form the splitting line, otherwise we 
arbitrarily choose the vertical line through p as the splitting line. 

These simple choices of embedding and partitioning rules guarantee a planar 
result for Single-Pass DME [154]. 

Theorem 4.4.5 Given a subset S' <; S, a convex polygon Ps1, and a point p 
inside Ps1, the embedding rules will select a feasible embedding point v inside 
Ps1 and the partitioning rules will divide S' into two nonempty subsets. 0 
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Theorem 4.4.6 Planar-DME constructs a planar clock routing tree. 0 

The Planar-DME algorithm is formally described in Figure 4.24. Steps 4 and 
6 in Planar-DME-Sub are the crux of the difference between Planar-DME and 
the generic Single-Pass DME. There will be at most n = lSI levels of recursion, 
since the maximum size of any sink subset decreases by at least one at each level. 
Thus, Planar-DME has the same O(nlogn) and O(n2 ) complexity bounds as 
Single-Pass DME and the method of Zhu and Dai. The example of Figure 4.25 
illustrates the Planar-DME construction. 

4.4.3 Experimental Results and Discussion 

Planar-DME, with the simple polygon partitioning scheme described above, 
has been implemented in C and tested on the seven test cases described in 
Section 4.3.5. For the linear delay model, Table 4.11 compares Planar-DME 
against three other methods: the method of Zhu and Dai [259]; the KCR+DME 
method which gave the best results in the previous section; and the Greedy­
DME method of Edahiro [84], which gives the best-known wirelength results 
for zero-skew trees. Recall that the method of [259] is planar; the KCR+DME 
method yields a height-balanced tree topology; and Greedy-DME can yield a 
height-unbalanced solution. 

Planar-DME obtains an average of 15.5% reduction in tree cost versus the 
previous planar method of [259]. Surprisingly, the Planar-DME solution has 
lower cost than the non-planar KCR+DME solution for Primaryl and r5, and 
indeed Planar-DME has tree cost very comparable to that of KCR+DME for 
the other test cases. For the Primaryl test case, Planar-DME surpasses the 
Greedy-DME result; this may be due to the very regular arrangement of sinks 
in the Primaryllayout. On the other hand, results are worst for the r2 exam­
ple, perhaps due to the highly irregular distribution of sinks in this test case. 
Kahng and Tsao [153] have described extensions to Elmore delay and alternate 
partitioning rules, and Huang et al. [133] have applied a variant as the core of 
a bounded-skew clock routing heuristic. 

Finally, Figure 4.26 shows the planar clock routing solutions constructed by 
Planar-DME and the algorithm of [259] for the benchmark placement of the 
Primary2 circuit. 
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Algorithm Planar-DME (S,elk) 
Input: Set of sinks S; clock location elk in Ps 
Output: Planar ZST T(S) with root so; cost(T(S)) 
1. r = radius(S) 
2. Build TRR(u) = M D(u, r) for all sinks u E S 

3. center(S) = core(nTRR(u)) 
ues 

4. If elk not specified 
5. Embed so at c(S) (i.e., pl(so) = c(S)); 
6. Else 
7. Embed so at elk (i.e., pl(so) =elk) 
8. tw(so) = r + d(pl(so), center(S)) 
9. Planar-DME-Sub(S,Ps ,so) 

10. cost(T) = I)ev I 
veT 

Procedure Planar-DME-Sub (S',P5 t,p) 
Input: Set of sinks S' ~ S; convex polygon Ps' containing S'; 

parent node p lying inside Ps' 
Output: Planar ZST T(S') with root v 
1. tw(v) = radius(S') 
2. ms(v) = center(S') = core(nues' TRR(u)) 
3. levi= tw(p)- tw(v) 
4. Use embedding rules to embed node v at pl( t•) E ms( v) 
5. Connect a wire from pl(p) to pl( v) 
6. Use the partitioning rules to divide S' and Ps' 

into S~ and S~, and Ps' and Ps' 
1 2 

7. parent( v) = p 
8. If IS' I = 1 Return 
9. Planar-DME-Sub(S~ ,Ps' ,v) 

1 

10. Planar-DME-Sub(S~ ,Ps;,,v) 

Figure 4.24 Planar-DME Algorithm. 

4.5 REMARKS 

Clock distribution is now one of the most actively studied areas of physical 
design. As noted at the outset, clock distribution is also highly intractable: it 
impinges on system architecture, circuit design, and discrete algorithms, and 
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Figure 4.25 Example with 9 sinks (circular dots at leaf nodes), 
illustrating execution of Planar-DME. The routing region is recur­
sively divided into convex polygons according to the partitioning 
rules (boundaries of polygons are indicated by thick dotted lines). 
Also shown is the tree of merging segments (thin dashed lines), 
from which application of the embedding rules is apparent. 

is an area where "theory" and "practice" can diverge to a disconcerting extent 
(e.g., contrast the present abstractions of "exact zero skew" with the formula­
tions surveyed in (100]). Fortunately, the existing literature has established a 
number of fundamental techniques for clustering in topology generation, opti­
mal (planar) embedding of prescribed topologies, and achieving prescribed El­
more delay skew. Furthermore, CAD researchers are now beginning to address 
more realistic problem formulations. The following are just a few examples. 

• To reduce power requirements, interconnect optimization to reduce capac­
itance and architecture design to reduce switching frequency are both of 
interest, by virtue of the c. V2 . f dependence of dynamic power dissipation. 
Increasing the system performance, e.g., in pipelined architectures, requires 
accurate management of latency. To address these issues, wiresizing and 
buffer insertion optimizations have been proposed by (217, 237, 197, 261] 
and others. 
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#sinks Greedy-DME KCR+DME Planar-DME Zhu-Dai 
Prim! 269 137.0 140.3 136.0 167.9 
Prim2 594 311.4 350.4 353.7 422.5 

r1 267 1,331.9 1,497 1,511.8 1, 778.3 
r2 598 2,590.8 3,013 3,363.5 3,580.1 
r3 862 3,317.8 3,902 3,943.9 4,635.9 
r4 1,903 6,780.2 7,782 7,835.7 9,577.1 
r5 3,101 9,890.5 11,665 11,491.1 14,119.4 

Complexity O(n log n) O{nlog n) O(n~) O(n~) 

Planarity NO NO YES YES 

Table 4.11 Comparison of Planar-DME with other algorithms un­
der the linear delay model. Clock tree costs for Greedy-DME are 
quoted from [84], and costs for KCR+DME are quoted from [45]. 
Planar-DME is executed without any prescribed clock source loca­
tion. 

• Skew control, as opposed to "exact zero skew", often represents a rea­
sonable engineering solution that can save wiring cost while maintaining 
acceptable performance ( cf., [260, 209]). Prescribed-delay routing can be 
accomplished by DME variants or by the method of [214). Bounded-skew 
routing has been addressed in [133). 

• For high-speed systems, process variations during manufacturing can easily 
introduce the several hundred picoseconds of skew needed to cause system 
failure. Thus, process variation independence has emerged as a new design 
criterion. Wiresizing and buffer sizing methods were developed by [56, 197); 
the single-layer routing methods of [259, 153) nominally also address this 
ISSUe. 

• When very large "superbuffers" or mesh topologies are used in the clock 
distribution network (recall the example of the Alpha microprocessor (76], 
where 3% of the active area is occupied by a single clock driver), there are 
effectively multiple sources in the clock routing problem. For both general 
signal net routing (where multiple drivers are required to drive fanins of a 
large signal net at high speeds) and clock distribution, considering multiple 
sources seems to be an emerging research area [167, 175). 

• Finally, for multi-chip packaging technologies with area-array pads, the 
clock distribution problem becomes hierarchical. The area-array pads en-
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(a) 

Figure 4.26 Planar zero-skew clock trees with minimum source­
sink pathlength delay, for the Primary2 benchmark: (a) the solution 
produced by Planar-DME; and (b) the solution produced by the 
algorithm of Zhu and Dai. 

able signals to be brought onto the die from the substrate at any location; 
this can lead to many clock "sources" on a given die. Then, the problem 
is to partition the clock distribution between the underlying substrate and 
the on-chip routing areas. Zhu and Dai [259] have performed the first 
investigations of this problem. 



5 
MULTIPLE OBJECTIVES 

Overview 

In previous chapters we have explored constructions that optimize the three 
main design objectives of wirelength, skew, and delay. However, in practice 

we often seek to optimize multiple objectives simultaneously. This chapter 

explores ways of representing and addressing multiple competing objectives. 
We begin with a minimum density formulation for balancing the utilization of 
horizontal and vertical routing resources and describe heuristics with expected 
performance bounded by constants times optimal. This enables the simulta­
neous optimization of up to three objectives (e.g., radius/density/wirelength, 

or skew/densityjwirelength at once), without degrading solution quality with 

respect to any of the objectives. We also discuss a non-uniform lower bound 

schema that affords tighter estimates of solution quality for a given problem 
instance. 

Next, we develop a general framework of multiple-objective optimization, based 

on multi-weighted graphs (i.e., where edge weights are vectors rather than 

scalars). This formulation captures distinct criteria such as wirelength, jogs and 

congestion, and enables effective routing in graph-based regimes (i.e., routing 
in building-block designs, field-programmable gate arrays, and where obstacles 
are present). Finally, we discuss a network-flow based approach to prescribed­
width routing where multiple objectives induce an arbitrarily costed region; 
applications of this include, e.g., circuit-board routing, and routing with re­
spect to reliability or thermal considerations. This methodology departs from 
conventional shortest-path or graph-search based methods in that it applies to 
routing regions with a continuous cost function, as well as to regions containing 
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solid polygonal obstacles. Extensions address the minimum-surface problem of 
Plateau, which is of independent interest. 

5.1 MINIMUM DENSITY TREES 

In Chapter 2 the minimum-area objective was approximately captured by min­
imizing the tree cost: since wires have a fixed width and must be routed at a 
fixed separation from each other, the total tree edgelength provides an obvious 
lower bound on the routing area that must be added to the layout. However, the 
grid-based structure of integrated-circuit routing resources provides additional 
information for determining the impact of a given interconnection topology on 
the chip area. 

This section discusses the minimum density objective of [10, 11] for spanning 
and Steiner tree constructions. This formulation is motivated by the minimum­
area layout objective, which is best achieved through balancing the usage of 
horizontal and vertical routing resources [194]. We present two efficient heuris­
tics for constructing low-density spanning trees, and prove that their outputs 
are within small constants of optimal with respect to both tree cost and den­
sity. The proof techniques suggest a non-uniform lower bound schema which 
affords tighter estimates of solution quality for a given problem instance. Fur­
thermore, the minimum density objective can be transparently combined with 
a number of previous interconnection objectives (e.g., minimizing tree radius or 
skew) without affecting solution quality with respect to these previous metrics. 
Section 5.2 details a more general scheme for the simultaneous optimization of 
multiple objectives. 

Consider the four-terminal signal net shown in Figure 5.1; the interconnec­
tion tree of Figure 5.1(a) forces at least three wires to cross the dashed line, 
meaning that the horizontal dimension of the chip must increase enough to 
accommodate these three routing grids. 1 In contrast, the tree of Figure 5.1(b) 
forces the horizontal chip dimension to grow by only one routing grid (how­
ever, the vertical chip dimension will grow by two grids, as indicated by the 
horizontal dashed line). Manufacturing and Packaging costs suggest that the 
most effective layouts are generally those which are roughly square, and this 
suggests balancing the horizontal and vertical routing requirements induced by 
the interconnection tree. 

1 We adopt "routing grid" as a generic term that is independent of layout methodology. 
The term encompasses, e.g., vertical feedthroughs or horizontal routing tracks in a channel 
[194). 
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(a) (b) 

Figure 5.1 A four-terminal signal net for which the tree on the 
left increases the required layout dimension by three routing grids, 
while the tree on the right requires only two routing grids. 

199 

Recall that a signal net S is a set of n + 1 terminals so, s1, s2, ... , sn E S in 
the Manhattan plane, and routing tree, T(S) is a tree which spans S. The cost 
of a tree edge is the Manhattan distance between its endpoints, and the cost 
of a routing tree is the sum of the costs of its edges. A line properly intersects 
an edge if and only if it intersects the edge at a single point which is not an 
endpoint of the edge. 

Definition 5.1.1 The density of an interconnection tree is the maximum num­
ber of tree edges that can be properly intersected by a horizontal or vertical line 
in the plane. 

Definition 5.1.2 For a given netS, the minimum density of Sis the minimum 
density achievable by an interconnection tree T(S), and a minimum density tree 
is any T(S) that achieves this minimum density. 

Minimum Density Tree (MDT) Problem: Given a net S, construct a min­
imum density tree T(S) having minimum cost. 

The density criterion (see figure 5.2) recalls the notion of trees with "low stab­
bing number", which are used in the computational geometry literature to 
speed up dynamic "ray shooting" queries [1, 46, 85, 86, 247). However, span­
ning trees with low stabbing number minimize the number of tree edges that 
can be intersected by a line of any orientation, while the MDT formulation 
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• • • 
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• • • 
(a) (b) (c) 

Figure 5.2 (a) Example of a signal net, along with (b) an inter­
connection tree with density = 3, and (c) a minimum density tree 
with density = 2. 

above is concerned only with horizontal or vertical intersecting lines; this dif­
ference enables tighter bounds and simultaneous minimization of both tree cost 
and density. 

In light of the mm1mum area, delay and skew objectives discussed earlier, 
the MDT heuristics discussed below provide interesting multiple optimizations 
wherein up to three competing objectives may be optimized simultaneously. As 
a result, the area minimization objective of minimum-density routing can be 
attained without sacrificing performance-driven criteria. In particular, below 
we describe how tree cost, radius, and density can be simultaneously optimized; 
we also show how tree cost, skew and density can be simultaneously addressed. 

5.1.1 Heuristics for Minimum Density Trees 

The following discussion will assume that all terminals lie inside the unit square. 

The COMB Construction 

Our first basic algorithm sorts the terminals by increasing :~:-coordinate (ties are 
broken to favor the larger y-coordinate), and then partitions the terminals into 
'4 vertical strips, each containing J2ri terminals (Figure 5.3(a)). (Note that 
th~ discussion implicitly assumes use of the floor and ceiling functions as ap­
propriate; this does not affect any of the asymptotic results.) We then connect 
all the terminals of each strip into a path, in order of decreasing y coordinate 
(Figure 5.3(b)). We complete the routing topology by connecting the termi-
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nals with lowest y coordinate in each strip, in order from left to right (Figure 
5.3(c)). This algorithm is described in Figure 5.4. The complexity of this algo­
rithm, which we call COMB, is clearly dominated by the partitioning/sorting 
step (Step 1 of Figure 5.4), and is therefore O(nlogn). 

• le I. • I el 
.I le 

e I • I 

• I I • • le I 
I • I • • I I 
I I 

(a) (b) (c) 

Figure 5.3 Execution of the COMB spanning tree construction on 
a net of size n = 16. 

Algorithm: COMB 
Input: a net S, containing lSI = n terminals 
Output: a low-density, low-cost tree spanning S 

1: Partition S into ~ vertical strips each containing ..,fin terminals 
2: Connect in monotone y-order the terminals within each strip 
3: Connect in monotone x-order the bottom terminals of all strips 
4: Output resulting spanning tree 

Figure 5.4 Algorithm COMB: heuristic minimum-density span­
ning tree construction. 

If the introduction of Steiner points is allowed in constructing the tree, we can 
reduce the worst-case density as well as the worst-case cost of the construction 
as follows: (i) partition the net S into ~ vertical strips, each containing 

J2ri terminals (Figure 5.5(a)); (ii) within each strip, connect the terminals 
in the strip to a central spine, i.e., a vertical line which passes through the 
median terminal of the strip when the terminals are sorted by x-coordinate 
(Figure 5.5(b )); then (iii) join all the spines using segments of a single horizontal 
line (Figure 5.5(c)). This variant, which we call COMB_ST, is described in 
Figure 5.6 and has complexity O(nlogn), again reflecting the complexity of 
the partitioning/sorting step. 
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Figure 5.5 Execution of the COMB_ST Steiner tree construction 
on a net of size n = 16. Note that density = 3 is achieved by the 
construction, while the COMB construction yielded density = 5 for 
the same instance. 

Algorithm: COMB...ST 
Input: a. net S, containing lSI = n = P terminals 
Output: a. low-density low-cost Steiner tree connecting S 

1: Partition S into ~ vertical strips each containing v'2n terminals 
2: Connect the terminals within each strip to a central spine 
3: Connect the bot toms of all spines 
4: Output resulting Steiner tree 

Figure 5.6 Algorithm COMB_ST: heuristic minimum-density 
Steiner tree construction. 

A Chain-Peeling Method 

A different, "chain-peeling" approach to density minimization iteratively com­
putes and superposes chains or antichains (i.e., sets of terminals through which 
a staircase routing exists). A chain is a sequence of terminals with coordinates 
that are monotone nondecreasing in both x and y; an antichain has coordinates 
monotone nondecreasing in x and monotone nonincreasing in y. According to 
Dilworth's theorem [75), every partially ordered set of size n must contain either 
a chain or an antichain of size at least Vn· 

The chain-peeling method, which we call PEEL (Figure 5.7), detects a maximal 
chain or antichain and then removes it from the net; the process is iterated over 
the remaining terminals until the net has been covered. Each chain contributes 
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at most 1 to the overall density, and the chains/antichains can be joined to­
gether into a tree (Step 7 of Figure 5.7) without increasing the density further 
(see Theorem 5.1.8 below). The PEEL method is attractive because it escapes 
such pathological examples as that of Figure 5.8, where COMB or COMB_ST 
will yield density an unbounded factor greater than that of PEEL. Section 5.1.2 
shows that the time complexity of PEEL is 0( n ~ log log n ). 

Algorithm: PEEL 
Input: a net S, containing lSI = n terminals 
Output: a low-density low-cost tree spanning S 
1: P=S 
2: T=0 
3: While P =/: 0 Do 
4: C = maximum chain or antichain of P 
5: T=TUC 
6: P=P-C 
7: Join all chains/antichains in T and output resulting tree 

Figure 5.7 Algorithm PEEL produces a low-density tree by itera­
tively computing maximum chains or antichains, then joining them 
into a tree. 

• • 

• • 

• • • • 
• • • 

(a) 

• 

• • 

• • 
(b) (c) 

Figure 5.8 Illustration of class of examples (a) on which PEEL 
performs (b) an unbounded factor better than either COMB or 
COMB-ST (c). The connecting edges between the strips (Step 3 of 
COMB) are not shown in (c). For points in an "X" configuration, 
PEEL will always yield a constant density = 2, while COMB or 
COMB_ST density will grow as the square root of n. 
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5.1.2 Performance Bounds 

Both the density and the total tree cost of the constructions are on average 
only small constant factors away from optimal. 

Density Bounds 

For a net S of n terminals, a lower bound of 0( yin) can easily be established 
for the worst-case minimum density of the spanning tree T(S). Moreover, we 
can show e( yin) expected density for the minimum density tree over s. 

Theorem 5.1.3 A net S containing the n distinct grid points of the ( y'n -
1) X (yin -1) grid cannot be spanned by a tree having density< r"'1+11. 

Proof: In the square array, there are 2( y'n - 1) horizontal and vertical lines 
between the rows and columns of terminals. For the tree T(N) to be connected, 
each tree edge must cross at least one horizontal or vertical line. Hence, there 
are at least n - 1 line crossings, and the pigeonhole principle implies that at 

least one of the lines is crossed r 2(fo ~ 1) 1 = r f1+ 11 times. 0 

The next theorem requires the following lemma: 

Lemma 5.1.4 If n indistinguishable balls are independently placed at random 
into n indistinguishable boxes, ( 1 - ~) · n boxes are expected to be non-empty. 

Proof: The probability of a given ball ending up in a given box Bi is ~' 
thus the probability of the ball missing box Bi is 1 - ~. By the independence 
of the placements, the probability that all n balls miss box Bi is ( 1 - ~ )n. 
Therefore, as n increases, the probability that any given box remains empty is 
limn-oo(1- ~)n = ~· By linearity of expectation, it follows that a constant 
fraction ~ of the n boxes are expected to remain empty, proving the lemma. 0 

Theorem 5.1.5 For n terminals chosen randomly from a uniform distribution 
in the unit square, the minimum density tree has expected density e( y'n). 

Proof: Partition the unit square into n identical square cells, each of size -j;: 
by f,:, using 2yln-2 vertical and horizontal lines (Figure 5.9(a)). If we regard 
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cells as "boxes" and terminals as "balls" then by Lemma 5.1.4 the expected 
number of cells containing at least one terminal is ( 1- ~) · n. For the spanning 
tree to be connected, each of these non-empty cells must contain at least one 
terminal s; which has an incident tree edge ei that crosses a boundary of the 
cell (Figure 5.9(b )). By the pigeonhole principle, at least one of the horizontal 

or vertical lines will intersect gJn2·;) > (1 - ~) · ~ tree edges, yielding the 

0( y'n) lower bound on the expected minimum density. Since the algorithms 
always yield trees with density O(y'n) (see the following sequence of results), 
the expected minimum routing density for a net of n terminals uniformly chosen 
in the unit square is ec y'n). 0 

Interestingly, the proof schema of Theorem 5.1.5 suggests a computational lower 
bound for individual instances of the MDT problem, as follows. Given a net S, 
select integers i and j and partition the unit square into ani by j (not necessar­
ily uniform) rectangular grid such that the greatest number P of the resulting 
i · j rectangles contain terminals (see Figure 5.10). By the pigeonhole principle 
(recall the proof of Theorem 5.1.5), this induces an immediate lower bound 
f r P-1 l r P-1 l h . . . d . f S V . o (i- 1)+(j- 1) = i+i- 2 on t e mimmum routmg ensity o . anous 

schemes can be used to find a partition which maximizes the quantity .+P:- 1.,: 
I J -. 

for example, one could place i = y'n horizontal lines such that at most .Jii 
terminals lie between each consecutive pair of horizontal lines, and then place 
the j = y'1i' vertical lines using a similar criterion. It is open whether there ex­
ists a polynomial-time algorithm which computes a rectangular partition that 

. . P- 1 r fi d . d . ( . . ~) maximizes i+i- 2 , even tor xe zan J e.g., z = J = vn . 

Theorem 5.1.6 Algorithm COMB constructs a spanning tree with density $ 
V27l. 

Proof: Since each strip contains no more than /211 terminals, a vertical line 
passing through any strip cannot intersect more than J2ri tree edges. Since any 
given horizontal line cannot intersect more than two edges within a strip (one 
edge from Step 2 and one from Step 3 in Figure 5.4), the maximum horizontal 

density is 2 · ~ = /211. Thus, the density of the COMB output is at most 

~ 0 

Theorem 5.1. 7 Algorithm COMB_ST constructs a Steiner tree with density 

~ ~+1. 
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(a) (b) 

Figure 5 .9 Expected minimum density of a net: (a) the unit square 
is partitioned into n congruent cells; (b) each non-empty cell con­
tains some terminal Si which contributes at least one edge ej that 
crosses a cell boundary . 
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(a) (b) (c) 

Figure 5.10 Computing a non-uniform lower bound on the den­
sity. For the net in (a), a uniform partition of the unit square into 
16 squares of size ~ x ~ each, shown in (b), yields 11 non-empty 
cells which imply a density lower bound of r ( 4- N+(~-1) 1 = 2. On 
the other hand, the non-uniform partition shown in (c) yields 14 
non-empty cells, which imply an improved density lower bound of 
r 14-1 1 3 
(4-1)+(4-1) - . 

I 
I 

Proof: In the construction of Figure 5.5, a strip can contain at most ~ 

terminals on each side of its spine, so no vertical line can intersect more than ~ 
of the edges created in Step 2 of Figure 5.6. No horizontal line can intersect any 
of the ~ vertical spines more than once. Thus, the density of the COMB-ST 
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output is at most ~ + 1, when we consider the edges added to join the spines 
together (Step 3). 0 

A density bound for the chain-peeling algorithm PEEL follows two lemmas, 
namely, (i) at most 0( Jfi) chains or antichains will be "peeled" during the 
construction, and (ii) these chains/antichains can be connected to form a single 
component which has density at most the number of chains/antichains. 

Theorem 5.1.8 Algorithm PEEL constructs a Steiner tree with density most 
:$ 2. Jfi. 

Proof: We first show that PEEL computes at most 2 · fo chains and/or 
antichains. Let ai denote the number of points remaining after we have peeled 
off i chains and/or antichains. Assume that the algorithm stops when we have 
peeled off k chains and/or antichains, i.e., ak = 0. We want to show that 
k :$ 2 · fo. According to Dilworth's Theorem [75], the size of the (i + l)th 
chain/antichain is at least vfai. Thus, ai+1 :5 ai- .;ai. It is easy to verify that 
J x - Vx :$ .,fi - ~. Therefore, 

1 1 1 1 k 
.Jfik :$ y a1c-1 - .Jak-1 :5 ..,fiik-1- 2 :$ ( Jak-2 - 2)- 2 :$ .. · :$ JciO- 2 

This implies that k :$ 2 · ( .,fiiO - y!ak) = 2 · Jfi. To complete the proof, we 
need to show the chains and antichains can be "joined" into a spanning tree 
without increasing density. This can be accomplished by extending each chain 
to the top-right corner of the unit square and each anti-chain to the top-left 
corner; this clearly will not increase total density beyond k (see Figure 5.11). 
A simple case analysis shows that the set of chains can then be connected to 
the set of antichains with no further increase in density, yielding the overall 
density bound of 2 · fo. 0 

Note that when the chains and antichains are joined into a Steiner tree as 
described in the proof, the tree density will always be exactly the total number 
of chains and antichains since a horizontal line near the top of the square will 
cut all (extended) chains and antichains. Clearly, l~wer density constructions 
might be attainable; however, the experimental results of Section 5.1.4 use this 
simple ''joining" construction for Step 7 of the PEEL algorithm. 

A result of Hunt and Szymanski (134] shows that the maximum chain or cin­
tichain in a pointset can be computed in 0( n log log n) time. Since PEEL 
requires O(yn) iterations, its time complexity is bounded by O(n~ loglogn). 
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Figure 5.11 Combining chains into a low-density tree. 

Cost Bounds 

CHAPTER 5 

Probabilistic arguments show that on average, COMB and COMBJ)T will 
produce trees with low cost. 

Theorem 5.1.9 For n terminals distributed arbitrarily in the unit square, al­
gorithm COMB constructs a spanning tree with cost ~ 2v'2 · .,fii. 

Proof: In the COMB construction, the sum of the vertical components of the 
edges within each strip is bounded by 1 (the height of each strip is one unit). 
Thus, the sum of the vertical components of all routing tree edges introduced in 
Step 2 of Figure 5.4 is bounded by ~. Furthermore, the vertical components 

of edges introduced in Step 3 also sum to at most ~. To bound the sum of 
horizontal components, note that if we pick an arbitrary edge from within each 
strip, these $ edges have total horizontal span bounded by 1. The horizontal 

components of all tree edges from Step 2 thus contribute at most v'2n - 1 to 
the tree cost, and since the edges added in Step 3 have total horizontal span 
~ 1, we obtain the bound of 2-/2 · ..Jii. 0 
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Theorem 5.1.10 For n terminals distributed arbitrarily in the unit square, 
algorithm COMRST constructs a Steiner tree with cost ~ $n + 1. 

Proof: In the COMB-ST construction, the vertical spines contribute at most 
~ to the tree cost. As in the proof of Theorem 5.1.9, if we pick an arbitrary 
pair of horizontal edges in each strip, one from either side of the spine, the total 
cost of these edges is ~ 1, so the sum of horizontal edge components is at most 
Vf = ~. Finally, the horizontal connector which joins the spines (Step 3 of 

Figure 5.6) has cost ~ 1, and the desired bound of $n + 1 follows. 0 

Theorem 5.1.11 For n terminals distributed arbitrarily in the unit square, 
algorithm PEEL constructs a Steiner tree with cost ~ 4 · -..fii. 

Proof: According to Theorem 5.1.8, PEEL constructs at most 2 ·Vii chains 
and anti chains, which are extended and then joined to yield a Steiner tree over 
the net S. Each extended chain or antichain can have cost at most 2, yielding 
the desired bound. 0 

Theorem 5.1.12 For n terminals chosen randomly from a uniform distribu­
tion in the unit square, the expected minimum spanning tree cost is e( vn). 

Proof: While this claim is a consequence of results in the theory of subadditive 
functionals in the Lp plane (23, 229], we present the following simple proof. 
Again, we partition the unit square into an array of n square cells, each of size 
-j; by -j;. Recall that the expected number of cells that will contain at least 

one terminal is (1- ~) · -..fii. In any tree T(N), each terminal will have at least 
one incident tree edge, and this edge must cross the boundary of the cell. It is 
easy to show that the expected distance from a terminal to the nearest side of 
its containing cell is lower-bounded by some constant times the length of the 
side of the cell (in the Manhattan norm, this constant is i ). We therefore have 
an 0( yn) bound on the expected total tree cost. Since COMB always yields a 
spanning tree with cost 0( yn), the minimum spanning tree cost for a set of n 
terminals uniformly distributed in the unit square is 6( y'n) on average. 0 

From these results, we have: 

Corollary 5.1.13 For n terminals chosen randomly from a uniform distribu­
tion in the unit square, the algorithms COMB, COMB_ST and PEEL all con-
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struct trees which on average have both density and cost bounded by constants 
times optimal. 0 

As noted in Section 5.2, the notion of density is related to the computational 
geometric concept of "low stabbing number" which seeks spanning trees hav­
ing few intersections with lines of any orientation [46, 85]. Welzl [247] has 
proved that there always exists a spanning tree with stabbing number 0( y'n). 
Edelsbrunner et al. (86] have shown that 0( y'n) is a lower bound for the 
stabbing number of a pointset; Theorems 5.1.3 and 5.1.5 above show that this 
lower bound holds even when only horizontal and vertical stabbing lines are al­
lowed, and establish an average case 0( y'n) density lower bound. The authors 
of [86] also give three spanning-tree constructions with low stabbing number, 
trading off between space, stabbing number, and the use of randomization. 
These methods obtain bounds on stabbing number ranging from 0( n t+f) to 
O(nt · polylog), and typically run in O(n3 ) time and O(n2 ) space. By con­
trast, the algorithms above guarantee 0( n t) density, and run in 0( n log n) 
time and 0( n) space. Finally, Agarwal [1] showed that there always exists a 
family of O(log n) trees such that for an arbitrary given line, one of the trees 
will have a stabbing number of 0( y'n); this family can be computed in time 
O(n! · polylog). 

5.1.3 Triple Optimization 

In VLSI routing it is often desirable to simultaneously minimize more than 
one objective. However, this is difficult: it is unusual for even two competing 
criteria to be treated effectively (e.g., the simultaneous tree radius and tree 
cost minimization of [63]). In this section, we show that the minimum-density 
objective is "compatible" with existing performance-driven routing objectives; 
indeed, we may simultaneously address up to three separate routing-tree cri­

teria. Section 5.2 outlines a general scheme for the simultaneous optimization 
of multiple objectives. 

Minimizing Skew, Density, and Total Wirelength 

Recall from Chapter 4 that construction of a tree with minimum difference 
among the various source-sink pathlengths captures both minimum-skew clock 
routing [19] and global routing with min-max timing constraints. Chapter 4 
gave a general interconnection scheme that achieves extremely small pathlength 
skew, while keeping the total wirelength on average within a constant factor 
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of optimal, and always bounded by 0( y'n). This clock routing construction, 
which we refer to as CLOCKl, begins with a forest of n isolated terminals, each 
of which is considered to be a (trivial) tree. An optimal geometric matching 
on these n points yields ~ segments, each of which defines a tree with two 
nodes. A tree is rooted at its balance point, i.e., the point that minimizes the 
pathlength skew to the leaves of its two subtrees. Trees continue to be paired up 
by geometric matching of their roots so that at each level of the construction 
only half as many points are matched as in the previous level. Thus, after 
flog n 1 matching iterations, a complete tree topology is obtained, as described 
in Section 4.2.2. 

In order to construct clock-routing trees with low density, we construct a low­
density geometric matching via the following variant of algorithm COMB: par­
tition the net into ~ strips of v'2ri terminals each and connect the terminals 
of each strip from top to bottom as before (Figure 5.12(a)). However, instead 
of connecting the bottom terminals of all strips, connect the terminals in a 
serpentine fashion, i.e., alternate between connecting the bottoms and tops of 
adjacent pairs of strips as shown in Figure 5.12(b ). Arguments similar to those 
above show that this procedure (which we call COMB_SERP) will connect all 
of the terminals in a single long path topology that has both total cost and 
overall density simultaneously bounded by 0( y'n) in the worst case. 

I :. • le • I el 
.I le 

e I • I 

• I I • • le I 
I • I • • I I 
I I 

(a) (b) (c) 

Figure 5.12 (a) Partitioning a net into strips/chains; (b) a serpen­
tine tour with low density, low average cost, and low density; and 
(c) an embedded geometric matching which also has low density 
and low average cost. 

Taking only every other edge of the tour produced by COMB-SERP will con­
stitute a geometric matching (Figure 5.12( c)) having both total cost and over­
all density simultaneously bounded by 0( y'n). We may iteratively use such 
matchings within the CLOCK! algorithm to yield a clock routing tree that si-
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multaneously address three competing objectives: pathlength skew, total wire­
length, and density. In particular, the latter two quantities are both bounded 
on average by constants times optimal. 2 

Minimizing Radius, Density, and Total Wirelength 

In Chapter 3 a method was proposed to uniformly trade off total routing tree 
cost with tree radius (i.e., the longest source-sink pathlength in the tree) and 
simultaneously optimize both parameters to within constants times optimal in 
the worst case. This "bounded-radius, bounded-cost" (BRBC) construction 
[63] starts with a low-cost tour of the net terminals (e.g., a depth-first tour 
of a minimum spanning tree) and then augments this tour by adding shortest 
paths to the source from certain regularly spaced locations along the tour. The 
algorithm returns the shortest-paths tree over the resulting augmented graph, 
as detailed in Section 3.2.2. 

We can combine the minimum-density objective with with the radius/cost 
tradeoff of the BRBC algorithm to obtain another "triple optimization". Specif­
ically, we may execute the BRBC algorithm with an initial tour L (see Figure 
3.10) that is based on, e.g., the COMB-SERP spanning tree (instead of the 
minimum spanning tree); recall from Section 5.1.3 that the COMB_SERP out­
put has total cost and density both bounded by 0( y'n). Aside from this choice 
of initial traversal, the remainder of the construction proceeds exactly as the 
BRBC algorithm (see Figure 3.10). 

Given an arbitrary real parameter f ~ 0, the resulting BRBC spanning tree will 
have radius bounded by (1 + t:) from optimum in the worst case, cost bounded 
by (1 + :) · 2J2n, and density bounded by (1 + £~) · $n, where R $ 2 is the 
distance from the source to the farthest sink.3 Note that for any fixed value of 
f, all three of the above measures (i.e., radius, cost, and density) are on average 

2 This follows from the fact that at each level of the tree construction, only half as many 
points are being matched as in the previous iteration. Thus, for example, the density of the 
resulting clock tree will be bounded by 0 ( Vn) + 0 ( v'f) + 0 ( J'f) + ... = 0 ( fo). 

3 The density of the combined COMB-SERP / BRBC construction is bounded by the 
sum of$ (the density of the COMB-SERP tree Q) plus the number of shortest paths 
to the source taken during the traversal of Q in the BRBC algorithm (since any shortest 
path is necessarily monotone, it cannot contribute more than 1 to the density). The latter 
quantity is determined by noting that the depth-first tour of Q has length equal to twice the 
COMB tree cost 2..,/27i, and that BRBC adds shortest paths to the source at intervals of at 
least f • R along the traversal of Q. Thus, the density of the overall construction is given by 
..,l27i + 2·2Y2ii" = (1 + ....L) . ..,127i. 

•·R •·R 
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constants times the respective optimal values. Indeed, the radius bound is a 
constant times optimal in the worst case as well. 

5.1.4 Experimental Results 

We have implemented the COMB_SERP variant of the COMB algorithm, the 
COMB_ST, and the PEEL algorithms using ANSI C for the Sun environment. 
Results are presented in Tables 5.1 and 5.2. For each pointset cardinality, 
each algorithm was executed on 100 pointsets randomly chosen from a uni­
form distribution in the unit square. Table 5.1 reports the minimum, average, 
and maximum densities of the resulting trees. Note that for algorithm PEEL, 
the number of chains and antichains computed by the algorithm is reported; 
this gives the spanning-tree density when we use the simple joining method 
described in the proof of Theorem 5.1.8. The tree cost of PEEL will be some­
what higher than shown in Table 5.2, since the data does not include the extra 
edgelength needed to join the chains together. 

The average density of the tree produced by the COMB-SERP algorithm is 
on par with the density of the simple minimum spanning tree. However, the 
density of the minimum spanning tree has higher variance, and in the worst 
case can be as large as O(n). Thus, the COMB or COMB-SERP constructions 
have practical utility due to their predictable performance. The average density 
of the trees produced by the COMB-ST algorithm is lower than the average 
density of the corresponding minimum spanning trees: for example, with signal 
nets of size 10, COMB_ST yields trees with average density = 3.00, in contrast 
to average minimum spanning tree density = 3.82. For n = 10, this 21% 
decrease in average density is achieved with a corresponding 21% increase in 
the tree cost over the MST cost, shown in Table 5.2. There is essentially no 
variance in the density of the COMB-ST output. 

As discussed in Section 5.1.2, for a given netS, any partition of the unit square 
into ani by j rectangular grid, such that P of the resulting i-j rectangles contain 
terminals of S (Figure 5.10), induces a lower bound f i~j!2 l on the minimum 
routing density of S. Recall that a simple version of this lower bound schema 
schema places i = y'ii horizontal lines so as to leave at most y'ii terminals 
between consecutive lines, and then places j = y'ii vertical lines using the same 
criterion. A comparison of the COMB_ST density versus the results of this 
computational lower bound are given in the rightmost three columns of Table 
5.1 (any fractional computational lower bound values are rounded up to the 
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net MST COMB.BERP 
size min ave max min ave max 

5 2 2.57 4 2 2.70 3 
10 2 3.82 6 3 3.71 4 
15 3 4.35 6 3 4.95 5 
20 4 4.98 8 4 4.98 5 
30 4 5.99 8 6 6.00 6 
50 5 7.11 10 7 7.79 8 

net PEEL COMB_ST COMB.BT / LB 
size min ave max min ave max min ave max 

5 2 2.00 2 2 2.00 2 1.00 1.05 2.00 
10 2 3.08 4 3 3.00 3 1.00 1.46 1.50 
15 3 3.93 5 3 3.00 3 1.00 1.44 1.50 
20 4 4.76 6 4 4.00 4 1.33 1.72 2.00 
30 5 5.88 7 5 5.00 5 1.67 1.76 2.50 
50 7 7.85 9 6 6.00 6 1.50 1.92 2.00 

Table 5.1 Tree density statistics for minimum spanning tree and 
for the three heuristic constructions. Averages are taken over 100 
instances for each net size. The rightmost columns give the ratio of 
COMB..ST density to the instance-wise computational lower bound 
of Section 5.1.2. 

nearest integer, since density takes on only integer values). This lower bound 
can be used in assessing algorithm quality on an instance-wise basis. 

It is still an open question whether there exists a polynomial-time algorithm 
that constructs a routing tree with both cost and density bounded by constants 
times optimal in the worst case. It is also unknown whether the MDT problem 
is NP-complete. The chain-peeling method, PEEL, holds some promise in the 
sense that there exist examples where it outperforms COMB and COMB_ST 
by a factor of 6( Jfi) (Figure 5.8); it is conjectured that PEEL can be shown to 
yield worst-case density that is within a small constant factor of optimal. Two 
closely related conjectures are: (i) that the minimum density of a spanning tree 
over net S is at least the minimum of the number of chains or the number of 
antichains needed to cover S; and (ii) the PEEL algorithm will use at most 
twice the minimum possible number of chainsfantichains that coverS. 
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net MST COMB_SERP 
size min ave max min ave max 

5 804 1658.39 2554 1010 2154.82 4233 
10 1781 2662.36 3462 2287 3682.77 4766 
15 2296 3224.41 4045 2663 4692.03 6465 
20 2766 3789.89 4558 3819 5265.67 6567 
30 4107 4651.00 5403 5524 6841.33 8529 
50 5190 5945.47 6668 7542 8708.12 10177 

net PEEL COMB-ST 
size min ave max min ave max 

5 758 1495.57 2481 1063 2260.09 3229 
10 1595 2776.06 4080 2307 3224.01 3974 
15 2562 3721.27 5071 3143 4216.83 4941 
20 2871 4720.69 6350 3692 4823.63 5649 
30 4873 6318.27 8085 5594 6570.46 7740 
50 7447 9298.73 11629 7070 8029.99 8945 

Table 5.2 Tree cost statistics. 

5.2 MULTI-WEIGHTED GRAPHS 

While previous chapters focused on optimizing a single design criterion (e.g., 
wirelength, signal skew, tree radius), secondary routing optimization goals 
might entail congestion avoidance, jog minimization, and circuit reliability. In 
Section 5.1.3 we observed that certain combinations of multiple objectives may 
be simultaneously optimized. Continuing in this direction, this section devel­
ops a general framework of multi-weighted graphs, where multiple competing 
objectives are optimized simultaneously under a smooth designer-controlled 
tradeoff. This framework enables effective routing in graph-based regimes, e.g., 
in building block design, in FPGAs, around obstacles, etc., and is also applica­
ble to many other areas of combinatorial optimization (e.g., traveling salesman, 
matching, and partitioning). This work was first described in Alexander and 
Robins [5, 6, 8]. 

A multi-weighted graph is a weighted graph where each edge weight is a vec­
tor rather than a scalar; that is, the graph has several distinct sets of edge 
weights, corresponding to the various objectives that we seek to optimize. For 
example, one set of edge weights may represent wirelengths, a second set of 
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edge weights can represent congestion information, and a third set of edge 
weights can model jog penalties, etc. Searches in such multi-weighted graphs 
are guided by a weighted average of the values corresponding to the differ­
ent competing criteria, relative to given designer-selected tradeoff parameters. 
Such a framework subsumes, e.g., "alpha-beta" routing, which has been used 
for jog minimization in circuit design [58, 132]. 

Let V = { v1, v2, · · ·, vn} be a set of vertices and E ~ V x V be a set of lEI = m 
edges. We define a k-weighted graph G = (V, E) to be a weighted graph with a 
vector-valued weight function w : E - lRk. In other words, associated with each 
edge eii E Eisa vectorof k real-valued weights Wij = (wij1,Wij2 1 ···,Wijk)· 
Note that ordinary weighted graphs are a special case of k-weighted graphs, 
with k = 1. 

Let l = ( d1, d2, · · ·, dk) be a vector of k real-valued tradeoff parameters, where 
0 $ di $ 1 for 0 $ i $ k, and l:::~=l dm = 1. From the k-weighted graph 
G = (V, E) and the tradeoff parameters J we construct a new weighted tradeoff 
graph G(d) = (V, E) with scalar weight function w;i = lwii = L:~=l dm ·Wijm· 
The tradeoff graph G is an ordinary weighted graph having the same topology 
as G, but whose single edge weights represent the weighted avera$es of the 
multi-weights of G, with respect to the tradeoff-parameters vector d. 

Let i1 = (1, 1, ... , 1) be the unit vector, and for a given vector z = (z1, z2, · · ·, Zk), 
let Zi = ( 0, 0, · · · , 0, Zi, 0, 0, · · · , 0) denote the vector obtained from the vector 
z by using Zi in the ith place, and the rest of the places being zero. Thus, iii 
denotes the vector consisting of zeros everywhere except the ith place, which 
will contain a "1". A k-weighted graph G naturally induces k distinct graphs, 
each with an identical topology but with edge weights restricted to only one of 
the k COmJ>Onents of the weight function w; these k induced graphs are denoted 
by Gm = G(iim) for 1 $ m $ k. 

We define the minimum spanning tree (MST) for a multi-weighted graph G 
with respect to the tradeoff parameters J as the ordinary MST over the tradeoff 
graph G(d) and denote it by MST(G(d)). Similarly, we can compute the MST 
on each of the k induced graphs Gm and we denote these MST(Gm)· For 
convenience we will use MST to denote the cost of the MST. 

As an example of an application of multi-weighted graphs, consider the fol­
lowing cost/performance tradeoff in circuit-board manufacturing. Let k = 2 
and construct a 2-weighted graph Gover n terminals on a circuit board, where 
Wijl represents the capacitance of the edge eij, and where Wij2 represents the 
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manufacturing cost of that edge (see Figure 5.13). Minimizing the total tree ca­
pacitance corresponds to improving circuit performance, but we would rather 
avoid incurring a huge manufacturing-cost increase in return for only a tiny 
performance gain. The goal is therefore to trade off these two objectives in a 
smooth manner. Clearly, MST(G((1, 0))) denotes the tree with the least pos­
sible capacitance, while MST(G((O, 1))) denotes the tree that is cheapest to 
manufacture. On the other hand, MST( G( ( ~, t))) represents the tree that si­
multaneously optimizes both performance and manufacturing cost, with both 
objectives being equally important (i.e., d1 = d2 = ~ ). 

(1,1) 

:J c ··IZ~l z 
(1.1) 

(a) (b) (c) (d) 

Figure 5.13 (a) A 2-weighted graph G, and MSTs over its two 
induced graphs: (b) MST(G((l, 0))) with cost 3 + 7 = 10, and (c) 
MST(G((O, 1))) with cost 7 + 3 = 10; (d) shows the MST over the 
tradeoff graph: MST{G((~, tm with cost 4 + 4 = 8. 

Given a k-weighted graph G and a parameter vector d, it would be of interest 
to bound MST(G(d)) both from above and below in terms of MST(Gl) through 
MST(Gk), J, and n. Below we derive the following upper and lower bounds for 
metric graphs (i.e., graphs with each weight set satisfying the triangle inequality 
Wijm + Wjkm ~ Wikm 1 1 ~ i,j, k ~ n, 1 ~ m ~ k): 

k k 

I: dm · MST(Gm) < MST(G{d)) < (n- 1) · L dm · MST(Gm) 
m=l m=l 

While the lower bound shown above holds in general, for arbitrary (non-metric) 
weighted graphs there exists no upper bound strictly in terms of the MST(G;)'s, 
J, and n. For metric graphs, the above lower bound is tight, while the upper 
bound can be improved; for example, we will show a tight upper bound of 
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MST(G(d)) ~ ~ · L:~=l di · MST(G;) for metric graphs over three nodes. This 
is significant since most nets in typical VLSI designs contain 3 or fewer pins 
(104, 162]. 

Theorem 5.2.1 For any k-weighted graph G, and tradeoff parameters J, 
l::~=t dm · MST(Gm) ~ MST(G(d)). 

Proof: Consider an arbitrary edge e;j in MST(G(ci)) with cost L:~=l dm ·Wijm· 

If every MST(Gm), 1 ~ m ~ k, also contains edge eij, then clearly the cost of 
edge eii in all k trees is 2:~=l Wijm, and the cost of this edge scaled by the 
tradeoff parameters lis L:~=l dm · Wijm, which is equal to the cost of this edge 
in MST(G(d)). Clearly, if all of the k MST(Gm)'s contained the same edges as 
MST(G(d}), then equality holds and the theorem is true. On the other hand, 
if MST(G(d)) contains an edge that is not in MST(Gm) for some 1 ~ m ~ k, 

~ ~ lc --
the cost of MST(G(d)) relative to l:m=l dm · MST(Gm) can only increase. 0 

Ideally we would like to bound the MST cost of arbitrary multi-weighted graphs 
in terms of only the costs of the MST(Gi)'s, d, and n. Unfortunately, this 
property does not hold in general. 

Theorem 5.2.2 For any k-weighted graph G over n vertices, and tradeoff pa­
rameters d, the tradeoff graph cost MST(G(d)) cannot be bounded from above 

by any function of only MST(Gi) 's, J, n, and k. 

Proof: Consider the 2-weighted complete graph G = (V, E) over n = 3 nodes, 
where k = 2. Fix dby setting 0 < d1 , d2 < 1. Let M be some large constant, 
V = {a, b, c}, and E = V x V, with Wabl = 0, Wbcl = 0, Wac! = M and let 
Wab2 = M, Wbc2 = 0, Wac2 = 0 (see Figure 5.14). Observe that MST(Gl) = 
MST(Ga) = 0, k = 2, n = 3, d1, and d2 are all constants. On the other 
hand, MST(G) = min(d1 · M, d2 • M), which can be made arbitrarily large for 
any fixed dby making M large enough. Since any expression in terms of only 
constants must also be constant, MST( G) can not be bounded from above by 
any function strictly in terms of MST(Gt), MST(Ga), k, n, and J. 0 

The negative result of Theorem 5.2.2 only applies to non-metric graphs; we 
now derive a general upper bound for metric graphs. 
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Figure 5.14 An example showing that MST(G(d)) cannot be 
bounded from above by any function strictly in terms of MST( G;) 's, 
J, n, and k: (a) The 2-weighted graph G; (b) MST(G((l, 0))) 
has cost 0; (c) MST(G((O, 1))) has cost 0. On the other hand, 
MST(G((t, t))) has cost "'f, which can be arbitrarily large. 
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Theorem 5.2.3 If G is any metric k-weighted graph G over n vertices, and 
tradeoff parameters J, then MST(G(d)) $ (n- 1) · L~=l dm · MST(Gm) 

Proof: Consider an arbitrary edge e;i in MST(G(d)) and its cost, L~=l dm · 
Wijk· Consider the m'th element in this summation, and the corresponding 
MST of Gm'. MST( Gm') spans vertices v; and Vj, but does not necessarily 
contain the edge e;i. However, a path must exist in MST( Gm') from v; to Vj, 

denoted minpathMST(Gm1)(i,j), with cost denoted by distMsT(Gm 1 )(i,j). By 
metricity, Wijm' $ distMST(Gm 1 )(i,j). Therefore: 

k 

cost of edge e;j in MST(G(d)) = Ldm · Wijm 

m=1 
k 

< Ldm · dist.MST(G"' 1 )(i,j) 
1=1 

k 

< Ldm · MST(G~) 
1=1 

Since e;i is an arbitrary edge of MST(G(d)), this holds for all n- 1 edges in _.__ __,.._ k --

MST(G(d)). Thus, MST(G(d))) $ (n- 1) · Lm=1 dm · MST(Gm). 0 
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(a) (b) (c) 

Figure 5.15 A general upper bound in the metric case: for 
MST(G(d)) in terms of MST(Gi)'s, d~ n, and k: (a) depicts 
MST{Gm); {b) depicts MST(G{d)); and (c) shows how the cost 
of the mth weight component of each fij can be bounded by 
dm 0 MST(Gm)o 

And finally, in the case of three-node metric graphs, the upper bound can be 
tightened somewhat: 

Theorem 5.2.4 For 2-weighted metric graphs with three nodes, and any scal­
ing vector l = ( d1 , d2), the following holds: 

Proof: Let G = (V, E) be a complete 3-node 2-weighted graph, with edge 
weights (a, x), (b, y), and (c, z)o Let d = (d1, d2) be an arbitrary constant 
vector, such that 0 ~ d1, d2 ~ 1, and d1 + d2 = 1 (see Figure 5ol6{i))o 

The lower bound d1 ° MST(Gl) + d2 ° MST(G2) ~ MST{G(d)) holds by The­
orem 5.201. Assume without loss of generality that a ~ b ~ c, which implies 
that MST(G1) = a+ b. The following three possibilities must be considered, 
corresponding to the cases (i) x, y ~ z, (ii) x, z ~ y, and (iii) y, z ~ x: 

Case (i): assume x, y ~ z, which implies that MST(G2) = x + y (see Figure 
5ol6(ii))o Thus: 
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(a.x) (a.x) 

(i) (ii) 

Figure 5.16 A tighter upper bound for 3-terminal nets; (a) a 3-
node 2-weighted graph, with edge weights (a, a:), (b, y), and (c, z), 
and (b) topology of the three spanning trees MST(G2) (inner), 
MST(Gl) (middle) and MST(G(d)) (outermost) corresponding to 
case (i). 

dt · a+ d2 · x < dt · c + d2 · z and 
dt . b + d2 . y < dt . c + d2 . z 

Now MST(G(d)) d1 ·a+ d2 · x + d1 · b + d2 · y 

dt ·(a+ b)+ d2 · (x + y) 
= d1 · MST(Gt) + d2 · MST(G2) 

and the theorem holds. 
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Case (ii): Assume x, z ~ y, which implies that MST(G2) = x + z. Let 
G = d1 · MST(Gl) + d2 · MST(G2), and consider the three possible subcases 
illustrated in Figure 5.17. 

• Subcase (ii)a: assume MST(G(d)) contains the "a/x" and "b/y" edges 
(See Figure 5.17(ii)a). Then: 

MST(G(d}) = dt ·(a+ b)+ d2 · (x + y) 
~ dt·(a+b)+d2·(x+x+z) 
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(a,x) (a,x) 

(ii)b (ii)c 

Figure 5.17 Topology of the three spanning trees MST(G2) (in­
ner), MST(Gl) (middle) and MST(G(d)) (outer) corresponding to 
case (ii)a, case (ii)b, and (ii)c. 

= d1 · MST(Gl) + d2 · MST(G2) + d2 · x 

= G+ d2. X 

• Subcase (ii)b: assume MST(G(d)) contains the "a/x" and "c/z" edges 
(See Figure 5.17{ii)b ). Then: 

MST(G(d)) = d1 ·(a+ c)+ d2 · (x + z) 

< d1·(a+a+b)+d2·(x+z) 

= d1 · MST{Gl) + d1 ·a+ d2 · MST(G2) 

= G+d1·a 

• Subcase (ii)c: assume MST(G(d)) contains the "b/y" and "c/z" edges 
(See Figure 5.17(ii)c). Then: 

MST(G(d)) = d1 · (b +c)+ d2 · (y + z) 

$ d1·(b+a+b)+d2·(x+z+z) 

= d1 · MST(G1) + d1 · b + d2 · MST(G2) + d2 · z 

= G + d1 · b + d2 · z 
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Now, since MST(G(d)) is a minimum spanning tree, it is the minimum of the 
bounds produced by subcases (ii)a, (ii)b, and (ii)c: 

< 

G + min( d2 · x, d 1 · a, d 1 · b + d2 · z) 
- 1 
G + 3 · (dz · x + d1 ·a+ d1 · b + d2 · z) 

4 -
-·G 
3 

Case (iii): Assume y, z;:; x, which implies that MST(G2) = y + z. Again, let 
G = d1 · MST(GI) + d2 • MST(G2 ), and consider the three possible subcases 
corresponding to whether MST(G(d)) contains (3a) "a/x" and "b/y", (3b) 
"a/x" and "c/z", or (3c) "b/y" and "c/z", which are handled using similar 
arguments to those in case (ii) above. 

The bound MST(G(d));:; ~ · [d1 · MST(G 1) + d2 · MST(G2 )] holds in each one 
of the three possible cases (i), (ii), and (iii). The example a= f, x = 2- f, b = 
c = y = z = 1 (where f is an arbitrarily small value) shows that this bound is 
tight. 0 

For 4-terminal nets the general upper bound of Theorem 5.2.3 implies that the 
constant in the upper bound is n- 1 = 3. However, an exhaustive computer 
search indicates that this constant is actually ~. We therefore conjecture that 
the upper bound can be tightened considerably. Tighter bounds on the com­
bined MST cost over multi-weighted graphs were recently developed in [105]. 

5.3 PRESCRIBED-WIDTH ROUTING 

This section addresses prescribed-width routing, which seeks a least-cost source­
destination path having a given minimum width; this problem arises in the 
routing of, e.g., circuit boards, or where thermal constraints, blockages, or con­
gestion induce a continuously costed routing region. We describe an approach 
which optimally solves prescribed-width routing using an efficient network flow 
formulation. This method departs from conventional shortest-path or graph 
search based methods, in that it not only handles regions with solid polygonal 
obstacles but also generalizes to arbitrary cost maps which may arise in model­
ing incomplete or uncertain knowledge of the routing region. The approach was 
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originally proposed to address path planning for a mobile agent in a general 
environment4 and was subsequently extended in (129, 130] to solve Plateau's 
classic problem on minimum surfaces. 

We focus on prescribed-width routing subject to two practical extensions: (i) 
the need to incorporate uncertainty into the formulation, and (ii) the require­
ment of an error-tolerant solution. These respectively yield the notion of a 
general cost function in a given region, along with the notion of a minimum 
width path. The algorithmic approach to prescribed-width routing in regions 
with arbitrary cost functions employs a general combinatorial approach involv­
ing network flows [67]. The crucial observation is that a minimum-cost path 
which connects two locations s and t corresponds to a minimum-cost cut-set 
which separates two other locations s' and t'. The prescribed-width path is 
obtained by applying efficient network flow algorithms to exploit this duality 
between connecting paths and separating sets. 

This approach is guaranteed to find optimal solutions to the minimum-cost 
prescribed-width routing formulation which we define below. The algorithm 
runs in polynomial time, and can be implemented in O(d2 ·N2 ·logN) time where 
N is the number of nodes in a discrete mesh representation of the region, and 
d is the prescribed-path width. Experimental results confirm that this method 
can find optimal prescribed-width paths where current combinatorial methods 
are prohibitively expensive, and where variational or gradient heuristics only 
return locally optimum solutions. 

5.3.1 Prescribed-Width Routing by Network Flows 

We begin by establishing notation and terminology. The development focuses 
on the connection-separation duality which motivates the network flow ap­
proach. 

4The robotics literature has addressed a problem related to prescribed-width routing, 
namely the motion planning problem for an autonomous mobile agent, which asks for a 
minimum-cost feasible path between a source and a destination in a. configuration space 
[39, 66, 161, 211). The cost of a given solution may depend on many factors, including 
distance traveled, time or energy expended, and hazard probabilities encountered along the 
path (see Canny [39), Latombe [161), or Mitchell [185) for a survey). 
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Problem Formulation 

We say that a subset of the plane is simply connected if it is homeomorphic to 
a disk (i.e., contains no holes); a subset of the plane is compact if it is closed 
and bounded. 

Definition 5.3.1 A region is a simply-connected, compact subset of iR2• 

Given a region R, we know by the Jordan curve theorem [68) that the boundary 
B of R partitions the plane into three mutually disjoint sets: B itself; the 
interior of R; and the exterior of R. We consider the problem of computing a 
path in R from sourceS to destination T, where SandT are disjoint connected 
subsets of the boundary B. A path is defined as follows: 

Definition 5.3.2 Given a region R with boundary B, a path between two dis­
joint connected subsets S C B and T C B is a non self-intersecting continuous 
curve P ~ R which connects some point s E S to some point t E T. 

Clearly the path P partitions R into three mutually disjoint sets: (i) the set 
of points of R lying strictly on the left side of P, which we denote by R1 (we 
assume that P is oriented in the direction from s toward t); (ii) the set of 
points of R lying on the right side of P, denoted by Rr; and (iii) points of P 
itself. This is illustrated in Figure 5.18. It is possible for at most one of R1 
and Rr to be empty, and this happens exactly when P contains a subset of B 
between S and T. R1 (resp. Rr) is empty if P 2 B, (resp. P 2 Br ), where 
B1 and Br respectively denote the subsets of the boundary B lying clockwise 
and counterclockwise between S and T, i.e., B, = (B n R,)- (S U T) and 
Br = ( B n Rr) - ( S U T). 

As noted above, our goal is to optimally solve prescribed-width routing when 
two practical constraints are incorporated: an arbitrary cost function defined 
over the region, and a minimum width path requirement. An arbitrary cost 
function corresponds to a general region, which is in many ways more realistic 
than a region consisting only of solid rectilinear obstacles, e.g. a continuous 
cost function models naturally constraints due to thermal and manufacturing 
considerations, etc. In this scenario, each point in the region will have an as­
sociated weight, or cost of traversal, corresponding to temperature. (In what 
follows, we use the terms "weight" and "cost" synonymously.) Multiple objec-, 
tives may also be captured via this formulation: if the path to the destination 
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s 

Figure 5.18 A path P between two points s E Sandt E T, where 
S and T are disjoint subsets of the boundary B of a region R. 

must be short, then the weight function will take into account, say, both tem­
perature level and the travel distance. Note that this formulation subsumes 
the binary cost function of a basic region with solid polygonal obstacles (cost 
= 1) and free space (cost= 0). 

Formally, given a region R, we define a weight function w : R - ~+ such 
that each point s E R has a corresponding positive weight w(s). The cost, or 
weight, of a path P ~ R is defined to be the integral of w over P. Optimal 
path planning entails minimizing this path integral. To find a minimum-cost 
path P ~ R between two points on the boundary of R, one might guess that 
Dijkstra's shortest path algorithm [67] provides a natural solution. However, 
application of Dijkstra's algorithm relies on an implicit assumption that the 
solution can be cast as an ideal path, i.e., a path of zero width. The relevance 
of this caveat becomes clear when we consider the second extension to the basic 
formulation- the requirement of a minimum-width path solution. 

We require the path to have a minimum width everywhere, e.g., corresponding 
to the width of a metal trace on a circuit board, or to the number of parallel 
wires in a bus. With this in mind, we define a prescribed-width path to be 
one which maintains a given minimum width. In general, the optimum path 
of width d1 cannot be obtained by simply widening or narrowing the optimum 
path of width d2. 

We now establish the relationship between a prescribed-width requirement and 
the concept of d-separation [112]. In the following, we use ball(x, d) to denote 
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the closed ball of diameter d centered at x, i.e., the set of all points at distance 
~ or less from x. 

Definition 5.3.3 Given two disjoint subsets S and T of the boundary of a 
region R, a set of points P ~ R is a width-d path between S and T if there exist 
s E S, t E T and a path P connecting s tot such that P 2 UxeP{ball(x, d)nR}, 

i.e., P contains the intersection of R with any disk of diameter d centered about 
a point of P. 

Just as the path P between S and T will partition R into R1, Rr, and P, 
the width-d path P ~ R between S and T also partitions R into three sets: 
(i) the set of points R1 = ((R- F) n R1) U B1, that is, the union of the left 
boundary B1 and all points in R that are to the left of P; (ii) the set of points 
Rr = ((R- F) n Rr) U Br; and (iii) the pointset P itself. We now obtain the 
definition of ad-separating path (see Figure 5.19): 

Definition 5.3.4 Given two disjoint subsets S and T of the boundary of a 
region R, a set of points P ~ R is a d-separating path between S and T if P is 
a width-d path such that any point of R1 is distance d or more away from any 
point of Rr. 
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Figure 5.19 A d-separating path P of width d between two points 
s E S and t E T of the boundary of a region R. Here R1 is separated 
from Rr by a distance of d. 
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A d-separating path P between S and T is a minimal d-separating path between 
S and T if no subset of P satisfies the preceding definition . Because all points 
in R have positive cost and because we are interested in minimum-cost paths, 
the following discussion refers only to minimal d-separating paths. While the 
treatment thus far assumed a continuous routing region, in VLSI the region 
is typically discretized relative to a given fixed grid. Thus, we will assume a 
fixed-grid representation R of the region R, where the cost of a path is defined 
to be the sum of the weights of the nodes covered by the path. Similarly, the 
notion of d-separation also naturally extends to the discrete grid: 

Definition 5.3.5 Given a region R, a discrete d-separating path P in the grid­
ded region R is the subset of the gridpoints of R that is contained in some 
d-separating path P in R (Figure 5.20). 
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Figure 5.20 A discretized representation R of a region R, and a 
discrete d-separating path P in k Note that P is the set of lattice 
points covered by the continuous d-separating path P in R. 

As before, a discrete d-separating path is minimal if no subset of it satisfies 
this definition. Analogously to the continuous case, a discrete d-separating 
path partitions the gridded region into two subsets, such that each gridpoint 
from one partition is a distance of at least d units away from any gridpoint in 
the other partition . We therefore have the following problem formulation: 
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Prescribed-Width Path (PWP) Problem: Given a weighted gridded region 
R with boundary B C R, a sourceS t;;;; B, a destination T t;;;; B, and a width d, 
find a discrete d-separating path P t;;;; R between S and T which has minimum 
cost. 

Although PWP is a very natural problem formulation, it cannot be efficiently 
solved by traditional methods. Recall that in an n-node edge-weighted graph 
G = (V, E) with identified source v0 E V, the kth phase of Dijkstra's algorithm, 
k = 1, ... , n, finds another node Vk for which the shortest pathlength dok in G is 
known; we know the optimum s-t pathlength when Vk = t. Although the PWP 
formulation above assumes a node-weighted G, we may easily obtain an edge­
weighted graph (for all v E V, add w~v) to the weight of each edge incident to 
v) to which we may apply Dijkstra's algorithm. However, this transformation 
is correct only for computing the optimal zero-width path: Dijkstra's algorithm 
relies on the fact that d;j can never be strictly less than mink ( d;k + dkj), but 
this may not hold when paths have non-zero width. 

In the special case where the cost function is binary, Dijkstra's algorithm is 
applicable via the following well-known technique [161]: augment the region 
by growing each obstacle (as well as the region boundary) isotropically by ~ 
units, then set the weight of each node in the free area to some constant, whil~ 
the weight of any node in an area covered by an obstacle is set to infinity. A 
minimum-cost prescribed-width path in such an augmented region would cor­
respond to the center P of the d-separating path P that we seek (Figure 5.19). 
Unfortunately, this simple transformation fails for arbitrary weight functions: a 
general region has no solid "obstacles" which can be "grown" in such a fashion. 

A Network Flow Based Approach 

To solve the prescribed-width path problem, we use ideas from network flows 
in continua [128].5 We first review several key concepts from the theory of 
network flows [96, 163]. A flow network I]= (N,A,s,t,c,c') is a directed graph 
with node set N; a set of directed arcs A ~ N x N; a distinguished source 
node s E N and a distinguished sink node t E N; an arc capacity function 
c : A ....... ~+ which specifies the capacity Cij ~ 0 of each arc a;i E A; and a node 
capacity function c' : N ....... ~+ which specifies the capacity c~ ~ 0 of each node 

5 Mitchell [186] also extends the ideas of flows in continua, but in a very different way. 
The results in [186) develop a theory of flows in polyhedral domains, with a view to such 
practical applications as motion planning of many agents through a congested region (i.e., 
"rapid deployment"), etc. 
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n; E N. To handle undirected graphs, we may replace each undirected arc a;j 

by two directed arcs a;j and Uji, each having capacity Cij. 

A flow in rJ assigns to each arc a;j a value </Jii with the constraint that 0 ~ </Jii ~ 
Cij. An arc a;i is called saturated if </J;j = Cij. We insist on flow conservation 
at every node except s and t, and we require that the flow through each node 
nj does not exceed the capacity of that node: 

A node ni is called saturated if L </Jii = cj. Since flow is conserved at every 
i 

node, the total amount of flow from the source must be equal to the total flow 
into the sink; we call this quantity the value ~ of the flow: 

A flow with the maximum possible value is called a maximum flow. An s-t cut 
in a network is a set ( N', A') of nodes N' ~ N and arcs A' ~ A such that 
every path from s to t uses at least one node of N' or at least one arc of A'. 
The capacity c(N', A') of a cut is the sum of the capacities of all nodes and 
arcs in the cut. A classical result of linear programming duality states that the 
maximum flow value is equal to the minimum cut capacity; this is the max-flow 
min-cut theorem (96]: 

Theorem 5.3.6 Given a network rJ = (N, A, s, t, c, c'), the value of a maxi­
mum s-t flow is equal to the minimum capacity of any s-t cut. Moreover, the 
nodes and arcs of any minimum s-t cut are a subset of the saturated nodes and 
saturated arcs in some maximum s-t flow. 

Recall that any s-t path will separate, i.e., cut, Rt from Rr. In particular, 
an inexpensive s-t path will correspond to an inexpensive cut between two 
appropriately chosen nodes s' and t'. Since a subset of the nodes and arcs 
saturated by the maximums' -t' flow will yield this s' -t' cut, it is natural for us 
to derive the desired s-t path via a maximum-flow computation in a network 
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where capacities correspond to travel costs in R . The remainder of this section 
describes how this is accomplished. 

To transform prescribed-width routing in a region R into an instance of network 
flow, we first superpose a mesh network topology over R, then assign node 
weights in this network according to the weighting function w : R -+ ~+. This 
yields a network that corresponds to the underlying PWP instance. 

We guarantee a minimum-width path solution by ensuring that any separating 
node set in the mesh topology satisfies the prescribed width-d requirement. 
Toward this end, we define the d-neighborhood of a node v in the mesh to be 
the set of all nodes at distance d or less units away from v, and we then modify 
the mesh topology by uniformly connecting each node to all other nodes in its 
d-neighborhood, where d is the prescribed path width. The resulting network 
is called a d-connected Mesh, and has the property that no nodeset of width 
less than d is a d-separating set. An illustration of this construction for d = 2 
is given in Figure 5.21. We note that the concept of ad-neighborhood was first 
investigated by Gomory and Hu [128]. 
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Figure 5.21 A node and its d-neighborhood (d = 2). 

Finally, we choose nodes s' and t' such that the minimum s'-t' cut is forced to 
lie along some path between s and t. We accomplish this by making s' and t' 
respectively into a source and a sink , then connecting each to a contiguous set 
of nodes corresponding to part of the boundary of the original region R. This 
completes the transformation; Figure 5.22 gives a high-level illustration of the 
construction. 
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Figure 5.22 A prescribed-width path problem instance trans­
formed into a network flow instance. 

Observe that up to this point, we have converted a prescribed-width path 
instance into an undirected, node-capacitated (node-weighted) flow instance. 
However, network flow algorithms typically assume that the input is an arc­
capacitated network (with infinite node capacities). Therefore, in order to use 
a standard maximum flow algorithm, we must transform an instance having 
both node and arc capacities into an equivalent arc-capacitated maximum flow 
instance. To accomplish this, we use the standard device of splitting each node 
v E N with weight w( v) into two unweighted nodes v' and v", then introducing 
a directed arc from v' to v" with capacity w( v ). Also, each arc ( u, v) E A of the 
original network is transformed into two infinite-capacity directed arcs ( u", v') 
and ( v", u'). Thus, each arc ( v', v") of the resulting directed network will, when 
saturated, contribute the original node weight w( v) to the minimum cut value. 
This transformation is illustrated in Figure 5.23 [115). The overall size of the 
network increases by only a constant factor via this last transformation, i.e., the 
final directed arc-capacitated network will have only 2INI nodes and INI + 2IAI 
arcs. Therefore, a maximum flow computation in the transformed network will 
be asymptotically as fast as in the original network. 
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Figure 5 .23 Transformation of a node- and arc-capacitated flow 
network to an arc-capacitated flow network: arc capacities Cij re­
main infinite, while original node capacities (node weights) ci in­
duce directed arc capacities in the transformed network. 
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Note that a maximum flow in the arc-capacitated transformed graph corre­
sponds to a minimum arc-cut in the transformed graph (by the max-flow min­
cut theorem) . This in turn corresponds to a minimum node-cut in the original 
graph since the transformation preserves minimal cutset costs. The "width" of 
the cut can be no less than d since the connection of each node to all nodes 
in its d-neighborhood guarantees that any separating node set will have the 
prescribed width. A formal summary of the algorithm, which we call d-PATH, 
is given in Figure 5.24. 

The max-flow min-cut theorem [96] and the existence of efficient algorithms for 
maximum flow (e.g., [67, 96]) together imply the following : 
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d-PATH: Finding a prescribed-width path in a weighted region 
Input: Region R, weight function w : R -+ !}?-t, width d, 

grid size g, source s and destination t on boundary of R 
Output: A discrete d-separating path P C R connecting s and t 
Create a d-connected mesh topology 71 of size g x g over R 

with all arc capacities set to oo 
Assign node weights (capacities) in 11 according to weight function w 
Set boundary node weights (capacities) to oo 
Transform node/arc-capacitated network 71 into arc-capacitated network 71' 
Add source node s' and sink node t' to 11' 
Connect s' to B1, the boundary nodes of R, clockwise from s to t 
Connect t' to Br, the boundary nodes of R, clockwise from t to s 
Set capacities of all arcs adjacent to s' or t' to oo 
Compute maximum s'-t' flow in 71' 
Output all nodes incident to arcs in the minimum s'-t' cut of 711 

Figure 5.24 The d-PATH Algorithm: Finding a prescribed-width 
path of minimum cost in an arbitrary weighted region, i.e., an op­
timal solution to the PWP problem. 

Theorem 5.3.7 The d-PATH method of Figure 5.24 outputs an optimal solu­
tion to the PWP problem in time polynomial in size of the mesh representation 
of the region R. 

A Test Implementation 

There are numerous algorithms for computing maximum flows in networks [3, 
96, 128], and we have used an existing implementation of Dinic's network flow 
algorithm [111]. Starting with an empty flow, the Dinic algorithm iteratively 
augments the flow in stages; the optimal flow solution is achieved when no 
flow augmentation is possible. Each stage starts with the existing flow and 
attempts to "push" as much flow as possible along shortest paths from the 
source to the sink in a residue network wherein each arc has capacity equal to 
the difference between its original capacity and its current flow value. After 
the current flow has been thus augmented, newly saturated arcs are removed 
and the process iterates. Since there can be at most INI- 1 such stages, each 
requiring time at most O(IAI · INI), the total time complexity of the Dinic 
algorithm is O(IAI·INI2). 
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If we have a total of INI nodes in the mesh graph, the time complexity of 
the Dinic algorithm is O(INI3). In practice, more efficient flow algorithms are 
available [3]. For example, by using the network flow algorithm of (110], we 
obtain the following: 

Theorem 5.3.8 For a given prescribed path width d, the d-PATH method 
solves the PWP problem in O(d2 · INI 2 ·log J.W) time, where INI is the number 
of nodes in the mesh representation of the region R. 

Proof: Each node in the mesh induced by the method has no more than d2 

adjacent arcs, so that !AI = O(d2 ·INI). The network flow algorithm of [110] 
operates within time O(IAI·INI·log( 1~1 12 )). The overall time complexity of 

d-PATHk is therefore O(d2 · INI 2 ·log J.W ). 0 

The time complexity of d-PATH is O(INI 2 ·log IN I) for any fixed d, and may 
be further reduced in cases where the region cost function may only take on 
values from a fixed, bounded range. In this case, we may apply the maximum 
flow algorithm of (3] to obtain an overall time complexity of O(jNj 2 ) for the 
d-PATH algorithm. 

5.3.2 Simulation Results 

The d-PATH implementation uses ANSI C code to transform an arbitrary 
prescribed-width routing instance into a maximum-flow instance; we then use 
the Fortran-77 Dinic code of [111] to compute the flow, and invoke Mathemat­
ica [248) to draw the resulting path. The implementation was tested on three 
classes of PWP instances: uniformly weighted regions, regions with polygonal 
obstacles, and smooth randomly-costed regions. For each of these input classes. 
the boundary of the region is a rectangle, and we look for a width-d path con­
necting s and t which are respectively in the top left and bottom right corners 
of the region. With each instance, we tested various values of d. 

A uniformly weighted region has all node weights equal to the same constant. In 
such an instance we expect the solution path to resemble a straight line between 
s and t, with the straightness of the line improving as the mesh resolution and 
the width d both increase. Experimental results confirm this behavior. 

The test regions with polygonal obstacles were populated by polygons of ran­
dom sizes, located throughout the region. Nodes in the clear areas are uniformly 
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assigned a small constant weight, while nodes inside the obstacles have infinite 
weight. In such a region, changing the prescribed width d may dramatically 
affect the optimum path topology with respect to the obstacles, since long 
detours may be required in order to avoid narrow passages between objects. 
This phenomenon was indeed confirmed by the experiments, as illustrated in 
Figure 5.25. 

Finally, the methodology was tested on randomly-casted regions, using a mesh 
resolution of 100 by 100 nodes and a range of d values. Each random region 
instance was generated as follows. All nodes in the mesh were initially assigned 
a weight of zero, except for a small random subset of the nodes which were each 
given a large random positive weight. Then, a weight redistribution step was 
iteratively used to increment each node's weight by a small random fraction 
of the total weight of its immediate neighbors until a smooth randomly-casted 
region was obtained. Figure 5.26 depicts typical d-PATH output for the PWP 
problem in a random region. Areas of greater weight are denoted by darker 
shades, and areas of smaller weight are depicted by lighter densities. The 
optimum width-d path is highlighted in black. Even though the Dinic algorithm 
is not ideal for a mesh topology, typical running times used to generate and 
solve all of the above classes of instances are on the order of at most a few 
minutes on a SUN SPARC IPC (15.7 MIPS). 

Chief among future research goals is improvement of the time complexity of the 
network flow computation; substantial improvement is likely since the mesh is 
a highly regular and symmetric network that admits a concise representation. 
Additional research might also address more general path planning issues, such 
as (i) use of hierarchical approaches as a heuristic speedup, and (ii) addressing 
the case where the endpoints of the path are not necessarily on the boundary 
of the region. 
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Figure 5.25 Prescribed-width paths in a region with polygonal ob­
stacles. Note that the topology of the solutions changes as the 
prescribed width dis increased . The solutions shown correspond to 
widths (a) d = 3, (b) d = 4, (c) d = 5, and (d) d = 6. 
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(a) (b) 

(c) (d) 

Figure 5.26 A randomly generated smooth region and its 
prescribed-width path solutions: (a) the region itself, and solutions 
corresponding to widths (b) d = 2, (c) d = 5, and (d) d = 8. 



A 
APPENDIX: SIGNAL DELAY 

ESTIMATORS 

In this Appendix, we first describe the basic theory behind several efficient de­
lay estimates, particularly the relationship between the moment representation 
and the system response in both the time-domain and the transform domain. 
We then give the formal basis of the Elmore and two-pole delay approximations. 
The second part of the Appendix describes a series of experimental investiga­
tions which characterize the accuracy and fidelity of the linear, Elmore, and 
two-pole delay approximations. 

A.l BASICS 

The relationships among the moment representation, the Laplace transform of 
the response, and the time-domain response are discussed, e.g., in (180]. The 
following provides a brief review. 

In a linear system, the transfer function H(s) = ~:·(aa/ gives the relationship 
between the output response Vout(s) and the input response Vin(s). The system 
transfer function H(s) is related to the impulse response h(t) by the Laplace 
transform 

The transfer function for any linear system can be expressed as a ratio of 
polynomials in s, that is to say, 

(A.l) 

239 
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where ]( is the DC (zero-frequency) gain. The ith moment of a linear system 
is defined to be 

(A.2) 

where H(i)(O) is the ith derivative of H(8) at 8 = 0. 

Assuming Vout(O) = 0, the Laplace transform of the derivative of the output 
voltage response for a unit step input is v~ut(t) {::} 8Vout(8) = 8 · :H(8) = 
H(8) {::} h(t). Therefore, the transfer function can also be written as 

H(8) = 100 e-stv~ut(t)dt 

Expanding e-at into a Maclaurin series, 

H(8) = 100 V~ut(t)dt- ;, 100 tv~ut(t)dt+ ;~ 100 t 2v~ut(t)dt- ;~ 100 t3v~ut(t)dt 
plus higher-order terms, and identifying the integral quantities as moments 
Mo, M1, M2, Ma etc. from Equation (A.2) yields 

Therefore, the moments can also be defined as 

M; = ~ foo t;v~ut(t)dt 
'· lo 

(A.3) 

(A.4) 

The moments of any system can be calculated using the definitions given in 
Equation (A.2) or in Equation (A.4), or by comparing with Equation (A.3). 
Applying the definition of moments in Equation (A.4) to H(8), we obtain 

H(8) = /{(1 + a18 + a282 + aa83 + ... )(1 + b18 + b282 + ba83 + b484 + .... )-1 

= /{(1 + a18 + a282 + aa83 + ... ) 

· (1- b18 + (b~- b2)82 - (ba + b~- 2b1b2)83 + ... ) 

= K[1 + 8(a1 - bl) + 82(a2- a1b1 + b~- b2) 

+83 (a3- a2b1 + a1(b~- b2)- b3- by+ 2b1b2) + ... ] 

which yields 
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/{ 

K(b1- a1) 

K(a2- a1b1 + bi- b2) 

f{ (b~ + b3- 2b1b2- a3 + a2b1- a1(bi- b2)) y (A.5) 

A.l.l Elmore Delay 

Elmore delay [87) is defined to be the first moment ( M1 ) of the system impulse 
response, i.e., the coefficient of s in the system transfer function H(s). This is 
a first-order approximation of the delay and corresponds to a single dominant 
pole approximation of the response. 

The ABCD parameters of a distributed RLCG transmission line are [81): 

( V1(s) ) ( cosh(Bh) 
h(s) = .i0 sinh(Bh) 

Zo sinh(Bh) 
cosh( Bh) (A.6) 

where B = J(r + sl)(g + sc); r, l, c, g are resistance, inductance, capacitance, 
conductance per unit length and h is the length of the line. 1 V1 ( s), h ( s) and 
V2(s), h(s) correspond to the voltage and current at, respectively, the input 

port and output port of the interconnect line. Zo = fjfiJ is the characteristic 

impedance of the distributed line, where R, L, C, G are the total resistance, 
inductance, capacitance and conductance of the distributed line of length h. 

A case of special interest in the literature is the open-ended line, for which load 
impedance ZL ....... oo, implying h(s) = 0. For this case, we may substitute the 
appropriate expressions for B and Zo in the above expression, and obtain the 
transfer function for the open-ended distributed RLC line (i.e., with g = 0) as: 

1 
H(s)- --------~=-------~==~--------­

- 1 + Rr s + ((R2~)2 + £2C)s2 + ((~;t + Rff )s3 + ... 
1 The line parasitics will depend on the three-dimensional process geometry. Techniques 

for parasitic extraction are beyond the scope of this discussion. 
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Applying the Elmore delay definition to the distributed RLC line yields 

RC 
TED=-. 

2 

To obtain response and delay estimates in an interconnect tree, Rubinstein et 
al. [205) considered themain path, i.e., the unique path in the tree, between 
the source so and the sink Sk of interest. Using the Elmore delay expression, 
[205) developed the following delay model for RC interconnect trees: 

TED = rdC, 0 + L re; C;; + Ci) 
'Vi EM P(so,sk) 

where Ci is the (sub )tree rooted at node i, ei is the unique parent edge of node i 
when the tree is rooted at the source, and M P(so, sk) is the main path between 
source and sink. We use rd to indicate the driver on-resistance at the source 
so; re; and Ce; respectively denote the lumped resistance and capacitance of 
the edge ei. This is the same formula given in Section 3.1.2. 

The above expression does not take into account the inductance of the inter­
connect line, which becomes more significant as feature sizes decrease, layout 
dimensions increase, and operating frequencies increase. Therefore, the delay 
estimation may not be accurate and the trees which minimize Elmore delay 
could be suboptimal. A paper by Kahng and Muddu [146) provides a more 
accurate methodology for response and delay calculations in general RLCG 
interconnects. 

A.1.2 Two-Pole Analysis 

As noted in Chapter 3, many routing tree techniques are motivated by the sim­
ple nature of the Elmore delay model; indeed, the second part of this Appendix 
demonstrates that Elmore delay is a reasonable representation of delay in prac­
tice. However, Elmore delay does not afford any measure of delay at a given 
threshold voltage [205). Methods which calculate more than one dominant pole 
from the moments of the system will lead to a second- or higher-order approx­
imation of the response, with improved delay estimates. Two-pole methods 
by Horowitz [127), Zhou et al. [258, 256) and Kahng and Muddu [145, 149) 
have been used for simulating interconnect trees. In such methods, the transfer 
function of the system is approximated using the two dominant poles. 
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The transfer function of the system considering two dominant poles is 

H( ) - kt k2 
8 ---+--

8- 8t 8- 82 
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where 8t, 82 are the poles and kt, k2 are the coefficients corresponding to the 
poles. Assuming a step input, v;n(t) = Vou(t) (where V0 is the magnitude of 
the step input voltage), Vin(8) =~,and the output voltage is given by 

H(8) 
Vout(8) = Vo--. 

s 

Applying partial fractions and taking the inverse Laplace transform: 

( kt k2) kt s t k2 s t) Vout(t) = Vo · -(-+- + -e 1 + -e 2 • 
8t 82 8t 82 

Using the boundary conditions Vout(t--+ oo) = Vo and v~ut(t = 0) = 0, one can 
solve for 8t,82,kt and k2, i.e., 

and the time-domain response is 

The delay at any given threshold (e.g., 50% or 90% of V0 ) can then be computed 
from the response. 

The poles 8t, s2 and the coefficients kt, k2 corresponding to the poles are func­
tions of only the first and second moments M1 , M2, i.e., by applying the defi­
nition of moments to the two-pole transfer function, we have 
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which yields 

2 
81,2 = 

Note that the poles of the system should be always in the left half of the 8-plane 
for stable systems. The voltage response can be calculated for both real and 
complex poles as follows: 

Case 1: Real Poles. 

From the above equations, 

and 

The voltage response for real poles is 

82 t 81 t Vout(t) = Vo(1- e'' - e•~ ) 
82- 81 81 - 82 

Case 2: Complex Poles. 

Since the poles are complex we can express them in the form 81 = -a:+ ;{3 and 
82 = -o: - ;{3. 

The voltage response is 

Vout(t) = Vo [1- 82 e''t - 81 e•~t] 
82- 81 81- 82 

= Vo [1- e-at ((1 + ~ )e3fJt + (1 - ~ )e-JfJt)] 
2 ;{3 ;{3 

= Vo [ 1 - e-at ( cos({3t) + ~ sin({3t))] 

Yo [ 1- .,fa>/ P' .-•• sin(,Bt + p)l 
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where p = tan- 1 (~) and 

Before discussing the relative merits of the Elmore and two-pole approxima­
tions, two issues should be noted. First, to obtain the response V 0 u 1(t) ac­
curately up to second order, both the first and second moments need to be 
calculated exactly. Recent two-pole methods such as [256, 258] calculate the 
first and second moments by replacing the off-path admittance by the sum of 
total subtree capacitance; this provides a correct approximation only up to the 
coefficient of s in the subtree admittance. Thus, such methods underestimate 
the subtree impedance, and the response obtained is actually a lower bound 
on the true response. Consequently, the associated delay estimate is an up­
per bound on the actual delay. To calculate the second moment exactly, the 
admittance of off-path subtrees should be correctly approximated up to the 
second degree, i.e., up to the coefficient of s2• The work of Kahng and Muddu 
[148, 149] achieves this, and hence affords exact expressions for the first and 
second moments for use in the two-pole methodology. 

Second, the accuracy of the moment-based approximation of the system re­
sponse will depend on the lumped segment models used for modeling the dis­
tributed interconnect lines. Traditionally, uniformly lumped segment models, 
e.g., ladders of L, T or II circuits, have been used to model interconnect lines. 
For such uniform representations, the moments are perfectly captured only 
as the number of segments used approaches infinity, which is computationally 
unreasonable. Nevertheless, to achieve an accurate estimate of the system re­
sponse, previous works on the two-pole approach (e.g., [205] or [256]) suggest 
using k uniform segments to model each interconnect line. For example, the 
work of [65] divides each line into 25J.Lm segments and then models each seg­
ment using a fixed L type RLC circuit. For large layout dimensions, the value 
of k can be quite large. In [145, 147], Kahng and Muddu develop non-uniform 
equivalent circuits which exactly match the first and second moments of a dis­
tributed RLC line, i.e., such circuits have a transfer function which exactly 
matches that of the distributed RLC line up to the coefficient of s2 . These 
circuits have only two or three segments, but give the same simulation accu­
racy as an infinite number of uniform segments. Beyond the improvements in 
accuracy, the computational savings are substantiaJ.2 

2 The idea of non-uniform equivalent circuits for interconnect modeling dates back to 
Raj put (199]. Gerzberg (108] surveyed different non-uniform models and proposed a model in 
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A.2 ACCURACY AND FIDELITY 

Ideally, a routing algorithm will compute and optimize signal delays according 
to a detailed circuit simulation such as SPICE. However, since SPICE run­
times are generally too costly for this purpose, simpler delay estimates are 
used. Among the available estimators of voltage response and signal delay 
in interconnect structures, the most useful one for efficient construction of 
"optimal-delay routing trees" has not been determined. This section centers 
on a fidelity property which is necessary for any delay estimator to be effective 
in routing tree design. Studies by Boese et al. [30, 32] of the relative accura­
cies and relative fidelities of the linear, distributed RC, distributed RLC, and 
SPICE-computed delay approximations show that the Elmore distributed RC 
delay approximation has surprisingly high fidelity with respect to SPICE3e2. 
This is the motivation for direct optimization of Elmore delay in Sections 3.3 
and 4.3. 

The traditional minimum-cost Steiner tree objective, beyond minimizing wiring 
area, corresponds to a lumped-capacitance model of delay (i.e., signal delay is 
proportional to total tree capacitance, which is proportional to tree cost). Sev­
eral methods discussed in Chapters 3 and 4 employ a linear model of delay: 
sink delays are proportional to source-sink path lengths, and the minimum­
radius criterion results. The traditional lumped-capacitance approximations 
becomes less accurate as technology scales, since smaller wire geometries im­
ply that resistive effects of the interconnect become more dominant ( cf. the 
discussion of "resistance ratio" vis-a-vis Table 3.1 in Chapter 3). Thus, dis­
tributed RC delay approximations such as Elmore delay are of interest. Be­
cause greater system speeds and layout areas can expose inductive effects on 
delay, two-pole distributed RLC delay approximations such as [256] are also of 
interest. Each of these approximations will be more accurate than the linear 
or lumped-capacitance approximations, while requiring less computation time 
than SPICE. A two-pole estimate will be strictly intermediate between Elmore 
delay (a single-pole estimate) and SPICE in terms of both computation time 
and quality of the estimate. 

which the RC values in each segment are in geometric progression; the "Uniform Distributed 
RC" (URC) line model in SPICE is derived from Gerzberg's model. The concept of non­
uniform equivalent circuits has also been employed in many other areas, e.g., O'Brien and 
Savarino [188] obtain a non-uniform II segment model for driving-point admittance at a gate 
output. Sakurai [206] has observed that the use of a non-uniform equivalent circuit is not 
always appropriate, since asymmetry implies that a correct response cannot be predicted 
when the line is driven bidirectionally. However, in the routing tree delay optimizations 
discussed here, source and sinks are fixed and the direction of signal flow is known. 
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A.2.1 Accuracy 

The traditional measure of a delay estimator is its accuracy, which may vary 
with the circuit technology and the specifics of a n~t (for instance, the number 
of terminals it contains, or the size and aspect ratio of its bounding box). 
Table A.1 indicates the accuracy of the linear, Elmore and two-Pole models in 
predicting critical-sink delay for each of the interconnect technologies described 
in Table 3.1. Note that "Two-Pole" indicates a particular corrected version 
[187] of the two-pole simulator developed in (256]; this simulator was used to 
obtain many of the experimental results in Chapter 3. For each of the three 
estimators, the table gives the average ratio of SPICE delay to the estimated 
delay, and also shows the consistency of this ratio in terms of its standard 
deviation. This "SPICE-centric" analysis of the data reflects the use of SPICE 
estimates as "actual delay" .3 Each entry in the table represents an average over 
100 random nets, with the source and critical sink chosen randomly. An MST 
routing was used so that the comparison would be for relatively good (but not 
necessarily optimal) routing solutions. This is because finding optimal-delay 
routing solutions according to SPICE is not computationally feasible. In all 
cases, the ratio of SPICE to Linear delay is the least consistent, having the 
largest standard deviation. On the other hand, the average ratios of SPICE 
to Elmore or Two-Pole delay also seem inaccurate (perhaps due to choice of 
delay threshold and other aspects of the experimental methodology [32]), and 
inconsistent (witness the high standard deviations). 

Interestingly, similar experiments in [32] show that for maximum sink delay, 
the ratio between SPICE and both the Two-Pole and Elmore estimators is 
very consistent, with standard deviations less than 4% for 6-sink nets in all 
technologies. Thus, precomputed correction factors could compensate for any 
inaccuracy in these estimators. However, Table A.l shows that the standard 
deviation of the accuracy ratio for critical-sink delay is consistently above 15%. 
This decreased consistency may indicate that the traditional net-dependent 
maximum delay objective is more "forgiving" of errors in the delay estimate 
than newer path-dependent, i.e., critical-sink, delay objectives. 

3 The SPICE delay estimation methodology [32] uses constant unit resistance and capac­
itance values for each interconnect technology. The root of the routing tree is driven by a 
resistor connected to the source, in order to separate driver attributes from the interconnect 
simulation. For the Two-Pole (i.e., corrected [256]) and SPICE (i.e., SPICE3e2) simulators, 
every interconnect segment is broken into uniform segments, each at most 1/lOOth the length 
of the layout dimension, connected in series. Sink loads are modeled by pure capacitive loads 
derived using minimum-size transistors. All delay estimates use the 50% rise time delay cri­
terion. For the Two-Pole and SPICE estimate, time steps of 0.005ns for the IC technologies 
and 0.05ns for the MCM technology were used. 
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Accuracy of Linear, Elmore and Two-Pole Delay Estimates 
for Critical-Sink Delay 

lSI =4 lSI =7 
Delay Ratio average std dev average std dev 

IC1 SPICE/Lineart - 28.4% - 32.7% 
SPICE/Elmore 0.72 13.5% 0.69 15.4% 
SPICE/2-Pole 1.27 13.5% 1.23 15.4% 
2-Pole/Elmore 0.568 0.45% 0.566 0.22% 

IC2 SPICE/Lineart - 33.9% - 38.8% 
SPICE/Elmore 0.74 16.1% 0.70 17.8% 
SPICE/2-Pole 1.30 15.9% 1.23 17.8% 
2-Pole/Elmore 0.572 0.92% 0.568 0.45% 

IC3 SPICE/Lineart - 34.9% - 40.3% 
SPICE/Elmore 0.78 16.0% 0.72 17.8% 
SPICE/2-Pole 1.36 15.7% 1.27 17.9% 
2-Pole/Elmore 0.574 1.39% 0.571 0.80% 

MCM SPICE/Lineart - 57.1% - 61.6% 
SPICE/Elmore 0.69 20.5% 0.65 25.1% 
SPICE/2-Pole 1.20 20.8% 1.14 25.2% 
2-Pole/Elmore 0.568 0.96% 0.566 0.44% 

Table A.l Accuracy of the Linear, Elmore and Two-Pole estimates 
for critical-sink delay. Standard deviations are reported as a percent 
of the average ratio. (t) Linear delay is defined as the source/sink 
pathlength; because this is a distance rather than a time, there is 
no SPICE/Linear "ratio". However, the percent standard deviation 
of this quotient is well-defined since it is independent of units. 

A.2.2 Fidelity 

The key observation in [30] is that precise accuracy or consistency are not 
really required of the delay estimates used to construct routing trees. In fact, 
the only practical requirement is that an estimator has a high degree of fidelity: 
an optimal or near-optimal solution according to the estimator should also 
be nearly optimal according to actual (SPICE-computed) delay. Boese et al. 
proposed a measure of fidelity vis-a-vis an exhaustive enumeration of all possible 
routing solutions: first rank all spanning tree topologies4 by the given delay 

4 By an early theorem of Cayley [92], there are 1Sjl5 1-2 distinct spanning tree topologies 
for any given netS. 
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model, then rank the topologies again by SPICE delay, and find the average over 
all topologies of the absolute value of the difference between the two rankings. 
This measure of fidelity corresponds to a standard rank-ordering technique used 
in the social sciences [15]. 

Linear Elmore 
VS SPICE VS SPICE 

Topologies lSI =4 lSI =5 lSI =4 lSI= 5 
IC1 Best 2.30 16.3 0.54 5.9 

5 Best 2.52 18.1 1.02 7.2 
All 2.43 17.0 0.92 8.0 

IC2 Best 2.52 19.4 0.58 6.4 
5 Best 2.66 20.2 0.99 7.2 
All 2.44 16.9 0.94 7.9 

IC3 Best 2.60 19.8 0.58 5.6 
5 Best 2.68 20.9 0.93 6.5 
All 2.43 16.5 0.93 7.7 

MCM Best 3.04 24.6 0.72 5.1 
5 Best 2.81 24.4 0.89 4.7 
All 2.33 15.7 0.89 7.1 

Table A.2 Average difference in rankings of topologies, in terms of 
50% delay to a given random critical sink in each net. The sample 
consists of 50 random nets of each cardinality, with 50% rise time 
delay criterion. The number of topologies considered for each net 
is 4(4 - 2) = 16 for lSI = 4, and 5< 5- 2) = 125 for lSI = 5. 

Table A.2 depicts this measure of fidelity for critical-sink delay and 4- and 5-
terminal signal nets, using the linear and Elmore delay estimators. The table 
shows the average rank difference for the topology which has lowest delay ac­
cording to the estimator; the average difference for the five topologies which 
have lowest delay according to the estimator; and the average difference in rank­
ing over all topologies. Note that with the linear delay model, ties are broken in 
favor of trees with lower total wirelength. Ties also occur for SPICE-computed 
delay because of the finite time step used, and are also broken according to total 
wirelength. Since the accuracy ratio between Elmore and Two-Pole is nearly 
constant, the fidelity values for Two-Pole are essentially identical to those for 
Elmore, and are omitted from the table. 



250 APPENDIX A 

It is clear that Elmore delay has very high fidelity for the critical-sink criterion. 5 

For example, with 5-terminal nets and IC3 technology parameters, optimal 
critical-sink topologies under Elmore delay average only 5.6 rank positions (out 
of 125) away from optimal according to SPICE. Kim, Owens and Irwin [157] 
have similarly established the fidelity of Elmore delay for circuit design: they 
plotted Elmore- versus SPICE-computed delays for a suite of 209 different 
place/route solutions of the same ripple-carry adder circuit, and also found a 
very high correlation between the two delay measures. The work of Vlach 
et al. [245] gives a theoretical motivation for this correlation, based on the 
concept of group delay. 

To see the relationship between SPICE rank suboptimality and actual percent­
age delay suboptimality, Table A.3 shows the average increase in SPICE delay 
from optimal for the 19 top-ranking topologies, i.e., the 19 lowest SPICE de­
lays for lSI = 5. For IC2, the average distance of 6.4 rank positions for the 
optimal critical sink Elmore delay topology implies an expected difference of 
approximately 1.6% in actual SPICE-computed delay; for IC3 the distance of 
5.6 rank positions implies approximately 0.7% SPICE delay suboptimality; and 
for MCM a difference of 5.1 rank positions implies 0.4% SPICE delay subopti­
mality. 

One can compose the data in Tables A.2 and A.3 to obtain an estimate of 
the suboptimality, in terms of SPICE-computed delay, of the Elmore-optimal 
solution. The more direct measure is to compare SPICE delays of the Elmore­
optimal and SPICE-optimal solutions, as shown in Table A.4 for both the 
critical-sink and maximum sink delay criteria. For critical sink delay and lSI= 
5, the average SPICE suboptimality of the Elmore-optimal topology is between 
3.1% for MCM and 9.9% for ICI. (These estimates are larger than would 
be inferred from Tables A.2 and A.3 due to the convexity of the relationship 
between SPICE rank and average SPICE delay.) With regard to the maximum 
delay criterion, the Elmore delay estimate affords essentially perfect results, in 
that the Elmore-optimal solution has SPICE delay suboptimality of between 
0.1% and 0.2%. 

5 Results in (32] show that Elmore delay has nearly perfect fidelity for the "easier" maxi­
mum sink delay criterion. 
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Rank IC1 IC2 IC3 MCM 
1 1.000 1.000 1.000 1.000 
2 1.006 1.003 1.002 1.001 
3 1.011 1.005 1.005 1.001 
4 1.014 1.006 1.006 1.002 
5 1.016 1.007 1.006 1.003 
6 1.017 1.007 1.006 1.004 
7 1.026 1.012 1.007 1.005 
8 1.040 1.021 1.014 1.005 
9 1.074 1.046 1.036 1.014 

10 1.160 1.138 1.120 1.047 
11 1.180 1.155 1.134 1.049 
12 1.224 1.207 1.182 1.058 
13 1.246 1.218 1.191 1.060 
14 1.288 1.254 1.225 1.064 
15 1.306 1.269 1.233 1.066 
16 1.327 1.309 1.283 1.103 
17 1.351 1.344 1.326 1.427 
18 1.380 1.376 1.354 1.431 
19 1.417 1.427 1.413 1.475 

125 8.04 10.36 10.81 18.34 

Table A.3 Average SPICE delay ratios for the top 19 topologies 
ranked according to SPICE for lSI = 5. Values are averaged over 
50 random nets and normalized to the average delay of the best 
topology. Also included is the average ratio for the worst topology 
(rank 125). 

Critical Sink Delay Maximum Delay 
Technology JSI =4 lSI= 5 lSI =4 lSI= 5 

IC1 2.9 9.9 0.9 0.1 
IC2 3.9 9.6 0.5 0.2 
IC3 3.8 7.8 1.3 0.2 

MCM 1.9 3.1 0.1 0.1 

Table A.4 Average SPICE suboptimality of the Elmore-optimal 
spanning tree topology (in percent). 
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