

ON OPTIMAL
INTERCONNECTIONS

FOR VLSI

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VLSI, COMPUTER ARCHITECTURE AND
DIGITAL SIGNAL PROCESSING

Consulting Editor
Jonathan Allen

Other books in the series:

MIXED-MODE SIMULATION AND ANALOG MULTILEVEL SIMULATION, Resve
Saleh, Shyh-Jou, A. Richard Newton
ISBN: 0-7923-9473-9

CAD FRAMEWORKS: Principles and Architectures, Pieter van der Wolf
ISBN: 0-7923-9501-8

PIPELINED ADAPTIVE DIGITAL FILTERS, Naresh R. Shanbhag, Keshab K. Parhi
ISBN: 0-7923-9463-1

TIMED BOOLEAN FUNCTIONS: A Unified Formalism for Exact Timing Analysis, William
K.C. Lam, Robert K. Brayton
ISBN: 0-7923-9454-2

AN ANALOG VLSI SYSTEM FOR STEREOSCIPIC VISION, Misha Mahowald
ISBN: 0-7923-944-5

ANALOG DEVICE-LEVEL LAYOUT AUTOMATION, John M. Cohn, David J. Garrod,
Rob A. Rutenbar, L. Richard Carley
ISBN: 0-7923-9431-3

VLSI DESIGN METHODOLOGffiS FOR DIGITAL SIGNAL PROCESSING
ARCHITECTURES, Magdy A. Bayoumi

ISBN: 0-7923-9428-3
CIRCUIT SYNTHESIS WITH VHDL, Roland Airiau, Jean-Michel Berge, Vincent Olive

ISBN: 0-7923-9429-1
ASYMPTOTIC WAVEFORM EVALUATION, Eli Chiprout, MichelS. Nakhla

ISBN: 0-7923-9413-5
WAVE PIPELINING: THEORY AND CMOS IMPLEMENTATION,

C. Thomas Gray, Wentai Liu, Ralph K. Cavin, III
ISBN: 0-7923-9398-8

CONNECTIONIST SPEECH RECOGNITION: A Hybrid Appoach, H. Bourlard, N. Morgan
ISBN: 0-7923-9396-1

BiCMOS TECHNOLOGY AND APPLICATIONS, SECOND EDITION, A.R. Alvarez
ISBN: 0-7923-9384-8

TECHNOLOGY CAD-COMPUTER SIMULATION OF IC PROCESSES AND DEVICES,
R. Dutton, Z. Yu
ISBN: 0-7923-9379

VHDL '92, THE NEW FEATURES OF THE VHDL HARDWARE DESCRIPTION
LANGUAGE, J. Berge, A. Fonkoua, S. Maginot, J. Rouillard
ISBN: 0-7923-9356-2

APPLICATION DRIVEN SYNTHESIS, F. Catthoor, L. Svenson
ISBN :0-7923-9355-4

ALGORITHMS FOR SYNTHESIS AND TESTING OF ASYNCHRONOUS CIRCUITS,
L. Lavagno, A. Sangiovanni-Vincentelli
ISBN: 0-7923-9364-3

HOT-CARRffiR RELIABILITY OF MOS VLSI CIRCUITS, Y. Leblebici, S. Kang
ISBN: 0-7923-9352-X

ON OPTIMAL
INTERCONNECTIONS

FOR VLSI

Andrew B. Kahng
University of California/Los Angeles

Gabriel Robins
University of Virginia

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Library of Congress Cataloging-in-Publication

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

ISBN 978-1-4419-5145-8 ISBN 978-1-4757-2363-2 (eBook)
DOI 10.1007/978-1-4757-2363-2

Copyright© 1995 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1995
Softcover reprint of the hardcover 1 st edition 1995

Fourth Printing 2001

This printing is a digital duplication of the original edition.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, mechanical, photo-copying, recording,
or otherwise, without the prior written permission of the publisher, Springer
Science+Business Media, LLC.

Printed on acid1ree paper.

To the field of VLSI CAD

CONTENTS

LIST OF FIGURES xi

LIST OF TABLES XV

1

2

PRELIMINARIES 1

1.1 Preface 1
1.2 The Domain of Discourse: Routing in VLSI Physical Design 2
1.3 Overview of the Book 8

1.3.1 Minimum Area: The Steiner Minimal Tree Problem 8
1.3.2 Minimum Delay: Toward Optimal-Delay Routing Trees 9

1.3.3 Minimum Skew: The Zero-Skew Clock Routing Problem 11
1.3.4 Multiple Objectives 12

1.4 Acknowledgments 13

AREA
2.1 Introduction
2.2 Performance Bounds for MST-Based Strategies

2.2.1 Counterexamples in Two Dimensions

2.2.2 Counterexamples in Higher Dimensions

2.3 Iterated 1-Steiner (llS)
2.3.1 Finding 1-Steiner Points Efficiently

2.3.2 The llS Performance Ratio
2.3.3 The Method of Zelikovsky

2.4 Enhancing llS Performance
2.4.1 A Batched Variant
2.4.2 A Perturbative Variant
2.4.3 Parallel Implementation

16
17
25
25
30
31

33
34
41
43
43
46
48

Contents Vlll

2.5 Practical Implementation Options for IlS 48
2.5.1 Incremental MST Updates in Batched 1-Steiner 48
2.5.2 MST Degree Bounds 50

2.6 On The Maximum MST Degree 54
2.7 Steiner Trees in Graphs 56
2.8 Experimental Results 59

3 DELAY 64
3.1 Preliminaries 65

3.1.1 Definitions 66
3.1.2 The Linear and Elmore Delay Approximations 67

3.2 Geometric Approaches to Delay Minimization 69
3.2.1 Early Cost-Radius Tradeoff's 70

The Bounded-Prim (BPRIM) Algorithm 72
Extensions of BPRIM 74

3.2.2 Shallow-Light Constructions 76
The BRBC Algorithm 79
Bounded-Radius Steiner Trees 81
Improvements in Geometry 83
Sink-Dependent Bounds and the Shallow-Light Result 84

The KRY Algorithm 86
3.2.3 The Prim-Dijkstra Tradeoff 88

The PD1 Tradeoff 88
The PD2 Tradeoff 90

3.2.4 Rectilinear Steiner Arborescences 91
3.2.5 Experimental Results and Discussion 96

Comparison of Cost-Radius Tradeoff's 96
Comparison of Signal Delays 98
Steiner Routing 100

3.3 Minimization of Actual Delay 103
3.3.1 Greedy Optimization of Elmore Delay 103
3.3.2 The Critical-Sink Routing Tree Problem 105

Geometric CSRT Heuristics 108
CSRT Heuristics That Optimize Elmore Delay Directly 113

3.3.3 Experimental Results 115
CS-Steiner Trees 115

ix ON OPTIMAL INTERCONNECTIONS FOR VLSI

Elmore Routing Trees 118
3.3.4 Optimal-Delay Routing Trees 120

Spanning Trees and BBORT 121
Toward Elmore Delay-Optimal Steiner Trees 123
Steiner Trees and BB-SORT-C 126

3.3.5 Remarks 127
3.4 New Directions 128

3.4.1 Wiresizing 129
3.4.2 Non-Tree Routing 134

4 SKEW 140
4.1 Preliminaries 141
4.2 An Early Matching-Based Approach 145

4.2.1 Pathlength-Balanced Trees 146
4.2.2 The Iterated Matching Approach 147
4.2.3 Extension to Building-Block Design 152
4.2.4 Empirical Tests 155

Results for Cell-Based Designs 155
Results for Building-Block Designs 159
Remarks 161

4.3 DME: Exact Zero Skew With Minimum Wirelength 163
4.3.1 Bottom-Up Phase: The Tree of Merging Segments 165
4.3.2 Top-Down Phase: Embedding of Nodes 169
4.3.3 Application of DME to Linear Delay 170

Calculating Edge Lengths 170
Optimality of DME for Linear Delay 172

4.3.4 Application to Elmore Delay 176
Calculating Edge Lengths in the Elmore Delay Model 176
Suboptimality of DME for Elmore Delay 178

4.3.5 Experimental Results and Discussion 179
Results for the Linear Delay Model 180
Results for the Elmore Delay Model 180
Remarks 183

4.4 Planar-Embeddable Trees 184
4.4.1 Single-Pass DME 187
4.4.2 The Planar-DME Algorithm 188

Contents X

4.4.3 Experimental Results and Discussion 192

4.5 Remarks 193

5 MULTIPLE OBJECTIVES 197

5.1 Minimum Density Trees 198

5.1.1 Heuristics for Minimum Density Trees 200

The COMB Construction 200

A Chain-Peeling Method 202

5.1.2 Performance Bounds 204

Density Bounds 204

Cost Bounds 208

5.1.3 Triple Optimization 210

Minimizing Skew, Density, and Total Wirelength 210

Minimizing Radius, Density, and Total Wirelength 212

5 .1.4 Experimental Results 213

5.2 Multi-Weighted Graphs 215

5.3 Prescribed-Width Routing 223

5.3.1 Prescribed-Width Routing by Network Flows 224

Problem Formulation 225

A Network Flow Based Approach 229

A Test Implementation 234

5.3.2 Simulation Results 235

A APPENDIX: SIGNAL DELAY ESTIMATORS 239

A.1 Basics 239

A.1.1 Elmore Delay 241

A.l.2 Two-Pole Analysis 242

A.2 Accuracy and Fidelity 246

A.2.1 Accuracy 247

A.2.2 Fidelity 248

REFERENCES 252

AUTHOR INDEX 275

TERM INDEX 281

LIST OF FIGURES

Chapter 1

1.1 The VLSI design process.

1.2 A channel intersection graph.

Chapter 2

2.1 An MST and an SMT for the same pointset.

3
5

18

2.2 Hanan's theorem. 19

2.3 Two types of SMTs. 20

2.4 Cost of the tour is equal to the bounding box perimeter. 22

2.5 Optimal overlap of MST edges within their bounding boxes. 26
2 6 E 1 "th cost(MST-Overlap) 3 27

· xamp e WI cost(SMT) = 2·

2 7 A bl MST h cost(MST-Overlap) · l t 3 28
. separa e w ere cost(SMT) IS c ose o 2·

2.8 The class C of greedy Steiner tree heuristics. 29

2.9 Example forcing a performance ratio arbitrarily close to ~· 31

2.10 The Iterated 1-Steiner (IlS) algorithm. 32

2.11 Execution of Iterated 1-Steiner. 32

2.12 Dirichlet cells with respect to directions 01 and 02.

2.13 Locally replacing each plus with an MST.

2.14 ns achieves ~ of the maximum possible savings.

2.15 The two possible Steiner tree topologies on 4 points.

2.16 Example where the IlS performance ratio is ~.

2.17 Example where the IlS performance ratio is ~r

2.18 Example where IlS outperforms MST-Overlap.

2.19 The construction of Berman et al..

2.20 Hatching computations within the 1-Steiner approach.

2.21 The Hatched 1-Steiner (B1S) algorithm.

2.22 The Perturbative Iterated k-Steiner (PikS) method.

XI

33
37
38

38

38
39
39
40
45
45
47

List of Figures xii

2.23 Dynamic MST maintenance. 49
2.24 Linear-time dynamic MST maintenance. 50
2.25 The diagonal partition of the plane. 51
2.26 A truncated cube induces a cuboctahedral space partition. 53
2.27 The KMB heuristic for the GSMT problem. 57
2.28 The Graph Iterated 1-Steiner algorithm. 58
2.29 Example of the output of BlS on 300 points. 60
2.30 Average performance and speed of BlS. 62

2.31 Average performance of PI2S, BlS, and OPT. 63

Chapter 3

3.1 Example with SPT cost O(INI) times the MST cost. 71
3.2 Increasing f may decrease tree cost but increase the radius. 71
3.3 The BPRIM algorithm. 73
3.4 BPRIM radius can be arbitrarily large. 74
3.5 BPRIM has unbounded cost performance ratio for any f. 75
3.6 A more general BPRIM template. 75
3.7 Unbounded cost performance ratio for H2 and H3. 76

3.8 Example for which BPRIM outperforms variants H2 and H3. 77

3.9 A spanning tree and its depth-first tour. 79

3.10 The BRBC algorithm. 80

3.11 The BRBC construction. 81
3.12 The KRY algorithm. 87
3.13 Sample executions for PD1 and PD2. 89
3.14 A minimum-cost rectilinear Steiner arborescence. 92
3.15 Illustration of the RSA heuristic of Rao et al. 93
3.16 Safe moves in the heuristic RSA construction. 94
3.17 A pathological instance for existing RSA heuristics. 95
3.18 The BPRIM and BRBC cost-radius tradeoffs. 97

3.19 Graph of radius ratio (:/J})) versus cost ratio (c::~~R: J) 99
3.20 Execution of PDl with c = 0.5. 101
3.21 The ERT Algorithm. 104
3.22 Example of the progressive SERT Steiner tree construction. 106
3.23 Effect of the CSRT formulation on the optimal solution. 109
3.24 The CSRT problem is NP-hard for any technology parameters. 110

xiii ON OPTIMAL INTERCONNECTIONS FOR VLSI

3.25 The CS-Steiner heuristic. 110
3.26 Removal of V and U configurations by GSR. 111
3.27 Pseudo-code for Global Slack Removal. 112
3.28 The SERT-C Algorithm. 114
3.29 SERT-C tree constructions for an 8-sink net. 116
3.30 Branch-and-Bound Optimal Routing Tree algorithm. 121
3.31 Maximal segment M and its four branches. 125
3.32 Counterexample to the separability property. 131
3.33 The Static Greedy Wiresizing algorithm. 132
3.34 The DWSERT algorithm. 133
3.35 Comparison of different wiresizing constructions. 135
3.36 Adding an edge to the MST reduces maximum sink delay. 136
3.37 The Low Delay Routing Graph algorithm. 137
3.38 Empirical results for the LDRG heuristic. 138

Chapter 4

4.1 Two bad clock trees. 147
4.2 An optimal geometric matching over four terminals. 148
4.3 CLOCK1: pathlength-balanced tree heuristic. 149
4.4 An example execution of CLOCK! on a set of 16 terminals. 150
4.5 H-fl.ipping to reduce pathlength skew. 151
4.6 An edge belongs to at most one shortest path in a matching. 153
4.7 CLOCK2: pathlength-balanced tree heuristic. 155
4.8 An example execution of CLOCK2. 156
4.9 Output of variant GR+E+H on the Primary2layout. 161
4.10 Further optimizations can use loci of balance points. 163
4.11 A TRR with core and radius as indicated. 166
4.12 Construction of a merging segment: two cases. 167
4.13 Example of a tree of merging segments. 167
4.14 Intersecting two TRRs after 45-degree rotation. 168
4.15 Construction of the tree of merging segments. 169
4.16 Procedure Find_ExacLPlacements. 170
4.17 Construction of the ZST by top-down embedding. 171
4.18 Optimal placement of siblings must satisfy distance constraint. 175
4.19 ZST which would be constructed by the DME algorithm. 178

List of Figures XIV

4.20 Output of KCR+DME on the Primary2 benchmark layout. 182
4.21 Edges of an optimal planar ZST may overlap. 185
4.22 Contrast between the H-tree and Zhu-Dai solutions. 186
4.23 Rules to choose embedding point and splitting line. 190
4.24 The Planar-DME Algorithm. 193
4.25 An example of Planar-DME execution. 194
4.26 Planar-DME and Zhu-Dai ZSTs for Primary2 benchmark. 196

Chapter 5

5.1 A four-terminal signal net. 199
5.2 A minimum density tree for a signal net. 200
5.3 Execution of the COMB construction. 201
5.4 Algorithm COMB for minimum-density spanning trees. 201

5.5 Execution of the COMB-ST Steiner tree construction. 202
5.6 Algorithm COMB_ST: for minimum-density Steiner trees. 202
5.7 Algorithm PEEL for low-density trees. 203
5.8 A class of worst-case examples for PEEL. 203
5.9 Expected minimum density of a net. 206
5.10 Computing a non-uniform lower bound on density. 206
5.11 Combining chains into a low-density tree. 208
5.12 Partitioning a net into strips/chains. 211
5.13 A 2-weighted graph and its induced graphs. 217
5.14 MST cost on multi-weighted graphs has no upper bound. 219
5.15 An upper bound for metric multi-weighted graphs.
5.16 A tighter upper bound for 3-terminal nets.
5.17 Topology of the three spanning trees.
5.18 A path P between two points s E Sandt E T.
5.19 A d-separating path P.
5.20 A discretized representation of a region.
5.21 A node and its d-neighborhood.
5.22 Transformation of PWP into network flow.
5.23 Transformation into an arc-capacitated flow network.
5.24 Finding a minimum cost prescribed-width path.
5.25 Prescribed-width paths among polygonal obstacles.
5.26 Prescribed-width path in a random smooth region.

220
221
222
226
227
228
231
232
233
234
237
238

LIST OF TABLES

Chapter 1

Chapter 2

Chapter 3

3.1 Interconnect technology parameters.
3.2 Equivalences of algorithm parameters.
3.3 Average source-sink delay in spanning constructions.
3.4 Average source-sink delay in Steiner constructions.
3.5 CS-Steiner results.
3.6 ERT, SERT and SERT-C results for 5-terminal nets.
3.7 ERT, SERT and SERT-C results for 9-terminal nets.
3.8 Near-optimality of ERT delay and tree cost.
3.9 Near-optimality of SERT-C delay and tree cost.
3.10 Performance comparisons for the DWSERT algorithm.

Chapter 4

4.1 Average clock tree cost for the various heuristics.
4.2 Average clock tree cost for the various heuristics (continued).
4.3 Average pathlength skew for the various heuristics.
4.4 Average pathlength skew for the various heuristics (continued).
4.5 Min, ave, and max tree cost for MMM and GR+E+H.
4.6 Min, ave, and max pathlength skew for MMM and GR+E+H.
4.7 Average tree costs and skews of KMB and CLOCK2 trees.
4.8 Delay and capacitance at each internal node.
4.9 Effect of DME on KCR and BB using linear delay.
4.10 Comparison of algorithms for the Elmore delay model.

XV

69
98

100
102
117

118

119

122
127
134

158
158
159
159
160
160
162
180
181
181

List of Tables

4.11 Comparison of Planar-DME with other algorithms.

Chapter 5

5.1 Tree density statistics.

5.2 Tree cost statistics.

Appendix A

xvi

195

214
215

A.l Accuracy of the Linear, Elmore and Two-Pole estimates. 248

A.2 Fidelity: average difference in rankings of topologies.

A.3 Average SPICE delay ratios for the top 19 topologies.

A.4 SPICE suboptimality of Elmore delay (percent).

249
251

251

ON OPTIMAL
INTERCONNECTIONS

FOR VLSI

1
PRELIMINARIES

1.1 PREFACE

This book discusses problems of "optimal interconnection" and describes effi­
cient algorithms for several basic formulations. Our domain of application is
the computer-aided design (CAD) of very large-scale integrated (VLSI) circuits,
wherein interconnection design is now one of the most actively studied areas.
However, much of what we develop can be applied to other domains ranging
from urban planning to the design of communication networks. Because most
formulations that we study are intractable, the term "optimal" in some sense
is a misnomer: rather, our focus is on the reasoned and principled development
of good heuristics.

This book is an outgrowth of the 1992 Ph.D. dissertation of Gabriel Robins
[203] at the UCLA Computer Science Department. As such, it retains a highly
personal perspective: it gives a retrospective of our own research, and it is col­
ored by our research interests and our background in discrete algorithms and
optimization. Our treatment also attempts to convey a sense of history - how
our field has co-evolved with an emerging "science ofVLSI design". With recent
years having seen VLSI designs become increasingly performance-dominated,
and thus interconnect-dominated, VLSI interconnections are ind.eed a rich do­
main for this historical view. In particular, our research on interconnection
design has spanned the field's rapid transition from purely geometric formula­
tions to more "physically-motivated" formulations.

Although we do not attempt an encyclopedic treatment, we do describe key
relevant works, and the discussion is largely self-contained. We envision that
this book will be useful as a reference for researchers and CAD algorithm de-

1

2 CHAPTER 1

velopers, or as reading for a seminar on VLSI CAD, heuristic algorithms, or
geometric optimization. Our own codes, which are cited throughout the book,
are freely available to interested parties; see our contact information below.

1.2 THE DOMAIN OF DISCOURSE: ROUTING IN VLSI

PHYSICAL DESIGN

Let us first outline the context for our particular subfield of VLSI CAD, namely,
the global routing phase of physical design. For more complete reviews of VLSI
design, and physical design in particular, the reader is referred to [168, 182, 194,
216].

The goal of VLSI CAD is to transform a high-level system description into a
set of mask geometries for fabrication. This is typically accomplished by the
following sequence of stages (see Figure 1.1).

• Design Specification: Starting from a real-world requirement (e.g. "se­
cure communication"), a high-level system description (e.g., the "DES"
data encryption standard) is developed which includes such parameters as
architecture, performance, area, power, cost and technology.

• Functional Design: The design is transformed into a behavioral specifi­
cation which captures the system 1/0 behavior using mathematical equa­
tions, timing diagrams, instruction sets and other devices.

• Logic Design: The functional design is represented in logical form, typ­
ically via Boolean expressions which may be subsequently optimized to
reduce the complexity of the system description.

• Structural Design: The logic design is represented as a circuit using
components from an available library of modules (e.g., NAND and NOR
gates, standard cells, or building-block macros); this may also involve tech­
nology mapping steps.

• Physical Design: The structural design is transformed into the mask
geometry for fabrication while adhering to underlying design rules for the
chosen technology.

The last stage in this process, physical design, contains our area of interest.
Physical design consists of two major steps. First, the placement step maps

Preliminaries

Requirements

Design
Specification

Functional Design

Logic Design

Structural Design

Physical Design

Fabrication

X

y

w

Secure
Communication

Data Encryption
Standard

c(m) = mP mod n

z=x+yw

(l]f!Jflfl]flJ
Figure 1.1 The VLSI design process.

3

functional units (modules) onto portions of a layout region, e.g., the surface of
a chip. Second, the routing step interconnects specified sets of terminals, i.e.,
the signal nets of the design, by wiring within routing regions that lie between
or over the functional units. (A signal net consists of a module output terminal

4 CHAPTER 1

together with the various module input terminals to which the output signal
must be delivered.)

Within the field of physical design, prevailing objectives have evolved over the
years in response to advances in VLSI technology. When system operating
frequencies were dominated by device switching speeds, placement and routing
optimizations centered on reduction of total routing area. Subsequent advances
in fabrication technology have increased packing densities, allowing more and
faster devices to be placed on larger ICs. Leading-edge fabrication technology
now goes well into submicron feature sizes, and circuit speeds are approaching
gigahertz frequencies. The reduced feature size implies more resistive inter­
connects, and increased system complexity implies larger layout regions. Thus,
minimization of interconnection delay has become the major concern in physical
design.

In light of this trend, performance-driven physical design has seen much re­
search activity within the past five years. Early works focused on performance­
driven placement, with the standard objective being the close placement of
modules belonging to timing-critical paths. However, performance-driven place­
ment algorithms will achieve their intended effect only when the associated
routing algorithms can realize the full potential of a high-quality placement.
Thus, the emphasis in routing objectives has shifted from area minimization
to delay minimization, and more recently to the control of interconnect delay
(e.g., by limiting skews or delays at particular terminals). This range of routing
objectives - area, delay, skew and beyond - defines the scope of this book.

Once an objective has been established, the actual routing of a given signal
net can be decomposed into global and detailed routing. The global routing
phase is a higher-level process during which the routing topologies of signal
nets are defined over the available routing regions. Then, the detailed routing
phase produces the actual geometries which realize the required connectivity
on the fabricated chip. Our work applies to the global routing phase of physical
design. 1

We assume that during the global routing phase, all module and terminal lo­
cations have already been fixed in the plane, so that we need only ensure

1This traditional taxonomy may seem ambiguous. We do not address standard "detailed
routing" topics such as switchbox routing or river routing. However, optimizing routing
area and performance requires a. concern with the specific geometry of the routing. In our
discussion, we will define a routing topology by specifying for each edge its length and widt.h,
and the location of its endpoints; our work addresses "global routing" in that. the particular
detailed embedding of an edge between its endpoints does not matter.

Preliminaries 5

electrical connectivity of the signal nets. With standard-cell or gate-array de­
sign methodologies, which have many small functional modules, global rout­
ing may be viewed as taking place in Manhattan geometry, i.e., distances be­
tween terminals are given by rectilinear distance. In other words, these design
methodologies possess sufficiently high porosity that the routing problem can
be formulated in the geometric plane. On the other hand, building-block design
methodologies involve larger functional blocks or macro cells. Since these are
often treated as obstacles, the routing problem is formulated with respect to a
weighted routing graph that represents the available routing area. A standard
model is the channel intersection graph (CIG), where each edge represents a
channel(i.e., the empty rectangular space between adjacent modules) and each
vertex corresponds to the intersection of two orthogonal channels [193] (see
Figure 1.2). The edge weights of the CIG can be used to model channel width
or congestion.

Figure 1.2 A channel intersection graph induced by a set of mod­
ules, and a routing tree that connects the highlighted terminals.
The source is shown by a hollow dot.

6 CHAPTER 1

A "true" global router processes multiple signal nets simultaneously using such
techniques as simulated annealing, multicommodity flow or mathematical pro­
gramming. However, many existing codes are sequential, or "net-at-a-time", in
that they establish a heuristic ordering of nets for routing and use ripup-and­
retry techniques when the routing fails. (There are also even more fine-grain
methods which route individual two-terminal subnets of signal nets.) With
either type of global router, the key operation is to compute a good routing
topology over a single signal net: hence, this book deals exclusively with meth­
ods that route a single net at a time.

As with previous routing constructions that have formed the basis of new global
routers (e.g., "Steiner min-max trees"), each method that we develop can be
transparently integrated into existing global routing approaches. In the math­
ematical programming approach, finding a routing solution for a given net
generates a new entering basis column within a primal-dual iteration. In the
sequential approach, routing solutions are found for the highest-priority nets
first, leaving lower-priority nets to encounter more congestion and blockage.
After each net is routed, the routing region costs (e.g., CIG edge weights) can
be updated before the next net is processed.

We conclude this section with a review of basic conventions and terminology
used throughout the book. We define a terminal to be a given location in the
layout region. A signal net S = {so, s1, s2, ... , Sn} is a set of n + 1 terminals,
with one terminal s0 E S a designated source and the remaining terminals sinks.
A routing solution is a set of wires that connects, i.e., spans, the terminals of a
net so that a signal generated at the source will be propagated to all the sinks.

The rectilinear wiring technology implies an underlying "Manhattan" geome­
try, where the distance between points a and b is d(a,b) = Jax -bxl +Jay- byJ,
i.e., the sum of the differences in their x- and y-coordinates. A segment is
an uninterrupted horizontal or vertical wire, and any connection between two
terminals will consist of one or more wire segments. VLSI and printed circuit
board technologies admit multiple routing layers, where a preferred-direction
routing methodology is used to facilitate design, manufacturability and reliabil­
ity. In other words, the available wiring layers are partitioned, with horizontal
wire segments preferentially routed on certain layers, and vertical wire seg­
ments routed on the other layers. A connection between two wire segments
from different layers is called a via.

Sometimes it is convenient to embed S in an underlying routing graph G =
(V, E), consisting of a set of vertices V and a set of edges E ~ V x V. Thus,
the set of terminals is someS~ V. A subgraph of G is a graph G' = (V', E')

Preliminaries 7

with V' ~VandE'~ E, and E' ~ V' x V'. A routing solution is a subgraph
of G that spans S. A path between two vertices x, y E V is a sequence of k
edges of the form (x,v;1),(v;11 v;J, ... ,(v;k,y), where (v;.,.,v;.,.+1) E E for all
1 $ m $ k - 1. A graph is connected if there exists a path between each pair
of vertices. A graph is a tree if it is connected but the removal of any edge
will disconnect it. Since a tree topology uses the fewest edges of any spanning
graph over the signal net, i.e., lSI- 1 = n edges, routing formulations typically
seek a tree topology.

A weighted graph has a non-negative real weight assigned to each of its edges.
The cost of a weighted graph is the sum of its edge weights. A shortest path in
G between two vertices x, y E V, denoted by minpatha(x, y), is a minimum­
cost path connecting x andy. In a tree T, minpathr(x, y) is simply the unique
path between x and y. For a weighted graph G we use dista(x, y) to denote
the cost of minpatha(x, y). The distance from the source to a given sink s; in
a tree is denoted as /; = distr (so, si).

Because a signal net is inherently oriented from its source to its sinks, we use
the special notation Ri to denote the cost of the shortest so-s; path in G, i.e.,
R; = dista (so, s;). We use R to denote the maximum R; value over all sinks
s;, and say that R is the radius of the signal net. The radius of a routing tree
T is r(T) = m!'J.X /;. Additional terminology will be developed throughout the

l<a<n
following chapt;rs, as needed. The reader is referred to, e.g., [67] or [92] for a
more rigorous development of basic graph-theoretic concepts.

As noted at the outset, most problems encountered in VLSI CAD, including
all of the interconnection formulations that we address, are intractable. While
we resort to heuristic solutions, a basic precept in our work is to prove that our
proposed heuristics perform well. For example, we often strive to show that
the heuristic solution cost in the worst case (or average case) is no more than a
constant factor from optimal. Since the practical relevance of a heuristic may
hinge on issues beyond asymptotic time and space complexity, we also augment
our performance bounds with empirical simulations using standard test cases
from the literature, e.g., those maintained by ACM SIGDA (currently available
by anonymous ftp to <mcnc.org>).

8 CHAPTER 1

1.3 OVERVIEW OF THE BOOK

Beyond its sketch of our application domain of VLSI routing, the present chap­
ter also surveys the main results contained in this book. Chapters 2, 3 and 4
are respectively entitled Area, Delay, and Skew. These form the core of the
book, and address three fundamental routing objectives: (i) minimization of
total wirelength, (ii) minimization of signal delay, and (iii) minimization of
skew among signal arrival times. Chapter 5 provides new frameworks for the
simultaneous optimization of multiple competing objectives; one such frame­
work allows various unifications of the techniques developed in the preceding
three chapters. The following subsections summarize the key developments of
each chapter.

1.3.1 Minimum Area: The Steiner Minimal Thee Problem

VLSI design rules dictate a minimum separation between wires, and therefore
the area occupied by the routing on a chip is roughly proportional to the total
wirelength of the routing. Added wirelength generally increases signal delay
and power consumption due to increased resistance and capacitance. Other
system cost measures, e.g., those based on fabrication cost, yield and reliability,
also increase with chip area. Thus, a fundamental objective is to minimize the
total wirelength required to connect a prescribed set of points in the plane, i.e.,
the terminals of a given signal net. The subject of Chapter 2 is the Steiner
minimal tree (SMT) problem, which for a given net S asks for a set S' of Steiner
points such that the total edgelength of the minimum spanning tree (MST)
over S U S' is minimized. The main insight is that the points of S' will serve
as internal nodes of the tree - "intermediate junction points" - which reduce
the interconnection cost. Without introducing such points, the minimum-cost
solution would simply be a minimum spanning tree overS.

The SMT problem is well-studied in combinatorial optimization and network
design; see the monographs (138] and (139]. The geometry of VLSI, which
usually allows only vertical and horizontal wiring directions, has motivated
studies of the rectilinear version of the problem, typically for the wirelength
estimation and global routing phases of layout design. With only a few highly
constrained exceptions, existing variants of the SMT problem are NP-complete.
Most SMT heuristics in the literature have analogies to classic minimum span­
ning tree constructions; this is in part due to the MST being a constant-factor
approximation to the SMT, with performance ratio ~ in the rectilinear metric.
However, the first result of Chapter 2 defines a general class of "MST-based"

Preliminaries 9

SMT heuristics, and shows that such methods cannot have performance ratio
better than that of the simple MST approximation.

The focus of Chapter 2 lies in developing the Iterated !-Steiner (llS) heuris­
tic, which iteratively finds optimal Steiner points that are added directly into
the set S. The llS construction thus avoids traditional analogies to minimum
spanning tree solutions, and in practice achieves good performance even on
inputs that are pathological for previous heuristics. For random 8-point planar
instances, llS solution costs are optimal for 90% of all instances, and average
within 0.25% of optimal overall. (The llS approach also applies to graph in­
stances and higher-dimensional geometric instances.) The chapter describes a
straightforward, efficient implementation of ns, along with such enhancements
as a parallel implementation that achieves near-linear speedup. Similarities
between llS and the recent method of Zelikovsky are also discussed.

Finally, Chapter 2 develops the result that any pointset in the Manhattan plane
has an MST with maximum degree 4, and that in three-dimensional Manhattan
space the maximum MST degree is 14 (the best previous bounds were 6 and 26,
respectively); this improves llS runtimes and is also of independent theoretical
interest. The chapter concludes with a discussion of the Steiner problem in
graphs.

1.3.2 Minimum Delay: Toward Optimal-Delay Routing Trees

Chapter 3 considers minimization of signal delay, which is synonymous with
"performance-driven" system design. As VLSI technology scales to smaller fea­
ture sizes and larger layout areas, signal delays become interconnect-dominated,
i.e., signal delay through interconnects increasingly dominates delay through
devices. In leading-edge technologies, minimum-delay wiring topologies can
differ substantially from minimum-area (SMT) wiring topologies.

The signal delay objective takes us from the unoriented pointset of the Steiner
minimal tree problem to an oriented collection of terminals in the layout plane.
Such a collection of terminals, which we call a signal net, has one identified
source terminal; the remaining terminals are sinks. Typically, the source ter­
minal is the output of a gate, and the sinks are the fanins for that. output signal
at inputs of other gates.

The discussion of Chapter 3 centers on four issues which have guided re­
cent progress in minimum-delay routing heuristics. First, there is the issue

10 CHAPTER 1

of technology-dependence in the routing construction, e.g., a simple analysis of
·Elmore delay in distributed RC trees shows that routing objectives should be
dependent on parameters of the prevailing interconnect technology. We thus
give a taxonomy of methods based on their tunability to specific technology
parameters and signal net criticalities, and demonstrate the advantages of such
tunable methods as the "Elmore routing tree" approach and the Prim-Dijkstra
tradeoff.

Second, the chapter compares "actual delay", versus geometric, routing objec­
tives. To a first-order approximation, signal delay from the source to a given
sink is proportional to the source-sink pathlength in the routing tree. This lin­
ear delay approximation suggests minimizing the maximum source-sink path­
length in the routing tree (i.e., a geometric "minimum-radius" criterion). On
the other hand, reducing the total cost of the routing tree will reduce its lumped
capacitance (i.e., a geometric "minimum-cost" criterion). We review how early
works employed geometric criteria to achieve tractability in both the design
and the analysis of routing heuristics. Of particular interest is a "bounded­
radius, bounded-cost" (BRBC) approach which seeks a minimum-cost routing
tree subject to a given bound on tree radius; we describe an algorithm which
simultaneously minimizes both tree cost and tree radius to within constant
factors of optimal. The BRBC approach and its analysis generalize to Steiner
routing and to routing in arbitrary weighted graphs that capture the variation
of routing costs over the layout region. The chapter gives details of recent meth­
ods, notably the "Elmore routing tree" variants which obtain reduced signal
delays by optimizing higher-order delay estimates directly.

Third, we discuss minimization of sink-dependent delay, as opposed to net­
dependent delay. Here, the key observation is that timing-driven placement and
routing are typically iterated with static timing estimation, so that critical-path
information is available during the routing tree construction. With this in mind,
the traditional objective of minimizing maximum sink delay is "net-dependent"
in that it ignores available path-dependent information. An approach which
optimizes delay to identified critical sinks, such as that given in 1993 by Boese,
Kahng and Robins [34], seems better matched to modern design methodologies.
More recent work of Boese et al. provides an interesting addendum to the
earlier SMT discussion: it generalizes Hanan's theorem to Elmore delay-optimal
Steiner trees and gives a new "peeling" decomposition for optimal Steiner trees.

Finally, Chapter 3 addresses the issue of demonstrable quality for minimum­
delay routing heuristics. Analogous to the empirical studies of the IlS SMT
heuristic in Chapter 2, we present empirical studies showing near-optimality of
a construction for minimum Elmore delay at prescribed critical sinks. The chap-

Preliminaries 11

ter concludes with a review of two other recent advances in performance-driven
interconnect design; these involve wiresizing and non-tree routing techniques.
An Appendix provides the basic theory behind several efficient delay estimates,
and also discusses measures of accuracy and fidelity for the linear, Elmore, and
two-pole delay approximations.

1.3.3 Minimum Skew: The Zero-Skew Clock Routing Problem

In a high-performance VLSI design, circuit speed is limited not only by the
signal propagation within and between circuit elements, but also by the skew
between signal arrival times. The form of skew most often studied is clock
skew, i.e., the difference between longest and shortest arrival times of a clock
signal at synchronizing elements of the circuit. Clock skew minimization, and
in particular the "zero-skew clock routing" problem, has become a central issue
in the design of leading-edge systems. However, it should be noted that skew
control for arbitrary signal nets is also of increasing importance, as are related
problems of prescribed-skew or bounded-skew routing.

Chapter 4 discusses clock tree construction to minimize skew and wirelength as
a combination of two processes: topology generation, and geometric embedding
of the topology. We present methods which accomplish each of these processes
using either the linear or Elmore delay model to guide the construction. Our
discussion focuses on so-called "exact zero skew" clock routing constructions.

The first part of Chapter 4 uses the linear delay model to motivate a pathlength­
balanced tree problem formulation, which seeks a minimum-cost tree with all
source-sink pathlengths of equal length. We describe a simple approach, based
on iterative geometric matching, for generating a clock tree topology while
simultaneously embedding it in the layout region.

The second part of the chapter describes the Deferred-Merge Embedding (DME)
algorithm, which embeds any prescribed connection topology (i.e., a binary tree
with the clock sinks at the leaves), so as to create a clock tree with zero skew
while minimizing total wirelength. The algorithm runs in linear time, and
always yields exact zero skew trees with respect to a given monotone delay
model such as linear or Elmore delay. The DME method achieves substantial
cost reductions over earlier constructions, and can be combined with previous
methods that concentrate on generation of the clock tree topology.

12 CHAPTER 1

Finally, the third part of the chapter unifies the topology generation and geo­
metric embedding of exact zero-skew clock trees. Under the linear delay model,
the two phases of the DME algorithm (bottom-up identification of loci for "zero­
skew balance points", followed by top-down selection of these balance points
within a minimum-delay zero-skew embedding) can be replaced by a single top­
down phase. Where DME would nominally require a prescribed topology as
input, this top-down construction allows the clock tree topology to be deter­
mined dynamically and flexibly while being optimally embedded at the same
time. A natural outgrowth is a DME-like algorithm for single-layer, exact
zero-skew clock routing; such a construction is increasingly sought to minimize
signal attenuation through vias, simplify buffering optimizations, and maximize
process-variation independence.

Chapter 4 also describes extensions of these clock routing methods to "min­
max" delay constraints and bounded-skew routing for general signal nets. The
chapter concludes by noting additional issues and problem formulations, includ­
ing optimal buffering hierarchies for minimum phase delay, and multiple-level
clock trees for multi-chip module packaging.

1.3.4 Multiple Objectives

The last chapter of the book, Chapter 5, discusses frameworks and techniques
which enable the simultaneous optimization of multiple competing ~bjectives.
Section 5.1 notes that beyond the nominal total wirelength, the grid-based
structure of VLSI routing resources provides additional information for deter­
mining the impact of a given routing solution on layout area. The discussion
explores a new minimum density objective for spanning and Steiner tree con­
structions, which seeks to balance the use of horizontal and vertical routing
resources. We describe two heuristic constructions for low-density spanning
trees whose outputs are within small constants of optimal with respect to both
tree cost and density. (The proof techniques suggest a constructive lower bound
scheme which affords tighter estimates of solution quality for a given problem
instance.) Of particular interest is that the minimum density objective can
be transparently combined with, e.g., minimum radius or minimum skew -
without affecting asymptotic solution quality with respect to these competing
objectives.

While previous chapters each focus on a fundamental routing criterion (i.e.,
area, delay or skew), many secondary objectives may exist, including con­
gestion avoidance, jog minimization, reliability, etc. Section 5.2 develops a

Preliminaries 13

general framework of multi-weighted graphs, in which multiple competing ob­
jectives can be simultaneously optimized. This is accomplished by assigning
to each edge a vector of weights, corresponding to the various optimization
criteria; graph searches are then guided by the weighted average of the edge
weights according to designer-specified tradeoff parameters. This framework is
applicable to graph-based routing regimes, such as building-block design and
field-programmable gate array layout.

Finally, we describe optimization within the framework of a continuously­
weighted layout region, which can be induced by the simultaneous consideration
of multiple criteria (e.g., reliability, thermal density, and routing congestion).
Within this framework, we consider a problem which has applications ranging
from circuit board routing to vehicle navigation, namely, finding a minimum­
cost prescribed-width path connecting a given source and destination [131].
Previous path routing approaches such as Dijkstra's algorithm implicitly as­
sume that the path is of zero width, but this assumption is usually not realistic
(e.g., consider routing a wide bus, or traces on a circuit board). Section 5.3
develops a network-flow based approach to prescribed-width routing in a con­
tinuously weighted region. Interestingly, the extension to higher dimensions
can solve a discrete version of Plateau's problem, which seeks a minimum-area
surface that spans a given closed curve [130].

1.4 ACKNOWLEDGMENTS

This book is the product of the research, suggestions, and technical assistance
of many individuals. We first thank the students who have been so dedicated to
the research that forms the basis of this book. In alphabetical order2 , they are:
Mike Alexander, Charles J. Alpert, Kenneth D. Boese, Dennis Jen-Hsin Huang,
Berni A. McCoy, Chung-Wen Albert Tsao and Tongtong Zhang. Any list of
specific debts must begin with Ken Boese, who developed much of the core
material in Chapters 3 and 4, including the characterization of delay-optimal
routing trees and the results concerning the DME clock routing algorithm. The
precise exposition in these sections is a product of Ken's efforts. Berni McCoy
dedicated well over a year to investigations of accuracy and fidelity of delay
estimates, near-optimality of the ERT construction, dynamic wiresizing and
non-tree routing- these results appear throughout Chapter 3. Mike Alexander
developed the graph generalization of IlS in Chapter 2, as well as the multi-

2 Since early 1991, listing names in alphabetical order has been the "official" policy on all
our publications as well.

14 CHAPTER 1

weighted graphs framework of Chapter 5. Chuck Alpert and Dennis Huang
pursued the Prim-Dijkstra tradeoff of Chapter 3 through its many incarna­
tions; Chuck also contributed to the study of minimum-density routing trees in
Section 5.1. Albert Tsao developed the Planar-DME algorithm which forms the
capstone of Chapter 4. Ken and Chuck, along with Lars Hagen, provided many
critical comments as this book took shape. Brett Coryell and Brian Robinson
provided invaluable help throughout the final stages of writing. Certainly, it is
our students who have always been our best critics, motivators, and colleagues.

The various research collaborations that form the basis of this book list a num­
ber of other coauthors: Tim Barrera, Ting-Hai Chao, Jim Cohoon, Jason Cong,
Todd Hodes, Joseph Ganley, Jeff Griffith, Jan-Ming Ho, Yu-Chin Hsu, T. C.
Hu, David Karger, Kwok-Shing Hardy Leung, Sally McKee, Sudhakar Muddu,
Jeff Salowe, Majid Sarrafzadeh, C. K. Wong and Dian Zhou. David Karger
suggested the second Prim-Dijkstra tradeoff of Chapter 3. Dian Zhou provided
us with the original "Two-Pole" simulator code, while Sudhakar Muddu pro­
vided invaluable amendments to this code and the totality of our knowledge
concerning delay analysis of interconnects. Jason Cong provided the geometric
analysis of H-flipping cited in Chapter 4, as well as the bounded-radius min­
imum routing tree problem formulation in Chapter 3. Since 1990, Jason and
his students have brought much energy to VLSI CAD at UCLA.

Others who have over the years provided advice, feedback, and/or use of their
codes include: Jim Aylor, Marshall Bern, Stephen Brown, John Canny, Pak
Chan, Kamal Chaudhary, Brett Coryell, Erik Cota-Robles, Wayne Wei-Ming
Dai, Milos Ercegovac, Eli Gafni, Basil Gordon, Sheila Greibach, Lars Hagen,
Rajeev Jain, Kevin Karplus, Samir Khuller, Ernest S. Kuh, C. L. Liu, John
Pfaltz, Sinai Robins, Brian Robinson, Jonathan Rose, Andy Schwab, Michael
Shur, Ashok Vittal and Neal Young. Eli Gafni provided the key pointer to
the shallow-light construction of Awerbuch, Baratz and Peleg that led to the
BRBC algorithm in Chapter 3.

The dedication of this book, "To the field of VLSI CAD", requires some elabo­
ration. As newcomers to the field, we are grateful for the inspiration provided by
the leading researchers who preceded us. Above all, Professor T. C. Hu of U.C.
San Diego has been the one constant source of guidance, wisdom and research
interaction in our academic careers. His influence predates our studies in VLSI
CAD, and goes much deeper; he has truly shaped us both. Professor Ernest
S. Kuh of U .C. Berkeley has profoundly influenced how the field of VLSI CAD
is defined today. There is an ethic of quiet excellence in "kuhsgroup" alumni:
Professors Chung-Kuan Cheng, Kwang-Ting (Tim) Cheng, Wayne Wei-Ming
Dai and Malgorzata Marek-Sadowska, as well as Professor Kuh himself, will

Preliminaries 1.5

long remain our models of collegiality, activity and impact. Professor C. L. Liu
of the University of Illinois has for several years given wholeheartedly of his
experience, advice, and support. He is a gifted teacher, scholar and raconteur,
and it is always a rare pleasure to be in his company. His former students -
Jason Cong and Martin Wong in particular - are of course models for all young
faculty in the field. Further inspirations have derived from Majid Sarrafzadeh
at Northwestern University; Daniel Gajski and his group at U.C. Irvine; Robert
Brayton at U.C. Berkeley; Thomas Lengauer at GMD Bonn; Ralph Otten at
Delft; and many others. The field that brings such individuals together truly
deserves to flourish.

On a more personal level, Gabriel Robins would like to thank Bill Wulf and
Anita Jones for all their support and sage advice, and for inspiring and nur­
turing so much of the shared vision that is unique to computer science at the
University of Virginia. Randy Pausch has been a continuing source of inspira­
tion, and a firm advocate of "the right culture". Together, the UVa Department
of Computer Science and its Chair Jim Ortega deserve much credit for their
support of young faculty development.

Our work was supported by National Science Foundation Young Investigator
Awards MIP-9257982 and MIP-9457412, by National Science Foundation Re­
search Initiation Award MIP-9110696, by Army Research Office grants DAAK-
70-92-K-0001 and DAAL-03-92-G-0050, by setup funds provided by the UCLA
School of Engineering and Applied Science during 1989-1991, by research initi­
ation funds provided by the University of Virginia School of Engineering during
1992-1993, and by an IBM Graduate Fellowship. Part of this book was written
during a Spring 1993 sabbatical that was hosted by Professor Ernest S. Kuh
and his research group. Finally, this book would not exist without the incredi­
ble patience of Carl Harris at Kluwer Academic Publishers - a debt that goes
beyond any possible statement of thanks.

Andrew B. Kahng
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90024-1596
<abk@cs.ucla.edu:>

Gabriel Robins
Department of Computer Science
University of Virginia
Charlottesville, VA 22903-2442
<robins@cs. virginia.edu>

2
AREA

Overview

To achieve a minimum-area layout, circuit interconnections should in general
be realized with minimum total wirelength. This chapter discusses the cor­
responding Steiner minimal tree (SMT) problem, which seeks to connect a
given set of points in the plane using the minimum amount of wiring. The
SMT problem is central to VLSI global routing and wiring estimation; it also
arises in such non-VLSI applications as communication network design. Re­
cent reference books treat the Steiner problem in detail [138, 139]. Thus, in
this chapter we will limit our discussion to the rectilinear SMT formulation,
which reflects the Manhattan geometry of VLSI layout. The discussion focuses
on an iterative construction, called Iterated 1-Steiner, that eschews traditional
analogies to minimum spanning tree solutions. Practical implementation issues
are discussed as well.

Our development will be as follows. We first demonstrate that many existing
SMT heuristics have a performance ratio of ~ in the Manhattan plane, which is
the same bound achieved by the minimum spanning tree (MST) construction.
We then develop the Iterated 1-Steiner (US) heuristic, an iterative construc­
tion that can achieve good performance even on inputs that are pathological for
previous methods. For uniform distributions of 8-point instances in the plane,
US obtains solution costs that are optimal for 90% of uniformly distributed
instances, and average within 0.25% of optimal overall. (The IlS approach
also applies to graph instances and higher-dimensional geometric instances.)
We present a straightforward implementation of IlS, along with a parallel im­
plementation that achieves near-linear speedup. Similarities between US and
the recent method of Zelikovsky are also discussed. Finally, we show that any

16

Area 17

pointset in the Manhattan plane has an MST with maximum degree 4, and
that in three-dimensional Manhattan space the maximum MST degree is 14
(the best previous bounds were 6 and 26, respectively): this result improves
IlS runtimes and is of independent theoretical interest. The chapter concludes
with a discussion of the Steiner problem in graphs.

2.1 INTRODUCTION

In the Manhattan, or Lt, plane, the distance between points (ax, ay) and (bx, by)
is given by lax- bxl +jay- byj. This is also known as rectilinear distance, and
reflects the cost of wiring between two points in a VLSI layout. 1 Given a set
P of n points in the plane, we often wish to connect these points using as
little wire as possible. This objective arises in minimum-area VLSI global rout­
ing (since minimum-spacing design rules imply a roughly linear relationship
between wirelength and wiring area), with P corresponding to the set of termi­
nals in a signal net. In succeeding chapters, each terminal in the signal net will
be distinguished as either a "source" or "sink", i.e., the interconnecting wire
will have an implicit orientation. However, in this chapter we cast our descrip­
tion in terms of generic points in the plane since a solution to the problem of
minimum-wirelength interconnection is inherently unoriented.

When all wires are "point-to-point", with no intermediate junctions other than
points of P, the optimum solution is a minimum spanning tree (MST) over
P, denoted as M ST(P). However, in VLSI routing it is possible to introduce
intermediate junctions - called Steiner points- in connecting the points of P.
The resulting planar Steiner minimal tree (SMT) problem is the subject of this
chapter.

The Steiner Minimal Tree (SMT) Problem: Given a set P of n points in
the plane, determine a set S of Steiner points such that the MST over PUS
has minimum cost.

An optimal solution to this problem is referred to as an SMT over P, or
SMT(P). Here, an edge in a tree T has cost equal to the distance between its
endpoints; the cost ofT itself is the sum of its edge costs, and is denoted by
cost(T).

1 More generally, the distance between two points in the Lp plane is given by

\f(Lix)P + (Liy)P. Thus, p = 1, p = 2 and p = oo define the Manhattan, Euclidean and
Chebyshev norms.

18 CHAPTER 2

We will focus on the rectilinear Steiner minimal tree problem, where every edge
is embedded in the plane using a path of one or more alternating horizontal and
vertical segments between its endpoints. Where no confusion is possible, we
will overload the two concepts of a graph edge and a "physical" (i.e., embedded
in the plane) edge, for example, when we speak of "connecting a point to an
edge". Implicitly, we also assume that only a shortest-possible path of segments
can be used to embed a given edge. Thus, an edge is embedded using some
monotone, or "staircase", path between its endpoints. The bounding box of
a pointset P denotes the minimum rectangle which contains all points of P
and whose sides are oriented parallel to the coordinate axes. If an edge is
embedded with minimum cost, its routing will remain within the bounding box
of its endpoints.

Beyond its application to VLSI global routing, the rectilinear SMT problem
also arises in wirelength estimation for circuit layout. Figure 2.1 shows an
MST and an SMT for the same pointset in the Manhattan plane.

Figure 2.1 An MST (left) and an SMT (right) for a pointset with
n = 4; hollow dots represent the original pointset P, and solid dots
represent the set S of Steiner points.

Three results have greatly influenced the progress of research on the SMT
problem. First, consider the set H(P) of intersection points that are obtained
when horizontal and vertical gridlines are drawn through every point of P.
Hanan [116] showed that there exists an SMT whose Steiner points S are all
chosen from H(P), which we call the Steiner candidate set or the set of Hanan
points (see Figure 2.2). 2 Snyder [222] has generalized Hanan's result to all
higher-dimensional Manhattan geometries, and extensions to certain allowed­
angle geometries [210] seem possible.

2 Hanan's proof relies on a perturbative argument: if an edge of an SMT does not lie in
the "Hanan grid", it can always be shifted onto a gridline without increasing the tree cost.
Similar arguments have been applied by Chiang et a!. (53] to prove a Hanan-like result for
the SMT problem in a planar layout with varying routing region costs.

Area

--'\

l
I v--

Figure 2.2 Hanan's theorem: there exists an SMT with all Steiner
points chosen from the intersection points of horizontal and vertical
lines drawn through points of P.

19

Second, Garey and Johnson showed that despite this restriction on the set of
possible Steiner points, the rectilinear SMT problem is NP-complete (106) . Only
a very few special cases have been solved optimally, e.g., a linear-time solution
exists when all points of P lie on the boundary of a rectangle [2, 59), and
pseudopolynomial algorithms have been proposed for the case when there are a
limited number of rectilinear obstacles in the plane [52, 184). Many heuristics
have been proposed for the general problem, as surveyed in (138, 139).

In attacking intractable problems, a standard goal is to achieve a "provably
good" heuristic, typically in the sense of having constant-factor performance
ratio. 3 In light of the intractability of the rectilinear SMT problem, a third
fundamental result is that of Hwang [135), who showed that the MST over
P is a fairly good approximation to the SMT, with performance ratio ~, i.e.,
cost(M ST(P)) 3 (· l l cost(SMT(P)) 2) f · p B
cost(SMT(P)) :S 2 or eqmva ent y, cost(MST(P)) ?: 3 or any pomtset . e-
cause the proof of this result is not trivial, and because several details will later
prove useful, we first digress to sketch Hwang's proof.

Theorem 2.1.1 (Hwang, 1976) For any pointset P, ~:;:(~~~~~Jl ?: ~.

Proof: The proof is by induction on the size of P. Given pointset P =
{po, Pl, ... , Pn-d, let M be the set of all SMTs over P . Partition M into M 1

and M 2 , where an SMT m is in M 1 exactly when all nodes of P have degree

3 The performance ratio of a heuristic is its asymptotic worst-case error from optimal. Let
I denote an instance of a problem with optimal solution cost opt(!), and let H(I) denote the
cost of the solution returned by heuristic H on instance I. Then, the performance ratio of H
. I. _IjJJJ_
IS lmn-oo SUPJ!J=n opt[l)•

20 CHAPTER 2

= 1 in m (i.e., each node of Pis a leaf in m; such a topology has been termed
a full Steiner topology in the literature). All other SMTs are in M 2 • For any
m E M2, we can split m into two components at a node having degree ;::=: 2,
and apply the induction hypothesis to each component separately. Thus, we
need only prove the theorem for m E M1. For any SMT m E M1, observe that
all Steiner points of m lie on a straight line, except perhaps the last one (see
Figure 2.3).

Po

Po
ho P,

h, v,
v, h, 51

s, p, v. h. p2
ho

v. 52

p2 52

5n·2 Pn·2 5n·3 pn·3
Vn·1 Yn·2

Pn·1
h •. ,

Sn-1 pn·2
v. v,.,

h. Pn
S n·1

Pn

P •. ,

TYPE 1 TYPE 2

Figure 2.3 Two types of SMTs in M1: Type 1 has all of its Steiner
points on a line; Type 2 has all but one of its Steiner points on a
line.

The strategy is to split m at some Steiner point s9 to yield subtrees m1 and
m2, with m1 being the induced sub graph over {po, P1, ... , Pq-1} plus the edge
(sq-bsq)· Consider the subtree m1 . Assume that we can construct a path X 1

which visits the points {po, P1, ... , Pq- 1} in sorted order such that

2 3 · cost(Xl) $ cost(ml).

Referring to Figure 2.3, this is equivalent to the existence of some k, 1 $ k $
n - 2, for which

Area 21

(2.1)

Note that the terms on the left side of (2.1) represent the "zig-zag" path X1
from p0 to Pk-1, and that this path is one possible spanning tree. Then, we are
done since i · cost(MST(m2)) $ cost(m2) by the induction hypothesis.

If there is no such Steiner point Bq, then (2.1) does not hold for any k, 1 $ k $
n - 2. Manipulating the sum of the resulting inequalities yields

k k

Ev; $ Eh; + (h~c- ho), 1 $ k $ n- 2. (2.2)
i=l i=l

Next, observe that we can assume the existence of some index j such that h; >
hi-2 for all i = 2, ... ,j-1, and hi $ hi-2· In other words, the splitting point of
the tree can be chosen so that some initial portion of m1 looks like a "Christmas
tree", as shown in Figure 2.4. This special structure of the h; values, 0 $ i $ j-
1, allows us to set q = j and connect (Pi,Pi-2•Pi-4 1 ••• ,po, ... ,Pi-3,Pi-1•Pi)
in that order to yield a new tour t. The cost of tour t is equal to the perimeter
R of the bounding box of points Po, ... , Pi.

A path over Po, ... , Pi can be obtained by deleting an edge of the tour t. Observe
that the four edges Pi-4--+ Pi-2--+ Pi --+ Pi-1 --+ Pi-3 in t have total cost given
by

j-4 i-3
R- hj-3- hi-4- I: v;- I: v;,

i=l i=1

where the negative terms represent the cost of the sub tour from Pi _3 to Po and
from Po to Pi-4· By (2.2), this quantity is

> R- hi-3- hj-4- (~ h; + (hi-3- ho)) - (~ h; + (hi-4- ho))
•=1 •=1

i=O

= R · (1- 40)

where 0 = (l:{~; h;)/ R. If we delete from t the edge with maximum cost
among these four edges, we obtain a path (i.e., a spanning tree) X2 over the

22 CHAPTER 2

bounding box
P0 h0 with length A

P, :x.-:1 I 1 I

h2
I

: h2 : I

s2 I ,P2 5 2 •
I

I I
I , I

I I . I
I .

I I . I
I .

I I
I . I

I h ... I hi·• I
I ~ pj·4 I :pj·4
I h .. 3 v1.3 I hj-3 v1.3

P.-3
I

Pi·3: I I
I I I I

I 51·2 pl·2 si·2 I pj·2
I I

pl·1 Sl·1 I Pi., Sl·1 I _
I I - I p ·------ •PI I

(a) (b)

Figure 2.4 Cost of tour t in (a) is equal to the perimeter R of the
bounding box of points Po, ... , Pi in (b).

points po, ..• ,pj with

1 3
cost(X2) $ R- 4R · (1- 40) = R · (4 + 0).

The cost of the SMT m1 is

j -1 j j -3 1 1
L h; + L Vi = L h; + - R = R. (- + 0)
i=O i=l i=O 2 2

and we conclude that

0

Hwang's result implies that any approach which improves upon an initial MST
solution will have performance ratio at most ~. Thus, many SMT heuristics
in the literature resemble, or are otherwise based on, classic MST construc­
tions [138]; we call such heuristics MST-based strategies. A leading example
is the SMT heuristic of Ho, Vijayan and Wong [124], which exploits flexibil­
ity in the embedding of each rectilinear MST edge. Recall that in general, an
edge between two points in the Manhattan plane will have many minimum-cost

Area 23

embeddings; in the example of Figure 2.1, simply choosing the alternate "L"
embedding for two of the three MST edges will cause the maximum possible
overlapping of edges, and result in the SMT solution when redundant (over­
lapped) wire is removed. The authors of [124] give a linear-time construction
for the optimal rectilinear Steiner tree derivable from a given MST in the sense
of being embedded within the union of the bounding boxes of the MST edges.
A second MST-based strategy due to Hasan, Vijayan and Wong [118] also be­
gins with an MST topology, and iteratively adds as many "locally independent"
Steiner points as possible to reduce the tree cost.

For over 15 years after the publication of [135], the fundamental open problem
was to find a heuristic with (worst-case) performance ratio strictly less than ~·
A complementary research goal has been to find new heuristics with improved
average-case performance. In practice, most SMT heuristics - including MST­
based strategies -exhibit very similar performance. The standard experimental
test bed consists of uniformly random instances (n points chosen from a uniform
distribution in the unit square), which reflects observed terminal distributions
from actual VLSI placements.4 On such instances, heuristic Steiner tree costs
usually average between 7% and 9% less than corresponding MST costs [138].
Results of Steele [229] establish the theOI"etical result that the average ratio
~::! ~~~) for random pointsets should converge to a constant as n grows large.5

Bern and de Carvalho [27] estimated the average value of the ratio ~::!(~~~
to be 0.88; more recently, Salowe [208] has given an empirical estimate of this
average ratio for n up to 100, using the most efficient known branch-and-bound
code currently available (see Section 2.8 below).

4 At least, such has been the claim throughout the literature. Optimization of abutments,
vertical cell alignments, use of feedthroughs, and other criteria in module placement can result
in highly non-random terminal placements for signal nets. For example, vertical alignment
and feedthrough reduction will often cause the bounding box of a signal net to have very
large aspect ratio, that is to say, ratio of the length of the larger side to the length of the
smaller side.

5 A more oblique motivation for MST-based approaches follows from asymptotic behavior
of subadditive functionals of uniformly random pointsets in the Manhattan plane [23, 229].
Such functionals include the MST cost and the SMT cost, as well as the optimal traveling
salesman tour cost, the optimal matching cost, etc. Steele [229] has shown that optimal
solutions to random n-point instances of these problems have expected cost {3,fii, where
the constant {3 depends on both the problem, e.g., SMT versus MST, and the underlying
Lp norm. Thus, we expect the average MST cost and the average SMT cost to differ by a
constant factor. (Of course, this result does not apply on an instance-by-instance basis.) The
theory of subadditive functionals can have other implications for VLSI CAD optimizations.
For example, VLSI layout engines (e.g., TimberWolfSC (212]) often use the semiperimeter
of the pointset bounding box as a fast estimate of SMT cost. The fo growth rate implies
that this estimate can be refined by using a 9(fo) scaling factor at negligible added CPU
cost; see the related work of Chung and Graham [55].

24 CHAPTER 2

The worst-case bound of Hwang and the average-case analysis of Steele [229]
together provide strong motivation for MST-based strategies. However, there
are also reasons to consider alternative approaches. Section 2.2 shows that the
~ bound is tight for any of a wide range of MST-based strategies [152), i.e.,
the MST for such instances is essentially unimprovable. This suggests that
MST-based heuristics are unlikely to achieve performance ratio strictly less
than ~- Section 2.3 introduces the focal point of the chapter - the Iterated
!-Steiner (118) heuristic - whose simple iterative scheme avoids analogies to
classic minimum spanning tree solutions. Key developments in the remainder
of the chapter include:

• Bounds on the llS performance ratio. In particular, the method has per­
formance ratio ~ on all "difficult" instances for which ~~:! ~~) = ~- We
also contrast llS with the recent breakthrough due to Zelikovsky, Berman
and coauthors, namely, a heuristic which achieves performance ratio of 181

for the rectilinear SMT problem.

• Performance enhancements to the llS method, including a "hatched" strat­
egy, a perturbative strategy, and a randomization scheme for tie-breaking.
Together, these bring 118 performance to within a small fraction of one
percent from optimal for typical instance sizes. Tradeoffs between runtime
and solution quality are also discussed.

• Practical implementation options, notably an implementation of the hatched
11S variant that runs within time 0(n3) per "round". This method is based
on a dynamic M8T update scheme, and is simple to code and considerably
faster than the naive implementation. We also describe a parallel ver­
sion of 118 that achieves near-linear speedup within a prototypical CAD
environment consisting of a network of workstations.

• Extensions of IlS and its variants to three dimensions, and to the "two
and one-half dimensional" case where all the terminals lie on L parallel
planes (see, e.g., three-dimensional VLSI technology [117] and the design
of buildings [221]).

• Two new bounds on the maximum node degree in an MST under the
Manhattan metric. Specifically: (i) every two-dimensional pointset has an
MST with maximum degree at most 4; and (ii) every three-dimensional
pointset has an MST with maximum degree at most 14. (The best previous
bounds were 6 and 26, respectively.) These degree bounds allow speedup
of the ns implementation and are of independent interest in algorithmic
complexity theory.

Area 25

• Extension of the IlS construction to arbitrary weighted graphs. A general
methodology for increasing the power of heuristics using iterated construc­
tions is described.

• Experimental results for IlS and its variants.

2.2 PERFORMANCE BOUNDS FOR MST-BASED

STRATEGIES

Recall that the~ performance ratio of the MST approximation motivates MST­
based strategies, which improve an initial MST solution by various means. Such
strategies are enhanced by the efficiency of the MST computation for a planar
pointset [114].

Trivially, an MST-based Steiner tree construction which has cost no greater
than the MST cost will have performance ratio at most i· However, the actual
performance ratio for many MST-based methods has remained unknown. It was
believed that certain methods might be provably better than the simple MST
approximation (cf. [137]), with the algorithms of Bern [26] and Ho, Vijayan
and Wong (124] being two examples.

This section shows that any Steiner tree heuristic in a general class C of greedy
MST-based methods will have worst-case performance ratio arbitrarily close to
~.i.e., the same bound as the MST approximation. By "arbitrarily close", we
mean performance ratio > ~ - t 'Vt > 0. Performance ratios are thus resolved
for a number of heuristics in the literature with previously unknown worst-case
behavior [26, 27, 103, 118, 124, 137, 202, 215] since they can be shown to belong
to the class C. The enabling construction also serves to correct a claim in [124]
and establish a lower bound of ~ on performance ratios for some heuristics not
inC, e.g., (137, 164, 220]. Analogous constructions in d-dimensional Manhattan
geometry, with d > 2, show that all of these heuristics have performance ratio
at least 2di 1 [97].

2.2.1 Counterexamples in Two Dimensions

We now describe two prototypical heuristic approaches, called MST-Overlap
and Kruskal-Steiner, for the rectilinear SMT problem. We then unify these
approaches under a general template for greedy MST-based strategies. The

26 CHAPTER 2

first approach starts with a rectilinear MST and obtains a Steiner tree by over­
lapping edge embeddings. In other words, a monotone (staircase) embedding is
selected for each MST edge, and then all superposed segments are merged since
they represent redundant wiring. Alternatively, we may view this approach as
starting with an MST over P, then determining the minimum-cost Steiner tree
which lies completely within the union of bounding boxes of the MST edges.
Figure 2.5 illustrates this strategy with respect to the original example from
Figure 2.1. The resulting Steiner tree has cost no greater than the MST cost.

Figure 2.5 Optimal overlap of MST edges within their bounding
boxes.

This approach has been studied by Hasan, Vijayan and Wong (118], Ho, Vi­
jayan and Wong (124], Hwang (136], Lee, Bose and Hwang (164], and Lee and
Sechen (165]. Ho, Vijayan and Wong (124] have given the best-possible result,
namely, a linear-time algorithm for computing the optimal rectilinear Steiner
tree derivable in this fashion. Their construction requires that no two edge
bounding boxes of the MST intersect or overlap, unless the edges are adjacent.
This property of the MST, known as separability, enables a dynamic program­
ming approach. A method which determines a separable MST for any pointset
P was given in [124].

Since the algorithm of Ho et al. dominates all other algorithms that share
the goal of overlapping MST edges within the union of bounding boxes, we will
treat it synonymously with the general approach itself, and use the name MST­
Overlap to indicate either. It was conjectured that the worst-case performance
ratio of MST-Overlap is less than ~-

The example of Figure 2.6 results in an MST-Overlap performance ratio of
exactly ~ - However, this example is not separable. If the starting MST is
separable, a performance ratio arbitrarily close to ~ can still result : Figure
2.7(a) shows a separable MST over a pointset for which the strict equality

~~;!W~~~ = ~ holds; Figure 2. 7(b) shows a perturbation of the point loca-

Area

()

,.. ,..

(

- - -
(((

,..._ 1"0. - -
(

F . E l 'th t · t }'t co&t(MST-Overlap) 3
1gure 2.6 xamp e Wl s nc equa 1 y cost(SMT) = 2·

On the left is the SMT (cost = 20); any Steiner tree derived from
the MST on the right will have cost = 30.

27

tions such that the MST is unique; and Figure 2.7(c) shows the optimal SMT
topology for both cases.

The second type of MST-based strategy builds a Steiner tree by emulating the
standard MST constructions of Kruskal [160) or Prim [196), with connections to
new Steiner points replacing direct connections between points in P. Examples
of this strategy are discussed by Bern [26), Bern and Carvalho [27), Richards
[202] and Servit [215]. Typically, embeddings of edges within their bounding
boxes are left unresolved for as long as possible during the construction, which
allows the greatest possible freedom to make a short connection.

We call this second MST-based strategy the Kruskal-Steiner approach. It
begins with a spanning forest of n isolated components {the points of P) and
repeatedly connects the closest pair of components in the spanning forest until
only one component (the Steiner tree) remains. Richards [202) characterizes
Kruskal-Steiner and its variants as a "folklore" heuristic; the method has also
been ascribed to Thomborson by Bern [26, 27). Variants in the literature differ
primarily in their definition of the "closest pair" of components, but the ex­
ample of Figure 2. 7(b) is immune to these distinctions. When any variant of
Kruskal-Steiner is executed on the pointset of Figure 2. 7(b), it will start at the
leftmost points and alternate among the middle, top, and bottom rows, adding
a single horizontal to each in turn. The E perturbations in Figure 2. 7(b) force
the alternation between rows and make the construction completely determin­
istic. The resulting Steiner tree will consist entirely of horizontal segments
except at the left end, and its cost will be arbitrarily close to ~ times optimal.
Hwang et al. [138) note that for random instances, results are similar to those

28 CHAPTER 2

2 2 2
·o--o

2 2
(a) ' ' ·C>----0

·o---ro
2+E 2+4£ 2+7£ 2+(k-I)E

1+2kE
·o--o

2 2+3£ 2+6£ 2+9£ 2+(k+l)£
'' ·o---o (b)

·~

(c)

(d)

• A bl MST r h' h co5t(MST-Over/ap) . b' F1gure 2.7 separa e tor w lC cod(SMT) 1s ar 1-

trarily close to ~· For n points, any Steiner tree derivable from
the separable MSTs of (a) or (b) will have cost 2(n- 2), while the
SMT (c) has cost ~(n -1), yielding a performance ratio arbitrarily
close to ~ for large enough n. In (d), we show the best possible
rectilinear Steiner tree that can be produced by any MST-Overlap
or Kruskal-Steiner heuristic.

obtained by MST-Overlap variants, i.e., the heuristic Steiner tree cost averages
between 7% and 9% less than the MST cost.

An algorithm is said to be greedy if it constructs a solution by iteratively se­
lecting the best among all remaining alternatives [189]. We now show that
MST-Overlap and Kruskal-Steiner belong to a general class of greedy Steiner
tree heuristics, and that the example of Figure 2.7 is pathological for this class.
Recall that without loss of generality, a Steiner tree may be viewed as a min­
imum spanning tree over P U S, where P is the input pointset and S is the
added set of Steiner points. We are interested in Steiner tree constructions

Area 29

which induce new edges, and possibly new Steiner points, using the following
types of connections within an existing spanning forest over PUS: (i) point­

point connections between two points of P; (ii) point-edge connections between
a point of P and an edge, which may induce up to one new Steiner point in
S; and (iii) edge-edge connections between two edges, which may induce up to
two new Steiner points in S. To reflect the fact that the embedding of a given
edge is indeterminate, we say that any edge between two points of P U S can
be arbitrarily re-embedded by the Steiner tree construction. Figure 2.8 defines
a class of Steiner tree heuristics which we call C. All heuristics H E C are
greedy with respect to Manhattan edge length.

Heuristic H E C: greedy Steiner tree construction
Input: n isolated components (points of P)
Output: Rectilinear Steiner tree over P
While there is more than one connected component Do

Select a connection type r E { point-point, point-edge, edge-edge }
Connect the closest pair of components greedily with respect to r

Optionally at any time, Re-embed any edge within its bounding box
Optionally at any time, Remove redundant (overlapped) edge segments

Output the single remaining component

Figure 2.8 The class C of greedy Steiner tree heuristics.

Theorem 2.2.1 Every H E C has performance ratio arbitrarily close to ~.

Proof: The MST of the pointset depicted in Figure 2. 7 (b) is unique since
all interpoint distances < 3 are unique. Thus, all connections in the MST are
horizontal point-point connections except for exactly two connections, one from
the top row to the middle row and one from the middle row to the bottom row.
The greedy routing of every edge but these two is unique since all edges except
these two have degenerate bounding boxes. No improvement is possible by edge
re-embedding within these degenerate bounding boxes. Therefore, no heuristic
in C can do better than the result in Figure 2. 7(d). The optional re-embedding
within the two non-degenerate bounding boxes is negligible as n grows large,
hence the performance ratio is arbitrarily close to ~· 0

There are many heuristics in the literature with previously unknown perfor­
mance ratio, which by Theorem 2.2.1 have performance ratio arbitrarily close
to ~· Greedy Kruskal-like constructions include the methods of [136] and [165],

30 CHAPTER 2

in addition to the methods described by Bern (26, 27), Gadre et al. (103),
Richards (202] and Servit [215]. Algorithms which start with an initial MST
and then overlap edges within their bounding boxes, such as those of [118] and
(124), also belong to C: an MST can be constructed using only point-point
connections, and the optional re-embedding is then used to induce edge over­
laps. Exponential-time methods can also belong to the class C, notably the
suboptimal branch-and-bound method of Yang and Wing (250]. Theorem 2.2.1
implies that all of these methods have the same worst-case error bound as the
simple MST.

The counterexample of Figure 2. 7 also establishes lower bounds arbitrarily close
to ~ for the performance ratios of several heuristics not in C, such as the three­
point connection methods of Hwang [137], Lee, Bose and Hwang (164], and the
Delaunay triangulation-based method of Smith, Lee and Liebman [220]. This
is easy to verify using the pointset in Figure 2.7(b): as with the heuristics in
C, these latter methods are severely constrained by the nature of the unique
minimum spanning tree. Finally, we note that De Souza and Ribiero [72] con­
struct an instance similar to that of Figure 2.7 and also discuss the worst-case
performance of several rectilinear Steiner tree heuristics. Shute [218] gives a
somewhat less general construction, also with the goal of showing a ! perfor­
mance ratio for MST-like heuristics.

2.2.2 Counterexamples in Higher Dimensions

The rectilinear SMT problem remains well-defined when the points of P are
located in d-dimensional Manhattan space with d > 2. Most heuristics, includ­
ing those in the class C defined above, readily extend to higher dimensions.
However, the construction of Figure 2.7 also extends to d dimensions, where
it again provides a lower bound for the performance ratio of heuristics in C.
In d dimensions, the Figure 2.7 construction generalizes to n = k(2d- 1) + 1
points, for any given k. As Figure 2.9 illustrates for d = 3, the cost of the op­
timal Steiner tree is at most 2~;_-/>; the cost of the (unique, separable) MST
is 2(n- 1); and the cost of the best Steiner tree obtainable from the MST by
edge-overlapping is 2(n- d). Thus, in d dimensions the performance ratio of
a heuristic in class C will be arbitrarily close to 2dil. This slightly improves
on the previous lower bound of 2(d;t) given by Foulds (97] for the performance
ratio of the MST approximation in d dimensions.

Area

....

v ' . ' . ' : ~~T :./ .. '• ..
L ~: ~,~ .. ,....,.,'~ "/: '

A A. A A. ,i.

Figure 2.9 For d = 3, the SMT (top) has cost ~(n- 1), while
any Steiner tree derivable from the MST by re-embedding edges
(bottom) has cost 2(n- 3), yielding performance ratio arbitrarily
close to i as n grows large.

2.3 ITERATED I-STEINER (ItS)

31

We now develop an effective SMT heuristic that avoids analogies to traditional
MST constructions. The approach is greedy: we iteratively find optimum single
Steiner points for inclusion into the pointset.

Given two pointsets A and B, we define the MST savings of B with respect to
A as

ilMST(A, B)= cost(MST(A))- cost(MST(A U B)).

Recall that H(P) denotes the Steiner candidate set, i.e., the set of intersection
points of all horizontal and vertical lines passing through points of P. For
any pointset P, a 1-Steiner point of P is a point x E H(P) which maximizes
ilMST(P, {x}) > 0. Starting with a pointset Panda set S = 0 of Steiner
points, the Iterated 1-Steiner (llS) method repeatedly finds a !-Steiner point
x of PUS and sets S +- S U { x }. Note that the stated initial conditions of the
algorithm imply that the Steiner candidate set H(P US) at each iteration will
be identical to H(P). The cost of MST(P US) will decrease with each added
point, and the construction terminates when there no longer exists any point
x with ilMST(PUS,{x}) > 0.

While there is always an optimal Steiner tree with at most n- 2 Steiner points
(this follows from simple degree arguments [109]), liS can add more than n-2
Steiner points. Therefore, at each step we eliminate any extraneous Steiner
points which have degree ~ 2 in the MST over P US. Figure 2.10 describes
the algorithm formally, and Figure 2.11 illustrates a sample execution. This

32 CHAPTER 2

method was first described in [150, 151, 203]. Minoux [183] has independently
described an algorithm similar to IlS for the Steiner problem in graphs.

Algorithm Iterated 1-Steiner (US)
Input: A set P of n points
Output: A rectilinear Steiner tree over P
S=0
While Cand_set = {x E H(P u S)I6MST(P uS, {x}) > 0} =/= 0 Do

Find x E Cand_set which maximizes 6MST(P US, {x})
S=SU{x}
Remove points in S which have degree ~ 2 in M ST(P U S)

Output MST(P uS)

Figure 2.10 The Iterated !-Steiner (llS) algorithm.

(a) (b) (c) (d)

Figure 2.11 Example of the execution of Iterated 1-Steiner (IlS).
Note that in step (d) a degree-2 Steiner point results; llS will elim­
inate this point from the topology.

To find a 1-Steiner point, it suffices to construct an MST over IPU Sl + 1 points
for each of the O(n2) members of the Steiner candidate set, and then pick a
candidate which minimizes the MST cost. This follows from a perturbative
argument similar to that used by Hanan. Each MST computation can be
performed in O(nlogn) time [195], yielding an O(n3 logn) time method to find
a single 1-Steiner point. A more efficient algorithm presented in the next section
finds a new 1-Steiner point in O(n2) time. A linear number of Steiner points
can therefore be found in O(n3) time, and solutions with a bounded number of
::::; k Steiner points require O(kn2) time.

Area 33

2.3.1 Finding 1-Steiner Points Efficiently

Georgakopoulos and Papadimitriou (107) give an O(n2) method for computing
a 1-Steiner point in the Euclidean plane. Their method can be adapted to
Manhattan geometry, via the following sequence of observations (see (107) for
a more detailed account) .

• Observe that a point p E P cannot have two neighbors in M ST(P) which
lie in the same octant of the plane with respect to p. (The octants of the
plane with respect to p are defined by passing lines through p with slope
0, 1, oo and -1.)

• Observe that two directions 81 and 82 in the plane, together with a point
location x, define a cone C(x, 81, 82). For any p E P, the set of all x such
that p is the closest point to X in the set p n C(X' (}1' ()2) forms a (possibly
unbounded) polygon known as an oriented Dirichlet cell. For fixed ()1 and
82, the oriented Dirichlet cells over all points of P will partition the region
of the plane that lies "in front of" the pointset P with respect to the
directions 81 and 82 (see Figure 2.12). The eight pairs of directions 81, ()2

that define the octants of the plane will define eight plane partitions.

(unbounded regions)

Figure 2.12 The oriented Dirichlet cells with respect to directions
()1 and ()2 for three points. In this example, all three regions of the
planar partition are unbounded.

34 CHAPTER 2

• These eight plane partitions can be computed and superposed to yield a
"common partition" of the plane within 0(n 2) time. It can be shown that
the 0(n 2) regions of the common partition possess the so-called isodendral

property: the topology of MST(PU{x}) is constant for all points x within
any given region. However, we need only know that for x in any given
region, the common partition indicates the set of(~ 8) possible neighbors
ofx in MST(PU{x}).

• M ST(P) can be constructed in 0(n 2) time, and by performing 0(n2)

preprocessing we can update the MST to include any new point x f/:. P
in constant time. This is accomplished by precomputing, for every edge
e E { P x P} not in M ST(P), the shortest edge in the unique cycle formed
when e is added into the tree. When x is added into the spanning tree, it
will effectively introduce an "edge" between each pair of its neighbors; the
precomputation allows edges to be deleted from M ST(P) as appropriate.

• Finally, the essence of the method is as follows. (1) If we know that the new
Steiner point x is to be located in a given region of the common partition,
we already know the (~ 8) possible neighbors of x in MST(P U {x}).
(2) Notice that some subset of these possible neighbors will actually be
adjacent toxin MST(P U {x}), and there are 0(1) such subsets. (3)
We simply try every subset of possible neighbors: for each, we can find
the optimal location of x in 0(1) time (since this is a Steiner instance
of bounded size), and we can also check the resulting cost savings when
xis added to the MST in 0(1) time by virtue of the preprocessing. (4)
Recalling that there are only O(n2) regions in the common partition, we
can return the lowest-cost MST over the points in P U { x}, using a total
of O(n2) time. Thus, the total time for all phases is O(n2).

A linear number of iterations will imply O(n3) overall time complexity. In
practice, for uniformly random pointsets the number of iterations performed
by llS averages less than ~.

2.3.2 The IlS Performance Ratio

In this section, we first completely characterize the class of instances having

~~:!t~~j = ~, and then show that llS will always find a 1-Steiner point for

such instances. Thus, the output of IlS can never be as bad as ~ times optimal.
We also show that for this class of "difficult" instances, llS has performance

0 4
ratiO~ 3 .

Area 35

Lemma 2.3.1

Proof: For !PI = 2, ~::! ~t~ ;)) = 1. For !PI = 3 we have cost(SMT(P)) =
f, where R is the perimeter of the bounding box of P. On the other hand,
the pigeonhole principle implies cost(M ST(P)) ~ ~ R. If two points of P
lie on the rectangle that defines the bounding box, then cost(M ST(P)) =
cost(SMT(P)). If three points of P lie on this rectangle, then removing the
largest segment of the bounding box perimeter that lies between two points of
P will leave a spanning tree over P having cost at most ~R. It follows that
coat MST P < 11! 4
cost SMT(P)) - f = 3 · 0

Definition: A plus is an SMT over 4 points {(x-r, y), (x+r, y), (x, y-r), (x, y+
r)} with exactly one Steiner point at the center (x, y) of the plus.

Lemma 2.3.2 For IPI = 4 and lSI = 1, a plus is the only configuration that
h . ,J' t. cost M ST 1 tl 3 ac zeves a perJormance ra zo cost SMT o exac y 2·

Proof: If SMT(P) has one degree-three Steiner point, then we have the per­
formance ratio cost(MST(P))jcost(SMT(P)) < 3/2. Thus, SMT(P) must
have the same topology as a plus. Since the possibility of overlapping wire
would imply at least two Steiner points, the pointset must have coordinates of
form P = {(x- h1, y), (x + h2, y), (x, y- Vt), (x, y + va)}. Let Ragain denote
the perimeter of P's bounding box. SMT(P) has cost ~. while a pigeonhole
argument implies that M ST(P) has cost ~ R- tR (we obtain a spanning
tree by deleting the longest of the four edges comprising the bounding box).
This implies that ~::! ~ 5~ ; ~ ! with equality holding only when the longest
edge length around the bounding box is not greater than ;tR, i.e., all four edges
around the bounding box have equal length. Therefore, ht = h2 and Vt = v2.

We write h = ht = h2 and v = Vt = v2, and without loss of generality assume
that h ~ v. Then:

cost(MST(P)) = 2(v +h)+ 2h = 1 _h_ < ~
cost(SMT(P)) 2(v +h) + v + h - 2

with equality holding when h = v. D

Definition: A union of pluses is a Steiner tree with lSI= k and !PI= 3k + 1,
and with exactly four edges of equal length incident to any Steiner point.

36 CHAPTER 2

Theorem 2.3.3 Any planar pointset having ~~;:~~~~l = ~ has an SMT which
is a union of pluses.

Proof: Recall from the proof of Theorem 2.1.1 that any pointset P has an SMT
that is composed of connected components, each of which has all its Steiner
points forming a chain. Recall also that all the Steiner points on any such
chain are collinear, with the possible exception of the Steiner point at the end
of the chain (Figure 2.3). Using the same upper bound for MST cost and the
exact expression for SMT cost as in the Theorem 2 .1.1 proof, we can equate
expressions for~· cost(MST) and cost(SMT) for the points of any chain:

1 2 1
R. (2 + 3. e)= R. (2 +e)

where R is the perimeter of the bounding box of the points in the chain, and e
is defined such that R · e is equal to the sum of the distances from all (except
the last) points of P to their adjacent Steiner points in the chain. The above
equality implies that e = 0, and hence all but one of the original points have
the same coordinates as their adjacent Steiner points, a contradiction unless
there is only one Steiner point (i.e., the last) in this chain. From Lemma 2.3.2,
any chain which has only one Steiner point and which exactly achieves the ~
ratio must be a plus. Therefore, any SMT which exactly achieves the ~ rati~
is decomposable as a union of pluses. - 0

Theorem 2.3.3 completely characterizes the pointsets for which ~~::~~~~~~ IS

exactly equal to ~.

Theorem 2.3.4 The performance ratio of IlS is< ~-

P f If cost(M ST(P)) 3 h .f I S d fi d S . . roo : cost(SMT(P)) < 2, t en even 1 1 oes not n any temer pomts,

it will have performance ratio < ~- From Theorem 2.3.3, any P for which
cost(MST(P)) 3 ·11 h SMT(P-) h · · f J · I
cost(SMT(P)) = 2 WI ave t at IS a umon o p uses; m sue 1 a case
IlS will select and add the center of some plus at the first iteration, yield­
ing performance ratio strictly Jess than ~. To see this, note that a spanning
tree with cost ~ · cost(SMT(P)) is obtained simply by replacing each plus in
SMT(P) by an arbitrary spanning tree over the four points of P in the plus
(see Figure 2.13).

(The center of the plus is one of the Steiner candidates considered during the
first iteration of llS. Even if there are other Steiner candidates within the

Area 37

• •

Figure 2.13 Locally replacing each plus (left) with an MST over
the four points in P (right).

convex hull of the four points of the plus, the center gives the greatest possible
cost savings of exactly one-third.) 0

Theorem 2.3.5 For pointsets P with SMT(P) a union of pluses, the perfor­
mance ratio of IlS ~ ~·

Proof: When IlS selects the center of a plus as a !-Steiner point, at most
three centers of other pluses are excluded from future selection. By the greedy
selection nile of IlS, any center that is excluded belongs to a plus that induces
less cost savings than the selected plus.6 Thus, even if IlS selects a plus that
is not in SMT(P), the cost savings will be at least as great as the savings that
would have been realized by selecting the largest of the (up to three) pluses
that are now excluded due to topological constraints (see Figure 2.14).

Each plus represents a savings of ~ of the MST cost over the points of P
in the plus, so even if we use simple MST edges to connect the remaining
affected points to the selected plus, the total heuristic cost is no more than
cost(MST)- A· A· cost(MST) = ~ · cost(MST). Therefore, the performance

. f liS . h !..cost(M ST) 4
ratio o IS no greater t an f·co&t(MST) = 3· 0

This bound can likely be tightened by more exhaustive case analysis. Since
most signal nets in VLSI designs have six or fewer terminals, we briefly discuss
known IlS performance bounds for small values of IPI·

Theorem 2.3.6 IlS is optimal for IPI ~ 4 points.

6 The cost savings of a plus are with respect to the MST over the four points in the plus.
These savings are proportional to the "size" of the plus: larger pluses induce greater savings.

38 CHAPTER 2

9
I

0--Eb;--
1 I

0- - -0 - - - -¢- - -{)
I I
I I

0 0

Figure 2.14 Each selected 1-Steiner point may exclude at most
three potential 1-Steiner points from future selection; thus at least
~ of the maximum possible savings is achieved.

Figure 2.15 The two possible Steiner tree topologies on 4 points.

o--41l.._-<o)--el-o
Figure 2.16 A 5-point example where the IlS performance ratio is
~· The optimal SMT (left) has cost 6, while the (possible) heuristic
output (right) has cost 7.

Proof: When SMT(P) has less than two Steiner points, llS is optimal since
it examines all candidates. For !PI = 3, there can be at most one Steiner point.
For !PI = 4 and lSI = 2, Hwang [135) showed that an SMT must have one of
the two topologies shown in Figure 2.15. A case analysis shows that llS always
selects both Steiner points. 0

Area

(

Figure 2.17 A 9-point example where the IlS performance ratio is
i~; the optimal SMT (left) has cost 11, while the (possible) heuristic
output (right) has cost 13.

1-£

1-£

£ 2 1-£ 1+£

Figure 2.18 A 4-point instance on which MST-based heuristics per­
form arbitrarily close to ~ times optimal (left); the (optimal) liS
solution is also shown (right).

39

In contrast to IlS, MST-based methods are generally not optimal for IPI = 4;
Figure 2.18 shows that performance ratios approaching ~ are possible. As
shown in Figure 2.16, the worst-case performance ratio of IlS for IPI ~ 5 is
conjectured to be ~· Figure 2.17 shows a 9-point instance on which the IlS
tree cost is i~ times optimal.

Finally, an elegant iterated construction due to Berman, Fossmeier Karpinski,
Kaufmann and Zelikovsky [24, 255] shows that the performance ratio of IlS
has a lower bound of 1.3. Figure 2.19 reproduces the construction, which has
point coordinates as follows:

• ai=(4·4i,O),i=O, ... ,k

• a~ = (0, 4 · 4i), i = 0, ... , k

40 CHAPTER 2

• b; = (2. 4i, -4i-l),i = 1, ... , k

• bl - (4i-l 2 4j) . - 1 k i- - , 0 , z- , ... ,

• Cj = (3·4i,4i-l),i= 1, ... ,k

• I (4i-1 3 4i) ' 1 k C; = 1 • 1 Z = 1 ... 1

For any value of k, this construction yields an instance whose SMT consists of
conjoined Steiner minimal trees over the sets {a; -1, b;, c;, a;} and {a~ _1, b~, c~, a;}

along with the edge (a0 , a~); this SMT has cost 10 4k3 1 + 2. IlS will return
1-Steiner points that are adjacent to triples of points {a;_ 1, c;, en, which im-
plies cost 13 4k3 1 + 2. Thus, the construction establishes the lower bound on
performance ratio of

y
a~

a; ----------- ,~2 .;. : , ''
• I I

L--a 1 X
.. I ,T ...

.• a~·.

Figure 2.19 The construction of Berman et al. which establishes
a lower bound of 1.3 on the ns performance ratio.

Area 41

2.3.3 The Method of Zelikovsky

Berman and Ramaiyer [25), and Zelikovsky and coauthors [24, 9.5, 2.)3, 255),
have recently developed several SMT heuristics that are similar to llS, and
have performance ratios substantially less than ~. These methods derive from
a breakthrough technique developed by Zeliko;sky for the SMT problem in
graphs [254]. The results of [25, 253] in 1992 settled in the affirmative the long­
standing open question of whether there exists a polynomial-time rectilinear
SMT heuristic with performance ratio < ~. 7 Here, we briefly review key ideas
in this sequence of works, following the discussion of [24].

Given a Steiner tree T over pointset P, any subtree T' is a full Steiner compo­
nent if every point of P in T' has degree one. As noted in the earlier discussion
of Hwang's theorem, any Steiner tree T can be partitioned into edge-disjoint
full Steiner components. (Recall that Figure 2.3 showed the two possible types
of full Steiner components.) A Steiner tree T is k-restricted if each of its full
Steiner components has at most k leaves. Thus, for example, an optimal 2-
restricted tree over P is exactly an MST over P. We may use tk to denote
the cost of the minimum-cost k-restricted Steiner tree over P; thus, for exam­
ple, t2 = cost(MST(P)) and tn = cost(SMT(P)). Hwang's theorem states
that t2 ~ ~tn; Zelikovsky [253] showed that i3 ~ ~tn; and Berman and Ra­
maiyer [25] showed that t1c ~ ~Z=~tn. Zelikovsky pioneered the approach of
approximating the optimal k-restricted Steiner tree for some small value of k,
as opposed to approximating the SMT itself.

For expository reasons, we will begin by describing the heuristic of Berman
and Ramaiyer, which is called A~c; the time complexity and performance ratio
of Ak depends on the value of k. For k = 3, Ak has performance ratio ~1
and time complexity O(n3·5). The heuristic Ak begins with some AfST(P).
then considers all optimal Steiner trees over subsets of P of size k or less.
A~c is similar to IlS, in that it will consider adding Steiner points one at a
time from the Hanan candidate set, and in that it uses some measure of cost
improvement to evaluate the utility of each candidate Steiner point .. However,
instead of adding a new Steiner point into the tree, A3 replaces two edges from
the current MST with two "abstract edges" having the same endpoints but
reduced cost. The cost of each new abstract edge is equal to the cost of the

7 Interestingly, we conjectured in (150, 151) that llS has performance ratio strictly less
than t. but could not prove this. There are clear similarities between the "hatched" llS
variant that we discuss below and the method of [2.53), suggesting that "hatched" IlS has
performance ratio at most 1j- = 1.375. Recently, Zelikovsky [252) has stated that llS
actually has performance ratio upper-bounded by 1.312.5 (and lower-bounded by 1.3 per the
construction of Figure 2.19).

42 CHAPTER 2

edge it replaces, minus the cost improvement, or "gain", that would be achieved
by inserting the new Steiner node.

Conceptually, As merges the current M ST(P) with the optimal Steiner tree
over the k = 3 points of P, and updates the MST over P within the resulting
graph. More specifically, let r be the optimal Steiner tree over a given three
points of P, and consider the graph formed by the union of edges in r and
MST(P). This graph will contain two cycles C1 and C2, with the longest edge
in each cycle respectively being c1 and c2 • Removing c1 and c2 yields a new
minimum spanning tree T' over the graph. The "gain" associated with r is
given by gain(r) = cost(MST(P))- cost(T'). Fori= 1, 2 an abstract edge is
inserted between the two leaves of r through which cycle Ci passed; the cost
of the abstract edge is cost(ci)- gain(r).

In Berman and Ramaiyer's algorithm, the new abstract edges are added only
if the gain value is greater than zero. Because the gain is subtracted from both
new edges, however, the cost of the new MST is optimistically small. Beyond
the consideration of candidate Steiner points in arbitrary order, this concept of
"optimistic gain" is the main difference between As and US.

As works in two main phases: in the "evaluation" phase all ('~') triples of
points from P are considered in arbitrary order. If adding the Steiner node for
a triple r would reduce the cost of the current MST (i.e., gain(r) is positive),
then two abstract edges are added as we have described. In the "selection"
phase, triples with positive gain are considered in reverse order. If the abstract
edges of a triple are still used in an MST over P in which abstract edges from
all triples with positive gain are considered, then the Steiner point for that
triple is included in the output construction.

Berman and Ramaiyer prove that in algorithm Ak, the MST containing abstract
edges has cost less than the optimal k-restricted tree. In As, the cost reduction
from the abstract edges is at most twice the cost reduction obtained by actually
adding the new Steiner points. Hence, the performance improvement for As
versus MST is at least one-half the performance improvement of the optimal
3-restricted tree. Berman and Ramaiyer establish a performance ratio rk for
the optimal k-restricted Steiner tree: rk ~ 1 + 1/(2k- 2). (To prove this bound,
they show how to construct 2k - 2 k-restricted Steiner trees over S such that
their total cost is at most 2k - 1 times that of the minimum-cost Steiner tree.)
This gives a 5/4 performance ratio for the optimal 3-restricted tree, and an ~1
performance ratio for As.

Area 43

Zelikovsky's method [253] is greedier than that of Berman and Ramaiyer, and
is extremely similar to the "hatched" variant of IlS that we discuss below.
Zelikovsky's method finds and incorporates the triple T with largest gain(r),
adding three zero-cost edges between pairs of leaves of T into the graph noted
above. The largest-gain triple is found in the new graph, and the process
terminates when there is no remaining triple with positive gain. A performance
ratio of ~ was shown in [253].

Subsequent work has improved on the O(n3 ·5) time complexity ofA3 . An 1i
performance bound with an 0(n 1.5) implementation was achieved by Fossmeier
et al. [95], who show that only a linear number of triples need to be considered
in A3 . More recently, the five authors of [24] and [255] have together shown
that Zelikovsky's algorithm has performance ratio between 1.3 and 1.3125, and
that Berman and Ramaiyer's algorithm has performance ratio at most 1.271;
the latter algorithm can also be implemented to run in 0(n log2 n) time.

2.4 ENHANCING US PERFORMANCE

In this section, we discuss variations of the IlS approach that can yield lower­
cost solutions or runtime reductions in practice. These variations include an
amortization of the 1-Steiner point computation via addition of an entire set
of "independent" or "non-interfering" !-Steiner points in a single iteration, as
well as a perturbative variant.

2.4.1 A Batched Variant

Although a single 1-Steiner point may be found in O(n2) time, the required
computational geometry techniques have large hidden constants in their time
complexities and are difficult to implement. We now describe a batched IIS
variant which amortizes some of the computational expense by adding an entire
set of "independent" Steiner points in a single round.

The Batched 1-Steiner (B1S) variant computes ~MST(P, {x}) for each can­
didate Steiner point x E H(P). Two candidate Steiner points x and y are
independent if

A.MST(P,{x})+AMST(P,{y}) ~ A.MST(P,{x,y}),

44 CHAPTER 2

i.e., introducing one does not reduce the potential MST cost savings of the
other. Given pointset P and a set of Steiner points S, each round of B1S
greedily selects a maximal independent set of Steiner points, then adds this set
to S. The algorithm terminates when a round fails to produce a new Steiner
point. A single round of B1S is described as follows:

• In O(nlogn) time, compute both MST(P) and the Delaunay triangula­
tion [219] over P (the Delaunay triangulation is the geometric dual of the
Voronoi tesselation of the plane).

• Compute the 0(n2) isodendral regions over P, and for each region deter­
mine the 0(1) potential neighboring points in the MST as in [107]. This
requires a total of O(n2) time.

• Using O(n2 logn) time and O(n2 logn) space, preprocess the O(n2) iso­
dendral regions, now treated as a planar subdivision, so that determining
the region in which a given point lies may be performed in O(log n) time.
This is the problem of planar subdivision search [195].

• For each candidate Steiner point x, compute ~M ST(P, { x}). Determine
the isodendral region to which x belongs via O(log n) time planar subdivi­
sion search, and let X be the set of potential MST neighbors of x. For each
subset Y s;; X, add the weighted edge set {(x, y) I y E Y} to the graph
G. The MST of a planar weighted graph can be maintained dynamically
using O(log n) time per addition/insertion of a point or edge [88]. Since
lXI = 0(1) and therefore IYI = 0(1), we can determine in O(logn) time
the MST cost savings for each candidate Steiner point. Since there are
O(n2) candidate Steiner points, the total time for this step is O(n2 log n).

• Sort the O(n2) Hanan candidates in order of decreasing MST cost savings;
this requires O(n2 log n) time using any efficient sorting algorithm.

• Determine a maximal set S of independent candidate Steiner points to
be added during this round, by greedily adding candidates in order of
decreasing MST cost savings as long as each added Steiner point is inde­
pendent of all Steiner points previously added during this round. In other
words, for an original pointset P, a set of already added candidate points
S, and a new candidate x, add x to S if and only if ~M ST(P, { x}) $
~MST(PUS, {x}). Again, MST cost savings due to the addition or dele­
tion of a single point can be determined in time O(log n) [88], bringing the
total time for this entire step to O(n2 logn).

Area 45

The total time required for each round is O(n 2 logn). The resulting BlS algo­
rithm is summarized in Figure 2.21. Empirical data indicates that the number
of rounds required grows much more slowly than the number of Steiner points
produced. For example, on pointsets of size 300, BlS produces an average
of 138 Steiner points (with a maximum of 145), while the average number of
rounds is only 2.5 (with a maximum of 4); see Section 2.8 for more details. We
conjecture that the number of rounds grows sub-linearly with the number of
points.

0

0
0

0

a-{ ~
Figure 2.20 The Batched 1-Steiner heuristic: selecting a maximal
independent set of candidate Steiner points in one round.

Algorithm Batched !-Steiner (BlS)
Input: A set P of n points
Output: A rectilinear Steiner tree over P
While T = {x E H(P)Jt:::..MST(P, {x}) > 0} ::f. 0 Do

5=0
For x E {T in order of non-increasing t:::..M ST} Do

If t:::..MST(P uS, {x}) 2: t:::..MST(P, {x}) Then S = S u {x}
P=PUS
Remove from P Steiner points with degree $ 2 in MST(P)

Output MST(P)

Figure 2.21 The Batched !-Steiner (BlS) algorithm.

Empirical studies indicate that only a small fraction of the Hanan candidates
have positive MST savings in a given BlS round. Furthermore, candidates with
positive MST savings in an earlier round are more likely to produce positive
MST savings in subsequent rounds. Therefore, rather than examine the MST

46 CHAPTER 2

savings of all Hanan candidates in a given round, subsequent rounds may con­
sider only the candidates that produced positive savings in the previous round.
In practice, this strategy significantly reduces the time spent during each round
without substantially affecting the solution quality.

2.4.2 A Perturbative Variant

At each iteration, US selects a 1-Steiner point greedily. This may preclude
additional savings in subsequent iterations. Suboptimalities may also occur due
to tie-breaking among 1-Steiner points that induce equal savings. The examples
of Figures 2.16 and 2.17 show that an unfortunate choice of a 1-Steiner point
can result in a suboptimal solution.

Empirical tests indicate that multiple 1-Steiner points (i.e., points in H(P) with
equal MST savings) occur quite often. To avoid a deterministic tie-breaking
rule that could preclude possible future savings, we may randomly select one
of the 1-Steiner candidates and proceed with the algorithm execution. It is
reasonable to then run this randomized IlS variant m times on a given input,
where m is a user-defined parameter, and select the best of the m solutions.

To further avoid possible shortcomings of a deterministic greedy strategy, we
also propose a mechanism that allows US to select as the 1-St.einer point any
x E H(P) whose MST cost savings is within {i of the best candidate's cost
savings; again, 6 is a user-supplied parameter. This strategy would enable a
slightly suboptimal choice which could perhaps enable greater overall savings
in future iterations.

Finally, performance may be improved if instead of looking for 1-Steiner points,
we search for pairs of Steiner candidates that offer maximum savings with re­
spect to other candidates or pairs of candidates. Such a 2-Steiner algorithm
would optimally solve the pointset of Figure 2.16. In general, a k-Steiner al­
gorithm will search for sets of k candidate Steiner points which maximize the
MST cost savings.

Combining the three techniques of (i) non-deterministic tie-breaking, (ii) near­
greedy search, and (iii) k-Steiner selection, we obtain a Perturbative It.erated
k-Steiner algorithm (PikS), as detailed in Figure 2.22. Note that IlS is equiv­
alent to PikS with k = 1, m = 1, and 6 = 0. The PikS scheme can be further
extended using an "independence" criterion as in Section 2.4.1 to yield a Per-

Area 47

turbative Batched k-Steiner algorithm (PBkS), where a maximal number of
Steiner points are added during each round.

Algorithm Perturbative Iterated k-Steiner (PikS)
Input: A set P of n points, integer parameters 6 ~ 0, k ~ 1, and m ~ 1
Output: A rectilinear Steiner tree over P
T= MST(P)
Do m times

8=0
While C = {X~ H(P) I lXI :$; k, !:l.M ST(P US, X)> 0} ¥= 0 Do

Find Y E C with maximum !:l.M ST(P US, Y)
Randomly select Z E C with !:l.M ST(P u S, Z) > !:l.M ST(P uS, Y) - 6
S=SUZ
Remove from S points with degree :$; 2 in M ST(P US)

If cost(M ST(P u S)) < cost(T) Then T = M ST(P uS)
Output T

Figure 2.22 The Perturbative Iterated k-Steiner (PikS) method.

For applications to multi-layer routing and three-dimensional VLSI structures,
PlkS extends to the case of points lying on L parallel planes. The general three­
dimensional SMT problem corresponds to L -+ oo, and the planar formulation
corresponds to L = 1. The different costs of routing between layers and routing
on a given fixed layer may be modeled by varying the distance between the
parallel planes.

In three dimensions, PlkS exploits the generalization of Hanan's theorem to
higher dimensions [223), namely, that there always exists an optimal Steiner
tree whose Steiner points are chosen from the 0(n3) intersections of all planes
that are orthogonal to some coordinate axis and pass through a point of P.
The three-dimensional analog of Hwang's result suggests that the Steiner ratio,
0 h ° COlt M ST t" J: h d' 0 0 t 5 h I.e. t e maximum colt SMT ra 10 tor t ree 1mens10ns 1s a most 3; owever,
there is no known proof of this. An example consisting of six points located in
the middle of the faces of a rectilinear cube establishes that ~ is a lower bound
for the Steiner ratio in three dimensions.

48 CHAPTER 2

2.4.3 Parallel Implementation

The IlS and BlS algorithms are highly parallelizable since each one of p pro­
cessors can compute the MST savings of 0(nl) candidate Steiner points. We
have undertaken a parallel implementation J'f IlS, where all processors send
their best candidate to a master processor, which selects the best of these
candidates for inclusion into the pointset. This procedure is iterated until no
improving candidates can be found. The Parallel Virtual Machine (PVM) sys­
tem [230] was used for initiating processes on other machines and for controlling
synchronization and communication among processes.8

2.5 PRACTICAL IMPLEMENTATION OPTIONS FOR IlS

This section describes practical ways to reduce the time complexity of an IlS
implementation. We present three techniques: (i) an incremental MST update
scheme, (ii) distribution of the computation over, e.g., a network of worksta­
tions, and (iii) use of tighter bounds on the maximum rectilinear MST degree
in both two and three dimensions.

2.5.1 Incremental MST Updates in Hatched 1-Steiner

In computing the MST savings of each of the O(n2) Steiner candidates, a key
fact is that once we have computed an MST over the pointset P, the addition
of a single new point x into P induces only a constant number of changes
between the topologies of M ST(P) and M ST(P U { x}). This follows from the
observation that each point can have at most eight neighbors in a rectilinear
planar MST, i.e. at most one per octant [124]. Thus, to update an MST with
respect to a newly added point x, it suffices to consider only the closest point
to x in each of the eight plane octants with respect to x (below, we refine this
result and show that for each point it suffices to examine at most four potential
candidates for connection in the MST).

8 Initially, the "master" processor sends equal-sized subsets of the Steiner candidate set to
the available processors, and the computation/response time of each processor is tracked. If
any individual processor is determined to be considerably slower than the rest, it is henceforth
given smaller tasks to perform. If a processor does not complete its task within a reasonable
time, it is sent an abort message, and the task is reassigned to the fastest idle processor
available. This prevents individual slow (or crashed) processors from seriously impeding the
overall computation. Empirical result on this parallel implementation are given in Section
2.8.

Area 49

These observations suggest the following linear-time algorithm for dynamic
MST maintenance: connect the new point x to each of its 0(1) potential neigh­
bors (i.e, the closest point to x in each of the octants around x), and delete
the longest edge on any resulting cycle. Using this dynamic MST maintenance
scheme, the MST savings of each Hanan candidate can be computed in linear
time, and therefore the MST savings of all O(n2) Hanan candidates may be
computed in time O(n3). This method was first described in [20].

(a)

~~--
longest
edge in

(b) cycle (c) (d)

Figure 2.23 Dynamic MST maintenance: adding a point to an
existing MST entails connecting the point to its closest neighbor in
each octant, and deleting the longest edge on each resulting cycle.
The Euclidean metric has been used for clarity in this example.

During each round of B1S we: (1) compute in O(n3) time the MST savings
of all Hanan candidates, (2) sort them by decreasing MST savings in time
O(n2 log n), and (3) march down the sorted list and add into the pointset those
candidates with "non-interfering" MST savings (at linear time per candidate
according to our dynamic MST maintenance scheme described above). Thus,
an entire round of B1S can be implemented in this straight-forward manner in
time O(n3). An execution example is shown in Figure 2.23, and Figure 2.24
describes the algorithm formally. A similar method was used in [251] to obtain
a sub-quadratic MST algorithm in higher dimensions, but no attempt was made
to optimize the number of necessary regions. 9

9 Frederickson [98) has given a sublinear-time algorithm for dynamic MST maintenance,
but we prefer the linear-time scheme above due to its simplicity and ease of implementation.

50 CHAPTER 2

Dynamic MST Maintenance
Input: A set P of n points, M ST(P), a new point x
Output: MST(P u {x})
T = MST(P)
For i = 1 to #regions Do

Find in region R, (x) the point p E P closest to x
Add edge (p, x) to T
If T contains a cycle Then remove from T the longest edge on the cycle

Output T

Figure 2.24 Linear-time dynamic MST maintenance.

2.5.2 MST Degree Bounds

The complexity of dynamic MST maintenance, and thus the complexity of
B1S, improves when we observe that only four regions suffice for dynamic MST
maintenance in the Manhattan plane. These four regions are defined by the
two lines oriented at +45 and -45 degrees (Figure 2.25(a)); we call this division
of the plane the diagonal partition. A key property for regions and partitions
in dynamic MST maintenance is the uniqueness property [113] [204]:

The Uniqueness Property: Given a point pin d-dimensional space, a region
R has the uniqueness property with respect to p if for every pair of points
u,w E R, either d(w,u):::; d(w,p) or d(u,w):::; d(tt,p), where d(u,w) is the
distance between u and w.

A partition is said to satisfy the uniqueness property if each of its regions
satisfies the uniqueness property. Any partition having the uniqueness property
is useful for dynamic MST maintenance, since each region will contain at most
one candidate for connection in the MST (recall the earlier use of "oriented
Dirichlet cells" in the construction of Georgeakopoulos and Papadimitriou).
We can show that the diagonal partition enjoys the uniqueness property.

Lemma 2.5.1 For any point pin the Manhattan plane, the diagonal partition
with respect top has the unzqueness property.

Proof: The two diagonal lines through p partition the plane into four disjoint
regions R1 through R4 (Figure 2.25(a)). Points on the boundary between two

Area 51

neighboring regions may be arbitrarily assigned to either region. Consider any
of the four regions, say R1, and points u, wE R1 (Figure 2.25(b)). Without
loss of generality assume that d(u,p) ~ d(w,p). Consider the diamond Din R1

with one corner at p, and with u on the boundary of D (see Figure 2.25(c)). Let
c be the center of D, so that cis equidistant from all points of D, and let the ray
from p through w intersect the boundary of D at b. By the triangle inequality,
d(w,u) $ d(w,b)+d(b,c)+d(c,u) = d(w,b)+d(b,c)+d(c,p) = d(w,p). Thus,
w is not closer top than to u, and the region has the uniqueness property. It
follows that the diagonal partition has the uniqueness property. 0

(a) (b) (c)

Figure 2.25 The diagonal partition of the plane (a) into four regions
with respect to a point p has the uniqueness property: for every
two points u and w that lie in the same region (b), either d(w, u) ~
d(w,p) or else d(u,w) ~ d(u,p) (c).

For any given dimension and metric, it is natural to seek an optimal partitioning
scheme, i.e., one with the smallest possible number of regions. The set of five
points consisting of the origin and the four corners of the diamond forces the
MST to have degree four in the Manhattan plane. Thus, the diagonal partition
is optimal.

Even in three dimensions, the addition of a single new point p into P can
induce at most a constant number oftopological changes between MST(P) and
M ST(P U {p}). This follows from the fact that in any fixed dimension, each
point can have at most 0(1) neighbors in a rectilinear MST. Therefore, the MST
savings in three dimensions can be efficiently calculated by partitioning the
space into 0(1) mutually disjoint regions R; such that each has the uniqueness
property. This would enable a linear-time procedure to compute the MST
savings of a given Steiner candidate.

Using insights similar to those which led to Lemma 2.5.1, we can exhibit a
partition of three-dimensional Manhattan space into 14 regions, with each re-

52 CHAPTER 2

gion having the uniqueness property. This partition corresponds to the faces
of the solid that is obtained by chopping off the corners of a cube to yield
six square faces and eight equilateral triangular faces (Figure 2.26(a-b)). This
solid is known as a "cuboctahedron" [177]. The 14 regions of this partition
are induced by the 14 faces of the cuboctahedron, and consist of six pyramids
with square cross-section (Figure 2.26(c)) and eight pyramids with triangular
cross-section (Figure 2.26(d)). Again, points located on region boundaries may
be arbitrarily assigned to either adjacent region. We call this partition the
cuboctahedral partition, and refer to the two types of induced regions as square
pyramids and triangular pyramids. The following theorem implies that for any
given pointset P and new point p in three-dim~nsional Manhattan space, there
exists some MST over P U {p} in which p has degree ~ 14.

Theorem 2.5.2 Given a point p in three-dimensional Manhattan space, each
of the 14 regions in the cuboctahedral partition with respect top has the unique­
ness property.

Proof: Consider any of the square pyramids R with respect to p (Figure
2.26(c)), and let u, w E R. Assume without loss of generality that d(u, p) ~
d(w, p). Consider the locus of points D C Rat distance d(u, p) from p (Figure
2.26(e)); D is the upper half of the boundary of an octahedron. Let c be the
center of the octahedron determined by D, so that c is equidistant from all
points of D. Let b be the intersection of the surface of D with a ray from p
that passes through w. By the triangle inequality, d(w, u) ~ d(w, b)+ d(b, c)+
d(c, u) = d(w, b)+ d(b, c)+ d(c,p) = d(w,p). Thus, w is not closer top than to
u, and the region R has the uniqueness property.

Next, consider any of the triangular pyramids R with respect to p (Figure
2.26(d)), and let u, wE R. Assume without loss of generality that d(u,p) ~
d(w, p). Consider the set of points D C R at distance d(u, p) from p (Figure
2.26(f)). Let b be the intersection of D with the ray from p that passes through
w. By the triangle inequality, d(w, u) ~ d(w, b)+ d(b, u) ~ d(w, b)+ d(b, p) =
d(w,p). Thus, w is not closer top than to u, and the region R has the uniqueness
property. 0

Theorem 2.5.3 There are three-dimensional pointsets for which the maximum
degree of any MST is at least 13.

Proof: Consider the pointset P= {(0,0,0), (±100,0,0), (0,± 100,0), (0,0,±100),
(47,-4,49), (-6,-49,45), (-49,8,43), (-4,47,-49), (-49,-6,-45), (8,-49,-43), (49,49,2)f,

Area

(b)

···· t

(c) (d)

t~~~lS~~
i "

(e) (I)

Figure 2.26 A truncated cube (a-b) induces a three-dimensional
cuboctahedral space partition where each region has the uniqueness
property. The 14 regions consist of six square pyramids (c), and
eight triangular pyramids (d). Using the triangle inequality, the
uniqueness property may be shown to hold for each region (e-f).

53

The distance between every point and the origin is exactly 100 units, but the
distance between any two non-origin points is strictly greater than 100 units.

54 CHAPTER 2

Therefore, the MST over P is unique (i.e., all 13 points must connect to the
origin in the MST) and the origin point will have degree 13 in the MST. 0

Given that each point can connect to at most 14 neighbors in the MST, linear­
time dynamic MST maintenance in three dimensions is accomplished by con­
necting the new point in turn to each of$ 14 potential neighbors, then deleting
the longest edge on each resulting cycle. This method was first described in
[21]. It is still an open question whether for three dimensions the cuboctahe­
dral partition is optimal (i.e., whether there exists a partition of space into 13
regions having the uniqueness property).

2.6 ON THE MAXIMUM MST DEGREE

Although the llS algorithm described in Section 2.3.1 runs within time O(n3),

the constant hidden in this asymptotic notation is exponential in the maximum
MST degree. In this section we show that every pointset in the Manhattan
plane has an MST with maximum degree $ 4. This result reduces the running
time of the US implementation, and is of independent theoretical interest [204).

Even though the degree of any single node in a rectilinear MST can be made
$ 4, Theorem 2.5.1 does not imply that the degrees of all nodes can be made$ 4
simultaneously. For example, decreasing the degree of one node may increase
the degree of neighboring nodes. It turns out, however, that ties for connection
during MST construction can always be broken appropriately so as to keep
the maximum MST degree low. We begin by defining a strict version of the
uniqueness property:

The Strict Uniqueness Property: Given a point p in d-dimensional space,
a region R has the strict uniqueness property with respect to p if for every pair
of points u,w E R, either d(w,u) < d(w,p) or d(u,w) < d(u,p).

Each d-dimensional region that satisfies the strict uniqueness property may
contribute at most one to the MST degree at p. Using a perturbative argument,
we can prove that by breaking ties judiciously, the maximum MST degree is
no larger than the number of d-dimensional regions in a partition having the
strict uniqueness property.

Area 55

Theorem 2.6.1 If there exists a partition of d-dimensional space into r re­
gions, with r' $ r of these regions being d-dimensional and satisfying the strict
uniqueness property {the rest of the r - r' regions are lower-dimensional, and
are not required to satisfy the uniqueness property), then the maximum MST
degree of any pointset in this space is r' or less.

Proof: Given a pointset P, perturb the coordinates of each point by a tiny
amount so that the lower-dimensional regions with respect to each point do
not contain any other points. This is always possible to do, and yields a new
perturbed pointset P'. Because interpoint distances in P' differ by only a tiny
amount from the corresponding interpoint distances in P, the cost of the MSTs
over P' and P will differ by only a similarly tiny amount which we can make
arbitrarily small. But the MST over P' has maximum degree r', since only
the r' d-dimensional regions of the partition are nonempty with respect to the
points of P', and these regions satisfy the strict uniqueness property. We now
use the topology of the MST for P' to connect the corresponding points of P,
inducing an MST over P having maximum degree r'. 0

Applications of this technique to two and three dimensions are immediate:

Corollary 2.6.2 Every pointset P in the Manhattan plane has an MST with
maximum degree $ 4.

Proof: Modify the diagonal partition into a strict diagonal partition hav­
ing a total of eight regions incident to each point of P: four two-dimensional
open wedges (i.e., not containing any of their own boundary points), and four
one-dimensional rays (i.e., the boundaries between the wedges). By arguments
similar to those of Theorem 2.5.1, each of the open wedges possesses the strict
uniqueness property, and thus by Theorem 2.6.1 points lying on the boundaries
between wedges can be perturbed into the interiors of the wedges themselves,
leaving the one-dimensional regions empty of points. The maximum MST de­
gree given such a partitioning scheme is ~ 4. 0

This bound is tight, e.g., for the center and vertices of a diamond. The best
previous bound was that the maximum MST degree in the Manhattan plane is
~ 6 [124].

Corollary 2.6.3 Every pointset in three-dimensional Manhattan space has an
MST with maximum degree ~ 14.

56 CHAPTER 2

Proof: Modify the cuboctahedral partition into a strict cuboctahedral par­
tition having a total of 38 regions incident to each point of P: 14 three­
dimensional open pyramids (i.e., eight triangular pyramids and six square
pyramids, each not containing any of their own boundary points), and 24
two-dimensional regions (i.e., corresponding to all the boundaries between the
pyramids). By arguments identical to those of Theorem 2.5.2, each of the open
pyramids possesses the strict uniqueness property, and thus by Theorem 2.6.1,
points lying on the boundaries between the 14 pyramids can be perturbed into
the interiors of these pyramids. The maximum MST degree given such a par­
titioning scheme is ~ 14. 0

The best previous bound for the maximum MST degree in three-dimensional
Manhattan space was 26 [69, 238]. it is still open whether there exists an
example which forces a node in the MST to have degree 14. Interestingly,
Corollaries 2.6.2 and 2.6.3 also settle some open questions in complexity theory.
It is known that the problem of finding a degree-bounded MST is NP-complete,
even when the degree bound is fixed at two (yielding the Traveling Salesman
Problem), or at three [190]. Corollary 2.6.2 implies that the degree-bounded
MST problem in the Manhattan plane is solvable in polynomial time when the
degree bound is fixed at five or at four, since we have shown how to find an
MST that meets these maximum degree constraints. Similarly, Corollary 2.6.3
implies that the degree-bounded MST problem in three-dimensional Manhattan
space is solvable in polynomial time when the degree bound is ~ 14. The work
of Robins and Salowe [204] investigates the maximum MST degree for higher
dimensions and other Lp norms, and relates the maximum MST degree to the
so-called "Hadwiger" numbers.

2.7 STEINER TREES IN GRAPHS

Given a weighted graph G = (V, E), E ~ V x V, and N ~ V, the graph
version of the SMT problem seeks a minimum-cost tree in G that spans N
[48, 91, 166]. Any node in V- N is a potential Steiner point. Each graph edge
eii has a weight Wij, and the cost of a tree (or any sub graph) is the sum of the
weights of its edges. The graph Steiner problem arises when we wish to route a
signal net in the presence of obstacles and congestion [104], or in the presence
of variable-cost routing resources, as are present in field-programmable gate
arrays [5, 7, 8].

Area 57

The Graph Steiner Minimal Tree (GSMT) problem: Given a weighted
graph G = (V, E), and a set of nodes N ~ V, find a minimum-cost tree
T = (V', E') with N ~ V' ~ V and E' ~ E.

The GSMT problem is NP-complete, since the geometric SMT problem is a
special case. The heuristic of Kou, Markowsky and Berman (KMB) (159) solves
the GSMT problem in polynomial time with performance ratio ~ 2, using the
following three basic steps (see Figure 2.27).

• Construct the complete graph G' over N with the weight of each edge
eii equal to the cost of the corresponding shortest path in G between ni
and ni. We call this shortest path path(ni, ni), and its cost is denoted
dista(ni,ni)·

• Compute MST(G'), the minimum spanning tree of G', and expand each
edge eij of MST(G') into the corresponding path(ni, ni) to yield sub graph
G" that spans N.

• Finally, compute the minimum spanning tree MST(G"), and delete pen­
dant edges from MST(G") until all leaves are members of N.

The resulting tree is an approximation to the GSMT that has cost no more
than 2 · (1- t) times optimal, where Lis the minimum number of leaves in
any optimal Steiner tree solution (159).

The Kou, Markowsky and Berman (KMB) Algorithm
Input: A graph G = (V, E) with edge weights Wij and a. set N ~ V
Output: A low-cost tree T' = (V', E') spanning N (i.e. N C V' and E' C E)
G'- (N,N x N), with edge weights wii = dista(n;,nj)
ComputeT= (N, E") = MST(G')
G" = Ue;jEE" patha(n;, ni)
ComputeT'= MST(G")
Delete pendant edges from T' until all leaf nodes are in N
Output T'

Figure 2.27 The KMB heuristic for the GSMT problem.

The Iterated 1-Steiner approach can be generalized to solve the Steiner problem
in arbitrary weighted graphs, by combining the geometric IlS heuristic with
the KMB graph algorithm. The resulting hybrid method inherits the good

.58 CHAPTER 2

average performance of the Iterated 1-Steiner method, while also enjoying the
error-bounded performance of the KMB algorithm. We refer to this hybrid
method as the Graph Iterated 1-Steiner (GilS) algorithm. The GUS method is
essentially an adaptation of IlS to graphs, where the "MST" in the inner loop
is replaced with the KMB construction. That is, instead of using an "MST"
subroutine to determine the "savings" of a candidate Steiner point/node, we
use the KMB algorithm for this purpose. Thus, given a graph G = (V, E), a
set N <;;; V, and a set S of potential Steiner points, we define the following:

.6-KMB(N, S) = cost(KMB(N))- cost(KMB(N US))

The GllS algorithm (Figure 2.28) repeatedly finds Steiner node candidates
that reduce the overall KMB cost and includes them into the growing set of
Steiner nodes S. The cost of the KMB tree over N U S will decrease with
each added node, and the construction terminates when there is no x E V with
.6-KMB(N US, {x}) > 0.

Graph Iterated 1-Steiner (GilS) Algorithm
Input: A weighted graph G = (V, E) and a set N ~ V
Output: A low-cost tree T' = (V', E') spanning N (i.e. N ~ V' C F and E' C E)
S=0
While T = {x E V- N I ~KMB(NuS, {x}) > 0} -:f; 0 Do

Find x E T with maximum ~KMB(N U S, { x})
S=SU{x}

Return KMB(N uS)

Figure 2.28 The Graph Iterated !-Steiner algorithm (GilS).

Given a weighted graph and an arbitrary set of nodes N, a performance ratio
for GllS of 2 · (1- t) follows from the KMB bound and the fact that the cost of
the GUS construction cannot exceed that of the KMB construction. If INI ~ 3
(e.g., a VLSI signal net with three or fewer terminals), GUS is guaranteed to
find an optimal solution. Although the worst-case performance ratio of GllS
is the same as that of KMB, in practice GllS significantly outperforms KMB
[7, 8]. Given a faster implementation of the KMB method [249], the GllS
algorithm can be implemented within time O(INI · IGI + INI4 log INI), where
INI ~ lVI is the number of nodes to be spanned and IGI = lVI +lEI is the
size of the graph. Other works that address Steiner routing in a graph include
[48, 104, 166].

Area .59

Note that the GIIS template above can be viewed as an Iterated J(M B (IKMB)
construction, and that KMB inside the inner loop may be replaced with any
other graph Steiner heuristic, such as that of Zelikovsky (ZEL) [254], yield­
ing an Iterated Zelikovsky (IZEL) heuristic. IZEL enjoys the same theoretical
performance bound as ZEL, namely 161 • Experiments have shown that these
heuristics in order of increasing empirical average performance are: KMB, ZEL,
IKMB, and IZEL [9]. Thus, iterating a given Steiner heuristic is an effective
general mechanism to improve empirical performance without sacrificing theo­
retical performance bounds.

2.8 EXPERIMENTAL RESULTS

We have implemented both serial and parallel versions of the IlS, B1S, and
PI2S algorithms, using C in the Sun workstation environment. We compared
these with the fastest known optimal Steiner tree algorithm (OPT) of Salowe
and Warme [208] on up to 10000 pointsets of various cardinalities. Random
instances were generated by choosing the coordinates of each point indepen­
dently from a uniform distribution in a 10000 x 10000 grid; such instances are
statistically similar to the terminal locations of actual VLSI nets and are a
standard testbed for Steiner tree heuristics [138]. Both IlS and B1S have very
similar average performance, approaching 11% improvement over MST cost
(Figure 2.30(a)). 10 The average number of rounds for B1S is 2.5 for sets of
300 points, and was never observed to be more than 5 on any instance (Figure
2.30(b)); over 95% of the total improvement occurs in the first round, and over
99% of the improvement occurs in the first two rounds. The average number
of Steiner points generated by BlS grows linearly with the number of points
(Figure 2.30(c)). An example of the output of BlS on a random 300-point set
is shown in Figure 2.29.

Figure 2.31(a) shows the performance comparison of B1S, PI2S, and OPT on
small pointsets. We observe that the average performance of PI2S is nearly
optimal: for n = 8, PI2S is on average only about 0.11% away from optimal,
and solutions are optimal in about 90% of the cases (Figure 2.31(b)). Even
for n = 30, B1S is only about 0.30% away from optimal, and yields optimal
solutions in about one quarter of the cases.

10 Recently, other Steiner heuristics with performance approaching that of ItS were pro­
posed by Borah et al. [36], Chao and Hsu [43], and Lewis et al. [171].

60 CHAPTER 2

Figure 2.29 An example of the output of BlS on a random set of
300 points (hollow dots). The Steiner points produced by BlS are
denoted by solid dots.

We timed the execution of the serial and parallel versions of BlS, using both a
naive O(n4 logn) implementation and the O(n3) implementation which incor­
porates the efficient, dynamic MST maintenance as described in Section 2.5.
The parallel implementation (see 2.4.3used nine Sun 4/40 SPARCl worksta­
tions, with a Sun 4/75 SPARC2 as the master processor. For n = 100, the
fast serial implementation is 247 times faster than the naive implementation,
and the parallel implementation running on 10 processors is 1163 times faster
(Figure 2.30(d)). Even for small pointsets, the enhanced implementation is
considerably faster than the naive one: for n = 5, the serial BlS is on average
more than twice as fast as the naive implementation, while for n = 10 the se­
rial speedup factor approaches 7. Notice that the serial speedup increases with

Area 61

problem size; the parallel speedup (defined as the parallel time divided by the
serial time) also increases with problem size, reaching about 7.2 for n = 250
using 10 processors.

The average running times of the algorithms for various pointset cardinalities
are compared in Figure 2.30(d). The most time-efficient of the heuristics is
B1S, requiring an average of 0.009 CPU seconds for n = 8, and an average
of 0.375 seconds for n = 30. Using PikS (or PBkS) with k > 2 improves
the performance, but slows down the algorithm. Recall that for arbitrary k,
PlkS (PBkS) always yields optimal solutions for ~ k + 2 points, but has time
complexity greater by a factor of n2(k-l) than PllS (PBlS). While this enables
a smooth tradeoff between performance and efficiency, the performance of the
PBkS algorithm with k = 2 is already so close to optimal that use of k > 2 is
not likely to justify the resulting time penalty in most applications.

In three dimensions, we observed that the limit when the number of planes L
approaches oo, the average performance of PBlS approaches 15% improvement
over MST cost, and the performance increases with L (Figure 2.31(c)). Recall
that the average savings over MST cost in three dimensions is expected to
be higher than in two dimensions, since the worst-case performance ratio is
higher also (i.e., ! for three dimensions vs. ~ for two dimensions). The number
of added Steiner points in three dimensions grows linearly with the pointset
cardinality (Figure 2.31(d)). In all cases, the L parallel planes were uniformly
spaced in the unit cube (i.e., they were separated by !j; units apart, where
G = 10000 is the gridsize). The OPT algorithm of Salowe and Warme [208)
does not generalize to higher dimensions, and thus we were not able to compare
the three-dimensional version of PBlS against optimal solutions. As in two
dimensions, the average number of rounds for BlS is very small.

62 CHAPTER 2

~ 11.0

!
)1o.s
i ! 10.0

Ill
'-'

.t 9.S

~
Ill

~

~
9.0,r""'......,.~~~-r"~.,..............,

SO 100 ISO 200 2SO 300 50 100 150 200 250 300

Pointset Size Polntset Size

(a) (b)

Naive BlS I (..nal)

.f.l
0~~~~~~~~~

0 100 200
50 I 00 ISO 200 250 300

Pointset Size

(c)

Pointset Size

(d)

Figure 2.30 (a) Average performance of BlS, shown as percent
improvement over MST cost. (b) Average number of rounds for
BlS. (c) Average number of Steiner points induced by BlS (verti­
cal bars indicate the range of the minimum and maximum number
of Steiner points added) (d) Average execution times (in CPU sec­
onds) for BlS, for both the naive implementation, as well as the
"fast" BlS which uses the incremental MST maintenance scheme
(also shown are OPT and the parallel version of BlS).

300

Area

~ 11.0

100
"I

lo
j

i ~
ii! 10.8 .s 80

i "I

10.6 :
J i 60

~ 10.4 c:.J ._, 'S
gj, ...
= = 'ij: 10.2 ~ 40
~ ,t
~

10.0 < s 10 IS 20

~
10 IS 20 2S

Pointset Size Pointset Size

(a) (b)

~ ll

~ 15
= £

~ t 30 c]
114 r.f.l

'S e 13 .. 20
Q,

= .§ 12 ~ ~
gj, II ~10
-~ ~
"" rii r.f.liO ...
~ = 0 < Q

~
s 10 15 20 25 30 <") 10 20 30 40

Pointset Size Pointset Size

(c) (d)

Figure 2.31 (a) Average performance in two dimensions of PI2S,
BlS, and OPT; note that PI2S is only 0.25% (or less) away from
optimal. (b) Percentage of all cases when the heuristics find the
optimal solution (note that PI2S yields optimal solutions a large
percentage of the time). (c) Average performance of PB lS in three
dimensions for various values of L = number of parallel planes. (d)
Average number of Steiner points added by BlS in three dimensions
for L = oo.

63

2S

so

3
DELAY

Overview of the Chapter

This chapter considers the problem of minimizing signal delay for performance­
driven system design. The signal delay objective moves us from the unoriented
pointset P of the Steiner problem to an oriented signal net S which has an
identified source. Optimal-delay wiring geometries can differ substantially from
those of optimal-area (Steiner minimal tree) solutions, particularly as technol­
ogy moves into submicron regimes and layout dimensions continue to increase.
Our discussion reflects the history of our recent research, which has addressed
four major issues.

First, there is the issue of technology-dependent methodologies versus technology­
independent methodologies. Analysis of the Elmore delay formula for dis­
tributed RC trees motivates a cost-radius tradeoff that is clearly dependent
on technology, as has been discussed in [13, 16, 17, 62, 63, 156]. Thus, routing
tree constructions that are based on aspects of technology, net criticality, or
other factors can potentially improve over static, "oblivious" methods.

Second, there is the issue of "actual delay" versus geometric objectives. Many
early works used geometric objectives, e.g., tree cost or tree radius, essentially
for algorithmic convenience and tractability of analysis. By contrast, the class
of objectives proposed by Boese et al. [32, 34]leads to improved performance by
optimizing Elmore delay directly. A review of the various delay estimates, along
with data establishing their respective fidelities to SPICE-computed delay, is
given in the Appendix.

64

Delay 65

Third, there is the issue of minimizing net-dependent delays versus sink­
dependent delays. Because timing-driven placement and routing will usually be
iterated with static timing estimation, critical-path information is often avail­
able during the routing tree construction. Thus, a formulation which optimizes
delay to a set of critical sinks, as in the work of Boese, Kahng and Robins [34),
is of interest.

Finally, the fourth issue involves quantifying the the near-optimality of minimum­
delay routing heuristics. Just as empirical studies showed that IlS averages
within a fraction of one percent from optimal for the rectilinear SMT problem,
the "SERT-C" heuristic proposed in [34] is actually very close to optimal in
terms of weighted critical sink delays. Boese and coauthors [32] established
a basis for this assessment by showing how to construct Steiner trees with
optimal Elmore delay. Their proof of correctness uses (i) a generalization of
Hanan's theorem to Elmore delay-optimal Steiner trees, and (ii) a "peeling"
decomposition for optimal Steiner trees.

In addition to these issues and their solutions, we will describe a number of
confirming experimental results. The chapter concludes with a survey of other
recent advances in performance-driven interconnect design, notably the ap­
plication of non-tree topologies and wiresizing techniques to improve circuit
performance.

3.1 PRELIMINARIES

With the scaling of device technology and die size, interconnection delay now
contributes up to 70% of the clock cycle in dense, high performance circuits
[18, 77, 234]. As a result, performance-driven layout design has been studied ac­
tively since the late 1980's. Because module placement has a significant effect on
the space of achievable signal delays, initial research centered on timing-driven
placement, in which the objective is for adjacent modules on critical paths to be
placed close together. Examples of timing-driven placement algorithms include
a "zero-slack" algorithm proposed by Hauge et al. [119]; the fictitious-facilities
and floating-anchors methods of Marek-Sadowska and Lin [178); and a linear
programming approach by Jackson et al. [140). Several other timing-driven
placement approaches, including methods based on simulated annealing, have
been proposed in [77, 173, 234]. Since in general no global routing solution is
available at the placement step, each of these methods uses a simple estimate
of interconnection delay, such as those discussed below.

66 CHAPTER 3

Given a timing-driven module placement, the corresponding timing-driven rout­
ing algorithm minimizes average or maximum signal delay from the source ter­
minal to the sink terminals of a signal net. An example method is that Dunlop
et al. [79], which determines net priorities based on static timing analysis; nets
with high priorities are processed earlier using fewer feedthroughs. Jackson et
al. [142] outlined a hierarchical approach, and Prasitjutrakul and Kubitz [192]
proposed a router for building-block design based on the A* search algorithm.
These results have had great influence on succeeding works, but fall short of
providing general, well-motivated solutions to the problem of optimal-delay
routing. In what follows, all of our methods will be motivated by a simple,
recurring question: what is the proper objective for optimal-delay routing tree
construction?

3.1.1 Definitions

We define a signal netS= {so,sl, ... ,sn} to be a set of n + 1 terminals,
with so the source and the remaining terminals sinks. Performance-driven
interconnection problems have two basic flavors: geometric instances arising
in cell-based design, and weighted graph instances arising in building-block
design. In cell-based design, routing cost is closely approximated by Manhattan
distance, while in building-block design, routing cost is typically given by the
cost of a shortest path in the channel intersection graph of the layout (see
Section 1.2). Thus, the signal netS is more generally viewed as being embedded
in an underlying routing graph G = (V, E) with S ~ V. The graph G is
connected and has variable edge weights (costs): each edge ei; E E has a cost
d(Vi, v;) equal to the routing cost between Vi and v;. We seek a routing tree T
in G that spans S. The cost ofT is defined to be cost(T) = l::e; ·eT d(Vi, v;).
When V = S, the spanning tree with minimum cost is the MST dr TM.

The cost of a path in G is defined as the sum of its edge costs. The minimum­
cost path in G between two vertices Vi and v; is denoted minpatha (Vi, v;), and
we use dista(vi,v;) to denote its cost. In a routing tree, minpathT(Vi,Vj) is
simply the unique Vi-Vj path. The distance in a tree from the source to a given
sink Si is. specially denoted as I, = distT (so, Si).

In much of the following discussion, the radius of either a signal net or a routing
tree will hold special interest. The radius of a routing tree T is r(T) = rll!'JX li.

l<a<n
Given signal net S and an underlying routing graph G, we use Ri to denote
the cost of the shortest so-si path in G, i.e., Ri = dista(so, si)· A shortest
paths tree, denoted as an SPT or Ts, has li = Ri for all sinks Si. At times,

Delay 67

we use R to denote the maximum R; value over all sinks s;, and we say that
R is the radius of the signal net. Much of our discussion will concern the case
of S being embedded i~ geometry, so that G is a complete graph with each e;j

having cost equal to the Manhattan distance, d;j, between v; and Vj. In this
case, R; = d0; for all sinks s;. Finally, a vertex v that is embedded in the plane
has :c- and y-wordinates v., and Vy, respectively.

3.1.2 The Linear and Elmore Delay Approximations

The proper objective to use in efficiently constructing a "high-performance
routing tree" over a given signal net is not yet established. Many works rely o~
the linear delay model, where the signal delay from s; to Sj is proportional to
the length of the s;-si path in the routing tree. The linear model can be used
to motivate essentially geometric routing constructions (e.g., a shortest paths
tree has optimum delay at every sink according to the linear model). However,
valuable insights are also obtained by considering the Elmore delay model, i.e.,
the first moment of the impulse response for a distributed RC representation
of the routing tree [87].

Elmore delay in an RC tree is defined as follows [205, 240]. Given routing tree
T rooted at the source s0 , let ev denote the edge from node v to its parent
in T. The resistance and capacitance of edge ev are denoted by r •· and c •• ,
respectively. Let Tv denote the subtree ofT rooted at v, and let Cv denote
the sink capacitance of v (we assume that Cv = 0 if v is a Steiner node). We
use Cv to denote the tree capacitance of Tv, defined to be the sum of sink and
edge capacitances in Tv (note that when Tv is a single (leaf) node, Cv is equal
to the corresponding sink capacitance cv). Using this notation, the Elmore
delay along edge ev equals r •• (.:r + Cv). Let rd denote the on-resistance of
the output driver at the source. Then the Elmore delay tEv(s;) at sinks; is

tEv(si) = rdCa 0 + L r •• (;· + Cv)
e.Epath(so,s;)

(3.1)

A fundamental property of this expression, which has been noted by Lin and
Mead [176], Rubinstein et al. [205), Tsay [240] and others, is that tED (s;) can
be evaluated for all i = 1, ... , n in 0(n) time. Two depth-first traversals of the
tree are sufficient: the first traversal calculates all Cv values and the delays on
each edge, while the second adds up the delays on each source-sink path. This

68 CHAPTER 3

calculation is enabling to the efficient methodologies described in Section 3.3
below.

In the Appendix, we review the underlying theory behind several efficient de­
lay approximations, including Elmore's approximation and the class of two-pole
(moment-matching) methods. The Appendix also reviews recent work of Boese
et al. (30, 31, 32, 33, 34] which shows that Elmore delay has high fidelity with re­
spect to SPICE-computed delay over a wide range of technologies. It turns out
that although Elmore's formula can yield inaccurate delay estimates, the rank­
ing of alternate routing tree solutions by Elmore delay closely reflects the rank­
ing obtained using SPICE3e2. Similar results have been obtained by Kim et al.
(157], who simulated critical-path delays over a suite of 209 ripple-carry adder
implementations and found near-perfect correlation between SPICE-computed
and Elmore delays. A theoretical motivation for this correspondence, based on
group delay, was given in (245]. These results form the basis of our focus on
Elmore delay at the end of this chapter.

If re. and ce. are proportional to the length of ev (with unit resistance and
unit capacitance given by r and c), then the rd · C~ 0 term in Equation 3.1
has linear dependence on cost(T), while the summation term has quadratic
dependence on I;. As a result, we can distill an essential "cost-radius conflict"
inherent in routing tree design: (i) when rd is relatively large, the rd . c~o
term dominates the summation and suggests a minimum-cost routing solution,
but (ii) when rd is relatively small, the quadratic dependence on source-sink
pathlength dominates, and suggests a "star-like", shortest paths tree topology.

An essentially similar insight was derived in [28, 65, 257] from the simple upper
bound on Elmore delay due to Rubinstein et al. (205]. The Elmore delay upper
bound for a tree T is simply the summation, over all nodes in T, of the RC
product arising when each node capacitance sees all the resistance between the
node and the source.1 Note that this upper bound applies generically to delay at
every sink, unlike the sink-specific expression of Equation 3.1. The upper bound
can be re-expressed as the sum of four terms: one term is minimized when T has
minimum cost; a second term is minimized when T is a shortest paths tree; a
third term is minimized when T is what the authors call a "quadratic minimum

1 Let sj be one of a. finite number of points used to represent the tree, a.nd let c' 1 denote the
total capacitance a.t sj (when the tree is modeled a.s composed of a. finite number of segments,
c' j indicates the sum of the internal capacitance (e.g., if sj is a sink) and the wire capacitance
between sj a.nd the nearest point on the sj-so path). If Rj denotes the total resistance on

the sj-so path, then the upper bound on a.ny sink delay in T is tED $ I: j Rj c1 j, where the

summation is taken over a.ll points in the tree, not just the sinks s;.

Delay 69

Steiner tree"; and the fourth term is a constant. As in the analysis of Equation
3.1, it is the relative size of rd which indicates the dominant term in the delay
expression. The size of rd relative to the unit resistance r is a "resistance
ratio" [28, 65, 256) that captures the technology vis-a-vis routing tree design.
Values of r;- have typically decreased in current submicron CMOS and MCM
substrate technologies (see Table 3.1), suggesting that the traditional minimum­
cost objective is becoming less germane to performance-driven routing.

Name ICl IC2 IC3 MCM
Technology 2.0 p,m 1.2p,m 0.5 p,m MCM

Td 164.0 0 212.1 0 270.0 0 25.0 0
r 0.033 0/ p,m 0.073 0/ p,m 0.112 0/ p,m 0.008 0/ p,m
c 0.019 !Ffp,m 0.022 /Ffp,m 0.039 f F / p.m 0.06 /Ffp.m
c; 5.7 JF 7.06 !F 1.0 JF 1000 JF

!f (x 106 p.m) 0.0050 0.0029 0.0024 0.0031
chip size lxl cm2 lxl cm2 lxl cm2 lOxlO cm2

Table 3.1 Interconnect parameters for three CMOS IC technolo­
gies and an MCM technology. Parasitics for the ICl and IC2 tech­
nologies are provided by the MOSIS project at the USC Informa­
tion Sciences Institute; IC3 parasitics are courtesy of the Micro­
electronics Center of North Carolina; MCM interconnect parasitics
are courtesy of Professor Wayne W.-M. Dai of UC Santa Cruz and
correspond to data provided by AT&T Microelectronics Division.
Unit inductance for the MCM interconnect is 380/ H / J.lm, and is
assumed negligible for IC interconnect. The rd values are scaled
driver resistances. Sink loading capacitances (Ci) are derived for
minimum-size transistors.

3.2 GEOMETRIC APPROACHES TO DELAY
MINIMIZATION

The above analysis of Elmore delay provides a retrospective validation of several
minimum-delay routing tree heuristics which trade off between tree cost and
tree radius. In this section, we first survey two early works that adopt such
geometric "cost-radius" intuitions, and then present three effective classes of
heuristics that are also based on purely geometric objectives.

70 CHAPTER 3

3.2.1 Early Cost-Radius Tradeoffs

An early work of Cohoon and Randall [57] is notable for its prescient insights.
For any given signal net, [57] proposed the construction of a "maximum per­
formance tree" corresponding to "a shortest path tree ... with minimum total
length", and noted that such a tree seems difficult to construct. While the
minimum-cost shortest paths (spanning) tree is easily computed2 , the Steiner
version of Cohoon and Randall's question is precisely the rectilinear Steiner
arborescence problem discussed in Section 3.2.4 below. A heuristic was given
which determines a central trunk for the Steiner topology, then "attempt[s]
to combine the best features of an RMST and an RSPT", i.e., a rectilinear
minimum spanning tree and a rectilinear shortest paths tree. This idea, too, is
interesting in light ofthe various cost-radius tradeoffs that are discussed below.
The heuristic in [57] connects the most distant sink directly to the source with
a wire of length R, then proceeds with an MST-like construction; if a terminal
Si is about to be added into the tree with li > R, then the method reverts back
to an SPT-like construction. In this way, all source-sink paths are guaranteed
to be of length ~ R. A final phase of the heuristic performs edge-overlapping
to further reduce the Steiner tree cost.

The work of Cong et al. [61], which was contemporaneous with [57], also
observed the existence of conflicting min-cost and min-radius objectives in
performance-driven routing. While the shortest paths tree (SPT, or Ts) has
the smallest possible radius of any routing tree, its cost might be O(jSj) times
greater than the cost of the minimum spanning tree (MST, or TM); see Figure
3.1. On the other hand, the radius r(TM) can be much larger than 1·(Ts).

To address both tree radius and tree cost in the routing construction, [61]
proposed the following:

The Bounded-Radius Minimum Routing Tree (BRMRT) Problem:
Given a parameter t: ;::: 0 and a signal net with radius R, find a minimum­
cost routing tree T with radius r(T) ~ (1 + t:) · R.

The parameter t: specifies a tradeoff between the minimum-radius and minimum­
cost objectives. When t: = 0, a minimum-radius spanning tree is obtained, and
as t: increases, the weaker radius restriction allows further reduction of tree
cost. When t: = oo, a minimum-cost spanning tree is obtained. Figure 3.2 gives

2 We call such a tree a minimum-cost spanning arborescence. It may be comput.ed by
executing Dijkstra's single-source shortest paths algorithm, and breaking ties in each pass
so that the clos.est possible node is chosen among all possible parents of the new permanent
node.

Delay

(a) (b) (c)

Figure 3.1 Three interconnection trees for the same signal net with
so at the center: (a) the shortest paths tree Ts; (b) the minimum
spanning tree TM; and (c) a "tradeoff" between the two construc­
tions.

71

an example with three distinct spanning trees obtained using different values
off: Figure 3.2(a) shows a minimum-radius spanning tree corresponding to
the case f = 0, with r(T) = 6; Figure 3.2(b) shows a solution with e: = 1 and
r(T) = 10; and Figure 3.2(c) shows the minimum spanning tree corresponding
to the case f = oo, with r(T) = 14. The complexity of the BRMRT formulation
for spanning trees is still open; when Steiner points are allowed in the routing
tree, choosing e: = oo yields the Steiner minimal tree formulation.

3 3

6
4

4 3 3 3

(a) £ = 0, cost(T) = 17, r(T)=6 (b) £ = I, cost(T) = 15, r{T)= 10 {c) E =oo, cost{T) = 14, r{T)= 14

Figure 3.2 Increasing f may result in decreased tree cost, but in­
creased tree radius.

72 CHAPTER 3

The Bounded-Prim (BPRIM) Algorithm

Recall that in cell-based design methodologies, routing costs are closely approx­
imated by geometric distance, and the underlying routing graph is essentially
the complete graph G = (V, E) with V = S. In this regime, spanning tree solu­
tions will be of interest, even for performance-driven routing formulations: (i)
spanning trees are often easier to compute than Steiner trees, and (ii) a span­
ning solution can be easily converted into a corresponding Steiner solution by
edge-overlapping, while retaining essentially identical radius parameters. For
the BRMRT variant which seeks a bounded-radius spanning tree, an effect.ive
heuristic follows the general scheme of Prim's minimum spanning tree con­
struction [196]. This "Bounded-Prim" (BPRIM) algorithm (Figure 3.3) grows
a tree T = (V', E') which initially contains only the source so. At each step,
terminals Si E V' and Sj E S - V' are determined such that d(Si, Sj) is mini­
mum. If adding the edge (Si, Sj) to T does not violate the radius constraint,
i.e., /; + d(s;, s;) :::; (1 +c) · R, the edge (Si, s;) is added to T. Otherwise, the
algorithm "backtraces" along the path from Si to so in T, and finds the first
terminal s;• such that the edge (Si', Sj) is appropriate, i.e., /;• + d(s;•, Sj) :::; R.
The edge (s;•, Sj) is then added to the tree. In the worst case, the back tracing
will terminate with s;• = s0 , since edge (s0 , Sj) is certain to be appropriate.

Note that the back tracing chooses s;• so that li' + d(Si', Sj) :::; R, instead of the
more obvious condition :::; (1 +c) · R. This introduces some "slack" at Sj, so
that terminals added later within an c · R neighborhood of s; will not cause
additional backtracing. Limiting the amount of backtracing in this way keeps
the cost of the resulting tree closer to that of the minimum spanning tree, while
still guaranteeing that backtracing is always possible. By contrast, the method
of Cohoon and Randall always enforces c = 0 in its construction. The most
direct implementation of BPRIM requires 6(n2) time since each new terminal
can force examination of most of the previously added terminals.

It is easy to see that r(TBPRIM) is never greater than r(TM) if the MST TM
is unique.

Lemm,a 3.2.1 If the MST TM is unique, then r(TBPRIM):::; r(TM).

Proof: If r(TM) :S (1 + c) · R, then r(TBP RIM) = r(TM) since TBP RIM and
TM will each be uniquely constructed, and will be identical to each other.
Otherwise, r(TBPRIM) :::; (1 +c)· R < r(TM) by construction. 0

Delay

Algorithm BPRIM: Computing a bounded-radius spanning tree
Input: Net S with radius R, source so; parameter f ~ 0
Output: Spanning tree TBPRIM with r(TBPRIM) < (1 +f)· R
T = (V ,E') = ({so},0)
While IV'I <lSI

Selects; E V' and Sj E S- V' minimizing dist(s;, sj)
If l; + dist(s;, Sj) :5 (1 +f)· R Then s;• = s;
Else find the first terminal s;• along the path in T from s; to so

such that I;• + dist(s;•, Sj) :5 R
V'=V'U{sj}
E' = E' U {(s;•,Sj)}

Output TBPRIM = T

Figure 3.3 Algorithm BPRIM: computing a bounded-radius span­
ning tree TBPRIM for a given signal netS, with source so E Sand
radius R, using parameter f ~ 0.

73

When TM is not unique, the radii of different minimum spanning trees can vary
by an unbounded amount, and r(TBPRIM) may be greater than r(TM). Thus,
Lemma 3.2.1 will not hold for all choices of TM. In the example of Figure 3.4,
a Prim-like minimum spanning tree algorithm may choose a connection to Yl
instead of Xt, or Y2 instead of x2, etc., such that r(TBP RIM) ~ r(TM) even
though the two trees have identical cost. Of course, r(TBPRIM) cannot exceed
the maximum possible r(TM). Choosing a minimum-radius TM when the MST
is not unique has unknown complexity.

In general, the worst-case cost performance ratio between cost(TBPRIM) and
the cost of the optimal bounded-radius minimum spanning tree will depend
on the f and lSI. Experimental results [63] show that coa:~~(!j.~t), which is
clearly an upper bound on the cost performance ratio, is in practice bounded
by a small constant even when lSI is large. However, the cost performance ratio
is not bounded by a constant for any value of f.

Theorem 3.2.2 For any value oft:, the ratio of cost(TBPRIM) to the cost of
the optimal bounded-radius minimum spanning tree can be arbitrarily large.

Proof: The construction of Figure 3.5 shows that BPRIM will have unbounded
cost performance ratio. The optimal solution is shown on the left with all

74 CHAPTER 3

Figure 3.4 A construction for which the radius of an MST {right)
is arbitrarily larger than that of a minimum-radius MST (left).

source-leaf pathlengths equal to R. Terminal y is situated so that the path­
length from the source to any leaf via y is slightly greater than (1 +f) · R. This
will cause the BPRIM construction to backtrace all the way back to the source
from every leaf, yielding an unbounded performance ratio. For any value off.
y can be replaced by many closely spaced terminals so that BPRIM creates an
appropriately long path between so and x. 0

Extensions of BPRIM

The bounded-radius construction can also be applied to minimum spanning
tree methods other than Prim's algorithm. A more general algorithm template
is given in Figure 3.6.

Many distinct variants are possible, depending on how the pair of terminals Si

and Sj are selected inside the inner loop. The following variants Hl, H2 and
H3 have improved performance over the original BPRIM algorithm [61. 63].
These three variants afford progressively more freedom in the choice of Sj and
its point of connection to the existing tree. Whereas BPRIM connects SJ using
the first appropriate edge to s;' along the s;-s0 path, Hl picks the minimum­
length appropriate edge to any s;' on the path; H2 finds the minimum-length
appropriate edge to any s;' E V'; and H3 finds the minimum-length appropriate
edge between any s;' E V' and any Sj E S- V'.

Delay

y

source~

• •

• •

all leaves
connect directly

to source

•

'"-------oso

y

Figure 3.5 The value of cost(TBPRIM) is not bounded by any con­
stant factor from optimal for any value of f. The optimal solution
is shown on the left, and TBPRIM is shown on the right.

Algorithm Extended-BPRIM: Computing a bounded-radius spanning tree
Input: NetS with radius R, source so; parameter t:;:: 0
Output: Spanning tree T with r(T) < (1 + t:) · R
T= (V',E') = ({so},0)
While IV'I < lSI

Select two terminals s; E V' and s j E S - V'
with l; + d(s;, Sj) $ (1 +c)· R

V'=V'u{si}
E' = E' U {(s;, Sj)}

Output T

Figure 3.6 A more general BPRIM template.

75

• Hl - Find s; and Sj as in BPRIM, and select the terminal s;' along
the path in T from s; to so which yields an appropriate edge (s;', Sj) of
minimum length.

• H2 - Finds; and Sj as in BPRIM, and select the terminals;' E V' which
yields a minimum-length appropriate edge (s;', Sj).

76 CHAPTER 3

• H3 - Find a pair of terminals Si E V' and Sj E 5 - V' that yield a
minimum-length appropriate edge (si, Sj).

Figure 3.7 Construction showing that the cost performance ratio of
both H2 and H3 is not bounded by a constant for any f. The optimal
solution is shown on the left; both TH2 and TH3 will be identical to
the tree shown on the right. As with Figure 3.5, the construction
can be changed to fit any given value of f by introducing paths of
closely spaced points between s0 and x.

The time complexity of variants Hl and H2 is 0(151 2), while variant H3 can
be implemented to run in time 0(1513). Lemma 3.2.1 holds for each of Hl, H2,
and H3. However, Figure 3.5 shows that variant Hl will also have unbounded
cost performance ratio, and the example of Figure 3.7 establishes unbounded
performance ratio for variants H2 and H3. Notice that while Hl, H2 and
H3 appear ordered by increasing power and flexibility, Figure 3.8 shows that
BPRIM can outperform these more complicated variants.

3.2.2 Shallow-Light Constructions

In order to bound both the worst-case radius performance and the worst-case
cost performance of the routing tree, "shallow-light" tree constructions have

Delay

1+25 1+25

2+25

Figure 3.8 Example for which BPRIM (left) outperforms variants
H2 and H3 (right); 8 is a very small real number and f = (2-
38)/(2 + 38).

77

been proposed which capture properties of both TM and Ts simultaneously to
within constant factors of optimal.3

Definition: Given a signal net S and parameter a ~ 1, a shallow-light tree
T = (S, E') is a spanning tree over S that satisfies: (i) l; ~ a· R;, 1 ~ i ~ n,
and (ii) cost(T) ~ j3 · cost(TM) with the constant j3 depending only on a. We
call such a tree an (a,/3)-tree ..

Works by three separate groups provide shallow-light constructions [17, 63, 156).
All three groups use the following general technique, pioneered by Awerbuch
et al. in [16]:4

1. construct TM;

2. visit the terminals of S in the order of a depth-first traversal of TM;

3 The term "shallow-light" seems to have originated in the work of Awerbuch eta!. [16],
and indicates a tree with bounded radius (i.e., "shallow") and bounded cost or weight (i.e.,
"light").

4 This basic technique of Awerbuch et al. (16] can be traced further back to literature in
the sparse graph spanner area of computational geometry, e.g., see the work of Levcopoulos
and Lingas [170]. Generally speaking, techniques used for sparse graph spanners have strong
resonances with VLSI routing objectives (e.g., see [42, 191]). However, a graph spanner
has bounded pathlengths between all pairs of nodes in a given graph, which is too strong a
constraint for our (single-source) routing application.

78 CHAPTER 3

3. whenever violations of the prescribed radius bound are observed, insert or
delete edges as necessary; and

4. return the shortest paths tree (with respect to the single source s0) over
the resulting graph.

Cong et al. [63] proposed the "Bounded Radius, Bounded Cost" (BRBC)
algorithm for performance-driven global routing; this algorithm is the focus of
the present subsection. The unpublished manuscript of Awerbuch et al. [17]
describes an algorithm that is identical to BRBC, and shows that it yields a
shallow-light, (1 + 2t:, 1 +~)-tree for parameter f > 0. Finally, the method
of Khuller et al. [156] obtains a (1 + f, 1 + ~) shallow-light construction by
"relaxing" edges, in contrast to the earlier works of [17, 63] which add complete
source-sink shortest paths when violations of the radius bound occur.

In surveying these results, which have occurred in rapid succession over the
past several years, several aspects of their precise history should be noted. The
seminal work of Awerbuch et al. [16] gave a "diameter shallow-light" tree con­
struction, with simultaneous low diameter and low cost, to enable efficient mes­
sage passing and global function computation over a communication network.5

The authors of [16] achieved tree diameter within a factor 1 + 2t: of optimal,
and tree cost within a factor 2 + ~ of optimal, for parameter f > 0. The BRBC
method may be viewed as a straightforward "radius shallow-light" extension
of Awerbuch et al.'s method in [16]. However, the motivating BRMRT prob­
lem formulation is actually quite distinct from the notion of "shallow-light":
the definition of "shallow-light" implies a sink-dependent radius bound, but
the results originally proved for BRBC establish a net-dependent radius bound.
Specifically, [63] showed that BRBC achieves li $ (1 +f) · R, 1 $ i $ n, while
maintaining tree cost within 1 + ~ of optimal. The stronger result, that BRBC
is also shallow-light, was obtained in [17].

The following discussion assumes a routing graph G = (V, E) with V = S. For
ease of notation, we sometimes refer to sinks without subscripts, e.g., v, x, y,
etc.

5 Ho et al. [121, 123] have also proposed heuristics for a minimum-cost bounded-diameter
spanning tree formulation.

Delay 79

The BRBC Algorithm

The basic idea of the "shallow-light" recipe is to construct a subgraph Q of G,
such that Q spans S and has both small cost and small radius. The shortest
paths tree of Q will also have small cost and radius since it is a subgraph of
Q, and will therefore serve as a good routing solution. The BRBC algorithm
is outlined as follows (Figure 3.10 gives a more formal description):

• Compute a shortest paths tree Ts of G, and compute a minimum spanning
tree TM of G. Also, initialize the graph Q to be equal to Tu.

• Let L be the sequence of vertices corresponding to any depth-first tour of
TM; the tour will traverse each edge of TM exactly twice (see Figure 3.9),
and hence the cost of this tour is 2 · cost(TM).

• Traverse L while keeping a running total, Sum, of traversed edge costs. As
the traversal visits each vertex Li, check whether Sum> f · dista(so, Li).
If so, reset Sum to 0 and merge the edges of minpatha(so, Li) into Q.
Continue traversing L while repeating this process.

• Output TBRBC = a shortest paths tree over Q.

Figure 3.9 A spanning tree and its depth-first tour.

80 CHAPTER 3

Algorithm BRBC: Computing a bounded-radius, bounded-cost spanning tree
Input: Graph G = (V, E) (with radius R, source s0 E V), f;::: 0
Output: Spanning tree TBRBC with r(TBRBC) $ (1 + t:) · R

and cost(TBRBC) < (1 + ~) · cost(TM)
Q=TM
L = depth-first tour of TM
Sum =0
For i = 1 to ILl - 1

Sum= Surri + dist(L;, L;+l)
If Sum;::: f · disto(so, Li+l) Then

Q = Q U { edges in minpatho(so, L;+l)}
Sum= 0

Output TBRBC = shortest paths tree of Q

Figure 3.10 The BRBC algorithm. TBRBC will have radius at most
{1 +E) · R, and cost at most (1 + ~) · cost(TM).

Theorem 3.2.3 For any weighted graph G and f ;::: 0, r(TBRBC) ::; (1 +E) · R.

Proof: For any v E V, let Vi-1 be the last node before v on the MST traver­
sal L for which BRBC added minpatha(so, v;-1) to Q (see Figure 3.11). By
construction, distL(Vi-1, v) ::; E • R. We then have

distTBRBC(so, V) < distTBRBC(So, Vi-1) + distL(Vi-1 1 V)

< dista(so, Vi-d + E • R
< R+t:·R
= {1 +E)· R

0

Theorem 3.2.4 For any weighted graph G and parameter E ~ 0, cost(TBRBC) ::;
(1 + ~) · cost(TM).

Proof: Let v1 , v2, ... , Vm be the set of nodes to which BRBC added shortest
paths minpatha(s0 , v;) from the source node, and let vo =so. We have

m

cost(TBRBC) ::; cost(TM) + 2: dista {so, vi)
i=1

Delay 81

since TBRBC is a subtree of the union of TM with all of the edges in the
added shortest paths. By construction, distL(v;_ 1, vi)~ f · dist0 (s, vi) for all
i = 1, ... , m, implying

cost(TBRBC) <

<

m 1
cost(TM) + L- · distL(v;-1, v;)

i=l f

1
cost(TM) +- · cost(L)

f

2
cost(TM) + - · cost(TM)

f

2
(1 + -) ·cost(TM)

f

Figure 3.11 The BRBC construction.

0

Theorem 3.2.4 suggests that for f = 0, the ratio co::m~"::)c) is not bounded

by any constant; this is illustrated by the example of Figure 3.1, for which
co6t TsRBC · n(ISI)

cost TM lS H .

Bounded-Radius Steiner Trees

BRBC generalizes to the case where we seek to connect a subset of the vertices
in the routing graph, and can use the remaining vertices as Steiner points. 6 The
BRMRT problem then becomes the "Bounded-Radius Optimal Steiner Tree"

6 This is the case for building-block VLSI design, where the underlying routing graph is the
channel intersection graph as defined by Preas [193), Dai, Asano and Kuh [70] and Kimura
[158]. Other very similar routing graphs have been proposed in the context of escape lines by
Hightower [120] and in the context of line intersection routing by Cohoon and Richards [58].

82 CHAPTER 3

(BROST) problem, which simplifies to the NP-complete Steiner problem in
graphs when the radius bound is set to +oo.

Observe that in the BROST problem, constructing a "minimum spanning tree"
for S in G is itself an instance of the graph Steiner problem. A BRBC analog
for the Steiner case must therefore first approximate the minimum-cost Steiner
tree that connects S within G.7 Given an approximate minimum-cost Steiner
tree i', the same shallow-light construction will immediately yield a routing tree
with radius bounded by (1 +f)· r(T), and cost bounded by (1 + ~) · cost(T).

The heuristic of Kou, Markowsky and Berman (KMB) [159, 249] can be used
to build a Steiner tree T = TKMB in the underlying routing graph, such that
cost(TKMB) will be at most twice the cost of an optimal Steiner tree Topt· 8 We
may traverse a depth-first tour L of TKMB, adding into TKMB the edges in
selected shortest paths from the source to vertices of L, just as in the original
BRBC method. We then compute the shortest paths tree in the resulting graph
and output the union of all shortest paths from the source to terminals in S
(this will include intermediate non-terminals on the shortest paths as Steiner
points). We call the resulting method the BRBC_S algorithm.

Theorem 3.2.5 For any weighted routing graph G = (V, E), set of signal net
terminals S ~ V, and parameter f, r(TBRBc_s) $ (1 +f)· R and
cost(TBRBc_s) $ 2 · (1 + ~) · cost(Topt)·

Proof: By the previous arguments, r(TBRBc_s) $ (1 +f)· R. In addition,
cost(TBRBc_s) $ (1 + ~) · cost(TKMB). Since cost(TKMB) $ 2 · cost(Topt), we
have cost(TBRBC_s) $ 2 · (1 + ~) · cost(Topt), thus yielding the cost bound.9 0

7 Strictly speaking, this analogy is not a requirement. While we have used L = a depth­
first tour of a spanning tree, any tour of the vertices- hopefully with reasonably small cost
- will suffice (e.g., a traveling salesman tour). The only requirement for the tour is that it
visit every node in S.

8 Recall from Section 2.7 that the KMB algorithm works as follows. Given a graph G =
(V, E) and a signal net S ~ V, construct the complete graph G' over the vertices in S,
with each edge weight equal to the cost of the corresponding shortest path in G. Then,
compute M ST G'• the minimum spanning tree of G', and expand each edge of M ST G' into
the corresponding shortest path; this yields a subgraph G" of G that spans S. Finally,
compute MSTan and delete pendant edges from MSTau until all leaves are vertices inS.
Output the resulting tree as TK M B·

9 Using the graph Steiner heuristic of Zelikovsky [254], this cost bound may be further
reduced to Jt · (1 + ~) times optimal, and other bounds may similarly be reduced by the
factor 1/12. Howeve;, we state all of our analyses in terms of the KMB bound since the
fractions are simpler, and KMB is more widespread in the current literature (cf. works of

Delay 83

Improvements in Geometry

If the routing is in the geometric plane, so that we can introduce Steiner points
at arbitrary locations, the basic algorithm of Figure 3.10 can be modified to
introduce Steiner points on the tour L whenever Sum = 2f · R. For each of these
Steiner points, we construct a shortest path to the source and add it to Q as in
the original BRBC algorithm. Each node in the tour L will be within distance
f · R of a Steiner point, i.e., within (1 +f)· R of the source. In some sense,
each shortest path to the source "services" points on L within distance f · R
on either side of the Steiner point. Because this variant relies on an underlying
geometry, we call it the BRBC_G algorithm. The following radius and cost
bounds hold, with the proofs of these bounds following along the same lines as
the proofs of Theorems 3.2.3 and 3.2.4.

Theorem 3.2.6 In the geometric plane, r(TBRBC _G) ~ (1 + f) · R and
cost(TBRBC_G) ~ 2 · {1 + t) · cost(Topt). 0

Well-known results which bound the worst-case ratio between the optimum
Steiner tree cost and the optimum spanning tree cost in various geometries can
yield even better bounds for the above scheme. Two examples are as follows.

Corollary 3.2.7 In the Manhattan plane, r(TBRBC_G) ~ (1 +f) · R and
cost(TBRBC-G) ~ ~ · {1 + t) · Topt·

Proof: By the result of Hwang (135), the rectilinear minimum spanning tree
gives a ~ approximation to the optimal rectilinear Steiner tree. 10 We then
apply arguments similar to those used for Theorems 3.2.3 and 3.2.4. 0

Corollary 3.2.8 In the Euclidean plane, r(TBRBC _a) ~ (1 + f) · R. and
cost(TBRBC_G) ~}a· {1 + t) · Topt·

Proof: By the result of Du and Hwang (78], the Euclidean minimum spanning
tree gives a }3 approximation to the optimal Euclidean Steiner tree. We again
apply the arguments of Theorems 3.2.3 and 3.2.4. 0

Cohoon and Ganley [104] and Chiang et al. [53] which use techniques similar to Kl'v!B for
global routing).

10 Recall that the result of Berman and Ramaiyer [25] and Zelikovsky [253] imply that this
constant may be further reduced to Jt, or even less [24].

84 CHAPTER 3

This result improves with increased flexibility in the wiring geometry, e.g., if
octolinear or 30-60-90 degree wiring is allowed instead of rectilinear wiring. By
applying the result of [210] for >.-geometries (allowing angles;{), a cost bound
of '73 cos f · (1 + ~) may be established. When >. approaches oo, this bound
approaches the bound of Corollary 3.2.8 above.

We now close the discussion of the BRBC algorithm by showing how the
BRMST and BROST formulations diverge from the original shallow-light cri­
terion above.

Sink-Dependent Bounds and the Shallow-Light Result

For certain applications, one may wish to impose different wirelength con­
straints on different source-sink paths within a given signal net, since the cir­
cuit timing is path-dependent rather than net-dependent. Any timing-critical
path between a primary input and a primary output has two components: (i)
internal module delays, and (ii) one or more source-sink connections, each of
which is part of a signal net that connects an output of one module to an input
of another module. Intuitively, any source-sink connection on a timing-critical
path will require a small value of f, whereas a source-sink connection that is
not on any critical path might allow a larger value off in order to reduce tree
cost. (This issue will become the focus of Section 3.3.2 below.) With this in
mind, [63] addressed the following variant formulation:

The Non-Uniform Bounded-Radius Minimum Routing Tree Problem:
Given a signal net with source sa and radius R, and given values f; 2:: 0 associ­
ated with the sinks s;, find a minimum-cost routing tree T with It :S (1 + f;) · R
for each s;.

The BRBC method is easily modified to handle this variant, by changing
the condition inside the Figure 3.10 loop from "Sum 2:: f · dista(s, L;+l)" to
"Sum 2:: fi+l · dista(s, L;+t)". We call this variant the BRBC_f; algorithm.
Extensions to (geometric) Steiner routing are also straightforward. The fol­
lowing source-sink pathlength bound is obtained analogously to the result of
Theorem 3.2.3:

Lemma 3.2.9 For any weighted routing graph G with source sa, radius R, and
parameters f 1 , f2 , ... , fn, distTsRsc_,, (sa, s;) :S (1 + f;) · R for each sink s;. 0

Delay 85

Application of earlier arguments yields the cost bound

and the analysis in [63] establishes a somewhat better bound:

Lemma 3.2.10 For any weighted routing graph G with source so and parame­

ters f1 5 f2 5 ... 5 fn, cost(TBRBC_£;) 5 (1 + k~ 1 · HM(£ 1 ,~2 , ... ,fn)) · cost(TM),

where HM denotes harmonic mean and k = r 2 ·ct~~ Tft 1· 0

All of these bounds for the BRBC algorithm are in terms of the "net-dependent"
radius objective that is inherent in the BRMST formulation, i.e., all li are
bounded by multiples of R. Because R can be much greater than a given sink
radius Ri, a bound of h 5 (1 + fi) · R may not be meaningful in practice.
Thus, a stronger and more compelling result is that of Awerbuch et al. [17],
who showed that the BRBC algorithm is actually shallow-light. Recall that the
proof of Theorem 3.2.3 showed

distTBRBc(so, v) < distTBRBc(so, Vi-1) + distL(vi-1 1 v)

< dista(so, Vi-d + distr(vi-1, v).
/

·'
Awerbuch et al. (see Lemma 2.2 of [17]) use the "other triangle inequality" in
observing that

dista(so, Vi-1) 5 dista(so, v) + distL(vi-t. v).

This can be combined with the above relation to yield

distT8 R8 c(so, v) < dista(so, v) + 2 · distr(vi-1. v)

< (1 + 2e") · Rv

where Rv = dista(so, v).

Theorem 3.2.11 BRBC constructs a shallow-light, (1 + 2f, 1 + ~)-tree for pa­
rameter f ~ 0. 0

86 CHAPTER 3

The KRY Algorithm

The algorithm of Khuller, Raghavachari and Young (KRY) (156) provides what
is essentially a best-possible shallow-light tree construction. The KRY method
also follows the basic template of Awerbuch et al. in performing a DFS traversal
of TM. However, when an analog of the Sum variable exceeds the prescribed
radius bound, KRY adds only a piece of the shortest path back to the source,
i.e., it adds edges from the shortest path one at a time until the distance to the
source is sufficiently reduced. By not adding complete shortest paths as in the
BRBC approach, the cost of the construction is kept low.

For each sink v E S, v '# so, KRY maintains both a source-sink pathlength
upper bound U B[v] and a parent pointer p[v]. The value U B[v] is an upper
bound on the cost of traveling from v to so in the current graph via parent
pointers. All pathlength upper bounds are initially set to U B[v] = +oo, and
all parent pointers initially point to p[v] =so. The key operation is a "Relax"
step which resembles a typical shortest-paths recurrence. Relax(u, v) checks
whether there is a "shorter" path to v through u, vis-a-vis the pathlength upper
bound. In other words, if UB[v] > UB[u] + d(u,v), then the algorithm sets
U B[v] - U B[u] + d(u, v) and p[v) - u. By calling Relax(u, v) with u being
the parent of v in Ts, the Relax operation can be used to add an edge of the
v-so shortest path into the solution. Figure 3.12 gives a high-level description
of KRY, following the presentation in [156).

Because each edge is relaxed exactly twice during the depth-first traversal, and
because at most a linear number of relaxations can result from calls in the
subroutine Add-Path, KRY is a linear-time algorithm. However, it requires
precomputation of both TM and Ts, which cannot be achieved in less than
6(n log n) time in the geometric plane. The following results of Khuller et al.
establish the shallow-light and "unimprovable" qualities of the KRY construc­
tion.

Theorem 3.2.12 KRY constructs a shallow-light, (1 + f, 1 + ~)-tree for pa­
rameter f ~ 0. 0

Theorem 3.2.13 For any f > 0 and any {3 with 1 $ {3 < 1 + ~. there exist
graphs for which no spanning (1 + E, {3)-tree exists. 0

Khuller et al. further show that for such values of f and /3, it is NP-cornplete
to even determine whether a given G = (V, E) with source so E V contains a

Delay

Algorithm KRY: Computing a (1 + E, 1 +~)-tree
Input: Vertex setS with source so; TM; Ts; f;::: 0
Output: Spanning tree TK RY with I; :::; (1 +E)· R; Vs; E S

and cost(TK RY) < (1 + £.) · cost(TM)
Initialize UB[v] = oo, p[v] =so for all v E S- {so}
Call DFS(so)
Return tree TKRY = {(v,p[v]l v E S- {so}}

Subroutine DFS(u) : Traverse subtree of TM rooted at u,
relaxing edges to add partial paths from Ts

If U B[u] > (1 +f)· Ru Then
Add-Path(u)

For each child v of u in TM Do
Relax(u, v)
DFS(v)
Relax(v, u)

Subroutine Add-Path(v) : Relax along the v-so shortest path
If U B[v] > Rv Then

u = parent of v in Ts
Add-Path(u)
Relax(u, v)

Figure 3.12 The KRY algorithm. TKRY will have radius at most
(1 +E)· R, and cost at most (1 + ~) · cost(TM).

87

spanning (1 + E, 11)-tree. Improvements for the Steiner and geometric cases are
straightforward, and can employ approximations of TM and Ts as described
earlier for the BRBC method. It is interesting to note that analogous shallow­
light properties hold for KRY even when the signal net contains multiple sources
[156]. This can be particularly relevant for routing of large critical nets on-chip,
where a balanced tree of buffers is used to drive the many fan-ins and reduce
rise-time delays. Essentially, the leaves of the buffer tree will correspond to
multiple sources in the net routing problem. 11

11 Other applications of multiple-source routing arise in clock distribution, e.g., with a very
large monolithic buffer that must be treated as multiple sources (76, 17.5], with a hierarchical
buffering scheme, or with two-level clock routing in MCM packaging (260]. Clock routing
generally also demands skew control, so there is only a partial connection to the present
discussion.

88 CHAPTER 3

3.2.3 The Prim-Dijkstra Tradeoff

It is well-known that the min-cost and min-radius objectives can be separately
addressed by Prim's MST algorithm [196] and Dijkstra's SPT algorithm [74], re­
spectively. Tarjan [235] discusses the similarity between the Prim and Dijkstra
algorithms: each is a variant of the "labeling method" that builds a spanning
tree from a fixed source by adding the edge that minimizes an algorithm-specific
key. In the following, the min-cost and min-radius objectives are addressed si­
multaneously via direct combinations of the Prim and Dijkstra constructions.
The combination of competing objectives, via a tradeoff of algorithms that are
respectively optimal for each objective, is somewhat unusual. While the two
Prim-Dijkstra tradeoff constructions that we discuss are not shallow-light, they
can be implemented to run in O{n2) time and in practice yield lower signal de­
lays than the shallow-light constructions. Our discussion is cast in geometry,
but the methods involved are applicable to general weighted graphs.

The PD 1 Tradeoff

Prim's algorithm begins with the tree consisting only of so. The algorithm
then iteratively adds edge e;j and sink Bi to T, where Si and Sj are chosen to
minimize

d;j s.t. Bj E T, Bi ES-T (3.2)

Dijkstra's algorithm also begins with the tree consisting only of s0 . The al­
gorithm then iteratively adds edge e;j and sink Bi to T, where si and Sj are
chosen to minimize

lj + d;j s.t. Bj E T, Bi E S- T (3.3)

The similarity between (3.2) and (3.3) is the basis for the PDl tradeoff, which
iteratively adds edge eij and sinks; toT, where Bi and Sj are chosen to minimize

(c·lj)+dii s.t. Sj ET, Si ES-T (3.4)

for some choice ofO ~ c ~ 1. When c = 0, PDl is identical to Prim's algorithm
and constructs trees with minimum cost. As c increases, PDl constructs a tree

Delay 89

with higher cost but lower radius, and is identical to Dijkstra's algorithm when
c = 1. Sample executions of PD1 for c = k and c = ~ are shown in Figure
3.13(a)-(b). The following properties of the PD1 tradeoff were shown by Alpert
et al. in [13, 14] .

(a} PO I : c = I /3 (b) PO I : c = 2 /3

(c) PD2 : d = 3 (d) PD2 : d = 3 I 2

Figure 3.13 Execution of PDl and PD2 on an 8-sink instance in
the Euclidean plane. Edge labels indicate the order in which the
algorithms add edges into the tree. PD1 is illustrated in (a) with
c = ! (radius= 15.91, cost= 26.43), and in (b) with c = ~ (radius
= 10.32, cost = 29.69). PD2 is illustrated with "corresponding"
parameterizations (see Table 3.2 below) in (c) with p = 3 (radius
= 17.00, cost= 23 .63), and in (d) with p = ~ (radius= 10.00, cost
= 30.28) .

Lemma 3.2.14 PDJ constructs a tree TpDl with c ·I; :S: R; for all sinks s;. 0

Lemma 3.2.15 For any fixed values of c and B with 0 < c < 1 and B > 0,

there exists an edge-weighted graph instance G = (S, E) for which PDJ will

yield a tree with cost(TPDl) > B · cost(TM). 0

90 CHAPTER 3

Subsequently, Lenhof, Salowe and Wrege [169] showed a bound for the PD1
tree cost in geometry:

Lemma 3.2.16 For instances embedded in Euclidean space of any dimension
d, PDl constructs a tree with cost within an O(log n) factor of cost(TM).

This result provides some encouragement regarding the still-open conjecture in
[12, 13] that PD1 is actually shallow-light for geometric instances.

The PD2 Tradeoff

The notation Lp, as defined in Chapter 2, usually denotes a vector norm for
p > 0. Here, we say that the Lp sum of quantities Xt, x2, ... , Xn has value
(xtP + x2P + ... + xnP) 11P, and we write this as llxt, x2, ... , Xn llv· Now, observe
that within the framework developed by [235], Dijkstra's algorithm can be
viewed as using a key that is the Lt sum of edge costs in the source-sink path.
This observation suggests a second Prim-Dijkstra tradeoff, which we call PD2:
iteratively add edge eii and sink Si toT, where Si and Sj are chosen to minimize

Ill/ , diillv s.t. Sj E T, Si ES-T (3.5)

for some choice of 1 ~ p < oo, where 1/ denotes the Lp sum of edge costs in
the so-s; path in T. Sample executions of PD2 for p = 3 and p = ~ are shown
in Figure 3.13(c)-(d).

Lemma 3.2.17 When p = oo, PD2 is identical to Prim's algorithm. 0

Lemma 3.2.18 When p = 1, PD2 yields a shortest path tree. 0

When p = oo, the PD2 objective reduces to max{llil,dij}, which corresponds
to the bottleneck shortest paths formulation. In other words, if the cost of a
path is the cost of the longest edge in that path, then PD2 constructs a shortest­
path tree in this sense when p = oo. Notice that once a bottleneck edge with
large cost is present in some source-sink shortest path, a bottleneck shortest­
path tree is maintained as long as we append any edge that has less cost than

Delay 91

the bottleneck edge. Thus, the optimal bottleneck tree is not unique. So that
PD2 with p == oo will capture the limiting behavior from large finite values of
p, and furthermore return a minimum spanning tree, Alpert et a!. specify that
ties in Equation (3.5) should be broken by choosing the s; which also minimizes
d;j. This tie-breaking rule allows (3.5) to capture a Prim-Dijkstra tradeoff. In
other words, PD2 returns Ts for p == 1, and returns TM for p == oo when the
tie-breaking rule is applied.

The PD2 tradeoff was discovered independently by Alpert et a!. [14] and by
Sal owe, Richards and Wrege [207), with the work of both groups prompted by
the original PDI tradeoff [12, 13). Salowe et a!. discovered PD2 by apply­
ing Tarjan's general single-source shortest path labeling method [235] to the
"bottleneck shortest paths" problem, 12 i.e., they use the label max{ Jlj J, d;j},
where Jl; J denotes the largest edge cost in the s0-s; path, thus generalizing the
objective of Equation (3.5).

Salowe eta!. [207] have shown that PD2 constructs a tree T with l; ~ R; ·nl-l/p

for all sinks s;, and that this bound is tight. For any finite value of p, PD2 may
yield a tree with cost an unbounded factor greater than the MST cost, even in
geometry.

3.2.4 Rectilinear Steiner Arborescences

So far, this section has developed essentially geometric methods that are tun­
able to given technology parameters via the cost-radius (or TM-Ts) tradeoff that
follows from analysis of Elmore delay. One non-tunable method has been mo­
tivated by the Elmore delay upper bound of Rubinstein, Penfield and Horowitz
[205]. Recall that this Elmore delay upper bound is obtained by summing the
product of a node's capacitance and its "upstream" resistance (i.e., between
the node and s0), over all node locations in the routing tree. Minimizing the
value of this upper bound is a net-dependent objective, in that the same up­
per bound applies to every sink in the tree. Cong, Leung and Zhou [65] show
that a routing tree which minimizes this objective will combine elements of the
minimum spanning tree, the shortest paths tree, and the "quadratic minimum
Steiner tree" (a tree that minimizes the summation of source-node pathlengths,
taken over all possible node locations). Therefore, a minimum-cost rectilinear
Steiner arborescence is of interest since it heuristically addresses all of these
terms in the decomposed upper bound at once.

12 Cf. the "min-max" routing trees in weighted layout regions of Chiang eta!. [51].

92 CHAPTER 3

Definition: Given a signal net S in the Manhattan plane with source s0 , a
rectilinear Steiner arborescence (RSA) is a Steiner tree T that spans S, with
I; = R; for all sinks s;.

The RSA Problem seeks a minimum-cost RSA, i.e., a "minimum-cost shortest­
path Steiner tree" (recall the "maximum-performance tree" sought by Cohoon
and Randall [57]) as shown in Figure 3.14. The RSA problem has been reviewed
at length by Rao et al. [201], who ascribe it to the 1979 Ph.D. work of Ladeira
de Matos [71]. The problem's complexity is still open; cf. the works of Trubin
[239] and Rao et al. [201]. Ho et al. [122] note that an RSA may be viewed as
a "rectilinear multicast" in contexts outside of VLSI routing. Previous analysis
has often dealt with the case where all sinks of S lie in the first quadrant, with
so at the origin (e.g., [201]). If this case can be solved in polynomial time, there
is an easy polynomial-time solution for the general case of sinks located in all
four quadrants (e.g., [65, 122]).

So

Figure 3.14 A minimum-cost rectilinear Steiner arborescence.

Given a signal net located in the first quadrant of the Manhattan plane, the
heuristic of [201] maintains a set called ROOT consisting of roots of subtrees
which will eventually merge to form the heuristic RSA solution. Initially,
ROOT contains the roots of n trivial trees (the sinks in S, located in the
first quadrant with respect to the source). The method then iteratively re­
places a pair of roots by a single "merged" root that is as far as possible from
the source, and terminates when !ROOT!= 1. More formally:

Delay 93

1. Given signal net S with so at the origin and sr, ... , Sn in the first quadrant,
place the n sinks of S in ROOT. Initialize the output tree T to be empty.

2. LOOP:

3. Find p, q E ROOT which maximize the sum min(p.,, q.,)+min(py, qy), i.e.,
the sum of the minimum x- and y-coordinates of p and q.

4. Update ROOT by replacing p and q by a new root with coordinates
(min(p.,, q.,), min(py, qy)).

5. Update T by adding edges to the new root from p and from q.

6. UNTIL !ROOT!= 1.

Figure 3.15 shows how the construction maintains the feasibility of achieving
shortest-possible paths from the source to all sinks. The tree is constructed
bottom-up ("outside-in"), always choosing a new root that is dominated by
two existing roots and that allows the greatest flexibility for later roots. Note
that it is possible for the new root to be either p or q, e.g., if p dominates q,
then the new root will be q itself.

~~

I

2 -
5 - 1 -4

3
6 -

SoD-

Figure 3.15 Illustration of the RSA heuristic of Rao et al.

Under certain conditions, Rao's heuristic "does the right thing", i.e., two roots
are merged or a single root is partially extended without worsening any previous
suboptimality in the construction. For example, consider two roots p, q E
ROOT with q being the root with minimum d(p, q) that is that is dominated
by p (if there are ties, let q be the rightmost such root). Let closesLx denote

94 CHAPTER 3

the root which is to the upper left of p and has maximum X- coordinate, if such
a root exists. Similarly, let closesLy be the root which is to the lower right of p

and has maximum y-coordinate, if such a root exists. If Px -closesLxx 2:: d(p, q)

and Py- closesLyy 2:: d(p, q), then it is clearly optimal for p to connect directly
to q. Cong et a!. [65] call such a connection a safe move because it cannot
worsen the suboptimality of an existing set of roots; see Figure 3.16(a) for an
illustration.

·····~
' . :

······•· ----;-------;-- .. : :
dosest.;_y

f· ···~······!

...... J ~. ···i ·····~ .t ···•·····!
. , ~ P clpse$t_y

q
······! -~- ... i· ·t... . ;. . . -~

(a) (b)

Figure 3.16 Illustration of safe moves in the heuristic RSA con­
struction.

A second example involves root p with Px - closesLxx 2:: d(p, q) and Py -

closesLyy < d(p, q). In this case, it is safe to introduce a tree edge from p down­
ward top', where p~ = Px and p~ = max(closesLyy, qy); Figure 3.16(b) shows
the two possible results. The symmetrical configuration has Px - closesLxx <
d(p, q) and Py- closesLyy 2:: d(p, q), and introduces a safe connection from p

leftward top' = (max(closesLxx, qx), Py). In this symmetrical case, q must be
the leftmost root with minimum d(p, q) that is dominated by p.

When no safe move is possible, (65) applies the method of Rao et al., and
terms the resulting connection(s) to the new root (min(px, qx), min(py, qy))

a "heuristic move". The resulting strategy is called the A-tree algorithm.
A construction that uses only safe moves will be optimal, and techniques to
bound the suboptimality associated with heuristic moves give rise to an optimal
algorithm with exponential worst-case runtime. [65] reports that for 4-, 8-
and 16-sink nets, the A-tree method produces trees with cost within 4% of
the optimal RSA cost. However, despite using only "heuristic" moves, the
algorithm of Rao et a!. has essentially the same empirical performance as A­
tree. (An interesting question is whether there are examples "with no ties" for
which A-tree is better than the method of Rao et al.)

Delay 9.5

With respect to performance bounds, Rao et al. prove that their heuristic has
performance ratio :-::; 2 when instances lie in the first quadrant. Since the A-tree
algorithm uses either safe moves or the same moves as Rao et al., it trivially
also has performance ratio :-::; 2. The example of Figure 3.17 shows that these
bounds are tight, i.e., both algorithms can be forced to return tree cost that
approaches twice optimal. The construction in the figure consists of an array of
sinks with vertical distance = 2 and horizontal distance = 1 between adjacent
sinks in the array. The column of sinks at the right is offset downward by
distance 1 - t: so that there are no ties and no safe moves.

(a) (b)

Figure 3.17 A pathological instance for both A-tree and the
method of Rao et al. The solution (a) is optimal, while the so­
lution (b) will be returned by either heuristic.

Interestingly, the llS approach of Chapter 2 can be modified to yield an ef­
fective "Iterated 1-Arborescence" (IlArb) methodology. As one would expect,
llArb iteratively selects single Steiner points to minimize the cost of the span­
ning arborescence over the sinks and Steiner points selected thus far (recall
that optimal spanning arborescences are efficiently computable). Alexander et
al. [4) report that this approach is attractive for a variety of reasons, including
its more natural ability to address the general case where sinks occur in all
four quadrants. On uniformly random inputs, llArb has essentially the same
performance as A-tree and Rao et al. for small examples, and slightly outper­
forms these previous heuristics for n > 20. IlArb also escapes such pathological
instances as the one illustrated in Figure 3.17: we do not yet know of examples
for which the IlArb tree cost is greater than t times optimal in one quadrant,
or greater than ! times optimal in all four quadrants.

96 CHAPTER 3

3.2.5 Experimental Results and Discussion

We now discuss experimental results for the cost-radius tradeoffs achieved
by the geometric approaches in this section, as well as the implications for
minimum-delay signal routing.

Comparison of Cost-Radius Tradeoffs

All of the algorithms discussed in this section were implemented using ANSI
C in the Sun environment. Tests were made using signal nets having up to
50 sinks, with sink locations randomly generated from a uniform distribution
in the 1000 x 1000 grid. Figures 3.18(a)-(b) show that BPRIM produces a
smooth tradeoff between tree cost and tree radius, 13 and a similar tradeoff is
seen for BRBC in Figures 3.18(c)-(d). As f decreases, each of the cost and
radius curves shifts monotonically from that of the minimum spanning tree to
that of the shortest paths tree.

For any given value off, the BPRIM approach is greedier than the BRBC
approach, and tends to yield a routing solution with small cost but radius ap­
proaching (1 + t) · R. The BRBC approach is more conservative, and tends
to yield a routing solution with slightly larger tree cost but radius noticeably
smaller than (1 + f) · R. Thus, the cost-radius curve for BRBC is shifted
slightly from that of BPRIM. In practice, efficiency and provability would sug­
gest choosing BRBC or another shallow-light method over BPRIM.

More detailed experiments in [14] have compared the Prim-Dijkstra tradeoffs
PDl PD2, the KRY construction, the BRBC construction, and the standard
MST construction. Notice that for a given signal net instance, each cost-radius
tradeoff generates a family of spanning trees corresponding to the range of
parameter values. The study of such families of output trees is useful for
determining the parameter values best suited to particular technology or area­
performance requirements.

For each signal net, we generated a "family" of 51 output trees for PDl with
values of the parameter c ranging from 0 to 1 at intervals of 0.02. To generate
corresponding families of trees for PD2, KRY and BRBC, input parameters

13 Cong et al. [63] report that on average, variant Hl dominates BPRIM, H2 dominates Hl,
and H3 dominates H2; here, "dominates" implies a smaller average cost for any given radius
bound. The qualitative nature of the tradeoff remains for all variants, with the cost curves
simply being shifted downward for the more sophisticated variants. It should be noted that
while f = 2.00 does not guarantee that TsPRIM = TM, this generally holds in practice.

Delay

1::=2.00

--·-· 2 -..... ----------------
"' 1::=1.00 1;;
:::1 8 '6 1.8 s ~

~
0. !-... ... 0 I.

0 • c
c 0.8 , ____________________

.9 0
·~ u ·-- .§ s 1::=0.1~

~ "' "' 0.7 -------------'!.~.-----
"' '\

1;;
:::1 8 '6
"' "' 0.

.
8 10 15 50 25

5 8 10 15 25 50 Net
Net (~Je

(<We

1.7
"' ::J -~ "' 1.6 0

u

~ ~ 1.5
E- E-..... 1.4 0 0
c c 0 .9 ·o g .§ ..;:
~ "' ,_; "' 1.1 :s -:g "' 0

~
u

5 8 10 15 25

Net Net
(c)size c<hze

Figure 3.18 Tradeoff between tree cost and tree radius produced
by the BPRIM (a-b) and BRBC (c-d) algorithms. As the parameter
f increases, the tree cost approaches cost(TM).

97

were matched with the PDl parameter values according to relationships in­
ferred from the algorithms' limiting behaviors (see Table 3.2). Use of these
relationships generally leads to a good sampling of the families of trees gener­
ated by PD2 and KRY. However, since BRBC tends to generate trees virtually

98 CHAPTER 3

identical to TM for f 2:: 1.5, we study the family of 51 trees generated by BRBC
with f ranging from 0 to 1.5 at intervals of 0.03.

PDl PD2 BRBC KRY
User parameter c p f (X
Yields TM when c=O p = 00 £ = 00 (X= 00

Yields Ts when c=l p=l £=0 cx=l
Relation to c c p=~ £- .!..=£ - c ex=~

Table 3.2 Equivalences of algorithm parameters.

Each algorithm was executed over its family of parameter values, for signal nets
of 16 sinks chosen randomly from a uniform distribution in a 1cm by 1cm Man­
hattan square. The results are shown in the graphs of Figure 3.19; each point
in the graphs represents an average over 250 such instances. All four algorithms
"smoothly" trade off between cost and radius, with PD 1 being clearly superior,
i.e., for any desired cost-radius tradeoff, PD1 performs uniformly better than
the other algorithms. The utility of PD1 is especially clear for the tradeoff
region that is of likely practical interest, when we wish to reduce tree radius
without sacrificing more than 10% or 20% extra tree cost. While PD2 does
not do as well as PD1, it nevertheless seems to provide superior cost-radius
tradeoffs when compared against KRY or BRBC.

Comparison of Signal Delays

In [14), other experiments compared the signal delays of the various tree con­
structions, using uniformly random signal nets of 4, 8 and 16 sinks (PDl dom­
inates the performance of PD2, and so we discuss results only for the former).
For each of the four interconnect technologies in Table 3.1, delays at all sink
nodes were computed using the Two-Pole simulator code developed by Zhou
et al. [256] and corrected by S. Muddu [187]. The Two-Pole simulator uses
moment-matching techniques to model the response of distributed RLC inter­
connects, and has been reported to produce very accurate results when tested
against SPICE3e [256]; cf. the discussion of accuracy and fidelity in the Ap­
pendix. Delay was measured as the rise time to a stable value of 0.9 times
the reference voltage for a step input. For each instance, each algorithm was
executed with each of the 51 user parameters described above, and the lowest
delay value of any tree in the family was recorded.

Delay

1.&0

1.50

L30

1.20 -

1.10 -

1.00-l,---,.-----r, ~::;::::::::;~~.T"""":..:.:r,
1.00 1.10 1.20 1.30 1.•0 I.SO 1.&0

w(T)

wlf.)

(a) (b)

G h f d. · rfT\ · cost(T)
Figure 3.19 rap o ra JUS ratio ~ versus cost ratiO cost(TM)

for PDl, PD2, KRY and BRBC for uniformly random instances
of 16 sinks in the square Manhattan grid. Each point indicates
the algorithm performance for a specific parameter value, averaged
over 250 instances. The graph (a) shows results for spanning tree
topologies, and (b) shows the same experiments with tree edges
overlapped to induce a Steiner topology.

99

Table 3.3 shows the resulting maximum sink delays, normalized to the corre­
sponding value for the MST routing, and averaged over 250 instances. Analo­
gous results for average sink delay are qualitatively similar [14). The table also
shows the average value of each algorithm's best parameterization, which indi­
cates how the ideal cost-radius tradeoff parameter is correlated with technology
and net size (for example, the best PDl c parameter for 16 sinks is 0.23 for ICl
and 0.73 for MCM). If only one spanning tree construction is allowed, it seems
that the "best" parameter will generally yield a tree with low delay. The delay
reductions achieved by the Prim-Dijkstra tradeoff reinforce the intuition that
minimum-cost routing trees are less useful for newer interconnect technologies.

The KRY delays are surprisingly good in view of the algorithm's inferior cost­
radius tradeoff. While PDl seems to yield a more "natural" tree (e.g., the
KRY tree is often self-intersecting - see Figure 3.20), KRY does benefit from
its tendency to branch early from the source so, which results in relatively

100 CHAPTER 3

Spanning Trees Avg sink delay vs. MST (best parameter)
#sinks Method IC1 IC2 IC3 MCM1

4

8

16

PD1 0.911 (0.10) 0.866 (0.32) 0.854 (0.34) 0. 712 (0.55)
KRY 0.912 (19.56) 0.866 (16.22) 0.854 (15.83) 0.712 (8.10)
BRBC 0.928 (0.09) 0.891 (0.10) 0.880 (0.10) 0.768 (0.11)
PDl 0.808 (0.15) 0.778 (0.47) 0. 759 (0.49) 0.540 (0. 75)
KRY 0.850 (9.42) 0. 781 (4.83) 0.760 (3.96) 0.540 (1. 79)
BRBC 0.899 (0.08) 0.848 (0.06) 0.834 (0.05) 0.678 (0.04)
PDl 0.800 (0.20) 0.720 (0.48) 0.697 (0.50) 0.429 (0.82)
KRY 0.808 (3.57) 0.723 (1.99) 0.696 (1.87) 0.424 (1.19)
BRBC 0.893 (0.12) 0.839 (0.13) 0.824 (0.13) 0.648 (0.12)

Table 3.3 Average source-sink delay in the best tree for each al­
gorithm. Values are given as a ratio to corresponding MST delay
values, averaged over 250 random instances. Numbers in paren­
theses give the average best parameter value for each algorithm.

little off-path tree capacitance for any given source-sink path. While the Prim­
Dijkstra methods offer advantages over previous performance-driven routing
constructions, the success of KRY underscores the continuing need for better
routing tree analysis and design techniques.

Steiner Routing

Recall that many global routing approaches require rectilinear Steiner tree con­
structions. As we have discussed, a popular approach (cf. the MST-Overlap
discussion in Chapter 2) converts a spanning tree to a Steiner tree by overlap­
ping the embeddings of tree edges within the union of their bounding boxes.
This has the advantage of preserving the spanning tree radius within the even­
tual Steiner tree output. While Ho et al. [124] provided the optimal edge­
overlapping construction, it cannot always be applied to the present spanning
constructions. This is because high-degree nodes may occur, so that the span­
ning tree fails to be separable. Thus, in the following we discuss simulation re­
sults for Steiner trees that are obtained by applying a greedy edge-overlapping
algorithm to the spanning constructions. Our greedy method considers each
pair of adjacent edges in the tree, and calculates the cost reduction achiev­
able by optimally overlapping these two edges (i.e., inducing a Steiner point).

Delay

/

(a) (b)

Figure 3.20 Execution of PD1 with c = 0.5 (a) and KRY [156]
with a= 1.5 (b), on a 100-sink example using Euclidean distance.

101

The candidate Steiner point (i.e., the overlapping of two edges) which yields
maximum cost savings is iteratively added until no further cost reduction is
possible. 14

Figure 3.19(b) and Table 3.4 show that the performance-driven spanning tree
constructions with lowest delay still have lowest delay when Steiner points
are incorporated. Interestingly, the average best values of the input param­
eters shift to more star-like spanning topologies when the Steiner conversion
is employed. This is because edge-overlapping decreases. cost without affect­
ing radius, so that it is advantageous to use spanning trees with higher cost
and lower radius. Some anomalies may result since the overlapping process

14 The output of this heuristic is nearly identical to that of the optimal edge-overlapping
algorithm of Ho et al. (called S-RST in .[124}). For random 10-node instances, greedy
edge-overlapping averages 8.8% cost reduction from an input minimum spanning tree, while
S-RST is reported to average 9.0% reduction. For random 25-node instances, the greedy
heuristic averages 9.3% percent cost reduction over the minimum sparming tree, while S­
RST is reported to average 9.5% reduction.

102 CHAPTER 3

diminishes the star-like nature of the tree topology, i.e., a Steiner tree can have
greater sink delay than its spanning tree precursor. 15

Steiner Trees A vg sink delay vs. MST (best parameter)
#sinks Method IC1 IC2 IC3 MCM1

4

8

16

PD1 0.807 (0.25) 0. 775 (0.27) 0.763 (0.28) 0.694 (0.32)
KRY 0.807 (26.12) 0. 776 (24.37) 0.763 (24.56) 0.694 (21.85)
BRBC 0.817 (0.06) 0.787 (0.05) 0. 775 (0.06) 0.716 (0.06)
PDl 0.749 (0.50) 0.696 (0.55) 0.680 (0.56) 0.551 (0.64)
KRY 0. 751 (9.86) 0.698 (6.15) 0.682 (5.55) 0.550 (3.38)
BRBC 0. 777 (0.18) 0. 735 (0.15) 0.720 (0.17) 0.625 (0.13)
PD1 0. 711 (0.52) 0.644 (0.60) 0.624 (0.62) 0.443 (0. 75)
KRY 0. 715 (3.99) 0.647 (2.48) 0.628 (2.28) 0.445 (1.29)
BRBC 0.765 (0.24) 0.719 (0.25) 0. 702 (0.25) 0.579 (0.29)

Table 3.4 Average source-sink delay in the best tree for each al­
gorithm, after edge-overlapping has been used to induce a Steiner
routing. Values are given as a ratio to corresponding MST delay
values, averaged over 250 random instances. Numbers in parenthe­
ses give average best parameter value for each algorithm.

Finally, we observe that the tunable cost-radius tradeoffs are more useful than
leading "fixed" methods, which cannot be parameterized to change with the
interconnect technology. In particular, the improvements afforded by PD1
over the fixed constructions discussed above (A-trees or MST-Overlap heuristic
SMTs) can be substantial. Alpert et al. [14] have described a simple compar­
ison versus the A-tree results reported in [65], based on normalizing to the
performance of BRBC with f = 1.0 (this is possible since identical MCM in­
terconnect parameters and Two-Pole simulation methodology were used in [14]
and [65]). Even with a fixed "best" parameter value for the technology, PD1
has over 25% expected delay reduction versus A-tree. We have found that delay
reductions of similar magnitude are expected over the traditional MST -Overlap
construction for minimum-cost routing trees.

15 Highly star-like topologies can possibly introduce other difficulties such as crossing wires,
nodes with degree > 4, and coupling effects. These effects are ignored in this chapter, since
they are generally transparent to the SPICE and Two-Pole simulation methodologies.

Delay 103

3.3 MINIMIZATION OF ACTUAL DELAY

The geometric minimum tree cost, bounded tree radius, and cost-radius trade­
off objectives of Section 3.2 were motivated by analysis of the Elmore delay
approximation (see also the detailed discussion in the Appendix). However,
such objectives are abstractions; they do not directly optimize Elmore delay.
Indeed, the relevance of a given geometric objective often depends on the pre­
vailing technology, on the particular distribution of sink locations for a given
signal net, and on the user's ability to find the parameter value (f in BRBC,
or c in PD1) which yields a good solution for a particular instance. Thus,
we now discuss methods which remove any abstraction of delay in the routing
objective, in that a high-quality delay estimate is optimized directly.

3.3.1 Greedy Optimization of Elmore Delay

Much of this section will focus on variants of a greedy, yet demonstrably near­
optimal, approach to minimum-delay routing that was proposed by Boese,
Kahng and Robins in (34]. This method optimizes Elmore delay directly as
the routing tree is constructed. The simplest embodiment of this Elmore-based
approach is the Elmore routing tree (ERT)spanning tree construction (Figure
3.21). The ERT algorithm is analogous to Prim's MST construction (196]. It
starts with a trivial tree T = (V, E) con~aining only the source so, and itera­
tively finds the terminal Si E V and the sink Sj E S- V such that adding edge
(si, Sj) toT results in a tree with minimum Elmore delay. In other words, each
added sink minimizes max,kevtEv(sk), the maximum Elmore delay at any
sink in the growing tree. 16 This approach recalls the method of Prasitjutrakul
and Kubitz (192], which uses A* search and the Elmore delay formula in a
performance-driven routing tree construction. The method of (192] also grows
a routing tree over S starting from the source so; A* search in a routing graph
(e.g., the channel intersection graph) is used to find the Elmore delay-optimal
Steiner connection from a new sink to the existing tree. The key distinction
from ERT is that Prasitjutrakul and Kubitz do not allow any choice in picking
this new sink: their algorithm always adds the sink that is closest to the existing
tree, and thus ignores the underlying Elmore delay criterion. This difference in
the order of adding sinks can be seen in Figure 3.22, which depicts the progress
of the ERT variant which returns a Steiner, rather than spanning, topology. 17

16 Recall that tED (s;, Bj) is the Elmore delay between sinks s; and Bj 1 and that tED(s;) is
the shorthand notation for tED (so, s;). When no particular delay model is assumed, t(s;, s j)
or t(s;) will be used to denote the analogous quantities.

17Jn the example shown, Prasitjutrakul and Kubitz would add sink 3 before sink 2, and
sink 5 before sink 4. An instance with a much greater difference between ERT and the

104 CHAPTER 3

The greedy approach implicit in the ERT algorithm can be generalized to any
delay model by applying the appropriate estimator in Line 3 of Figure 3.21. For
example, Zhou et al. [258] propose the use of calls to their Two-Pole simulator
within a similar greedy construction; Sriram and Kang [228] also suggest this
strategy for MCM routing using a second-order delay model.

ERT Algorithm
Input: signal net S with source so E S
Output: routing tree T over S
1. T = (V, E)= ({so},0)
2. While lVI <lSI do
3. Finds; E V and Sj E S- V that minimize the maximum Elmore

delay from so to any sink in the tree (V U { Sj }, E U {(s;, Sj)})

4. V=VU{si}
5. E = E U {(s;, Sj)}

6. Output resulting spanning tree T = (V, E)

Figure 3.21 The ERT Algorithm: direct incorporation of the El­
more delay formula into a greedy routing tree construction.

Fact 3.3.1 The ERT algorithm can be implemented to run in O(n3) time,
assuming that unit wire resistance, unit wire capacitance, and sink loading ca­
pacitance are all fixed constants.

Proof: If a new tree edge incident to sink Si E V (Line 3 of Figure 3.21)
minimizes the maximum Elmore delay max8 kevtEv(sk), it must connect s; to
the sink Sj ¢ V that is closest to Si. Thus, at each pass through the while loop,
we simply compute the shortest "outside connection" for each possible Si E V
in O(n2) time, and then add each of the O(n) shortest outside connections to
T in turn. Evaluating the Elmore delays at all sinks in each of the resulting
trees requires O(n) time per tree. Hence, each pass through the while loop
requires O(n2) time, implying O(n3) total time complexity. 0

The same ERT approach can yield a Steiner routing when the new sink Sj is
allowed to connect to an edge of the existing tree, possibly inducing a Steiner

algorithm of [192] would consist of many sinks closely spaced along a long path. The method
of [192] forces the sinks to be added into the tree according to the path order, which can
be suboptimal. Another difference from the method of [192] is that ERT does not consider
obstacles, i.e., it still maintains a largely geometric perspective.

Delay 105

node on this edge at its point closest to Sj. (The embedding of each L-shaped
edge remains undetermined until a Steiner node is placed on it.) Because star­
like topologies can be optimal, we also allow a connection directly to the source.
Thus, the number of ways in which Sj fl. V can be added is at most the number
of nodes in the current tree. The resulting Steiner Elmore routing tree (SERT)
algorithm modifies Line 3 in Figure 3.21 to find Sj fl. V and (v, v') E E, such
that connecting s i to the closest point x on edge (v, v') minimizes the maximum
source-sink Elmore delay in the resulting tree. Assuming that x is distinct from
v and v', Line 4 is then modified so that V = V U { Sj, x} and Line 5 is modified
so that E = EU {(v, x), (v', x), (x, Sj)}- {(v, v')}. Figure 3.22 shows the SERT
construction for an 8-sink signal net using the IC2 technology parameters from
Table 3.1 above.

No SERT implementation is known that is faster than O(n4). Obstacles to a
faster implementation seem to be: (i) in the modified Line 3 of the algorithm
template, 0(n2) Steiner connections must always be considered, and (ii) it is
possible that the connection which minimizes maxkten(sk) does not minimize
the delay at any individual sink in T.

3.3.2 The Critical-Sink Routing Tree Problem

Within our taxonomy of minimum-delay routing heuristics, ERT and SERT are
"generic", net-dependent approaches. This terminology becomes clear when we
consider the role of signal net routing in the overall layout process. In broad
terms, performance-driven layout of cell-based designs entails determination of
timing-critical paths by static timing analysis, after which cells in these paths
are placed close together (see, e.g., (77, 119, 140, 173, 178, 234]). The static
timing analysis thus iteratively drives changes within both the cells placement
and the global routing phases.

Existing performance-driven placement algorithms may be classified as either
net-dependent or path-dependent. Net-dependent placement typically uses
centroid-connected star cost [227], probabilistic estimates of Steiner tree cost
[141], minimum spanning tree cost [77] or bounding box semiperimeter [178] to
estimate wire capacitance and signal delay for a multi-terminal net. From this
information, critical timing paths between primary inputs and primary outputs
are computed, and module placements are then updated to reduce these "net­
dependent" objectives for signal nets along the critical paths. Path-dependent
placement considers the delay between the source and a particular critical sink
of a multi-terminal net. The critical sink is typically determined via timing

106 CHAPTER 3

a) &e b) 7 s•

• •

2 5
2

5 •
~.~ • • 3

e4

~1
• e4

•a •a

c) &e d) 7 se

• •

··~ ~
•a •a

e) I) 7 6

2

•a

Figure 3.22 The SERT Steiner tree construction for an 8-sink sig­
nal net, using IC2 parameters. The source terminal is labeled 1,
and sinks are numbered in order of distance from the source.

analysis using known module delays and estimated path delays. For example,
Lin and Du (173] use the linear delay approximation so that their method up­
dates the module placement to reduce the rectilinear distance between sources
and critical sinks. Other path-dependent methodologies include those of Hauge
et al. (119] and Teig et al. (236].

Delay 107

If a timing-critical path passes through a given net, the path-dependent ap­
proach can provide an explicit bound on the allowable delay at that net's crit­
ical sink. The net-dependent approach arguably provides only implicit routing
constraints, but identification of critical sinks is possible after timing analysis,
or a priori by finding paths that contain more module delays. By contrast,
observe that the routing constructions discussed so far generally address only
net-specific objectives: minimumcost (TM orT11s), minimumradius (Ts), cost­
radius tradeoff (TBRBC, TKRY, Tpm, etc.), or maximum Elmore delay (TERT
or TsERT). Boese, Kahng and Robins [34] noted the resulting "placement­
routing mismatch": generic, net-dependent methods fail to exploit the critical­
path information that is available during iterative performance-driven layout.
As a result, designers cannot realize the full potential of high-quality timing­
driven module placements. The following critical-sink routing problem formu­
lation is therefore of interest.

Critical-Sink Routing Tree (CSRT) Problem: Given a signal netS=
{so, St, ... , sn} C ~2 with source s0 and sink criticalities a; ~ 0, i = 1, ... , n,

n

construct a routing tree T(S) such that La;· t(s;) is minimized.
i=l

This CSRT formulation seeks a routing tree T(S) that minimizes a weighted
sum of delays at critical sinks. Implicitly, we will evaluate sink delays according
to Elmore delay, tEv(s;). Also, our discussion will not consider any of the
buffering or wiresizing optimizations that can also be used to reduce sink delays.

The CSRT formulation can be coerced into capturing traditional routing ob­
jectives (e.g., average delay to all sinks is minimized by using all a; = c for
some positive constant c. However, the case most relevant to current design
practice identifies exactly one critical sink, denoted sc. (Our discussion centers
on this case, but the methodologies that we develop can be generalized to the
case where a small number of critical sinks are specified.) Figure 3.23 shows
how the presence of a critical sink can affect the optimal routing solution. The
figure shows a signal net with critical sink sc, along with three routing trees:
(a) the optimal (minimum-cost) Steiner tree, (b) the optimal RSA (A-tree),
and (c) the optimal-delay CSRT with respect to critical sink sc. Part (d) of
Figure 3.23(d) shows two distinct, optimal RSA's (A-trees) for a three-sink
net. Some reflection on these examples and Equation 3.llead to the following
observations:

• The minimum-cost Steiner tree solution (a) has large delay to the critical
sink sc due to its long source-sink path.

108 CHAPTER 3

• In an optimal SPT or RSA (b), the requirement of a monotone path to
every sink can result in large tree capacitance which again leads to large
delay at Be.

• The optimal-delay CSRT construction (c) reflects both the minimum-cost
and the SPT solutions, and illustrates the dependence of the optimal rout­
ing topology on the choice of critical sink.

• Finally, Equation 3.1 implies that the number of Steiner points in the so­
Be path should be minimized, and the Steiner points "shifted" toward so
(i.e., branches off of the s 0-se path should occur as close to the source as
possible). Figure 3.23(d) shows two trees which are both shortest-path
trees and Steiner minimal trees, yet the tree at right has less signal delay
at Be.

That CSRT is intractable is not surprising, since choosing r d large enough
will make the Co term dominate Equation 3.1 and yield an SMT formulation.
Boese et al. [33] have given a succinct proof (Figure 3.24) that for any choice
of technology parameters r, c, rd, and Ci, the SMT problem can be reduced to
CSRT with a single critical sink, proving that CSRT is NP-hard. The generic
version of CSRT (i.e., with the maximum sink delay criterion) is also NP-hard;
this is proved by modifying the example of Figure 3.24 so that Be is located far
enough from so that it has largest sink Elmore delay.

Geometric CSRT Heuristics

The examples of Figure 3.23 suggest that the optimal CSRT solutions tend to
minimize total tree cost, subject to the path from s0 to Be being monotone (i.e.,
of minimum possible length). This is basically a simultaneous consideration of
(geometric) radius and cost parameters, akin to the methods of the previous
section but with modifications to account for the critical sink. Based on this
intuition, Boese, Kahng and Robins [34] suggested the CS-Steiner approach
(Figure 3.25).

CS-Steiner first constructs a heuristic minimum-cost Steiner tree over all ter­
minals of S except the critical sink, then adds Be into the tree so that tEv(se)

is small. Boese et al. studied several variants which use US to construct the
initial tree To in Line 1. Then, Line 2 is accomplished as follows:

• HO- Introduce a single wire from Be to so.

Delay

...----.(6,8)

sc (6,2) sc sc

(0,0) so so so
1-Steiner SPT Opt

(a) (b) (c)

sc sc

(d)

Figure 3.23 Parts (a)-(c): Steiner minimal tree (cost 2.0 em,
t(sc) = 3.34 ns); optimal SPTor RSA (cost 2.5 em, t(sc) = 2.26 ns);
and optimal-delay critical-sink routing tree (cost 2.2 em, t(sc) =
1.67 ns) for the same signal net. Coordinates shown are in mm,
and the l.2J.l IC2 technology parameters in Table 3.1 were used
with the Two-Pole simulator of Zhou et al. [256) and a 90% rise
time delay criterion, Part (d): two distinct optimal SPT or RSA
solutions for a signal net with three sinks.

109

• Hl- Introduce the shortest possible wire that can join sc to To, subject
to the so-sc path being monotone.

• HBest- Try all shortest connections from Sc to edges in T0 , as well as
from sc to so; perform timing analysis on each of these routing trees and
return the tree with lowest delay at sc.

The time complexities of these variants are dominated by the construction of
the heuristic SMT To (Line 1), or possibly by the timing analysis in the case
of the HBest variant.

110 CHAPTER 3

Figure 3.24 The CSRT problem with a single critical sink is NP­
hard for any choice of technology parameters. A rectilinear SMT
instance S is transformed into a CSRT instance S' = S U {Be}
which has critical sink Be directly left of so E S which has smallest
x-coordinate. The optimal CSRT solution consists of a rectilinear
SMT overS, plus the edge (Bo,Bc)·

Algorithm CS-Steiner
Input: signal net S; source so E S; identified critical sink Sc E S
Output: heuristic CSRT solution T
1. Construct heuristic minimum-cost tree To overS- {sc}·
2. Form T by adding a direct connection from Sc to To,

i.e., such that the so-sc path in T is monotone.

Figure 3.25 The CS-Steiner heuristic.

An interesting complement to the CS-Steiner construction is Global Slack Re­
moval (GSR), a postprocessing algorithm due to [34] which shifts edges to
remove "U" and "V" configurations from the routing tree. Intuitively, such
configurations correspond to the "slack" in non-monotone source-sink paths.
The GSR algorithm has similarities to the method developed independently by
Chen and Sarrafzadeh for wirelength minimization in single-layer routing (49]. 18

However, the method of Chen and Sarrafzadeh is aimed at reducing tree cost,
which is unnecessary here since CS-Steiner begins with a (near minimum-cost)
118 construction. The salient property of GSR is that it maximizes the mono-

18 Similar "clean-up" techniques have been proposed in a number of contexts over the
years. For example, the 1981 survey of Soukup [225) attributes such a method to Akers in a
switchbox routing application.

Delay 111

tonicity of all source-sink paths and reduces Elmore delay to all sinks. This is
accomplished without increasing tree cost.

v1
r3

v1 w1 Tv3
soo-·"1 ---1 so o-·" • I

v2 v2

(a) (b)

~v
v4

v1 w1

f2
so o- ... 4 ---1 so o-

I
v2 v3 v2 v3

(c) (d)

Figure 3.26 Removal of a V (top) or aU (bottom) by the GSR
algorithm.

A "V" is defined to be a subpath of three consecutive nodes on a source-sink
path in the routing tree, such that the cost of the subpath is greater than the
distance between its endpoints (see subpath v1-v3 in Figure 3.26(a)). Similarly,
a U is a subpath of four consecutive nodes on a source-sink path such that
the cost of the subpath is greater than the distance between its endpoints (see
subpath v1-v4 in Figure 3.26(c)). The nodes of a V or a U can be either
Steiner nodes or terminals in S. A V is removed by introducing a Steiner node
to eliminate the overlap between the two edges in the V, as in Figure 3. 26(b).
If aU (say, v1v2v3v4) does not contain any V's, then its middle edge (v2,v3)
must be either completely horizontal or vertical; the U-removal corresponds to
shifting this middle edge and adding up to two new Steiner nodes as shown in
Figure 3.26(d).

Figure 3.27 more precisely describes the GSR algorithm. In the figure, aU (V)
is said to be located at v when v is the node of the U (V) topologically furthest
from s0 . The term children(v) denotes the set of nodes that are children of v
when the tree is rooted at so; parent(v) denotes the parent of v in the rooted
tree. The variable Q indicates a queue which ensures that each node in the
tree is processed before its children (e.g., depth-first preorder). We make three
observations:

112 CHAPTER 3

Algorithm Global Slack Removal (GSR)
Input: Steiner tree T with source so
Output: Steiner tree T with all U's removed
1. Remove all Steiner nodes of degree :5 2 from T;
2. Q +-{so};
3. While Q =I 0
4. v +- Dequeue(Q);
5. For each node v' E children(v) do
6. Q +- Enqueue(v');
7. If there is a V located at v'
8. Remove_V(v')
9. If there is a U located at v'
10. Remove_U(v')
11. Clean_U p(v')
12. Remove all Steiner nodes of degree :5 2 from T;

Subroutine Clean_Up(node: v')
Cl. If there is a V located at parent(v')
C2. Call Remove_V(parent(v'))
C3. If there is a U located at v'
C4. Call Remove_U(v')
C5. Call Clean_Up(v')
C6. Else
C7. If there is a U located at parent(v')
C8. Call Remove_U(parent(v'))
C9. Call Clean_Up(parent(v'))

Figure 3.27 Pseudo-code for the Global Slack Removal (GSR) al­
gorithm. Local variables include a queue Q and nodes v and v'.
Remove_V(v) and Remove_U(v) are as illustrated in Figure 3.26.

• The "top-down" order enforced by Q is necessary because processing nodes
after their children can introduce new U's that remain in the output tree.
While distinct top-down orderings can produce distinct output trees, any
output tree will satisfy the properties listed in Theorems 3.3.2 and 3.3.3
below.

• Removing a V or U at a node can possibly create new V or U configura­
tions that must be removed along the path back to so by the Clean_Up
subroutine. Accounting for the possibility that Clean_Up processes any
source-sink path up to a linear number of times, an O(n2) runtime upper

Delay 113

bound follows from the algorithm description. While examples exist for
which llS creates an input tree that forces O(n2) runtime [34], in practice
multiple calls to the subroutine Clean_Up occur for very few nodes, and
GSR exhibits close to linear time complexity.

• Finally, examples are easily constructed which show that Steiner nodes
of degree :::::; 2 can be introduced which inhibit removal of some U config­
urations. Since such low-degree Steiner nodes are superfluous, they are
removed after every iteration.

Boese et al. [34] showed that the tree returned by GSR has noV's or U's, and
that it dominates the input tree in terms of total tree cost, path length from
the source to each sink, and Elmore delay at each sink.

Theorem 3.3.2 Given any tree T as input, GSR returns a tree T' containing
noV's and no U's. D

Theorem 3.3.3 Given any tree T as input, GSR will return a tree T' such
that (i) cost(T') ::5 cost(T); {ii) for each i > 0, distT•(so, s;) ::5 distT(so, s;);
and (iii) the Elmore delay tED(s;) at each Bi in T' is less than or equal to the
Elmore delay tED(s;) in T. D

Another geometric approach that addresses the CSRT problem (with a single
critical sink) was proposed by Hong et al. [126]. This "Constructive Force­
Directed " (CFD) algorithm is essentially another cost-radius tradeoff, but in
a novel form: wires are grown from each sink to follow a weighted combination
of the direction to so and the direction to the closest growing ends of other
wires. Intuitively, these directions correspond to attractive forces which direct
the routing construction. The CFD approach seems reasonable (e.g., simple
weighting schemes will yield a plausible RSA heuristic). [126] discusses specific
weighting schemes and algorithmic issues (e.g., how a new growing end is deter­
mined once two growing ends meet), and describes the associated performance
of the method. Since the CFD solution can have many jogs and detours, a
clean-up phase similar to GSR may be useful.

CSRT Heuristics That Optimize Elmore Delay Directly

To address the CSRT formulation, Boese et al. modify their SERT method to
yield the "Steiner Elmore Routing Tree with identified Critical sink", or SERT­
C, algorithm. SERT-C begins with a tree containing the single edge (so, se)

114 CHAPTER 3

and then continues as in the SERT algorithm, minimizing tEv(sc) rather than
max,kevtEv(sk)· The algorithm is formally described in Figure 3.28.

SERT-C Algorithm
Input: signal net S with source so E S, critical sink Sc
Output: critical-sink routing tree T over S
1.
2.
3.

4.
5.
6.

T = (V, E)= ({so, sc}, {(so, sc)})
While lVI < lSI do

Find Sj E S- V and (v, v') E E such that connecting s1

to the closest point x on (v, v') minimizes tED (sc)
in the tree (VU{s1 ,x},EU{(v,x),(v',x),(x,sj)}- {(v,v')})

V=VU{s1 ,x}
E = Eu {(v,x),(v',x),(x,sj)}- {(v,v')}

Output resulting Steiner tree T = (V, E)

Figure 3.28 The SERT-C Algorithm: direct incorporation of the
Elmore delay formula into a greedy critical-sink routing tree con­
struction. Note that it is possible for x = v or x = v' in Line 3.

In some sense, SERT-C takes the complete opposite approach from CS-Steiner.
CS-Steiner begins with a heuristic minimum-cost Steiner tree over S - { Sc},
then perturbs it to include Sc with minimum delay t(sc)· By contrast, SERT-C
starts with the required so-sc connection, then grows the routing tree around
it while keeping tEv(sc) as small as possible. As with the ERT and SERT
algorithms, SERT-C's direct optimization of Elmore delay within the construc­
tion allows flexibility with respect to parameters of the technology and the
input instance. Interestingly, the critical-sink problem formulation allows the
path-dependent SERT-C algorithm to have nearly quadratic speedup over the
generic net-dependent SERT algorithm.

Fact 3.3.4 The SERT-C algorithm can be implemented to run in O(n2 log n)
time.

Proof: The effect on tEv(sc) of inserting a new edge (v, Sj) into T arises only
in the Ck terms of Equation (3.1), and is an additive constant no matter when
(v, Sj) is added into the tree. Initially, compute the best connection from each
non-critical sink to the tree that contains only the edge (so, sc)· For each new
sink added, at most three new edges will be inserted into the tree. It requires

Delay 11.5

constant time to calculate the effects of connections from a given sink outside
T to these three new edges; all previously computed effects remain unchanged.
Using a priority queue, for each s; fl. V the delay effects of connecting to these
new edges can be recorded in O(log n) time, and the current minimum-cost
connection for s; can be retrieved in O(log n) time. Thus, each pass through
the while loop of Figure 3.28 can be accomplished in 0(n log n) time, giving
an overall time complexity of O(n2 logn). 0

Figure 3.29 shows SERT-C constructions for various choices of critical sink,
again using the IC2 technology parameters and the same 8-sink signal net in
Figure 3.22. The tree constructed when sc is node 2 or node 6 is also the IlS
solution, and the tree constructed when sc is node 7 is also the generic SERT
result.

3.3.3 Experimental Results

CS-Steiner Trees

Table 3.5 compares the outputs of liS and the CS-Steiner variants HO, Hl and
HBest, with GSR post-processing applied, for random signal nets of 4 and 8
sinks, and technology parameters corresponding to those in Table 3.1. Results
are given for tree cost (WL) and 50% rise time computed using the Two-Pole
simulator of [256]; the HBest variant also uses calls to the Two-Pole simulator
in its delay analysis of candidate connections. 19

llS, like BRBC, KRY, PDl, A-tree, etc., is net-dependent and returns the same
tree for a given net no matter which sink happens to be critical. Thus, the IlS
sink delays t(si) are "generic". On the other hand, the CS-Steiner variants
can return a different tree for each choice of critical sink. Thus, for each CS­
Steiner variant we record the delay t(si) in the specific tree that results from
identification of Si as the critical sink. Each entry in Table 3.5 represents an
average taken over every sink node (i.e., all possible choices of critical sink) in
100 random signal nets. The results show that the simple strategy of connecting
the critical sink directly to the source (i.e., HO) is quite successful. Variants

l9 That HO+GSR outperforms HBest+GSR is due to an inconsistency in the use of the Two­
Pole simulator by HBest. To speed the evaluation of all candidate connections, HBest models
each edge of a candidate tree with a single RLC segment during its calls to the Two-Pole
simulator. Unfortunately, this does not capture the moments of the interconnect accurately
(see the discussion in the Appendix), and HBest can choose a suboptimal connection. On
the other hand, when evaluating the sink delays of the final output tree, each tree edge is
modeled using a large number of RLC segments, resulting in greater simulation accuracy.

116

7

5 2

3
4 ~

1

B

a) Sink 1 (or 3) critical

i

c) Sink 4 critical

7 6

2

e) Sink 7 critical

6

3

7

5
2

b) Sink 2 (or 6) critical
(also 11S tree)

2

d) Sink 5 critical

f) Sink 8 critical

CHAPTER 3

6

Figure 3.29 SERT-C tree constructions for an 8-sink net, showing
variation of solution with choice of critical sink sc.

HO and HBest significantly reduce delay to the critical sink, particularly when
MCM interconnect parameters are used.

Delay

lSI= 5 IC1 IC2 IC3 MCM
llS 0.549 ns 0.331 ns 0.218 ns 2.31 ns

Critical llS+GSR .978 .970 .968 .952
Sink HO+GSR .980 .876 .849 .550

Delay Hl+GSR .960 .934 .922 .857
HBest+GSR .929 .867 .844 .593

llS 1.48em 1.48em 1.48em 14.8 em
Ave WL HO+GSR 1.29 1.29 1.29 1.29

Hl+GSR 1.04 1.04 1.04 1.04
HBest+GSR 1.07 1.10 1.11 1.22

lSI= 9 IC1 IC2 IC3 MCM
llS 0.848 ns 0.520 ns 0.342 ns 4.09 ns

Critical llS+GSR .964 .954 .950 .927
Sink HO+GSR .824 .700 .664 .333

Delay Hl+GSR .883 .827 .810 .665
HBest+GSR .817 .721 .693 .340

llS 2.18 em 2.18 em 2.18 em 21.8em
Ave WL HO+GSR 1.22 1.22 1.22 1.22

Hl+GSR 1.06 1.06 1.06 1.06
HBest+GSR 1.11 1.12 1.12 1.21

Table 3.5 Comparison of C5-5teiner variants against 115. Each
critical sink delay value corresponds to an average over each possi­
ble critical sink in 100 random signal nets. 115 results are reported
in the physical units (nanoseconds or centimeters) while other re­
sults are reported relative to 115. 115+G5R produced essentially
the same average WL values as 115.

117

118 CHAPTER 3

Elmore Routing Trees

Tables 3.6 and 3.7 compare outputs of the ERT,SERT and SERT-C heuristics
against those of the MST, PDI and liS constructions for 5- and 9-terminal
nets. The algorithms were executed on the same sets of random inputs used in
the CS-Steiner experiments, and the same delay simulation methodology was
used. In general, these results show the Elmore-based "Elmore routing tree"
approach of Boese, Kahng and Robins to be quite effective.

lSI= 5 IC1 IC2 IC3 MCM

MST 0.645 ns 0.395 ns 0.262 ns 2.82 ns
Critical PD1 .904 .863 .885 .777

Sink ERT .879 .804 .782 .472
Delay liS 0.549 ns 0.331 ns 0.218 ns 2.31 ns

SERT .967 .921 .908 .584
SERT-C .947 .870 .839 .567

MST 0.758 ns 0.485 ns 0.326 ns 3.86 ns
Maximum PD1 .876 .835 .822 .759

Sink ERT .855 .786 .764 .544
Delay liS 0.627 ns 0.393 ns 0.262 ns 3.06 ns

SERT .955 .919 .908 .699
SERT-C .970 .962 .954 .859

MST 1.64 em 1.64 em 1.64 em 16.4 em
PD1 1.16 1.16 1.16 1.04

Average ERT 1.10 1.18 1.19 1.61
WL liS 1.48ern 1.48em 1.48em 14.8 em

SERT 1.06 1.11 1.13 1.66
SERT-C 1.06 1.15 1.16 1.28

Table 3.6 Comparison ofERT, SERT and SERT-C variants against
the MST, PDI and liS constructions for 5-terminal nets. Each
critical-sink entry corresponds to an average over delay computa­
tions for all possible choices of critical sink in each of 100 random
signal nets. Spanning ERT constructions are compared with MST
and PDl; Steiner SERT and SERT-C constructions are compared
with llS. The MST and llS results are reported in the physical
units (nanoseconds or centimeters); other results are reported rela­
tive to these values.

Delay

lSI= 9 IC1 IC2 IC3 MCM

MST 0.984 ns 0.609 ns 0.403 ns 4.80 ns
Critical PD1 .837 .770 .749 .608

Sink ERT .837 .741 .702 .329
Delay llS 0.848 ns 0.520 ns 0.342 ns 4.09 ns

SERT .884 .806 .781 .384
SERT-C .847 .735 .693 .340

MST 1.213 ns 0.792 ns 0.533 ns 7.05 ns
Maximum PDI .805 .747 .730 .632

Sink ERT .790 .699 .668 .399
Delay llS 1.028 ns 0.664 ns 0.444 ns 5.92 ns

SERT .853 .780 .759 .481
SERT-C .914 .892 .892 .846

MST 2.43em 2.43 em 24.3 em 24.3 em
PD1 1.09 1.09 1.09 1.07

Average ERT 1.15 1.25 1.27 2.15
WL llS 2.18 em 2.18 em 2.18 em 21.8em

SERT 1.09 1.18 1.22 2.27
SERT-C 1.06 1.11 1.14 1.22

Table 3.7 Comparison ofERT, SERT and SERT-C variants against
the MST, PD1 and llS constructions for 9-terminal nets.

119

If no critical sink is specified during the routing construction, a net-dependent
spanning implementation of ERT will still reduce the delay to whatever sink
eventually turns out to be critical. This is verified by measuring delays at
randomly chosen critical sinks: for 8-sink nets, this delay reduction is 16%,
26%, and 30% in the three IC technologies and is 67% in the MCM technology.
ERT also improves upon PD1 by 0% (IC1), 4% (IC2), 6% (IC3), and 46%
(MCM), even though PD1 is allowed to output the best tree over all parameter
values c for each instance. For Steiner routing, SERT is also a good "generic"
construction: with 8-sink nets, improvements in delay to a random critical
sink are, e.g., 19% for IC2 and 62% for MCM, when compared to IlS. In
terms of the net-dependent maximum sink delay criterion, which is the natural
measure for the ERT and SERT constructions, improvements over MST and
llS are similar (the percentages are somewhat greater for IC technologies, and
somewhat smaller for MCM).

120 CHAPTER 3

Due to limitations of the present modeling and simulation methodology, delay
reductions may not attain these magnitudes in practice. However, the conclu­
sions as to relative delays of the various constructions are almost certainly valid
(cf. the discussion of accuracy and fidelity of delay estimators in the Appendix).
It should also be noted that the ERT and SERT constructions can be some­
what star-like, especially for MCM parameters, due to the maximum sink delay
criterion. Since the resulting tree costs will be significantly higher than those
of ns, practitioners may smoothly recapture wirelength (e.g., when the net is
not on any critical path) by simulating a larger rd value in the construction.

When a critical sink Be is known, further reductions in delay can be achieved.
For example, the SERT-C algorithm improves over SERT by additional reduc­
tions in critical-sink delay of 5%, 7% and 6% for the three IC technologies,
and 8% for MCM. More significant advantages from knowing Be are gained
in terms of tree cost. Particularly for MCM parameters, SERT-C trees have
much less cost than SERT trees, even while improving the critical-sink delay.
An interesting side note is that the SERT-C maximum sink delay also decreases
relative to IlS. It is thus likely that the overall delay skew in the routing tree
will be reduced even when the user addresses the path-dependent critical-sink
criterion, as opposed to the net-dependent maximum delay criterion. Finally,
SERT-C produces very similar delays and costs when compared to the CS­
Steiner variants HBest and HO. However, SERT-C is more practical since it
runs in O(n2 log n) time and does not require any simulator calls as does HBest
(the underlying llS call in CS-Steiner itself requires O(n3) time).

3.3.4 Optimal-Delay Routing Trees

Given the success of the geometric performance-driven routing heuristics, and
the further success of the Elmore-based methods, it is natural to ask whether
substantial further advances are possible. In other words, we seek to define the
achievable envelope of routing tree designs with respect to performance. The
study of delay-optimal trees can provide a bound on possible gains from future
work in performance-driven routing. This, in turn, can provide impetus toward
research in other performance-driven layout techniques, such as driver- and
wire-sizing. The characterization of optimal-delay trees also yields improved
layout and performance estimators for placement, floorplanning and high-level
synthesis.

Delay 121

Spanning Trees and BBORT

For the maximum sink delay objective, Boese et al. [30, 31] have used branch­
and-bound to find a spanning optimal routing tree (ORT) solution according
to Elmore delay. Starting with a trivial tree containing only s0 , the algorithm
incrementally adds one edge at a time to the growing tree while updating the
the maximum sink delay. If this delay value exceeds the maximum sink delay in
any complete candidate tree seen so far, the search backtracks to use a different
edge at the previous step. A recursive implementation of this Branch-and­
Bound Optimal Routing Tree (BBORT) search is shown in Figure 3.30. BBORT
adds sinks in a breadth-first manner, with the children of any parent added in
increasing order of their indices. It can be seen that there is a unique sink
ordering corresponding to each tree topology, and that each topology will be
visited at most once. In Figure 3.30, Lines 7-9 embody the branch-and-bound
search. If the current tree T' has delay greater than or equal to tmin (the current
best-known delay for a complete tree), then procedure Add_Edges terminates
and the algorithm backtracks. Otherwise, if T' is a complete spanning tree,
then tmin is set to the delay ofT', or if T' is a partial tree, then Add_Edges
recursively adds more edges to T'.

Algorithm BBORT
Input: signal net S with source so E S
Output: optimal-delay tree Topt over S
1. T = (V, E)= ({so},0)
2. tmin = 00

3. Call Add_Edges(T)
4. Output Topt
Procedure Add-Edges(Tree: T = (V, E))
5. While there exist s; E V and s1 ~ V such that

T' = (VU {s;},Eu {(s;,sj)}) is a new tree topology Do
6. Compute maximum sink delay t(T')
7. If t(T') < tmin Then
8. If IT' I = lSI Then Topt = T' ; fmin = t(T')
9. Else Call Add-Edges(T')

Figure 3.30 The Branch-and-Bound Optimal Routing Tree
(BBORT) algorithm (recursive implementation).

Table 3.8 compares the maximum sink Elmore delays and the tree costs of t.he
ORT (i.e., found by BBORT), ERT, SPT and MST solutions. The SPT is

122 CHAPTER 3

a rectilinear spanning arborescence, i.e., the minimum-cost spanning tree in
which all source-sink paths are monotone. Each entry in the table represents
an average over 200 randomly generated signal nets, with the same technology
parameters and delay simulation methodology as above. Delay for each tree is
normalized to the ORT delay of the same net, and tree cost is normalized to
the MST cost of the net.

lSI= 5 IC1 IC2 IC3 MCM
delay cost delay cost delay cost delay cost

ORT 1.0 1.103 1.0 1.140 1.0 1.146 1.0 1.432
ERT 1.007 1.104 1.010 1.159 1.011 1.172 1.009 1.585
SPT 1.085 1.290 1.058 1.290 1.054 1.290 1.089 1.290
MST 1.169 1.0 1.272 1.0 1.311 1.0 1.894 1.0

lSI =7 IC1 IC2 IC3 MCM
delay cost delay cost delay cost delay cost

ORT 1.0 1.133 1.0 1.175 1.0 1.190 1.0 1.547
ERT 1.017 1.142 1.022 1.215 1.027 1.252 1.024 1.892
SPT 1.130 1.395 1.096 1.395 1.091 1.395 1.161 1.395
MST 1.282 1.0 1.451 1.0 1.499 1.0 2.457 1.0

Table 3.8 Near-optimality of Elmore delays and tree costs of vari­
ous constructions, using ICl, IC2, IC3 and MCM parameters. Tree
cost is normalized to MST cost, and delay is normalized to ORT
delay.

For 7-terminal nets in the ICl technology, the ERT has maximum sink Elmore
delay averaging only 1.7% greater than optimal; by contrast, the MST has max­
imum sink Elmore delay averaging 28.2% greater than optimal. For 5-terminal
nets, ERT delays average 0.7% above optimal, while MST delays average 16.9%
above optimal. The confidence in these estimates of ERT suboptimality is very
high, e.g., the 1.7% suboptimality obtained for 7-terminal nets and the ICl
technology has 95% confidence interval (i.e., within twice the standard error of
the average) between 1.3% and 2.1 %. Even with the worst results in the table,
for IC3 parameters and 7-terminal nets, ERT remains within 2.7% of optimal
Elmore delay, with 95% confidence interval for this estimate between 2.2% and
3.2%.

Delay 123

Toward Elmore Delay-Optimal Steiner Trees

To completely delimit the "performance envelope" for routing trees and to as­
sess the near-optimality of the SERT and SERT-C constructions, it is necessary
to compute Elmore delay-optimal Steiner routing trees. Both the Steiner op­
timal routing tree (SORT), which minimizes ma:c8 ,tED(si), and the Steiner
optimal routing tree with identified critical sink (SORT-C), which minimizes
tED(sc), are of interest. At first glance, computing either of these trees seems
difficult: since there are potentially an infinite number of candidate Steiner
node locations, even branch-and-bound may be infeasible.

Two theoretical results obtained by Boese et al. [32, 33) enable exact determi­
nation of the performance envelope for routing trees. The first result limits the
Steiner nodes of Elmore-optimal trees to the same "Hanan grid" that contains
the Steiner candidate set of an SMT instance. This implies that a finite algo­
rithm exists which determines optimal CSRT solutions for any positive com­
bination of Elmore delays to critical sinks. The second result gives a "peeling
decomposition" of any Elmore-optimal Steiner tree into a sequence of subtrees,
each of which adds a sink by a closest connection to some edge of the previous
subtree. Together, these results afford a branch-and-bound search method that
extends BBORT to optimal critical-sink Steiner topologies. A brief review of
the results in [32, 33) is as follows (again, all delays t(si) are assumed to be
Elmore delay).

n

Let T* be a CSRT solution that minimizes f = L: O:i • t(si)· Without loss of
i=l

generality, assume that all O:i > 0 and that T* contains no degree-2 Steiner
nodes. A tree will be considered to be a collection of nodes (possibly terminals
of S) and edges, so that v E T for node v and e E T for edge e are both
meaningful. A straight edge is an edge that is completely vertical or horizontal;
other edges are L-shaped.

The closest connection between three nodes is the location of the single Steiner
node in a minimum-cost Steiner tree over the three nodes. This unique location
has coordinates given by the medians of the :c- and the y- coordinates of the
three nodes. The closest connection between a node v and an edge e is the
closest connection between v and the two endpoints of e. If a Steiner tree T
over S is rooted at s0 , define T\v to be the tree induced by removing node
v and all its descendants from T, and then removing all remaining degree-2
Steiner nodes. Node vET is connected to an edge e E T\v if its parent node in
Tis located on edge e. If parent(v) is located at the closest connection between

124 CHAPTER 3

v and an edge e E T\v to which vis connected, then vis said to make a closest
connection to e in T.

An enabling observation is that in the optimal tree T*, Elmore delay at every
sink is a concave function of the distance x that separates the closest connection
between v and e from their actual connection point. Any linear combination
of concave functions is itself concave; thus, any positive combination of sink
Elmore delays is also concave in x. Using the fact that a concave function
defined over a convex domain takes on its minimum value at an extreme point
of the domain, Boese et al. showed that T* is composed of closest connections: 20

Lemma 3.3.5 Suppose node v E T*, v f so, is connected to edge e E T*\v.
Then either parent(v) = so or v makes a closest connection to e in T*. 0

For any routing tree T rooted at so and for any v E T, let Tv to be the subtree
ofT rooted at v. A segment is a contiguous set of straight edges in T which are
either all horizontal or all vertical; a maximal segment (MS) is a segment that is
not properly contained in any other segment. Let M be an MS in T. The node
in M closest to so on a source-sink path containing M is called the entry point
of M. A segment containing all points in M to one side of M's entry point is
called a branch (sometimes a branch will include the entire MS). A branch b is
a branch off of MS M' if M' and b are incident at a single node which is not
the entry point to M'. L-shaped edges are also defined as branches.

An MS M divides the plane into two half-planes: the half-plane containing the
edge between M's entry point and its parent is the near side of M, and the
other half-plane is the far side of M. Branches off of M that are located on
its near (far) side are called near (Jar) branches. In addition, a sink located on
M is defined to be a far branch off of M if it is not the entry point to a larger
far branch. For any segment S, N ear(S) (resp. Far(S)) denotes the set of
near (resp. far) branches off of the maximal segment containing S. Figure 3.31
gives an example of an MS M with endpoints Pl and p2, entry point po, and
four branches, including near branch b1, far branches b2 and b4, and another
far branch consisting only of sink s3 .

Two more lemmas from [32] respectively follow from (i) basic properties of the
Elmore delay formula, and an edge-shifting argument applied to the balance

20 The technique of exploiting concavity is much more powerful tha.n the "segment-shifting"
that Ha.na.n used to prove his original result for minimum-cost trees. Indeed, the edge shifts
used by Ha.na.n ca.n be suboptimal in terms of Elmore delay. Applications of this technique
to more sophisticated delay estimates may be promising.

Delay

so o- •••
Near side of M

51
b1 Po

p2
53

p1
b2 b4

55 52 54

Far side of M

Figure 3.31 Example of a maximal segment M with entry point Po,
one near branch bt, and three far branches, including b2 . Note that
by definition, s3 forms a far branch with no edges. Edge (p0, s6) is
not a far branch off of M because Po is not an entry point to the
MS containing (po, s6)·

12.5

between IFar(M)I and INear(M)I, and (ii) Elmore delay at all sinks being a
concave function of the position of any maximal segment.

Lemma 3.3.6 Let M be a maximal segment in T* that does not contain so.
Then IFar(M)I > INear(M)j. 0

Lemma 3.3. 7 Any maximal segment in T* must contain either a sink or the
source. D

Corollary: Any Steiner node in T* is located on the Hanan grid. D

Hanan's original theorem may be viewed as being equivalent to a special case
of this Corollary with rd --> oo. (Hanan proved that all edges of some rectilin­
ear SMT lie on the Hanan grid; this Corollary is stated with respect to node
locations.)

Finally, Boese et a!. show that T* can be constructed by starting with the
trivial tree To = ({so}, 0) and successively adding sinks according to some
ordering s 1 , s2, ... , s11 to create trees T1 , T2, ... , Tn = T*, with each Si making
a closest connection to some edge in 1';_ 1 . This result follows from the existence
of a reverse, "peeling" decomposition ofT*.

126 CHAPTER 3

Theorem 3.3.8 There is a sequence of trees To = ({so}, 0), Tt, T2, ... , Tn =
T* such that for each i, 1 ~ i ~ n, (i) there is a sink Si E 7i such that
1i-1 = T;\si, and {ii) either Si is connected to so, or Si makes a closest con­
nection in 7i to some edge in 1i-1·

Note that this peeling decomposition extends to the classic Steiner minimal
tree problem when rd -> oo. Similar to the first decomposition theorem in the
Steiner literature [135], this second decomposition provides both a characteri­
zation of, and an effective means of generating, optimal Steiner trees.

Steiner Trees and BB-SORT-C

Based on the the above results, a simple modification to algorithm (BBORT)
BBORT can find an optimal Steiner routing tree for any linear combination of
Elmore delays at critical sinks. Rather than considering connections from each
sink Sj outside the current tree to each sink Si inside the tree as in BBORT,
the Branch-and-Bound method for Steiner Optimal Routing Trees with Critical
Sinks (BB-SORT-C) considers connections from Sj to each edge created when Si
was added to the tree. In other words, each node Si that is already contained in
Tis replaced as a possible connection point by each of the edges created when
Si was added to the tree earlier. The branch-and-bound pruning is used to
reduce the complexity of the search and avoid redundant topologies. Since BB­
SORT-C searches over all possible ways to construct a Steiner tree sequentially
with each sink added by a closest connection to an edge in the current tree,
the algorithm returns T*. Interestingly, Boese et al. [33] show that for the
maximum sink delay objective (the CSRT formulation with all O:i = a constant
and an £ 00 sum), the Hanan grid result does not hold. In other words, there are
examples for which no delay-optimal tree lies on the Hanan grid. This suggests
that the technique used to generalize Hanan's theorem for a concave delay
function was in some sense sharp: while the positive sum of concave functions is
always concave, the maximum of concave functions is not necessarily a concave
function.

Table 3.9 compares the critical sink Elmore delays ofSERT-C and SORT-C (i.e.,
found by BB-SORT-C) routing trees. Each entry represents an average over
200 random nets, with the same technology parameters and delay simulation
methodology as above. Delay for each tree is normalized to the SORT-C delay,
and tree cost is normalized to the IlS cost. For 6-sink nets and the IC1 technol­
ogy, SERT-C achieves Elmore delay that is on average within 11.1% of optimal;

Delay 127

results for IC2, IC3, and MCM parameters are very similar. 21 Although the
SERT-C algorithm is not as close to optimal as the ERT algorithm for the
types of delay measures studied here, these results provide strong guidance for
future efforts in performance-driven routing. Even if future work improves the
near-optimality of critical sink routing constructions, Table 3.9 shows that any
future improvement in Elmore delay will be at most from 8% to 12% for signal
nets with up to 6 sinks.

lSI =5 IC1 IC2 IC3 MCM
delay cost delay cost delay cost delay cost

SORT-C 1.0 1.111 1.0 1.161 1.0 1.175 1.0 1.296
SERT-C 1.042 1.046 1.049 1.120 1.046 1.140 1.000 1.296
!-Steiner 1.117 1.0 1.228 1.0 1.275 1.0 1.455 1.0
lSI= 7 IC1 IC2 IC3 MCM

delay cost delay cost delay cost delay cost
SORT-C 1.0 1.112 1.0 1.158 1.0 1.165 1.0 1.262
SERT-C 1.083 1.047 1.114 1.106 1.112 1.112 1.001 1.256
1-Steiner 1.200 1.0 1.362 1.0 1.429 1.0 1.634 1.0

Table 3.9 Near-optimality of Elmore delays and tree costs of var­
ious Steiner tree constructions, using ICl, IC2, IC3 and MCM pa­
rameters. Tree cost is normalized to US cost, and delay is normal­
ized to BB-SORT-C delay. Standard errors for SERT-C delays are
shown in parentheses.

3.3.5 Remarks

This section has introduced both the "direct" optimization of Elmore delay,
and the critical-sink formulation, and described several heuristics. The greedy
"Elmore routing tree" variants - ERT, SERT and SERT-C - give promising
results in terms of both generic (max sink delay) and critical-sink performance­
driven routing. Since the constructions are fairly close to optimal, alternate
methods of improving delay beyond the routing topology design would seem
worth pursuing. 22

21 Average running times for nets with lSI = 5 (in CPU seconds on a Sun 4) are 0.006
(BB-SORT-C), 0.0004 (SERT-C), and 0.0025 (1-Steiner). Average running times for nets
with lSI = 7 are 0.46 (BB-SORT-C), 0.0008 (SERT-C), and 0.0074 (1-Steiner).

22 Combining "fidelity" studies such as those in the Appendix with the above studies of
Elmore delay suboptimality, one can obtain upper bound estimates of the ERT, SERT and

128 CHAPTER 3

Which of these routing heuristics is most useful will depend on the application.
CS-Steiner variants HO and HBest yield the smallest delay values for a single
critical sink, but tend to have high time complexity. The SERT-C heuristic
has 9(n2 logn) time complexity, and extends to the case of nets with multi­
ple critical sinks (apply SERT with max delay objective to the critical sinks,
then apply SERT-C with a weighted average delay objective to connect the
remaining sinks). The "generic" ERT and SERT heuristics can also be applied
before critical path information becomes available (reduction of the time com­
plexities of ERT and SERT remains an interesting open problem). For nets
on non-critical paths, minimizing area will take precedence over minimizing
delay, hence traditional minimum-cost Steiner tree heuristics such as IlS, or
simulation of a higher rd value in any ERT variant, will be preferable. Both
the CS-Steiner and ERT approaches extend to incorporate wiresizing and ad­
dress general-cell layout with arbitrary routing region costs. Finally, Vittal and
Marek-Sadowska [244] have recently given input instances for which ERT and
SERT return highly suboptimal routing trees. The alphabetic tree based ap­
proach in [244] uses more "global" criteria than the greedy ERT construction,
and can thus escape such pathological instances.

3.4 NEW DIRECTIONS

While existing routing algorithms center largely on topology design, the scaling
ofVLSI technology has shifted layout optimizations to account for interconnect­
and device-level phenomena. We conclude this chapter by sketching two recent
directions in the delay-driven design of VLSI interconnects. First, we discuss
modification of the wire geometry, as opposed to the wire topology, for improved
signal propagation. A second idea- the use of non-tree routing topologies to
reduce signal delay- is also quite foreign vis-a-vis our development so far. Ex­
perimental evidence suggests that these approaches can substantially improve
signal delay as well as skew, reliability, and other attributes of the interconnect
design. In the future, these forms of interconnect optimization will take on
greater importance for performance-driven routing applications.

SERT-C delay suboptimality with respect to SPICE-computed delay. For spanning trees over
5-terminal nets, Boese et al. [33] estimate that the optimal tree according to Elmore delay
will be between 3% and 10% above SPICE-optimal, depending on the technology. Since
the SERT-C heuristic is between 0% and 5% above optimal in terms of Elmore delay for
5-terminal nets, the SPICE delay suboptimality of SERT-C heuristic can be estimated to
range from 3% for MCM to at most 12% for 0.5 J.Lm and at most 15% for 1.2J.Lm and 2.0 ILm
CMOS IC technologies.

Delay 129

3.4.1 Wiresizing

The previous discussion has assumed that VLSI interconnections have uniform
width and thickness, in that only the length of an interconnection is controlled
by the designer. However, optimization of wire geometries to improve sig­
nal propagation is an established precept, e.g., in microwave and analog cir­
cuit design. A large body of parameter extraction, process simulation, and
three-dimensional electromagnetic simulation techniques all address the three­
dimensional - as opposed to one-dimensional - nature of integrated circuit
wiring. As wire width and spacing continue to decrease, and as device switch­
ing speeds continue to increase, previous "second-order" phenomena (line cou­
pling, deposition profiles, inductive effects, etc.) become more significant. The
concept of wiresizing is motivated by the basic tradeoff between capacitance
and resistance in the wire geometry.

For a given interconnect technology, let us change the definition of "unit resis­
tance" so that r now denotes the resistance of a unit-length, u71it-width wire
segment; we define unit capacitance c similarly. Then, a segment of width w
units will have resistance per unit length of f and capacitance per unit length
of c · w. Given an RC tree with variable wire widths, we can substitute the
appropriate lumped values for each segment in the distributed representation of
the tree. The evaluation of signal delays, e.g., according to the Elmore formula,
remains the same as in our previous discussion.

Fisher and Kung [94). Zhu et al. [261). and Pullela et al. [198] have used
wiresizing to optimize the design of clock distribution networks; see Friedman
[100] for an overview of related techniques. Dutta and Marek-Sadowska [80]
have previously used wiresizing in the design of power and ground networks,
where upper bounds on current densities must be satisfied to achieve reliability.
For performance-driven routing of arbitrary signal nets, Cong et al. (64, 65]
and Sapetnekar [209] have given the main early results, corresponding to the
case where the tree layout is prescribed and only the segment widths can be
varied.

In (64, 65]. it is assumed that only a small number r of widths W1, W2, ... , Wr
are available to implement the wire segments in the interconnect tree. The
resulting discrete wiresizing problem formulation uses the same weighted sum
of critical-sink delays objective (34] that we have discussed above:

130 CHAPTER 3

The Discrete Wiresizing Problem: Given the set of edges E of a routing
tree T, n sink criticalities Oi > 0, and a set of r available wire widths W =
{ W1 , W2, · · · , Wr}, find a wire width assignment f : E -+ W to minimize the
weighted sum of critical sink delays L Oi · t(si).

i=l

Following [65], let Wj = f(ei) denote the width assignment of edge ei. Also, let
r indicate the optimal wire width assignment, with wJ being r (ei). We abuse
notation and allow T to contain more "edges" than sinks (e.g., if T is embedded
in the grid graph); this allows a given connection to contain multiple segments
(i.e., edges) with possibly different widths. Let Anc(ei) denote the set of all
ancestor edges on the unique path from the source to edge ei, excluding ei itself;
similarly, let Des(ei) denote the set of descendant edges, { ek I ei E Anc(ek)}.

To make the discrete wiresizing problem tractable, it is assumed that sink
delays are given either by the Elmore delay upper bound of Rubenstein et al.
or by Elmore delay itself. Cong et al. state that the following two properties
hold for the Elmore delay upper bound [65] and for Elmore delay [64].

(Monotonicity)23 For any routing tree T, the optimal wire width assignment
r satisfies w; ~ w; whenever ej is an ancestor of ei.

(Separability) The optimal width w; of edge ei depends only on the width
assignments { Wj I ei E Anc(ei) U Des(ei)} of ei 's ancestors and descendants.

According to [65], once ei and the edges in Ans(ei) have been assigned widths,
the optimal width assignments for each "single-stem subtree" -i.e., a maximal
subtree within Des(ei) which has exactly once edge adjacent to ei -can be in­
dependently determined. For example, in Figure 3.32 (reproduced from (209]),
once wi has been fixed, w2 and wa can be optimized independently.

Together, these two properties imply that the disjoint maximal subtrees below
any given edge can be optimized independently (Separability), and only mono­
tone root-leaf width assignments need be considered (Monotonicity). Thus,
Cong et al. propose an O(IEr- 1) recursive algorithm to solve the discrete
wiresizing problem, essentially by enumerating all monotone wire width assign­
ments on every source-sink path in T.

More recently, Sapetnekar [209] has suggested minimization of the maximum
sink Elmore delay, rather than the weighted sum of sink Elmore delays. For this

23 Cf. the discussion of synthesis of clock trees and other interconnects in [18).

Delay 131

objective, the separability property does not hold, and the solution methods of
Cong eta!. do not apply. In Figure 3.32, tEv(s2) depends on the widths w1 and
w2 which define the resistive and capacitive elements of the s0-s2 "main path".
Separability fails because tEv(s2) also depends on the off-path capacitive load
defined by w3: minimizingtEv(s2) is achieved by using minimum width for e3 .

The symmetric situation holds for tEv(s2)· Since minimum width of, say, e2
implies greater resistivity on the so-s2 path, it is not possible to optimize the
maximum sink delay by optimizing the two sink delays independently. Sapet­
nekar also treats a continuous version of the wiresizing problem, i.e., the set
of available wire widths forms an interval W = [wmin, Wma.r]. and proposes an
efficient heuristic based on sensitivity analysis.

Figure 3.32 Counterexample to the separability property for the
maximum sink Elmore delay objective, reproduced from [209].

For the discrete wiresizing problem, [64, 65] proposed the following O(IEI2 ·
r) greedy heuristic, which iteratively changes a single wire width to improve
the delay objective while keeping all other wire widths fixed. The algorithm,
which we call Static Greedy Wiresizing (SGW), terminates when no single wire
width change can improve the delay objective. Figure 3.33 gives an equivalent
description of this strategy, with an arbitrary delay calculation being allowed
in evaluating the current wire width assignment. The template shows the
"increasing version" of the algorithm, i.e., we start with minimum wire widths
and increase the width of individual segments while always reducing the delay
objective. Symmetrically, it is also possible to run a "decreasing version" of

132 CHAPTER 3

SGW which greedily decreases wire widths starting from an initial maximum­
width wiresizing.

Algorithm Static Greedy Wiresizing (SGW) (increasing version):
Input: T = (V, E) rooted at source so, delay objective t(T),

finite set W = {W1 < W2 < ... < Wr} of discrete edge widths,
wire width assignments f(e;):: W1 for all e; E E

Output: Wire width assignment f: E--+ W for tree T
For each node s; E V such that e =(so, s;) E E Do

Call SGW on the subtree rooted at s;
Repeat

delay old = t(T)
Increase f(e) from Wk to W~<+l

Until delaYo!d < t(T) or f(e) = Wr+l
Decrease /{e) from Wk to Wk-1

Figure 3.33 The Static Greedy Wiresizing (SGW) algorithm (in­
creasing version). For convenience, we assume the existence of a
width Wr+l that is greater than the maximum allowed width Wr.

Given two wire width assignments /1 and 12 for some tree T, we say that /1
dominates 12 if /1 (ei) 2: 12 (ei) for all edges ei. Cong et al. [64, 65] showed the
following:

(Dominance) For any tree T with wire width assignment /1, let 12 be a
wire width assignment obtained by a sequence of single wire width changes,
each of which improves the delay objective while leaving all other wire widths
fixed. Then h dominates (is dominated by) /* if and only if /1 dominates (is
dominated by) r.
The dominance property implies that the increasing and decreasing versions of
SGW can provide lower and upper bounds on the optimum wire width for each
edge in T.

Dynamic Wiresizing

The SGW method is called static because the interconnect topology is fixed
before wiresizing begins. To take advantage of possible synergy between these
two processes, Hodes et al. [125] have proposed a dynamic wiresizing heuris­
tic which combines the Steiner Elmore routing tree (SERT) and static greedy

Delay 133

wires1zmg (SGW) approaches. Starting with only the source terminal, the
construction iteratively adds a new terminal to minimize the Elmore delay ob­
jective in the resulting wiresized topology. In other words, SGW is called once
with candidate edge in the construction, and the edge which yields the lowest­
delay wiresized tree is added. It should be noted that the wiresizing serves
strictly as a guide, in that edges of a partial topology are restricted to have
minimum width during the construction. Only when the topology spans the
entire net is SGW invoked a final time and the resulting wiresized Steiner tree
returned. The resulting DWSERT algorithm is described in Figure 3.34.

Algorithm Dynamically Wiresized Steiner
Elmore Routing Tree (DWSERT)

Input: Signal net S with source so E S
Output: Wiresized low-delay Steiner tree spanning S
T = (V, E)= ({so},0)
M = S- {so}
While M "" 0 do

Find u E M, and point w on some edge of E which
minimizes the maximum Elmore delay from so to any leaf
in the wiresized tree SGW(V U {u, tv}, E U {(u, tv)})

V = Vu{u,w}
E = Eu {(u,w)}
M = M- {u}

Output SGW(T = {V, E))

Figure 3.34 Algorithm DWSERT: constructing a dynamically
wiresized low-delay routing tree.

Hodes et al. [125] have compared the performance of DWSERT against that of
llS, SERT, A-tree, and the statically wiresized versions llS + SGW, SERT +
SGW, and A-tree+ SGW. Their testbed consists of sets of 50 random nets with
terminal locations chosen from a uniform distribution in the 100000J1 x 100000JI
grid, and the source terminal randomly chosen in each net. Interconnect pa­
rameters correspond to the MCM technology in Table 3.1, i.e., a regime where
A-tree and wiresizing achieve performance gains.

Table 3.10 gives the average percentage reduction in SPICE-computed maxi­
mum sink delay, relative to llS values. Static wiresizing substantially improves
sink delay when applied to the llS or A-tree topologies. However, SERT topolo­
gies admit less improvement since they are already highly star-like for the MCM
technology (there is no advantage to widening a direct source-sink tree edge).
The table also gives the average percentage increase in wiring area, again rela-

134 CHAPTER 3

tive to US values. DWSERT, along with A-tree + SGW, appears superior to
the other methods. Finally, Figure 3.35 shows the wiresized US, A-Tree, and
DWSERT constructions for a small random net.

Max Sink SPICE Delay (!) I Wire Area (i)
Algorithm lSI= 5 lSI= 10

liS -o.o 1 +o.o -o.o 1 +o.o
liS+ SGW -28.6 1 +38.2 -34.4 1 +33.5

A-tree -7.4 1 +0.3 -23.4 1 +5.6
A-tree+ SGW -38.2 1 +9o.o -53.6 1 +89.3

SERT -27.2 1 +66.4 -52.2 1 +138.1
SERT + SGW -31.6 1 +111.1 -54.4 1 + 173.4

DWSERT -32.2 1 +62.1 -56.2 1 +99.9

Table 3.10 Performance comparisons for DWSERT and llS, SERT,
and A-tree constructions, as well as their wiresized (+ SGW) ver­
sions. We show average percentage reduction in maximum sink de­
lay, and average percentage increase in wiring area; both are with
respect to ns.

3.4.2 Non· Tree Routing

An implicit premise of previous methods is that the interconnection topology
must be a tree. In retrospect, this is natural since a tree achieves electrical
connectivity with a minimum amount of wire. We conclude this chapter with
a brief investigation into "non-tree" routing, i.e., the use of arbitrary routing
graph topologies. While delay minimization remains our central motivation,
non-tree routing can have other advantages, including reduction of reflections,
increased reliability, and reduced skew in sink delays. The latter two consider­
ations have led to some previous use of non-tree topologies for VLSI routing:
(i) for power/ground distribution, graph topologies are used to enhance relia­
bility by lowering current densities and electromigration (80, 89, 90], and (ii)
for clock distribution, graph topologies are used to control skew and minimize
the impact of process variation (175].

It is easy to see that adding extra wires to an existing routing tree can improve
certain source-sink delays. While additional wire will always increase the total
tree capacitance, creating multiple (parallel) paths can substantially lower par­
ticular internode resistances, as shown in Figure 3.36. Consequently, with the

Delay

(a) (b)

(c)

Figure 3.35 Comparison of routing tree constructions for a random
15-terminal net (hollow dot is s0). (a) A-tree + SG W has maximum
sink delay = 3.00ns; (b) US + SGW has maximum sink delay
= 4.05ns; (c) DWSERT has maximum sink delay= 2.55ns.

135

trend toward thinner and more resistive VLSI interconnects, the use of non-tree
routing seems increasingly attractive.

McCoy and Robins [181] have studied the following Optimal Routing Graph
(ORG) problem, which is a generalization of the ORT problem discussed above.

The Optimal Routing Graph (ORG) Problem: Given a signal net S =
{so, s1, ... , sn} with source so, find a set N of Steiner points and routing graph
G =(SUN, E) such that G spans Sand minimizes t(G) = qfax t(si).

t=l

The ORG problem extends to address a critical-sink formulation by associating
a criticality parameter ai > 0 with each sink s;. We then seek a routing graph

136 CHAPTER 3

so

······----~~-......
(a) (b)

Figure 3.36 Adding an extra edge to the MST reduces maximum
source-sink SPICE delay from 1.3ns in (a) to l.Ons in (b), while
incurring a wirelength penalty of 9%. Simulation parameters cor­
respond to a MOSIS 0.8p. CMOS process.

n

that minimizes L Cl!i • t(si), and for tractability of the delay calculation again
i=l

use the distributed RC representation and Elmore's delay approximation. Note
that the discussion of Section 3.1.2 treats only the computation of Elmore delay
in an RC tree. Chan and Karplus have given an efficient computation for
Elmore delay in general RC graph topologies [41) (see also Martin and Rumin
[179]). The method of Chan and Karplus decomposes the interconnect graph
into a spanning tree plus a set of m extra edges; the extra edges are added back
into the graph one by one, and the Elmore delay is updated with each edge.
The time complexity of this Elmore delay calculation is O(n · m).

A Simple ORG Heuristic

In [181), the ORG problem is addressed as follows. Starting with a "reasonable"
initial topology (e.g., a heuristic SMT or an MST), a new edge is found which
minimizes the delay objective in the resulting routing graph. This edge is
then added to the routing graph, and the process is iterated until no edge will
further improve the delay. Steiner points may be introduced via edge-edge and
point-edge connections to afford greater flexibility in the delay and wirelength
optimization. A formal description of the resulting Low Delay Routing Graph
algorithm is given in Figure 3.37. Although the LDRG complexity is 9(n4)

Delay 137

per iteration, the method will be reasonably efficient for most nets, e.g., those
having 10 or fewer terminals.

Algorithm Low Delay Routing Graph (LDRG)
Input: signal net S with source so

Output: low-delay routing graph G = (S, E)
Compute a Steiner tree G = (S, E) overS= SUN,

where N are the possible Steiner points,
and E ~ S X S is the set of Steiner tree edges

While there is an edge e;j E S x S
which minimizes t((S,Eu {e;;})) < t(G)

Do E = E u { e;;}
Output G

Figure 3.37 The Low Delay Routing Graph (LDRG) algorithm:
greedy construction of a low delay routing graph based on a heuris­
tic Steiner tree. Elmore delay iED is used to guide the construction.

The LDRG heuristic has been tested on sets of 100 random nets for each of
several net sizes, with terminal locations chosen from a uniform distribution
in a square layout region. Interconnect technology parameters correspond to
IC1, IC2 and MCM in Table 3.1. The particular LDRG implementation that
we discuss begins with the IlS heuristic SMT, and uses the code of Chan and
Karplus [41] in the Elmore delay computation. For greater accuracy, SPICE3e2
is used to evaluate signal delays in the LDRG output graph.

Figure 3.38(a) shows the average percentage reduction in maximum sink delay,
compared with the llS algorithm. Substantial improvement can be seen for the
MCM and IC2 technologies; with the former, average delay improvement is 38%
for 5-terminal nets and 44% for 10-terminal nets. Corresponding increases in
tree cost, versus llS, are shown in Figure 3.38(b). It appears that for the LDRG
method, the percentage improvement in delay represents a reasonable return
on the percentage increase in tree cost. Interestingly, the MCM technology
seems to admit a regime where the maximum delay and the tree cost are both
decreasing at the same time.

Finally, an added benefit of non-tree routing is a significant reduction in signal
skew (i.e., the maximum difference between signal arrival time between any
two sinks). Figure 3.38(c) shows the average percentage improvement in signal
skew versus the IlS Steiner routing. For 10-terminal nets, LDRG yields 44%

138

'CO c: . .,
:0

i'O'~
;g~
e e
~.g
·- c:

~ ·a
:0
'0

g

100

80

60

40

20

100

~ . ., 80

~
1:1)

ofj = 60 .. ~;
c: >
.!! 0

.~ ~ 40
~ I! .s

CHAPTER 3

ict•w-------- -------· 1Cl11}2'--)!:,wnooimP)
.. r.~."'; ••••••••••••••••

10 IS 20 10 IS

Net Size Net Size

(a) (b)
100

'CO c: .,.
80 :s

0
A:

~
j e 60

rll.g
2 .g
~.g

40

&! ... 20

~
~

0

10 IS 20

Net Size

(c)

Figure 3.38 (a) Average percentage reduction in maximum sink
delay, versus llS routing. In other words, we plot the quantity
1 - t~~~~f1~f), expressed as a percentage; (b) Average percentage
increase in tree cost, versus US routing; (c) Average percentage
reduction in skew of signal arrival times, versus IlS routing.

20

skew reduction for the MCM technology, and 13% and 10% skew reductions for
the IC2 and IC1 technologies, respectively.

Delay 139

In conclusion, non-tree routing topologies seem promising for performance op­
timization, particularly in regimes where long signal routes must be made, or
where routing densities are low and an area-speed tradeoff is possible (e.g.,
MCM substrate routing). Furthermore, non-tree routings possess such advan­
tages as open-fault tolerance, reduced skew, and reduced signal reflection (40].
On the other hand, issues such as signal wavefront interference (due to multiple
point-to-point conduction paths), and the resulting possibility of false switch­
ing, may need careful investigation. In the future, one can envision extensions
of LDRG to encompass critical-sink routing and wiresizing, as well as a better
initial Steiner topology in the construction.

4
SKEW

Overview of the Chapter

The heart of a digital system is its clock, which is the control signal that syn­
chronizes the flow of data among functional elements. To achieve maximum
system performance, it is necessary to limit the clock skew, i.e., the maximum
difference in arrival times of the clock signal at synchronizing elements (se­
quential registers, or clock sinks) of the design. This has been idealized in the
recent literature as the "zero-skew clock routing problem", which seeks a rout­
ing tree that delivers the synchronizing clock pulse from its source to all clock
sinks simultaneously. At the same time, the cost of the clock routing tree must
be minimized in light of system power requirements, signal integrity, and area
utilization. This chapter views clock tree construction to minimize skew and
tree cost as a combination of two processes - topology generation and geometric
embedding - and presents methods which accomplish each of these processes
using either linear delay or Elmore delay to guide the construction. Our focus
is on the sequence ofrecent works by Jackson et al. [143], Kahng et al. [144],
Tsay [240], Boese et al. [29] Chao et al. [44, 45], Edahiro [82, 84], Zhu and Dai
[259], and Kahng and Tsao [153] which lead to the present state of single-layer,
exact zero-skew clock tree constructions.

In the first part of this chapter, the linear delay model is used to motivate a
pathlength-balanced tree problem formulation. We describe a class of simple
methods, based on iterative geometric matching, which perform simultaneous
topology generation and geometric embedding of the clock tree. These meth­
ods typically yield zero pathlength skew for both cell-based and building-block
designs.

140

Skew 141

The second part of the chapter describes the Deferred-Merge Embedding (DME)
algorithm, which in linear time embeds any given connection topology into the
Manhattan plane with exact zero skew and minimum tree cost. The DME al­
gorithm consists of two phases: (i) bottom-up identification of loci for "balance
points" within a minimum-cost zero-skew tree, followed by (ii) top-down selec­
tion of actual locations for these balance points within the zero-skew solution.
DME achieves substantial wirelength reductions over previous constructions
in the literature, and can be applied with any monotone delay model (i.e.,
any model according to which sink delays are monotone in the length of any
tree edge). Studies of various clock topology generators in conjunction with
the DME embedding show the contribution of both the topology generation
and the geometric embedding to successful clock tree synthesis. We also show
the generality of the DME approach by describing extensions which address
prescribed-skew clock routing, min-max delay constraints in general signal net
routing, and a bounded-skew clock routing formulation.

Finally, the third part of the chapter reviews the topology generation and ge­
ometric embedding of DME's exact zero-skew construction, and unifies these
ideas with the objective of a single-layer, or "planar-embeddable'', clock routing
solution. Under the linear delay model, the two phases of the DME algorithm
can be replaced by a single top-down pass. Whereas the original DME algo­
rithm required a prescribed topology as input, combining the two DME phases
allows the clock tree topology to be determined dynamically and flexibly, at
the same time that it is being embedded optimally. This naturally leads to a
DME-like construction of a zero-skew, single-layer clock tree.

The chapter concludes by noting several additional issues and problem formula­
tions, including sensitivity to process variation, design of buffering hierarchies
for minimum phase delay, and design of two-level clock trees for multi-chip
module packaging.

4.1 PRELIMINARIES

In synchronous VLSI designs, circuit speed is limited by two main factors: (i)
delay on the longest path through combinational logic, and (ii) clock skew,
which is the maximum difference in arrival times of the clocking signal at the
synchronizing elements of the design. This is seen from the following inequality,
which governs the clock period of a design [18]:

142 CHAPTER 4

clock period ~ td + tskew + lsu +ids

where td is the maximum delay on any path through combinational ~ogic, tskew

is the clock skew, t,u is the setup time of the synchronizing elements (i.e.,
sequential registers, or clock sinks), and ids is the propagation delay within
the synchronizing elements. The term td can be further decomposed into td =
td_interconnect + td_gate•, where td_interconnect is the delay through interconnect,
and td_gate• is the delay through logic devices on a given critical path. Scaling of
VLSI technology decreases the terms tsu, tds, and td-gate•, so that td_interconnect

and tskew increasingly dominate circuit performance. As noted by Bakoglu
[18], within any given system design it is difficult to accommodate tskew that
is greater than 10% of the overall system clock period. As a result, there is
a large literature dealing with the problem of clock skew minimization under
various assumptions.

It is important to realize that many disparate architecture and circuit-level
options exist for system clock distribution, but are not taken into account by
our treatment. For example:

• the clocking can be pipelined, which brings into consideration the tradeoff
between latency and clock frequency [93, 101, 102];

• a given clock can be single-phase or multi-phase, and can employ retiming
or "cycle-stealing" techniques [17 4, 242];

• either a buffer hierarchy (possibly with parameterized buffer cells to match
loading impedances) or a single monolithic buffer [18, 100] can be used to
drive the clock routing topology;

• wiresizing, "snaking", or passive delay elements can be used to compen­
sate for variation of interconnect and loading impedances, or to reduce
sensitivity to process variation during manufacture [198, 240]; and

• high-level functional partitioning can enable multiple clock signals [99] or
modular clocking (e.g., for low-power design).

An excellent review of such system-level design issues is provided in the work
of Friedman (e.g., see [100]), and a more low-level discussion (e.g., of optimum
cascaded driver design, interconnect scaling effects, and wire width optimiza­
tion) is provided in [18]. In the following, we will focus on interconnect design,

Skew 143

rather than architecture- or device-level issues. Hence, the literature concerning
several of the above considerations is beyond our present scope.

A number of clock tree constructions implicitly require small problem com­
plexity. For hierarchical building-block design, Ramanathan and Shin (200]
proposed a clock distribution scheme which enumerates all possible clock rout­
ings and clock buffer optimizations. The exhaustive search forces the number
of blocks at each level of the hierarchy to be small. Burkis (37] and Boon et
al.[35] have also proposed hierarchical approaches to clock tree synthesis in­
volving geometric clustering and buffer optimization at each level, and other
methods (e.g., Pullela et al. [197] for wire width optimization) similarly use
exhaustive search of a relatively small solution space. A mathematical pro­
gramming formulation which resynthesizes the clock tree to minimize the clock
period was given by Fishburn (93]. Such methods have high algorithmic com­
plexity and rely on a hierarchical clustering or a prespecified topology to yield
practical runtimes. By contrast, we are interested in clock tree constructions
for "flat" problem instances with many sinks at a single level, as will typically
occur in large cell-based or multi-chip module designs. In practice, such clock
routing instances arise after the placement phase of physical layout has deter­
mined the clock sink positions. Large cell-based designs can have clock nets
with thousands of sinks located arbitrarily in the layout region.

Clock trees with many sinks were first designed using H-trees (19, 73, 94, 246].
The H-tree structure successfully controls clock skew, but applies chiefly when
sinks have identical loading capacitances and are placed symmetrically, as in
systolic array architectures. The first general clock tree construction for cell­
based layouts with arbitrary sink locations was proposed by Jackson, Srinivasan
and Kuh (143): their method of means and medians (MMM) simultaneously
generates and embeds a topology by recursively partitioning the set of sinks
into two equally-sized subsets (according to a median x- or y-coordinate), and
connecting the centroid (i.e., the mean) of the entire set to the centroids of the
two subsets. The MMM solution exhibits reasonable skew on average, although
it is possible to construct small examples for which source-sink pathlengths in
the MMM solution may vary by as much as half of the chip diameter (144].

Definition of the Zero-Skew Clock Routing Problem

Formally, we define a clock routing instance to be a set of n sink locations in
the Manhattan plane, S = { s1 , s2 , .•• , Sn} C ~2 . The set of sinks S is also
called a clock net, and we often assume that it is embedded in the L x L grid.

144 CHAPTER 4

A connection topology is a rooted binary tree, G, which has n leaves corre­
sponding to the sinks in S. A clock tree T(S) is an embedding of the connec­
tion topology in the Manhattan plane, i.e., a placement in !R2 that assigns each
internal node v E G to a location pl(T, v). When no confusion is possible, we
will denote the placement of v simply as pl(v). The clock routing solution can
have internal nodes of degree greater than three if some edges of G have zero
length in its embedding T(S).

The clock entry point (CEP) of the clock tree is the source, ·"O· A terminal
generically denotes the CEP of any subtree of the routing solution; note that
any sink by itself is a degenerate subtree of the clock tree, and is its own CEP.
Given that the clock tree topology is rooted at the source, any edge between a
parent node v and its child w may be identified with the child node; we denote
this edge by ew. The cost of ew is given by its wirelength, denoted lew I, which
is always at least as large as the Manhattan distance between the endpoints of
ew, i.e., lewl2: d(pl(v),pl(w)). The cost ofT(S) is the sum of the edge costs in
T(S).

For a given clock tree T(S), let t(so, si) denote the signal propagation time on
the unique path from the source so to the sink s;. The skew of T(S) is the
maximum value of lt(so, si)- t(so, Sj)I over all sink pairs Si, Sj E S. If the skew
of T(S) is exactly zero then T(S) is called a zero-skew tree (ZST).

The Zero-Skew Clock Routing (ZSCR) Problem: Given set S of sink
locations, construct a ZST T(S) with minimum cost.

This formulation does not consider the possibility of intermediate buffers be­
tween the source and the sinks. Thus, it is most relevant to a monolithic
single-buffer (cascaded-driver) design. Bakoglu [18] states that the single-buffer
approach is more effective than a buffer hierarchy; the Digital Equipment Cor­
poration Alpha microprocessor [76] is a leading example of this philosophy.
Of course, it should also be noted that the ZSCR formulation, along with its
variants discussed below, fails to consider several practical issues.

• We do not consider buffer insertion, wire-sizing, or design issues pertaining
to signal integrity (e.g., overshoot/undershoot and false switching, incorpo­
ration of slew rate into the delay model, etc.). Nevertheless, in sub micron
regimes it is becoming easier and more area-efficient to insert buffers rather
than to add wire in achieving zero skew. Buffer insertion is also very useful
in maintaining integrity of the clock signal waveform.

Skew 145

• Our geometric perspective assumes that interconnect technology parame­
ters are the same on all metal routing layers, and ignores via resistances:
only in this way can RC parameters of interconnect segments be derived
from wirelength alone. More realistic formulations would incorporate dif­
ferent electrical parameters on the various metal layers, as well as process
variation and the objective of process variation-independent skew manage­
ment.

• The Elmore delay model, which is the most complicated model we use
for optimization of large clock trees, computes source-sink delays using
only lumped off-path capacitances. Actual sink delays will depend on the
specific topology within subtrees that branch off from a given source-sink
"main path" [205]. 1

• Finally, "exact zero-skew" is not always a real design goal: a circuit which
triggers all synchronizing registers simultaneously may consume an un­
acceptable amount of power. Hence, a more realistic objective may be
to distribute skew such that the registers trigger at different times, but
without incurring timing violations.

Despite these limitations, our approach leads to basic techniques that can be
easily extended to address more sophisticated or "realistic" objectives. For ex­
ample, the discussion below outlines extensions to prescribed-delay or bounded­
skew global routing, to hierarchical clock routing, and to single-layer clock
routing.

4.2 AN EARLY MATCHING-BASED APPROACH

The linear delay approximation allows intuitive geometric ideas to motivate new
algorithmic approaches to clock routing [29, 44, 45, 73, 82, 259]. For zero-skew
clock tree routing, linear delay simply compares the lengths I; of source-sink
paths, and disregards any off-path topology. Although the Appendix observes
that the linear model has poor accuracy and fidelity with respect to SPICE,
note that linear delay is exact for emerging optical and wave interconnect [241].
In addition, linear delay has been successfully used in clock tree synthesis (e.g.,

1The DME method described below extends to arbitrary monotone delay models (recall
that a delay model is monotone when increasing the length of a tree edge cannot decrease
any source-sink delay). However, monotone models are limited in their ability to capture
voltage response in transmission lines (reflection at discontinuities causes signal delay to be
nonmonotone).

146 CHAPTER 4

[73]). One possible explanation is that ignoring off-path topology entails "uni­
form error" across all sinks when the topology is balanced and when the dis­
tribution of sinks is uniform in the layout region; such is apparently the case
with actual clock sink placements and clock tree layouts.

In this section, we assume the linear delay model and consider the resulting
pathlength-balanced tree formulation [144]. The formulation relaxes the original
Zero-Skew Clock Routing problem by allowing non-zero skew. Our focus is on
a class of heuristics based on iterated geometric matching. The basic approach
starts with a forest of subtrees, each of which contains a single sink of the clock
net. At each level of the topology we combine pairs of subtrees into larger
subtrees, using a heuristic geometric matching over the CEPs in the current
forest. The end result is an embedded binary tree topology whose leaves are the
sinks of the clock net and whose root (CEP) is the clock source. The method
extends to building-block designs via matching in the channel intersection graph
of the layout.

Our matching-based approach can guarantee perfect pathlength-balanced trees
only for inputs with four or fewer sinks. Nevertheless, in practice the algorithm
will yield essentially zero pathlength skew even for very large instances. The
performance of this algorithm is "good" in the sense that the output tree cost
is on average within a constant factor of the optimal Steiner tree cost, and the
worst-case tree cost is bounded by 0(yin) for n sinks in the unit square, which
is the same bound as for the worst-case optimal Steiner tree cost. Furthermore,
the matching-based approach seems to afford a good underlying topology for
more sophisticated clock tree optimizations.

4.2.1 Pathlength-Balanced Trees

Under the linear delay model, clock skew is the same as pathlength skew, i.e.,
the maximum difference between any two source-sink pathlengths. A tree is a
perfect pathlength-balanced tree if its pathlength skew is zero. It is not difficult to
construct a perfect pathlength-balanced tree if we can use an unlimited amount
of wire. For example, we can naively route separate wires of equal length from
the source to each sink as shown in Figure 4.1(right), but the resulting tree
cost can be an unbounded factor higher than the SMT cost. On the other
hand, Figure 4.l(left) shows that minimizing tree cost can result in very large
pathlength skew. We wish to construct a tree with both pathlength skew and
tree cost as small as possible.

Skew

Figure 4.1 Neither the naive pathlength-balanced tree (right) nor
the minimum-cost tree (left) is a good clock tree.

147

The Pathlength-Balanced Tree (PBT) Problem: Given a set of sinks S
and a real parameter 'lj;, find a minimum-cost tree over S having pathlength
skew~ 'lj;.

By setting '1j; = oo, the PBT problem simplifies to the NP-complete rectilinear
SMT problem. However, the complexity of finding the minimum-cost perfect
pathlength-balanced (i.e., zero-skew) tree is still open. In devising a heuristic,
our first goal is to achieve an expected routing tree cost (for n random sink
locations in the L x L grid) of O(L · y'n), since this is also the asymptotic
expected cost of the SMT.

4.2.2 The Iterated Matching Approach

Definition: Given a set of k terminals, a geometric matching consists of exactly
L ~ J edges between the terminals, with no two edges sharing an endpoint.

The cost of a geometric matching is the sum of the costs of its edges, and
the matching is optimal if it has minimum cost. Figure 4.2 shows an optimal
geometric matching over four terminals.

To construct a tree by iterative matching, we begin with a forest of n terminals
corresponding to the sinks of the clock net. Each terminal is the CEP of a
degenerate subtree which consists of a single sink, and we will merge these
trees in bottom-up fashion until the entire clock tree is obtained. The optimal
geometric matching on the n CEPs has l ~J edges, each of which defines a

148 CHAPTER 4

•

• • J L

•

•

Figure 4.2 An optimal geometric matching over four terminals.

subtree containing two sinks. The optimal (zero skew) CEP for each of these
subtrees is the midpoint of the corresponding edge.

In general, each level of the iteration will match terminals corresponding to
CEPs (roots) of subtrees in the current forest. However, observe that the
matching calculation is oblivious to varying root-leaf pathlengths among the
subtrees of the current forest. Thus, when two subtrees are merged into a
larger subtree, the optimal new CEP is not necessarily equidistant from the
CEPs of the two subtrees. We choose the CEP of each new merged subtree to
be the balance point p which (i) lies on the "straight" line segment connecting
the roots of the two subtrees (i.e., the Euclidean embedding of the matching
edge) and (ii) minimizes the maximum pathlength skew from p to the sinks
of the merged subtree. Computing the balance point can be done in constant
time if we know the minimum and maximum source-sink pathlengths of each
subtree; the corresponding values for the new merged subtree can be updated
in constant time.

At each level we match only half as many nodes as at the previous level, and
the clock tree solution is obtained after flog n 1 matching iterations. (If a given
level has 2m+ 1 CEPs, we find the optimal m-edge matching and match m + 1
CEPs at the next level.) Figure 4.3 gives a formal description of this algorithm,
which we call CLOCK!, and Figure 4.4 illustrates its execution.

Two results establish that cost(TcLocKd grows at the same asymptotic rate as
the worst-case optimal Steiner tree cost, and that cost(TcLocKt) is on average
within a constant factor of the optimal Steiner tree cost. (Similar bounds have
been established for more recent clock tree constructions, e.g., [84, 259].)

Skew

Algorithm CLOCKl: Pathlength-Balanced Tree heuristic
for cell-based designs

Input: Clock net S
Output: Pathlength-balanced tree TcLOCI\l with root CEP
T=0
P=S
While !PI> 1

M = edges of an optimal geometric matching over P
P'=0
For (p!,P2) EM Do

T1 = the subtree of T rooted at PI
T2 = the subtree of T rooted at P2
p = a point lying between Pl and P2 on the line segment

from PI to P2, such that p minimizes pathlength skew
of the subtree T1 U T2 U {(p, PI), (p, P2)} rooted at p

P' = P' u {p}
T = T U {(p, p!), (p, p2)}

P = P' (plus one unmatched node if !PI was odd)
CEP = root ofT= single remaining point in P
Output TcLOCI\1 = T

Figure 4.3 Algorithm CLOCK!: matching-based pathlength­
balanced tree heuristic for cell-based designs.

Theorem 4.2.1 For n arbitrary sink locations in the L x L grid,
cost(TcLocKd = O(L · yn).

149

Proof: For any k terminals in the L x L grid, the maximum possible cost of an
optimal matching is O(L · Vk) [233]. Since the tree is formed by the edges of
a matching on n terminals, plus the edges of a matching on I terminals, etc.,
the tree cost is at most

O(L · y'n) + O(L · ~) + O(L · ~) + ... = O(L · yn).

0

This is of the same order as the maximum possible cost of an optimal SMT over
n terminals in the L x L grid [229]. A second result addresses the instance-wise
relationship between the CLOCK! tree cost and the optimal Steiner tree cost.

150 CHAPTER 4

Figure 4.4 Example execution of CLOCKl on a 16-sink clock net.
Solid dots denote terminals, and hollow dots represent the balance
points of matching edges. At each level, a geometric matching
is computed on the balance points from the previous level. Note
that although edges are depicted as straight lines, they are routed
rectilinearly.

Theorem 4.2.2 For nets with sink locations randomly chosen from a uniform
distribution in the L x L grid, cost(TcLocKI) is on average within a constant
factor of the optimal Steiner tree cost.

Proof: The expected minimum Steiner tree cost for n terminals randomly
chosen from a uniform distribution in the L x L Manhattan grid is f3 · L · -/Ti,
for some constant f3 [229]. The result follows from the O(L · -/Ti) upper bound
on the optimal matching cost at any level of the construction. 0

Skew

••----------:I::~e~~-----e~2~--••
Figure 4.5 H-flipping to reduce pathlength skew: the "H" configu­
ration at left has no zero-skew balance point along the "bar of the
H", while the "H" on the right has a zero-skew balance point.

Practical Improvements

1.51

Several enhancements are useful in implementing CLOCKl. First, recall that
the balance point computation was needed because the matching is oblivious
to the difference in source-sink pathlength within the matched subtrees. Com­
puting a balance point intuitively entails "sliding" the CEP along the "bar of
the H" (see Figure 4.4), but this is not always sufficient to balance the source­
sink pathlengths exactly. Thus, a heuristic optimization called H-flipping was
proposed in [144]; see Figure 4.5. For each edge e which matches CEPs on
edges e1 and e2, H-flipping compares the "H" formed by e, e1, and e2 with
the other "H" over the same four terminals, then selects the alternative with
smaller pathlength skew , breaking ties toward smaller tree cost. When there
are four sinks in the clock net, H-flipping guarantees zero pathlength skew with
at most a factor of three increase in tree cost over the original matching-based
construction; this result was shown in [60]. Although this guarantee does not
hold for more than four sinks, in practice the H-flipping refinement seems to
nearly always yield perfect pathlength-balanced trees, and has negligible effect
on tree cost. Since H-flipping requires constant time per terminal, it does not
affect the asymptotic time complexity of CLOCK I.

A second implementation issue concerns the complexity of the matching sub­
routine, which effectively determines the overall CLOCKl time complexity.
Consider the pog n l matching iterations performed by CLOCK I, and let the
underlying matching algorithm require time S(n) = O(n) We may write S(n) =
n · S'(n) where S'(n) = S~n) is monotonically non-decreasing, and the time
complexity of CLOCK I is:

152 CHAPTER 4

< n · S'(n) + i · S'(n) + ~ · S'(n) + ...

S'(n) · (n + i + ~ + ...)
< 2n · S'(n) = 2S(n) = O(S(n))

Weighted matching in general graphs can be solved in O(n3) time (163), and
planar geometry allows a speedup to O(n2·5 logn) time [243]. However, such
runtimes are still impractical for large instances. Since there is no clear rela­
tionship between the optimality of the iterated matching and the pathlength
skew of the resulting tree, a practical implementation might employ a more ef­
ficient matching heuristic, such as the 0(n log2 n) greedy approach of Supowit
[231].

Finally, a third practical consideration is that a heuristic matching might con­
tain edges that cross each other when embedded in the plane. Seemingly, the
output tree can be improved by uncrossing pairs of intersecting edges in the
heuristic matching: this will reduce the matching cost in any metric. One can
find the k intersections of n line segments in 0(n log n + k) time [4 7].

4.2.3 Extension to Building-Block Design

Bottom-up iterative matching may also be applied to building-block design,
where the layout consists of rectangular blocks with arbitrary size and location
in the L x L grid. Routing is carried out in the regions between blocks (no two
blocks abut), and is also possible along the perimeter of the layout. We may
represent the layout using a channel intersection graph (CIG), G [58, 70, 158,
193].

Recall that in a graph G with non-negative edge costs, minpatha(x, y) is a
minimum-cost path between nodes x and y, and dista(x, y) is the cost of
minpatha(x, y). In the CIG, routing cost between two terminals is no longer
approximated by geometric distance, but is instead given by dista(x, y). How­
ever, we assume that every edge weight in the CIG reflects a geometric distance,
namely, the length of the corresponding channel. Thus, the routing graph can
be considered to be a subgraph of the L x L gridgraph. Our objective is still
to construct a tree with both cost and pathlength skew as small as possible,
subject to tree edges being routed within the routing channels.

Skew 1.53

Definition: Given a graph G = (V, E) with non-negative edge costs and a
set of vertices S ~ V, a generalized matching M over S is a set of shortest
paths connecting m disjoint vertex pairs inS, i.e., M = {minpatha(x 1 ,yl),
minpatha(x2, Y2), ... , minpatha(xm, Ym)}, where all x;, y; E S are distinct.

A generalized matching over S <; V is complete if m = l ~ j. The cost of a
generalized matching M is the sum of the costs of the sho"rtest paths in the

m

matching, i.e., cost(M) = L: dista(x;, yi). An optimal complete generalized
i=l

matching on S <; V is one with minimum cost.

Lemma 4.2.3 Each edge of G belongs to at most one shortest path in an op­
timal complete generalized matching over S <; V.

G

•
G

~ ./ .. : ...
X.

J

Figure 4.6 An edge can belong to at most one shortest path in au
optimal complete generalized matching.

Proof: Let M be an optimal complete generalized matching over S. Suppose
edge e appears in distinct shortest paths minpatha(x;, y;) and minpatha (Xj, Yi)
in M as shown in Figure 4.6. We have that

i.e., we can obtain another complete generalized matching over S with smaller
cost by replacing minpatha(x;,y;) and minpatha(xj,Yj) by minpatha(x;.xj)
and minpatha(Yi, Yi). This contradicts the optimality of M. 0

Lemma 4.2.4 The routing cost between any two terminals of G in the L x L
grid is~ 2£.

154 CHAPTER 4

Proof: Given terminals x andy in G, let P1 be any monotone (staircase) path
passing through x and connecting two opposite corners w and w' of the layout
grid. Clearly, cost(PI) = 2L. Similarly, let P2 be a monotone path passing
through y and connecting wand w'. Since cost(PI) + cost(P2) = 4L, either w
or w' will be reachable from both x and y with total routing cost at most 2L,
implying dista(x, y) $ 2L. 0

Using the result of Lemma 4.2.4, an optimal complete generalized matching
over n terminals in G has cost at most 2L · l ~ J $ n · L. Note that this is
independent of the number of blocks in the layout.

As before, we may construct a heuristic pathlength-balanced tree via iterated
generalized matching over a current set of clock terminals (CEPs). We begin
with a forest of n isolated terminals in G corresponding to the sinks of the
clock net, and at each level compute an optimal generalized matching over the
set of CEPs of subtrees in the current forest. The CEP of each new subtree is
the point on the corresponding shortest path in the matching which minimizes
pathlength skew among the leaves in the two merged subtrees. Figure 4.7
formally describes the resulting CLOCK2 heuristic, and Figure 4.8 shows an
example execution.

Theorem 4.2.5 For n sinks in the L x L grid, cost(TcLOCK2) $ 2nL.

Proof: By Lemma 4.2.4, the cost of a generalized matching on n terminals is
bounded by nL. After each iteration, the number of nodes to be matched is
reduced by half. Therefore, cost(TcLOCK2) $ nL + n2L + n4L + ... $ 2nL. 0

To analyze the CLOCK2 time complexity, observe that computing an optimal
generalized matching over the set of terminals S requires an edge-weighted
complete graph G' over S, with the weight of each (x, y) edge corresponding
to dista(x, y). Given G = (V, E), the graph G' can be obtained using an
O(IEI·IVI + IVI2) implementation of Floyd's all-pairs shortest paths algorithm
[213]. A channel intersection graph induced by b blocks typically (cf. [38]) has
lVI = O(b+n), and typically b = O(n). Since G is planar, lEI= O(jVI). Thus,
the optimal matching in G' can be obtained in O(b2 + n3) time [163].

As with CLOCK1, the time complexity of optimal matching may be imprac­
tical, in which case a fast matching heuristic should be used. The heuristic
complete generalized matching may be improved by removing any overlapping
edges of shortest paths (cf. Lemma 4.2.3), so that no edge appears in more

Skew

Algorithm CLOCK2: Pathlength-Balanced Tree heuristic
for building-block designs

Input: Clock net S embedded in routing graph G
Output: Pathlength-balanced tree TcLoc/\2 with root CEP
T=0
P=S
While IPI > 1

M = optimal complete generalized matching on P
P' =0
For {p1,p2} EM Do

Tt = subtree ofT rooted at p1
T2 = subtree ofT rooted at P2
p =balance point on minpatha(pt,P2) minimizing the

skew of the tree Tt U T2 U minpatha(Pt, P2)

P' = P' u {p}
T = T u { {p, Pt } , {p, P2}}

P = P' (plus one unmatched node if IPI was odd)
CEP = Root ofT= single remaining point in P
Output TcLOCK2 = T

Figure 4.7 Algorithm CLOCK2: matching-based pathlength­
balanced tree heuristic for building-block designs.

1.55

than one shortest path. When we use a fast matching subroutine, such as the
greedy heuristic (224], the time complexity of each CLOCK2 iteration is dom­
inated by the O(b2) all-pairs shortest paths computation. Because there are
O(log n) levels in the tree construction, the overall CLOCK2 time complexity
in this case is 0(b2 · log n).

4.2.4 Empirical Tests

The heuristics CLOCK! and CLOCK2 were implemented in ANSI C; we now
summarize the experimental results.

Results for Cell-Based Designs

Three basic variants of CLOCK! were tested, corresponding to three efficient
matching subroutines. The first variant, called SP, uses the 0(n) space par-

156 CHAPTER 4

-
t-O D

r--

()

~

lo D
r--

"--
,a.,

I 'C)
......__
- c::~ •

I
I

I D--lf ..._

- I ' b:

I J
c::::::J

15=1__

Figure 4.8 CLOCK2 execution on an 8-sink clock net in a random
block placement. Solid dots are roots (CEPs) of subtrees in the
previous level, and hollow dots are roots of new subtrees at the
current level. The newly added routing is highlighted at each level.

titioning heuristic of [232] to induce a heuristic matching through recursive
bisection of the layout region (by contrast, the MMM method of Jackson et al.
is based on bisection of the set of terminal locations) . The second variant, called
GR, uses an 0(n log2 n) greedy matching heuristic [231] which always adds the
shortest edge between unmatched terminals. The third variant, called SFC,
uses an 0(n log n) spacefilling curve-based method (22] to map the layout plane
to a circle, thus inducing an ordering of the terminal locations. The SFC vari­
ant then chooses the better of the two embedded matchings (i.e., either all odd
edges or all even edges in the induced tour through the terminals). Although
each of these methods was originally proposed for Euclidean planar match-

Skew 157

ing, each also performs well in Manhattan geometry. Each of these matching
variants was tested both with and without the following two refinements: (i)
removing all edge crossings in the heuristic matching, and (ii) performing H­
flipping as necessary. Since either refinement can be used independently with
any matching variant, twelve distinct versions of CLOCKl result. These are
summarized as follows.

• SP, GR, SFC.

• SP+E, GR+E, SFC+E- Same as SP, GRand SFC, respectively, ex­
cept that the heuristic matching cost is improved by edge-uncrossing.

• SP+H, GR+H, SFC+H - Same as SP, GRand SFC, respectively,
except that pathlength skew and/or tree cost is improved by H-flipping.

• SP+E+H, GR+E+H, SFC+E+H - Same as SP, GR, and SFC, re­
spectively, except that both edge-uncrossing and H-flipping are performed.

For comparison, we also implemented

• MMM - The method of means and medians, similar to the implementa­
tion described by Jackson et al. (143].

These 13 algorithms were tested on random clock nets with up to 1024 sinks,
generated from a uniform distribution in the 1000 x 1000 grid. Results averaged
over 50 random instances of each size are summarized below: Tables 4.1 and 4.2
give the average tree costs and Tables 4.3 and 4.4 give the average pathlength
skews for all heuristics. All data in the tables are in grid units.

From the tables, we see that the edge-uncrossing and H-flipping refinements
each improve tree cost and pathlength skew. When the refinements are com­
bined, average pathlength skew is close to zero, and tree cost is generally supe­
rior to that of MMM. The best variant appears to be GR+E+H, i.e., CLOCKl
with a greedy matching heuristic, edge-uncrossing and H-flipping. 2 (Coinci­
dentally, of the three matching heuristics used, only the greedy method has

2 Any set of approximation heuristics will induce a meta-heuristic which for any given
instance returns the best solution found by any heuristic in the set. Interestingly, in our
experience the meta-heuristic of all12 CLOCK! variants always returns a perfect pathlength­
balanced tree. This is potentially useful since our heuristics are all of similar complexity; for
example, we can solve the Primaryl benchmark with all twelve variants using approximately
180 seconds of Sun SPARC-1 CPU time.

158 CHAPTER 4

lSI MMM SP GR SFC SP+E GR+E SFC+E
4 1197 1155 1136 1140 1129 1129 1130
8 2136 2075 2032 2031 1990 1990 1992

16 3506 3582 3409 3527 3343 3326 3343
32 5598 5922 5481 5788 5342 5277 5326
64 8377 9184 8526 9048 8100 8032 8068
128 12276 13793 12632 13656 11912 11725 11976
256 17874 20765 18625 20354 17573 17024 17768
512 25093 30443 27055 29618 25341 24548 25720
1024 36765 44304 38688 42750 36444 35086 37056

Table 4.1 Average clock tree cost for the various heuristics.

lSI SP+H GR+H SFC+H SP+E+H GR+E+H SFC+E+H
4 1125 1125 1125 1125 1125 1125
8 2027 2028 1994 1971 1979 1980

16 3502 3416 3428 3333 3322 3329
32 5860 5628 5577 5329 5273 5304
64 9226 8794 8748 8076 7982 8047
128 13997 3315 13159 11871 11697 11914
256 21307 19611 19713 17457 16955 17629
512 31646 29175 28688 25188 24465 25483
1024 46417 42110 41540 36276 34965 36814

Table 4.2 Average clock tree cost (continued).

worst-case cost that is asymptotically of the same order as the optimal match­
ing cost [224].) Tables 4.5 and 4.6 highlight the contrast between GR+E+H
and MMM, showing minimum, maximum and average values of both tree cost
and pathlength skew.

Finally, Figure 4.9 depicts the GR+E+H output for the Primary2 test case,
using the same sink placement as in [143]. Edges in the figure are depicted
as straight lines, but are actually routed rectilinearly. For this instance,MMM
results were: tree cost = 406.3 and pathlength skew (measured as standard de­
viation ofpathlengths) = 0.74 [226]. By contrast, GR+E+H results were: tree
cost = 376.7 and pathlength skew = 0.00. HSPICE simulations confirm sub-

Skew 159

lSI MMM SP GR SFC SP+E GR+E SFC+E
4 112.31 3.98 15.52 0.00 0.00 0.00 0.00
8 186.10 45.79 76.71 4.26 0.66 0.66 0.66
16 234.72 70.93 141.22 19.47 4.01 3.54 3.66
32 262.61 143.85 200.33 28.29 8.14 7.85 6.14
64 229.15 179.83 273.04 51.36 6.93 . 8.65 5.29

128 201.55 226.61 314.05 64.86 11.52 14.18 11.26
256 183.28 286.90 324.57 85.10 17.25 13.85 15.04
512 153.90 321.23 399.29 85.46 14.79 15.26 15.73

1024 125.34 339.34 402.59 89.75 17.14 16.71 15.35

Table 4.3 Average pathlength skew for the various heuristics.

lSI SP+H GR+H SFC+H SP+E+H GR+E+H SFC+E+H
4 0.00 0.00 0.00 0.00 0.00 0.00
8 3.38 0.12 0.00 0.00 0.00 0.00

16 1.80 3.80 0.12 0.00 0.00 0.00
32 3.53 8.64 0.00 0.00 0.00 0.00
64 13.17 27.69 1.26 0.00 0.00 0.00

128 20.79 40.34 3.18 0.00 1.02 0.24
256 41.79 51.87 7.49 0.00 0.92 0.00
512 76.35 90.66 13.51 0.39 0.62 0.39

1024 75.92 94.99 16.62 0.44 0.08 0.38

Table 4.4 Average pathlength skew (continued).

nanosecond skew for the GR+E+H routing solution, using MOSIS 2.0p CMOS
parameters and 0.3pF gate loading capacitance [60]. It is somewhat surprising
that clock skew can be controlled simply by balancing root-leaf pathlengths; as
discussed below, this phenomenon may be due to the matching-based approach
somehow providing an inherently robust topology for clock routing trees.

Results for Building-Block Designs

The CLOCK2 heuristic was tested on random clock nets of sizes 4, 8, and
16 sinks, using random layouts that contained 16 or 32 blocks. Layouts were

160 CHAPTER 4

MMM cost GR+E+H cost
lSI Min Ave Max Min Ave Max
4 656 1197 1823 555 1125 1668
8 1089 2136 2943 1123 1979 2810
16 2841 3506 4221 2793 3322 3993
32 4813 5598 6216 4695 5273 5866
64 7624 8377 9266 7372 7982 8556
128 11439 12276 13136 11052 11697 12243
256 17220 17874 18549 16379 16955 17543
512 25093 25666 26291 23866 24465 25325

1024 36126 36765 37561 34231 34965 36179

Table 4.5 Minimum, average and maximum tree cost for MMM
and GR+E+H.

MMM skew GR+E+H skew
lSI Min Ave Max Min Ave Max
4 2 112.31 379 0 0.00 0
8 46 186.10 407 0 0.00 0
16 86 234.72 416 0 0.00 0
32 118 262.61 540 0 0.00 0
64 141 229.15 337 0 0.00 0
128 120 201.55 282 0 1.02 30
256 127 183.28 250 0 0.92 46
512 103 153.90 203 0 0.62 31
1024 94 125.34 167 0 0.08 4

Table 4.6 Minimum, average and maximum pathlength skew for
MMM and GR+E+H.

generated by creating the prescribed number of non-overlapping blocks with
length, width, and lower-left x- and y-coordinates all chosen from a uniform
distribution over the interval [1, L] with L = 1000.

For each combination of net size and block cardinality, 100 instances were
tested; Table 4.7 compares pathlength skew and tree cost of TcLOCK2 against
the output of the KMB heuristic (159] for the Steiner problem in weighted

Skew 161

Figure 4.9 Output of variant GR+E+H on the Primary2 layout.

graphs (see Section 2.7). The average CLOCK2 pathlength skew is near zero,
and is never more than 2% of the pathlength skew in the heuristic Steiner
minimal tree. This skew reduction comes at the expense of between 24% and
77% increase in tree cost, versus the·heuristic SMT. All data in the table are
given in grid units. 3

Remarks

In retrospect, the matching-based construction of pathlength-balanced trees
remains interesting not for its skew-minimization properties, but rather for

3 [60] notes that HSPICE simulations confirm the low skew of the CLOCK2 construction
for building-block layouts. Also, the "average density" in any routing channel, computed as
the average of non-zero local column densities over all columns in all channels, is close to 1.
Thus, although up to log n paths can possibly overlap in a given channel, such overlaps seem
to occur only rarely.

162 CHAPTER 4

Pathlength skew Tree cost
#blocks lSI KMB CLOCK2 KMB CLOCK2

16 4 511.0 0.8 1537 1921
16 8 794.9 12.9 2328 3478
16 16 1101.5 22.1 3332 5873
32 4 445.0 0.4 1401 1729
32 8 804.4 4.4 2261 3407
32 16 1136.9 12.0 3357 5847

Table 4.7 Average tree costs and pathlength skews, in grid units,
for both the KMB heuristic Steiner minimal tree and the CLOCK2
output tree. Each value is an average over 100 random instances in
the 1000 x 1000 grid.

the directions it leaves open for subsequent work. The original discussion in
[60, 144] stated the following "extensions":

1. Toward Exact Zero Skew: Instead of the linear delay model, the
matching-based approach could use the more accurate Elmore delay model
to select balance points (CEPs). The matching construction could also in­
corporate varying load capacitances and other design constraints which are
ignored by the linear delay model.

2. Loci of Balance Points: In the Manhattan metric, the "balance point"
of a wire connecting two terminals is not unique but is rather a locus of
many possible locations (Figure 4.10), with the extremes corresponding
to the two L-shaped wire orientations. The simulations above set the
balance point of an edge to be its "Euclidean" midpoint, but there is no
methodological justification for this.

3. Lookahead and Deferral: At each level of the matching construction,
it is possible to use lookahead of one or more levels. For example, if path­
length skew cannot be eliminated by H-flipping, we could "go back" down
one or two levels, and attempt the alternate "H" configurations within
these subtrees. More generally, "lookahead" is simply a way of deferring
commitment to specific elements of either the topology or the geometric
embedding until more reasoned choices can be made.

Skew

Bounding

__ -.- --~,..._-_-- boxes ~
: •.. I --1
1 •. I I I
1 • 1 Matching edge 1 1

I ••• I I I ·'

-----\' I : ·:

Loci of'""""' poi"" 1- '
,-------
1 I

I
I
I ._----¢--1

--I

I
I

Figure 4.10 Further optimizations are possible by matching over
the loci of balance point candidates.

163

For all practical purposes, the work ofTsay [240], solved the question of achiev­
ing exact zero Elmore delay skew. Approaches using "deferral" were proposed
by Li and J abry [172) and by Edahiro [84], in the sense that each of these works
uses only a partial greedy matching over an existing set of CEPs to further the
bottom-up generation of the clock tree. We now describe the "Deferred-Merge
Embedding" (DME) approach [29, 44, 82], which combines the notions of (i)
balance point loci, and (ii) deferred embedding of the topology.

4.3 DME: EXACT ZERO SKEW WITH MINIMUM

WIRELENGTH

The geometric matching approach addresses skew minimization only with re­
spect to linear delay, and does not guarantee a zero-skew solution. Tsay [240]
provided a major advance via a method that guarantees exact zero skew accord-

164 CHAPTER 4

ing to Elmore delay. 4 Tsay's algorithm combines pairs of zero-skew subtrees
at "tapping points" (analogous to the "balance points" in CLOCKl) to yield
larger zero-skew subtrees, with additional wire introduced as needed to main­
tain the exact zero-skew property. The method is efficient due to the linear-time
evaluation of Elmore delay at all leaves of a given tree.

Both the top-down method of [143] and the bottom-up methods of [60, 144, 240]
center on computing a clock tree topology, and leave unaddressed the minimum­
cost embedding of the topology. In general, these methods fix the embedding
of each internal node of the topology as soon as the node is defined [144], or
with just one level of lookahead in the tree construction [143, 240]. However,
as was demonstrated by "H-flipping" in the CLOCKl algorithm, the ability
to undo or "defer" embedding choices can lead to substantial cost reductions.
Certainly, both skew and cost must be considered in a successful clock routing
scheme.

This section describes the Deferred-Merge Embedding (DME) algorithm, which
for any given topology substantially reduces the tree cost while guaranteeing
exact zero skew, i.e., a ZST solution. DME was discovered independently by
three groups - Boese et al. [29], Chao et a1.[44], and Edahiro [82] - with the
earliest of these being Edahiro. 5

Given a set of sink locations S and topology G, the DME algorithm embeds
the internal nodes of G in two phases, with the main precept being to defer
the embedding of each node for as long as possible. First, a bottom-up phase
constructs a tree of line segments, with each line segment being the locus of
possible placements for some v E G within an optimal ZST. Once this bottom­
up phase has determined the loci of possible placements for two siblings in G,
the corresponding locus for their parent (i.e., the "merging segment") can then
be determined. Second, a top-down phase resolves the exact locations of these
internal nodes of the clock tree.

In the linear delay regime, DME produces an optimal (i.e., minimum-cost) ZST
with respect to the prescribed topology [29], and this tree will also have optimal

4 "Exact zero skew" is of course a somewhat redundant notion. However, since the pub­
lication of (240) the phrase has permeated the clock routing literature, where it connotes
"guaranteed zero skew". Our discussion uses the phrase in this accepted sense.

5 While the work of Edahiro (82) was clearly earliest, its existence was not realized by
the other two groups. Chao, Hsu and Ho (44) applied DME to the Elmore delay model and
also proposed the "balanced-bipartition" (BB) technique to generate an underlying clock tree
topology. Boese and Kahng (29) treat both the Elmore and linear models, and establish many
of the theoretical results for DME (see also the results for linear delay in [82)), as well as
counterexamples to Elmore-delay optimality of DME (cf. (44)).

Skew 165

source-sink delay (i.e., minimum radius). In the Elmore delay regime, DME
is also effective but does not guarantee that the output ZST is optimal for
its given topology. Since DME must be given a prescribed topology G, the
question of generating the best input topology for DME has become an active
area of research. The method can be extended to prescribed-skew formulations,
as well as more general routing optimizations (e.g., DME-like approaches are
promising for global routing with upper and lower bounds on sink delays).
Furthermore, by generalizing the concept of a placement locus from a merging
segment to a merging area, DME can also address a bounded-skew routing tree
formulation.

4.3.1 Bottom-Up Phase: The Tree of Merging Segments

For prescribed sink locations S and connection topology G, DME constructs
a tree of merging segments. The merging segment of a node v E G represents
the set of placements of v that are compatible with an optimal ZST solution.
A merging segment will always be a line segment tilted at 45 degrees from the
coordinate axes (recall Figure 4.10). It is possible for a merging segment to have
zero length, i.e., be a single point. The merging segment of a node depends on
the merging segments of its two children, so G must be processed in bottom­
up order. If node v has children a and b, then edges ea, eb in the topology
are assigned the minimum possible lengths such that it is possible to balance
all the sink delays in the merged subtree rooted at v. These lengths must be
enforced by the top-down embedding phase, when the ZST is created. We now
develop more precisely the construction of the tree of merging segments.

In our discussion, the distance between two points p and q is the Manhattan
distance d(p, q), and the distance between two sets of points P and Q, written
d(P, Q), is min{d(p, q) I p E P and q E Q}. Let a and b be the children of
node v in G. We use TSa and TSb to denote the subtrees of merging segments
rooted at a and b, respectively, and we seek placements of v which allow TSa
and TSb to be merged with minimum added wire while preserving zero skew.
Define the merging cost between TSa and TSb to be leal+ hi, where leal and
lebl denote the lengths to be assigned to edges ea and eb (recall that ea is the
edge from node a to its parent). These lengths are chosen to minimize merging
cost while balancing delays at pl(v). (There is a unique optimal solution for
leal and lebl as long as delay is a monotone increasing function of wirelength.)

A Manhattan arc is a line segment, possibly of zero length, with slope+ 1 or -1.
(It will turn out that all merging segments are Manhattan arcs.) The collection

166 CHAPTER 4

Figure 4.11 A TRR with core and radius as indicated.

of points within a given distance of a Manhattan arc is a tilted rectangular
region, or TRR, whose boundary is composed of Manhattan arcs (see Figure
4.11). The Manhattan arc at the center of the TRR is called its core; the radius
of a TRR is the distance between its core and its boundary. The concept of a
TRR will be used to construct the tree of merging segments, and to determine
embedding points in the top-down phase.

A formal recursive definition of the merging segment of node v, ms(v), is as
follows. If v is a sink Si, then ms(v) = { si}. If v is an internal node of G
with children a and b, then ms(v) is the set of all placements pi(v) which allow
minimum merging cost. That is to say, ms(v) is the set of all points within
distance leal ofms(a) and within distance lebl ofms(b), where leal and lebl are
as small as possible while still balancing source-sink delays. If ms(a) and ms(b)
are both Manhattan arcs, then ms(v) is simply the intersection of two TRRs,
trra with core ms(a) and radius leal, and trrb with core ms(b) and radius lebl;
i.e., ms(v) = trra ntrrb (see Figure 4.12).

The merging cost at v is at least equal to ~ = d(ms(a), ms(b)). If the merging
cost is greater than ~. i.e., more wirelength is needed to balance the delays,
then one edge length will equal zero and the other will equal the merging cost.
Figure 4.12(a) illustrates the algorithm for the case where the merging cost is
equal to ~. and Figure 4.12(b) illustrates the case where the merging cost is
greater than ~. An entire tree of merging segments is shown in Figure 4.13; the

Skew

tr>;, .·.
. ·

. . . .
·:: ms(~al ···x·.:..(vl r-:::.(bl ·· ...

• • • • 1•.1 '\. ••••

• • • • • • 1•.1 ••••••

·. .·.
.. . .

(a)

.· .· .· · .

trr.=m~ ••• ··~·· ms(bl

::~s(v) ,(
• 1•·1 . '\/

.·
.·

(b)

Figure 4.12 Two cases in construction of merging segment m8(v).
(a) Merging cost equals K = d(m8(a) 1 m8(b)). (b) Merging cost is
greater thanK (note that in this example radiu8(trra) =leal= 0).

Figure 4.13 An example of a tree of merging segments with sinks
81 1 ••• 1 ss. Solid lines are merging segments; dotted lines are edges
between merging segments.

167

leaves of the tree of segments are all single points representing the sink locations
81, •.. , ss, and the internal nodes (solid line segments) are Manhattan arcs.

168 CHAPTER 4

Lemma 4.3.1 Given two TRRs R1 and R2, their intersection iii also a TRR
and can be found in constant time. If Rt and R2 satisfy radius(Rt)+radius(R2)
= d(core(Rt), core(R2)), then R1 n R2 is a Manhattan arc.

y=b4 ••••••
re of co

int
the

ersection

\

~
~I

y=~>;,

y=b, ••••••

y=b, ••••••

x=a 3

Figure 4.14 Intersecting two TRRs after 45-degree rotation.

Proof: Rotating the plane by 45 degrees, so that each TRR has its boundary
segments parallel to the coordinate axes (see Figure 4.14), requires constant
time. The intersection of the rotated TRR's will be either rectangular or empty,
and can be found using a simple constant-time case analysis. Applying the
inverse rotation to the intersection yields the TRR Rt n R2 and the first part
of the claim.

If radius(Rt) + radius(R2) = d(core(Rt), core(R2)), then decreasing either
radius will cause Rt n R2 = 0. Hence, R 1 n R2 must have zero width and be
either a line segment or a single point. Since R 1 n R2 is also a TRR, it must
be a Manhattan arc. 0

Lemma 4.3.1 can be used to show that all merging segments are Manhattan
arcs. First, we show that for any node v E G with children a and b, if ms(a) and
ms(b) are both Manhattan arcs, then ms(v) is a Manhattan arc. (Case 1) If the
merging cost at vis equal to "'• we have leal+ lebl = d(core(trra), core(tr1'b));
by definition, leal = radius(trra) and lebl = 1·adius(trrb)· According to the
lemma, d(core(trra), core(trrb)) = 1·adius(trr4) + radius(tr1'b) means that
trra n trrb is a Manhattan arc. (Case 2) If the merging cost is greater than li-,

Skew 169

either trra or trrb will be a Manhattan arc whose intersection with any convex
set (e.g., another TRR) will also be a Manhattan arc. Finally, we note that
for each sink Si the merging segment ms(s;) is a single point, which is also a
Manhattan arc. Inductively, all merging segments must be Manhattan arcs.

Procedure Build-Tree_oLSegments
Input: Topology G; set of sink locations S
Output: Tree of merging segments TS containing

ms(v) for each node v in G, and edge length levi
for each v =/; so

For each node v in G (bottom-up order)
If v is a sink node Then

ms(v) = {pl(v)}
Else

Let a and b be the children of v
Calculate_Edge_Lengths(lea I, lebl)
Create TRRs trra and trrb as follows:

core(trra) = ms(a)
radius(trra) =leal
core(trrb) = ms(b)
radius(trrb) = lebl

ms(v) = trra n trrb

Figure 4.15 Construction of the tree of merging segments.

Figure 4.15 describes the procedure BuiJd_Tree_oLSegments, which constructs
the tree of merging segments. The Calculate_Edge_Lengths subroutine depends
on the delay model, and is described below for the separate cases of linear and
Elmore delay. By Lemma4.3.1, BuiJd_Tree_oLSegments requires constant time
to compute each new merging segment, and time linear in the size of S to
construct the entire tree of merging segments.

4.3.2 Top-Down Phase: Embedding of Nodes

Once the tree of segments has been constructed, the exact embeddings of in­
ternal nodes in the ZST are chosen in a top-down manner. Initially, for the
root so any point in ms(so) can be chosen as pl(so). 6 After node v's parent

6 If a fixed source location s& is specified, we choose pl(so) E ms(so) with minimum
distance from s~ and connect a wire directly from s~ to p/(so).

170 CHAPTER 4

has been embedded, v can be embedded anywhere on ms(v), as long as the
distance d(pl(v), pl(p)) is not greater than lev I· Thus, we create a square TRR
trrp with core {pl(p)} and radius levi; node v can be placed anywhere in the
intersection ms(v) ntrrp (see Figure 4.16) .

.·
• ••. • trrp

pl(p)

/.
, levi •

. . . ·.F./.··
possible

ms (v) placements
of v

Figure 4.16 Procedure Find_ExacLPlacements: finding the place­
ment of v given the placement of its parent p.

Because ms(p) was constructed such that d(ms(v), ms(p)) ::S lev I, the intersec­
tion ms(v) ntrrp must be nonempty. For the tree of merging segments shown in
Figure 4.13, the resulting placements are indicated by the points at which the
segments are connected by dotted lines. Figure 4.17 describes the procedure
Find_ExacLPlacements, which uses the tree of merging segments to determine
the final embedding of nodes in the ZST.

Since each instruction in Find_Exact_Placements is executed at most once for
each node in G (and the intersection of TRRs ms(v) and trrp can be found in
constant time, by Lemma 4.3.1), Find_Exact_Placements runs in O(ISI) time.
Procedure Build_Tree_of..Segments also runs in linear time, and hence DME is
a linear-time algorithm.

4.3.3 Application of DME to Linear Delay

Calculating Edge Lengths

Calculating the edge lengths lea I and hI is straightforward in the linear delay
model. Let a and b be children of v with merging segments ms(a) and ms(b),

Skew

Procedure Find_ExacLPlacements
Input: Tree of segments TS containing ms(v)

and levi for each node v in G
Output: ZST T(S)
For each internal node v in G (top-down order)

If v is the root Then
Choose any pl(v) E ms(v)

Else
Let p be the parent node of v
Construct trrp as follows:

core(trrp) = {pl(p)}
radius(trrp) =levi

Choose any pl(v) E ms(v) n trrp

Figure 4.17 Construction of the ZST by embedding internal nodes
of the topology.

171

and let tLD(a) and tLD(b) be the delays from a and b to the sinks in their
respective subtrees. Then, zero skew at v requires that

Again, let K. = d(ms(a), ms(b)). If ltLD(a)- tLD(b)l S K., then the merging
cost is minimized with leal+ iebl = K., i.e.,

I I_ K. + tLD(b)- tLD(a)
ea - 2

and

On the other hand, if ltLD(a) -tLD(b)l > K., then the merging cost is minimized
when one of the edge lengths is equal to zero. When tLD(a) > iLD(b), we have
leal = 0 and lebl = tLD(a)- tLD(b); similarly, when tLD(a) < tLD(b) we have
leal= tLD(b)- tLD(a) and lebl = 0.

172 CHAPTER 4

Optimality of DME for Linear Delay

In this section, we show two optimality results for the DME algorithm under the
linear delay model. Our discussion will use the term Manhattan disk to denote
the special case of a TRR whose core consists of a single point. In other words,
a Manhattan disk is the set of all points within a given radius of a central point.
In the Manhattan plane, such a "disk" is actually diamond-shaped (recall trrp
in Figure 4.16). Let M D(si, r) denote the Manhattan disk with core {si} and
radius r ~ 0. The diameter of S is defined to be max{ d(Si, Sj) I s;, Sj E S}.

We first show that under the linear model, DME minimizes the source-sink
delay in a ZST. Specifically, for any input topology DME constructs a ZST with
delay equal to one-half the diameter of the sink set S, which is the minimum
feasible radius for any tree connecting S. This result has also been shown by
Edahiro [82, 83].

Lemma 4.3.2 : Let d be the diameter of sink set S. Then

n •. es[MD(si,d/2)] f. 0.

Proof: After a 45 degree rotation (and dilation), the Manhattan metric be­
comes equivalent to the Loo metric, where d[(x, y), (x', y')] = max{ix- x'l, Iv­
y' I}. Hence we need only prove the lemma for the L 00 metric, where TRRs
are equivalent to rectangles with vertical and horizontal boundaries. Consider
the smallest rectangle R with vertical and horizontal boundary lines that con­
tains all points in S (after rotation). Let d be the diameter of S. Then both
the width and height of R must be less than or equal to d (otherwise there
would be two sinks s; and Sj with d(s;,sj) >d). Consequently, the point at
the center of R is within distance d/2 of all sinks in S, and is contained in
n.,es[M D(si, d/2)]. 0

This shows the feasibility of constructing a ZST over S having linear source­
sink delay equal to one-half the diameter of S. The next lemma states that
increasing the radii of two TRRs by a constant 6 will increase the radius of
their intersection by 8 but leave the core of the intersection unchanged. This
is obvious when the TRRs are rotated by 45 degrees as in the proof of Lemma
4.3.1 (see Figure 4.14).

Skew 173

Lemma 4.3.3 : Let A and B be TRRs, and suppose AnB = C :f; 0. Construct
TRRs A' and B' such that for 8 ~ 0, core(A') = core(A), radius(A') =
radius(A) + 8, core(B') = core(B), and radius(B') = radius(B) + 8. If
C' = A' n B', then core(C') = core(C) and radius(C') = radius(C) + 8. 0

Theorem 4.3.4 : For any sink setS and topology G, the DME algorithm will
return a ZST with minimum feasible source-sink delay under the linear model,
equal to one-half the diameter of S.

Proof: Let d equal the diameter of S. We assign a TRR, called T RR(v), to
each node v E G such that (i) if vis a sink, then TRR(v) = M D(pl(v), d/2);
and (ii) ifv is an internal node with children a and b, then TRR(v) = TRR(a)n
TRR(b).

By Lemma 4.3.2, TRR(so) = ns,es[M D(si, d/2)] is non-empty. Let Sj and
s~c be two sinks in S with d(si, s~c) = d. The intersection of TRR(sj) =
MS(sj,d/2) and TRR(s~c) = MS(s~c,d/2) must have radius= 0 (by Lemma
4.3.1), and so TRR(so) must have radius= 0.

For any node v, let t LD (v) be the linear delay from v to each of the sinks in
the subtree rooted at v in the DME output.

Fact' 4.3.5 For each node v in G, core(TRR(v)) = ms(v) and radius(TRR(v)) =
d/2- tLn(v).

Proof of Fact: We apply induction on the maximum number of edges between
v and sinks in its subtree. If v is a sink, then core(T RR(v)) = { v} = ms(v) and
radius(TRR(v)) = d/2 = d/2- tLn(v). If vis an internal node with children
a and b, inductively assume that the Fact holds for a and b. In the linear delay
model, we have tLn(a) = tLn(v) -leal, implying

radius(TRR(a)) d/2- tLn(a)

= d/2- tLn(v) +leal

and similarly radius(TRR(b)) = d/2- tLn(v) + lebl·

The TRRs trra and trr6 constructed by Build_Tree_of...Segments will have
core(trra) = ms(a) and radius(trra) = leal, and core(trrb) = ms(b) and

174 CHAPTER 4

radius(trrb) = hi· This implies that

radius(T RR(a))

radius(TRR(b))

d/2- iLD(v) + radius(trra)

d/2- iLD(v) + radius(trrb)

whence T RR(a) and T RR(b) can be constructed from trr a and trrb, respec­
tively, by adding the constant d/2- iLD(v) to their radii. Lemma 4.3.3 then
implies that core(TRR(v)) = ms(v) and radius(TRR(v)) = d/2-tLD(v). This
proves the Fact.

Since radius(TRR(s0)) = 0, we have iLD(so) = d/2, proving the theorem. 0

In the linear delay regime, DME also has optimal tree cost. The following
lemma directly implies this result.

Lemma 4~3.6 Suppose that ZST T has minimum wirelength for sink locations
S and topology G. Let v be a node in G with children a and b. Also, let La
denote th~edge length assigned to ea by DME and L(T, ea) denote the length
of edge ea in T. Then {i) pl(T, v) E ms(v) and {ii) L(T, ea) = La.

Proof: (See Figure 4.18.) The proof is by contradiction. Suppose that T has
minimum wirelength for S and topology G and that either (i) or (ii) does not
hold for some v in G. Let v be the node at the lowest level of G for which
either (i) or (ii) is violated, i.e., the subtrees ofT rooted at v's children a and b
can be constructed by DME. We will first construct a tree Tnew with source at
q = pl(T, v), and then construct a ZST T' by replacing the subtree ofT rooted
at v with part of Tnew. We will have pl(T', v) = q' as in Figure 4.18, and using
Theorem 4.3.4 will show that cost(T') < cost(T) if either (i) or (ii) are violated
in T.

Let Gv be the subtree of topology G rooted at v, and let Sv be the set of sinks
in Gv. Suppose that sink Si is the sink in Sv furthest from q. Create a new sink
z that is located at a point directly opposite of q from Si; i.e., d(q, si) = d(q, z)
and d(si, z) = 2 · d(q, Si)· Consider the new set of sinks Snew = Sv U {z }. We
create a topology Gnew for Snew that merges Gv and z at its root, SnewO· We
then run DME on Snew using topology Gnew to create ZST Tnew. By Theorem
4.3.4, Tnew will have the minimum feasible delay at each sink, which is equal
to one-half the diameter of Snew, i.e., d(q, si)·

Skew

!q ~-------------------7--b ·--: q'

-~---- ---------------1 b'
I
I
I
I
I
I
I
I
I
I y

Figure 4.18 Optimal placement of siblings a and b must satisfy the
distance constraint in the top-down phase Find_Exact_Placements.
Here, pl(T, a) = a and pl(T', a) = a', etc.; and cost(T') < cost(T).
In the example shown, changing the placements of nodes a and b
to locations a' and b' allows the a'-q and b'-q connections to share
wire on the segment from q' to q. The delay at point q remains
unchanged.

175

By Fact 4.3.5, ms(snewo) is the set of all points within distance d(q, si) of every
sink in Snew· Therefore, q E ms(snewo) and Tnew can be constructed so that
q = pl(Tnew' Snewo). Let a' = pl(Tnew' a), b' = pl(Tnew' b), and q' = pl(Tnew' v).
We now construct ZST T' for S by cutting off the subtree ofT rooted at q and
replacing it with Tnew minus the edge between q and z. Since tLn(T',q) =
d(q, si), it must be that tLv(T', q) :::; tLn(T, q). If the strict inequality holds,
we add extra wire between q and q' to enforce equality, and thereby retain zero
skew.

For convenience, let us use ea' and eb' to represent the embeddings of edges ea
and e6 in T'. We also use eq' to denote the partial edge between q' and q in
T'. Because the subtrees of T rooted at a and b were constructed according
to DME, we have tLv(T,a) = tLn(T',a') and tLv(T,b) = tLv(T',b'). Let leal
and lebl respectively represent the lengths of ea and eb in T. Then, because
tLn(T,q) = tLn(T',q)

176 CHAPTER 4

Because the subtrees of a in T and T' can both be constructed using DME,
they must have the same cost. Similarly, the subtrees of b in T and T' have
the same cost. Consequently, the costs ofT and T' differ only in edges ea, eb,
and eq', i.e.,

If T is optimal, then leq•l = 0 and hence (i) q E ms(v) and (ii) L(T, ea) =
leal= lea' I = La. 0

The DME optimality result follows directly from Lemma 4.3.6, because DME
places only two constraints on the placement of a node v in G: (i) pl(v) E ms(v)
and (ii) d(pl(v), pl(p)) ~ Lv, where pis the parent of v and Lv is the edge length
assigned by DME to ev.

Theorem 4.3. 7 Given a set of sink locations S and a connection topology G,
the DME algorithm produces a ZST T with minimum cost over all ZSTs for S
having topology G. 0

We note that the DME output also has optimal cost for any given topology
when the source location is predefined (cf. the construction described in the
previous footnote). Any tree rooted at a location q (/:. ms(s0) will have minimum
cost only if the two subtrees of G directly below the root are merged at a point
q' E ms(s0) which is then connected to s~ by a single edge.

4.3.4 Application to Elmore Delay

Calculating Edge Lengths in the Elmore Delay Model

In the following, f and c again denote the resistance and capacitance per unit
length of interconnect. We let Tv denote the subtree ofT(S) rooted at v, and let
Cv denote the node capacitance of v. We assume Cv = 0 for each non-sink node
in all of our examples and test cases; however, each sink s; can have loading
capacitance dependent on the design of the corresponding functional unit. To
calculate the edge lengths needed to merge two trees of merging segments TSa
and TSb with minimum merging cost in the Elmore model, we use the analysis
of Tsay [240], which we now review.

Skew 177

Let TSa and TSb have delays t1 = iEv(a) and t2 = tEv(b), and capacitances
cl and c2, respectively (we know the capacitance values from the edge lengths
and sink capacitances in subtrees Ta and Tb). Let pi(v) be a merging point
with minimum merging cost. From the definition of Elmore delay, we have
tEv(v, a)= rea(~cea + Cl). Thus, pl(v) satisfies:

(4.1)

Let d(ms(a), ms(b)) = K.. Suppose that TSa and TSb can be merged with
merging cost K; in other words, lea I = x and leb I = K. - x for 0 ::; x ::; K.. Then
we have resistances rea = fx and reb = f(K.- x) and capacitances Cea =ex and
Ceb = c(K- x). Substituting into (1) and solving for x yields:

X= t2- t1 + fK(C2 + !Cic)
r(C1 + C2 + cK.)

(4.2)

Case 1: If 0 ::; x ::; K., then there exists a feasible zero skew merging point of
TSa and TSb with merging cost K., leal= x and lebl = K.- x.

Case 2: If x < 0 or x > "'•· then the assumption of merging cost K. results in
a negative edge length for either ea or eb. In this case, an extended distance
K.1 > K. is required to balance the delays of the two trees. If x < 0, which means
t1 > t2, we choose pl(a) as the merging point and set leal = 0 and lebl = K. 1 •

Then:

(4.3)

and we use the quadratic formula to solve for K.1 :

(4.4)

Similarly, if x > K., we set jebl = 0 and

178 CHAPTER 4

leal= K' = ((rC1)2 + 2rc(~~- tl))~- rC1 (4.5)
rc

The above analysis shows that a zero skew merging point between two ZSTs
can always be found. The merging cost depends on the distance between the
two roots of the ZSTs, the delay of each ZST, and the tree capacitance of each
ZST. However, the DME algorithm is not optimal for all topologies under the
Elmore delay approximation.

.,

11

.1046'\
.6875~

10

.3042 8 s

2.!ll 1'-•,

11. 68)

:,....10)7
.1037

P~ I (P. 5.3005

Po P, pl

10

12.155

•,
11.297 84 ":mg '-"_, __

(a)

.,

11

.,

10

••

.,

11. 68)

p'
3

11.297

(b)

U.lSS

••

.,

Figure 4.19 (a) ZST T which is constructed by the DME algorithm,
and which has sub-optimal cost for the given topology. (b) ZST T'
which has optimal cost for the topology in (a), but which violates
the DME algorithm. In T', the internal nodes placed at Po and
Pl in T are placed at the same point, p~. (Trees are not drawn to
scale; lengths of horizontal and vertical segments are as indicated.)

Suboptimality of DME for Elmore Delay

The ZSTs T and T' in Figure 4.19 show that DME will not always give a
minimum-cost zero-skew embedding under the Elmore delay model. T and T'
connect terminal points s1, ... , ss to source so. Both trees are assumed to extend
to the right side of so, with their subtrees on the right of so being mirror images

Skew 179

of the subtrees to the left of so; this ensures that the source will be at so in the
optimal tree). We normalize both the unit resistance f and unit capacitance c
to one, and assume without loss of generality that the loading capacitance of
each sink is zero. 7

The ZST T' was constructed so that if points s1 and s2 are merged at point p~,
then vertical wires from points sa through s6 will merge along the horizontal
wire from s1 to so with exactly zero skew. If, however, s1 and s2 are merged on
their merging segment as in tree T, the delay at p~ will increase, and jogs will
be required in the edges e83 through e86 • In this example, the four required jogs
are each of length greater than 0.3. Thus, their sum is greater than 1, which
was the amount of wire saved initially by merging s1 and s2 at Po. Table 4.8
contains the calculated delay and capacitance at each of the internal nodes of
T and T'. For example, in T' the capacitance at p~, Cp~, is 33; and the delay
at node p~ is

') ') (0.1) (11.297)2
tEv(p2 = tEv(p1 + 0.1 * 2 + Cp~ = 60.5 + 3.305 = 63.8 = 2

Because the unit resistance and capacitance are both equal to one, and because
the loading capacitances at the leaves are zero, the tree capacitance of each
node equals the amount of wire in its subtree. Thus, we see from Table 4.8
that cost(T)-cost(T') ~ 0.44. It should be noted that Chou and Cheng (54, 50]
have recently demonstrated the cost suboptimality of DME in the octolinear
and Euclidean geometries.

4.3.5 Experimental Results and Discussion

The DME algorithm has been implemented in C on Sun SPARC-1 worksta­
tions. To distinguish the effects of DME from the effects of various heuristics
for generation of clock tree topologies, we have applied DME to each of sev­
eral previous constructions in the literature: the MMM method of (143], the
KCR method of (60, 144], the method of Tsay (240], and the BB ("balanced
bipartition") method of (44, 45]. These comparisons have been made for both
the linear and Elmore delay models. Two sets of test cases were used: (i) the
layouts of Primaryl and Primary2 studied in [143] and provided by Jackson

7 The example can be easily altered to have non-zero sink loading capacitances: shorten the
edge adjacent to a given sink s; by a small value c; > 0, and then set the loading capacitance
of the sink to Ci.

180 CHAPTER 4

Tree T Tree T
node delay capacitance node delay capacitance

po 50 20
PI 64.0 32.0 p~ 60.5 33.0

P2 67.3 43.7 p~ 63.8 44.4

P3 71.9 55.8 p~ 68.2 56.2

P4 77.6 68.4 p~ 73.9 68.4
so 454.0 2x73.66 so 428.6 2x73.44

Table 4.8 Delay and capacitance at each internal node in ZSTs T
and T'.

et al. (226]; and (ii) the sink placements for circuits r1 - r5 studied by Tsay
(240]. These seven test cases, which have sizes ranging from 267 to 3101 sinks,
have emerged as a de facto benchmark suite for clock tree constructions in the
recent literature.

Results for the Linear Delay Model

Experimental results for linear delay are shown in Table 4.9. The cost reduction
afforded by DME can be substantial, e.g., KCR+DME averages more than 9%
cost reduction over the original KCR construction. No data for BB in isolation
is possible, since BB produces only an unembedded binary tree topology.

Results for the Elmore Delay Model

DME was tested under the Elmore delay model, using the same benchmark sink
sets and initial topologies. Results are shown in Table 4.10, and again indicate
that DME can obtain substantial improvements in tree cost. The results also
show a clear synergy between the topology generation and embedding phases.
For example, Tsay's construction does not yield a good initial topology for
DME: we believe that this is because it already allows deferral of the choice of
placements for one level in the tree (the two endpoints of each merging segment
are selected and carried to the next level, where the actual embedding is chosen
to be the point which allows the minimum connection cost). Indeed, the Table
shows clearly that the KCR topology is "more promising" vis-a-vis the subse-

Skew

Test number MMM KCR KCR+DME BB+DME
Case of sinks cost cost cost cost

Prim! 269 161.7 153.9 140.3 140.5
Prim2 603 406.3 376.7 350.4 360.8

r1 267 1815 1627 1497 1500
r2 598 3625 3349 3013 3010
r3 862 4643 4360 3902 3908
r4 1903 9376 8580 7782 8000
r5 3101 13805 12928 11665 11757

Table 4.9 Effect of DME on the KCR and BB constructions, under
the linear delay model.

Test Tsay KCR Tsay+DME KCR+DME BB+DME
Case cost cost cost cost cost

Prim1 * 153.9 * 140.1 140.5
Prim2 * 376.7 * 345.2 360.8

rl 1697 1627 1658 1487 1535
r2 3432 3349 3368 3020 3065
r3 4407 4360 4333 3867 3962
r4 8866 8580 8694 7713 8054
r5 13199 12928 12926 11606 11837

Table 4.10 Comparison of algorithms for the Elmore delay model.
Results for [Tsay] are not available for the Primary! and Primary2
benchmarks.

181

quent application of DME.8 Experimental results reported in (45] also indicate
a very significant reduction in source-sink Elmore delay, e.g., KCR+DME re­
duces phase delay by 22% over the trees of Tsay. Finally, (45] notes that that
DME constructions with exact zero Elmore delay skew have essentially zero

8 The strong performance of the KCR topologies is surprising. For instante, the top-down
BB topology construction [44, 451 carefully considers capacitances and delays of subtrees, in
addition to the proximity of their CEPs; this would seem better-suited to the Elmore delay
model than the bottom-up KCR approach, which was designed for the linear delay model.
Nevertheless, KCR+DME slightly outperforms BB+DME on the seven benchmarks.

182 CHAPTER 4

skew (i.e., only a few picoseconds) when evaluated using SPICE.9 Figure 4.20
shows the output of KCR+DME for the same sink placement of Primary2
depicted in Figure 4.9 above.

Figure 4.20 Output of KCR+DME on the Primary2 benchmark
layout.

9 The SPICE2G.6 simulations reported in (45] were for the BB+DME construction, and
used the following methodology. Random sink sets were generated, with cardinalities ranging
from 8 to 64. The routing area was assumed to be 0.5cm X 0.5cm, and interconnect and device
parameters corresponded to a 1.2JLm CMOS technology. An input clock frequency of 100 MHz
and a single buffer were assumed; delays were measured at the output node of each inverter
driving a sink node. Quite possibly, an alternate modeling and simulation methodology could
change this assessment. An interesting aspect of the SPICE simulations in (45] is that they
confirm essentially zero skew, but also show a smaller improvement in phase delay than is
indicated by the Elmore delay model. This reflects the studies in the Appendix: Elmore
delay is good for predicting skew (i.e., fidelity), but is less useful for predicting absolute delay
(i.e., accuracy).

Skew 183

Remarks

DME may be integrated into clock routing design in a number of ways.

• The tree of merging segments allows a choice among alternative minimum­
cost zero-skew embeddings of the clock tree. This is useful in design flows
where blockages may be introduced before clock routing takes place.

• DME produces a tree with exact zero skew for any input topology, and may
thus be applied to previously generated clock trees in order to improve both
wirelength and delay.

• DME readily applies to problems of prescribed skew (i.e., "useful" skew)
[19), where the arrival times of the clocking signal must differ by prescribed
amounts. This is handled by setting initial delays at the sinks to non-zero
values.

• DME can also be used for problems with allowed skew [19, 93, 240), where
the signal must arrive at each sink within a prescribed time window. Huang
et al. [133) have extended the concept of a merging segment to a merging
area, and thus address the problem of minimum-cost bounded-skew rout­
ing; this has applications to both clock distribution and delay-constrained
global routing.

• Since both the geometric embedding and the topology generation impinge
on solution quality, studies of clock distribution topologies hold renewed
interest for research.

For integrated topology generation and embedding, a promising approach is
to run DME concurrently with matching-based and other bottom-up topology
generating heuristics. Currently, the best DME-based algorithm so far is the
Greedy-DME approach of Edahiro (the "CL" algorithm in (84]), which deter­
mines the connection topology greedily in bottom-up order, such that each
merging segment entails minimum increase in total wirelength. Greedy-DME
achieves nearly 17% wirelength reduction over KCR+DME; while it can result
in unbalanced leaf depths, it also seems to leave very little room for improve­
ment with respect to total tree cost after DME is applied.

The work of Chou and Cheng (54, 50] proposes a "grafting" operation which
perturbs an existing topology by swapping two subtrees. When grafting is used
as a neighborhood operator, simulated annealing can be used to optimize the

184 CHAPTER 4

topology. Chou and Cheng extend DME to the octolinear and Euclidean ge­
ometries, and observe that DME no longer returns a minimum-cost ZST: in
these geometries, a larger solution space - outside of the merging segments -
must be searched to embed the internal nodes of the ZST. Thus, the second
phase of their method applies a Gauss-Seidel iteration to embed the topol­
ogy that was found by simulated annealing. In practice, this approach yields
excellent results.

4.4 PLANAR-EMBEDDABLE TREES

Often, it is not easy to realize the preceding "exact zero skew" clock routing
solutions by actually placing the wires into the layout plane. Typically, many
vias must be introduced, which is undesirable. This difficulty was first noted
by Zhu and Dai [259], who gave compelling reasons to seek a single-layer, or
"planar-embeddable", clock routing solution.

• The clock routing layer may be prescribed, or we may prefer the layer with
smallest RC delay.

• Routing on fewer distinct layers (i.e., having fewer distinct electrical pa­
rameters to consider) makes the layout more independent of process vari­
ation. Uniform electrical parameters also simplify buffering optimizations.

• Single-layer routing eliminates the delay and attenuation of the clock signal
through vias, thus improving both performance and signal integrity.

Given these observations, the Planar Zero-Skew Clock Routing problem
is of interest, i.e., given sink set S, find a planar-embeddable ZST T(S) with
minimum cost.

Notice that "planar-embeddable" intuitively means that the tree "can be drawn
in the plane without edges crossing". However, this concept is not easily charac­
terized in the Manhattan plane; existing works [259] implicitly rely on Euclidean
planar-embeddability being sufficient for Manhattan planar-embeddability (a
line segment in the Euclidean plane can be approximated to any desired ac­
curacy by a monotone staircase in the Manhattan plane). Thus, we define
two tree edges as crossing each other precisely when the corresponding open
line segments in the Euclidean plane properly intersect (i.e., share exactly one
point). This definition is necessitated by possible degenerate optimal planar

Skew 18.5

clock routing solutions, where the embeddings of edges are superposed. Figure
4.21 shows this phenomenon: four sinks that are collinear will have an optimal
"planar" clock tree whose edges pass over each other. Since this sort of over­
lapping can be made planar with minimum increase in wirelength, we accept
such a degenerate solution as planar. This is also the convention of [259].

elk

!-,\------~-\] p,. c ---1111..
~-· .• ~ •. d. __,... elk\. . ' . • • • '
i P.'\j : ----------------J

Figure 4.21 For these four sinks on a line, edges of the optimal
planar ZST will overlap. We accept this since the ZST can be
made non-overlapping with minimal increase in wirelength. The
convex polygon Ps' and the labels Ps; , Ps~, a and b pertain to the
correctness proofs of the Planar-DME algorithm that we develop
below.

The planar clock routing method of [259] is as follows. The method starts with
a tree containing only a connection from the source node to the furthest sink.
At each iteration, a sink outside the current tree is connected to a "balance
point" in the tree, i.e., via a connection to an existing edge such that zero
pathlength skew is maintained and no tree edges are crossed (the Euclidean
embedding is assumed). Two rules are applied: (i) the "Min-Rule": a new sink
is always connected to the balance point which requires the least wirelength
added to the tree; and (ii) the "Max-Rule": the new sink added to the tree is
the one which has the greatest distance to its closest balance point. An elegant
analysis shows that this method always yields a planar-embeddable zero-skew
solution with minimum possible source-sink pathlength. The time complexity
of the method is between O(n logn) and O(n2).

For the case of four sinks at the corners of the unit square, with the clock source
at the center of the square, the method of [259] will create an "X" clock tree
with cost = 4, while the optimal "H" solution has cost = 3. A larger 400-point
example is shown in Figure 4.22: the method of Zhu and Dai returns an "X­
based" configuration, while the Greedy-DME [84] and H-tree [18] constructions
are essentially optimal. Khan et al. [155] have observed this limitation, and
have proposed applying the MMM top-down partitioning method [143] for a
user-specified number of levels, followed by the Zhu-Dai method within each
of the resulting regions. When the user-specified number of levels is zero, the

186 CHAPTER 4

output is the same as that of the Zhu-Dai method. The authors of [155] claim
that their algorithm guarantees minimum source-sink pathlength delay; for the
Primary! and Primary2 test cases, approximately 10% tree cost reduction over
[259] is obtained.

(a) {b)

Figure 4.22 Contrast between (a) an H-tree-like solution and (b)
the solution of Zhu and Dai. The solution in (a) is actually the
output of the Planar-DME method described below.

In the following, we describe an approach due to Kahng and Tsao [153, 154]
which naturally unifies the DME embedding strategy and the guaranteed-'
planar routing objective. The method exploits geometric observations to show
that under the linear delay model, the bottom-up and top-down phases of DME
can be replaced by a single top-down pass. Whereas DME nominally requires a
prescribed topology as input, the "Single-Pass DME" result allows a clock tree
topology to be determined dynamically, and flexibly, at the same time that it is
being optimally embedded (i.e., with minimum cost and minimum source-sink
delay).

Building on this observation, the top-down Planar-DME algorithm determines
a topology that is guaranteed to be planar-embeddable, and simultaneously
embeds this topology in the Manhattan plane. Beyond being planar, the re­
sulting tree has provably minimum cost and minimum source-sink delay for its
topology, since the single top-down pass achieves the same effect as DME.

Skew 187

4.4.1 Single-Pass DME

In this section, we show that under the linear delay model, the tree of merging
segments constructed in the bottom-up DME phase can actually be generated
in a top-down manner. This result follows from properties of the minimum­
pathlength zero-skew subtree over any sink set S' (in particular, that the root
of the subtree over S' must be located at the "center" of S').

For any sink subset S' ~ S, recall that diameter(S') = max{ d(si, Sj) lsi, Sj E
S'}. Define the radius of S' to be radius(S') = diameter(S')/2, and let
center(S') denote the merging segment of v, where v is the root of the tree
of merging segments constructed by DME over S'. (We will see that the dis­
tance from center(S') to any sink inS' is at most radius(S'), hence this name.)
Finally, let c(S') denote the midpoint of center(S').

Recall the following two facts from the above discussion of the DME algorithm
(cf. Theorem 4.3.4 and Fact 4.3.5):

Fact 4.4.1 For any sink setS and topology G, let Sv be the set of sinks in the
subtree rooted at v in the DME solution. Let tLn(v) be the linear delay (i.e.,
pathlength) from v to each sink in Sv. Then tLn(v) = radius(Sv).

Fact 4.4.2 Let G be the connection topology of the ZST T(S) that is produced
by DME. Let d = diameter(S) and let TRR(v) denote the special tilted rect­
angular region that corresponds to eitherTRR(v) = MD(pl(v),d/2) ifv is a
sink node, or TRR(v) = TRR(a) n TRR(b) ifv is an internal node of G with
children a and b. Then for each node v E G, core(TRR(v)) = ms(v) and
radius(TRR(v)) = d/2- tLn(v).

Fact 4.4.2 states that for any node v, the merging segment ms(v) is given by the
center of Sv; Lemma4.3.1 then implies that ms(v) can be constructed in O(ISv I)
time. Together, facts 4.4.1 and.4.4.2 imply that neither the computation of
ms(v), nor the delay time tLn(v), will depend on v's children; this will be the
key to constructing the tree of merging segments in top-down order. A third
fact is useful in the time complexity analysis:

Fact 4.4.3 For any sink subsetS' ~ S in the Manhattan plane, radius(S') =
diameter(S')/2 can be computed in linear time.

188 CHAPTER 4

Theorem 4.4.4 Given a set of sinks S and a connection topology G, we can
produce the same output ZST T(S) that the DME algorithm will produce under
the linear delay model, using only a single top-down phase with time complexity
O(ISI2).

Proof: We will show that for any node v in G, ms(v) can be found in time
linear in the total number of descendants of v. Let the terms d and T RR(v)
be defined as in the statement of Fact 4.4.2. The value of d can be found
in O(ISI) time (Fact 4.4.3), and in O(ISI) time we can build TRR(s) for all
sinks s (leaf nodes in G). According to Fact 4.4.2, ms(v) = core(TRR(v)) =
core(nues. TRR(u)), where Sv is the set of descendants of node v in G. Since
the intersection of any two TRR's can be found in constant time and is also a
TRR, we can compute TRR(v) and its core in time proportional to the number
ofv's descendants (cf. Lemma4.3.1).

If v is not the root of G, let p be its parent. By Fact 4.4.1, the length
of the edge incident to node v in G, levi, is equal to tLv(p)- tLv(v) =
radius(Sp)- radius(Sv), where Sv and Sp are the sets of descendants of node v
and p, respectively. Thus, ms(v) and lev I can be computed in 0(ISv I) time, and
we now have the information that would have been provided by the bottom-up
phase of Deferred-Merge DME. In the best case, the height of the tree of merg­
ing segments is O(log lSI), so that the overall time complexity is O(ISilog lSI).
In the worst case, the height of the tree of merging segments is 8(jSI), implying
O(ISI 2) overall time complexity. 0

Thus, under the linear delay model ms(v) is independent of the connection
topology over Sv. Furthermore, tLv(v) = radius(Sv) implies that all sinks in
Sv are within distance radius(Sv) of center(Sv), i.e., center(Sv) is the merg­
ing segment of the root of any ZST over Sv that has minimum source-sink
pathlength delay. This immediately yields what (153, 154] call the Single-Pass
DME method. Because Single-Pass DME results in the same optimum ZST
that DME would achieve, established properties of the output tree (i.e., mini­
mum source-sink pathlength and minimum total tree cost with respect to the
generated connection topology) are maintained.

4.4.2 The Planar-DME Algorithm

The impact of Theorem 4.4.4 may not be immediately apparent, since DME
can already accomplish the same construction as Single-Pass DME in linear
time. However, the theorem's proof showed that as soon as Single-Pass DME

Skew 189

has been given a partitioning of Sv into Sa and S6 , it can immediately find
the ms(a) and ms(b) that are compatible with an optimal ZST having this
"top part" of the clock topology. Thus, Single-Pass DME allows the connec­
tion topology to be determined dynamically in a top-down fashion, yet still
finds a minimum-pathlength, minimum-cost embedding of whatever topology
is eventually determined. If Single-Pass DME chooses the connection topology
and embeds it carefully, then a planar routing can be achieved.

The Planar-DME algorithm [153, 154] is essentially a version of Single-Pass
DME wherein the connection topology is determined based on the existing
routing, such that future routing cannot interfere with this existing routing. To
describe the algorithm, we require two terms that are defined in the Euclidean
plane: (i) Ps• denotes any convex polygon containing S', and (ii) convex-hull(S')
is the Ps• with minimum area. Also, we say that a point p lies inside Ps• if
p is on the boundary of, or lies strictly interior to, Ps'. The convex polygon
concept is used to guide the top-down partitioning of both the routing area and
the set of sinks, as follows. Given a Euclidean convex polygon that contains a
given set of sinks, we will divide this polygon into two smaller convex polygons,
in such a way that a minimum-cost ZST is still possible and the routing within
one polygon cannot interfere with the routing in the other polygon. This will
be done recursively until every polygon contains exactly one sink.

More precisely, in each recursive call of Planar-DME, we start with a Euclidean
convex polygon Ps• containing S' ~ S. The existing routing is outside or on
the boundary of Ps•, and terminates at some node p of the topology that will
eventually connect to its child node v. As long as two properties are maintained
- (i) vis embedded at a point that is compatible with the DME solution, and (ii)
Ps• is partitioned into two smaller convex polygons such that the routing from p
to v is on the boundary between the polygons- a planar DME-like solution will
remain possible. Recall that the topology is determined dynamically: S' = Sv,
and partitioning S' into S~ and S~ yields the sink sets Sa and Sb for v's children
a and b.

Finally, the Planar-DME algorithm of [154] is derived from Single-Pass DME
by introducing the following rules for embedding the internal nodes of the ZST,
and for top-down partitioning of the sinks in each subtree.

The embedding rules embed v inside Ps' such that the embedding is com­
patible with the DME solution, i.e., they maintain the first property above
(see Figure 4.23). In each recursive call, Planar-DME accepts a subset of sinks
S' ~ S, some convex polygon Ps• containing S', and some point p inside p,,
which is to connect to a point von ms(v) = center(S'). The existing routing

190

I

IV.2 I
I
I
I
I

P1 I

III

I

II.3 1 p••••••
I 2
I
I

: II.2
I

CHAPTER 4

Figure 4.23 Rules to choose the embedding point of v (the root of
the subtree over sink setS'~ Sin any minimum-radius ZST), and
to choose the the splitting line to partition the sink set S' based on
the relative positions of v's parent p and center(S'). If we denote
the coordinates of c(S') by (xc, Yc), then the regions are defined by
the following inequalities: Region 1: x ~ Xc, y ~ Yc; Region II.l:
y ~ -x+yl +x1, y $ Yc, y ~ Y2; Region II.2: x ~ x2, y $ Y2; and
Region 11.3: y $ -x+yl +x1, x ~ Xc, x $ X1. Regions Ill, IV.l,
IV.2,and IV.3 are defined similarly.

is outside Ps', so if we can select a feasible embedding point v inside Ps', then
the routing from p to v will not interfere with any routing that is external to
Ps'· As a consequence, the resulting routing will be planar. The point p is
the embedding of v's parent, and has been determined earlier in the top-down
pass. 10 The merging segment ms(v) = center(S') has endpoints Pl and P2 in
the figure. To be compatible with the DME solution, we choose to embed v
on the portion of center(S') that is closest to the location of p. Furthermore,
to ensure that v is embedded inside Ps', we embed v at a point on this cho­
sen portion of center(S'), as close as possible to the midpoint of center(S'),
denoted c(S'). This guarantees an embedding point inside Ps' [153].

10 We use, e.g., p to denote either a node in the tree topology or the point at which that
node has been embedded in the Manhattan plane (that is to say, pl(p)).

Skew 191

The actual embedding rules for v depend on p's location, as follows (see Figure
4.23).

• Region I, I II: v = c(S') (since this is one of the points on center(S') that
is closest to p).

• Region ll.1, IV.1: v is the point of intersection of center(S') with the
horizontal line through point p (in this case and the following cases, we
embed v at a point on center(S') that is closest top, and as close to c(S')
as possible).

• Region ll.3, IV.3: v is the point of intersection of center(S') with the
vertical line through point p.

• Region ll.2: v = P2·

• Region IV.2: v = Pl·

The partitioning rules for S' are also straightforward: the goal is to find
an appropriate splitting line that divides Ps1 into two convex polygons and
thus also partitions the sink set between the two subtrees that are below v.
Essentially, we can use any line through p and v as a splitting line.

• If p # v we extend the line segment pv to be a splitting line pv which
divides Ps' into two convex polygons Ps1 and Ps' . Any sink lying inside

I 2
one of the convex polygons is assigned to that polygon, thus determining
membership in either S~ or S~; a sink on pv can be assigned to either
polygon as long as neither S~ or S~ is empty. For example, in Figure 4.21
S' = {a, b} is divided into S} = {a} and S~ = { b }, and Ps' is divided into
Ps~ and Ps~ accordingly.

• The case where p = v is resolved as follows: if p 'I c(S') then the line
segment center(S') is extended to form the splitting line, otherwise we
arbitrarily choose the vertical line through p as the splitting line.

These simple choices of embedding and partitioning rules guarantee a planar
result for Single-Pass DME [154].

Theorem 4.4.5 Given a subset S' <; S, a convex polygon Ps1, and a point p
inside Ps1, the embedding rules will select a feasible embedding point v inside
Ps1 and the partitioning rules will divide S' into two nonempty subsets. 0

192 CHAPTER 4

Theorem 4.4.6 Planar-DME constructs a planar clock routing tree. 0

The Planar-DME algorithm is formally described in Figure 4.24. Steps 4 and
6 in Planar-DME-Sub are the crux of the difference between Planar-DME and
the generic Single-Pass DME. There will be at most n = lSI levels of recursion,
since the maximum size of any sink subset decreases by at least one at each level.
Thus, Planar-DME has the same O(nlogn) and O(n2) complexity bounds as
Single-Pass DME and the method of Zhu and Dai. The example of Figure 4.25
illustrates the Planar-DME construction.

4.4.3 Experimental Results and Discussion

Planar-DME, with the simple polygon partitioning scheme described above,
has been implemented in C and tested on the seven test cases described in
Section 4.3.5. For the linear delay model, Table 4.11 compares Planar-DME
against three other methods: the method of Zhu and Dai [259]; the KCR+DME
method which gave the best results in the previous section; and the Greedy­
DME method of Edahiro [84], which gives the best-known wirelength results
for zero-skew trees. Recall that the method of [259] is planar; the KCR+DME
method yields a height-balanced tree topology; and Greedy-DME can yield a
height-unbalanced solution.

Planar-DME obtains an average of 15.5% reduction in tree cost versus the
previous planar method of [259]. Surprisingly, the Planar-DME solution has
lower cost than the non-planar KCR+DME solution for Primaryl and r5, and
indeed Planar-DME has tree cost very comparable to that of KCR+DME for
the other test cases. For the Primaryl test case, Planar-DME surpasses the
Greedy-DME result; this may be due to the very regular arrangement of sinks
in the Primaryllayout. On the other hand, results are worst for the r2 exam­
ple, perhaps due to the highly irregular distribution of sinks in this test case.
Kahng and Tsao [153] have described extensions to Elmore delay and alternate
partitioning rules, and Huang et al. [133] have applied a variant as the core of
a bounded-skew clock routing heuristic.

Finally, Figure 4.26 shows the planar clock routing solutions constructed by
Planar-DME and the algorithm of [259] for the benchmark placement of the
Primary2 circuit.

Skew 193

Algorithm Planar-DME (S,elk)
Input: Set of sinks S; clock location elk in Ps
Output: Planar ZST T(S) with root so; cost(T(S))
1. r = radius(S)
2. Build TRR(u) = M D(u, r) for all sinks u E S

3. center(S) = core(nTRR(u))
ues

4. If elk not specified
5. Embed so at c(S) (i.e., pl(so) = c(S));
6. Else
7. Embed so at elk (i.e., pl(so) =elk)
8. tw(so) = r + d(pl(so), center(S))
9. Planar-DME-Sub(S,Ps ,so)

10. cost(T) = I)ev I
veT

Procedure Planar-DME-Sub (S',P5 t,p)
Input: Set of sinks S' ~ S; convex polygon Ps' containing S';

parent node p lying inside Ps'
Output: Planar ZST T(S') with root v
1. tw(v) = radius(S')
2. ms(v) = center(S') = core(nues' TRR(u))
3. levi= tw(p)- tw(v)
4. Use embedding rules to embed node v at pl(t•) E ms(v)
5. Connect a wire from pl(p) to pl(v)
6. Use the partitioning rules to divide S' and Ps'

into S~ and S~, and Ps' and Ps'
1 2

7. parent(v) = p
8. If IS' I = 1 Return
9. Planar-DME-Sub(S~ ,Ps' ,v)

1

10. Planar-DME-Sub(S~ ,Ps;,,v)

Figure 4.24 Planar-DME Algorithm.

4.5 REMARKS

Clock distribution is now one of the most actively studied areas of physical
design. As noted at the outset, clock distribution is also highly intractable: it
impinges on system architecture, circuit design, and discrete algorithms, and

194 CHAPTER 4

Figure 4.25 Example with 9 sinks (circular dots at leaf nodes),
illustrating execution of Planar-DME. The routing region is recur­
sively divided into convex polygons according to the partitioning
rules (boundaries of polygons are indicated by thick dotted lines).
Also shown is the tree of merging segments (thin dashed lines),
from which application of the embedding rules is apparent.

is an area where "theory" and "practice" can diverge to a disconcerting extent
(e.g., contrast the present abstractions of "exact zero skew" with the formula­
tions surveyed in (100]). Fortunately, the existing literature has established a
number of fundamental techniques for clustering in topology generation, opti­
mal (planar) embedding of prescribed topologies, and achieving prescribed El­
more delay skew. Furthermore, CAD researchers are now beginning to address
more realistic problem formulations. The following are just a few examples.

• To reduce power requirements, interconnect optimization to reduce capac­
itance and architecture design to reduce switching frequency are both of
interest, by virtue of the c. V2 . f dependence of dynamic power dissipation.
Increasing the system performance, e.g., in pipelined architectures, requires
accurate management of latency. To address these issues, wiresizing and
buffer insertion optimizations have been proposed by (217, 237, 197, 261]
and others.

Skew 195

#sinks Greedy-DME KCR+DME Planar-DME Zhu-Dai
Prim! 269 137.0 140.3 136.0 167.9
Prim2 594 311.4 350.4 353.7 422.5

r1 267 1,331.9 1,497 1,511.8 1, 778.3
r2 598 2,590.8 3,013 3,363.5 3,580.1
r3 862 3,317.8 3,902 3,943.9 4,635.9
r4 1,903 6,780.2 7,782 7,835.7 9,577.1
r5 3,101 9,890.5 11,665 11,491.1 14,119.4

Complexity O(n log n) O{nlog n) O(n~) O(n~)

Planarity NO NO YES YES

Table 4.11 Comparison of Planar-DME with other algorithms un­
der the linear delay model. Clock tree costs for Greedy-DME are
quoted from [84], and costs for KCR+DME are quoted from [45].
Planar-DME is executed without any prescribed clock source loca­
tion.

• Skew control, as opposed to "exact zero skew", often represents a rea­
sonable engineering solution that can save wiring cost while maintaining
acceptable performance (cf., [260, 209]). Prescribed-delay routing can be
accomplished by DME variants or by the method of [214). Bounded-skew
routing has been addressed in [133).

• For high-speed systems, process variations during manufacturing can easily
introduce the several hundred picoseconds of skew needed to cause system
failure. Thus, process variation independence has emerged as a new design
criterion. Wiresizing and buffer sizing methods were developed by [56, 197);
the single-layer routing methods of [259, 153) nominally also address this
ISSUe.

• When very large "superbuffers" or mesh topologies are used in the clock
distribution network (recall the example of the Alpha microprocessor (76],
where 3% of the active area is occupied by a single clock driver), there are
effectively multiple sources in the clock routing problem. For both general
signal net routing (where multiple drivers are required to drive fanins of a
large signal net at high speeds) and clock distribution, considering multiple
sources seems to be an emerging research area [167, 175).

• Finally, for multi-chip packaging technologies with area-array pads, the
clock distribution problem becomes hierarchical. The area-array pads en-

196 CHAPTER 4

(a)

Figure 4.26 Planar zero-skew clock trees with minimum source­
sink pathlength delay, for the Primary2 benchmark: (a) the solution
produced by Planar-DME; and (b) the solution produced by the
algorithm of Zhu and Dai.

able signals to be brought onto the die from the substrate at any location;
this can lead to many clock "sources" on a given die. Then, the problem
is to partition the clock distribution between the underlying substrate and
the on-chip routing areas. Zhu and Dai [259] have performed the first
investigations of this problem.

5
MULTIPLE OBJECTIVES

Overview

In previous chapters we have explored constructions that optimize the three
main design objectives of wirelength, skew, and delay. However, in practice

we often seek to optimize multiple objectives simultaneously. This chapter

explores ways of representing and addressing multiple competing objectives.
We begin with a minimum density formulation for balancing the utilization of
horizontal and vertical routing resources and describe heuristics with expected
performance bounded by constants times optimal. This enables the simulta­
neous optimization of up to three objectives (e.g., radius/density/wirelength,

or skew/densityjwirelength at once), without degrading solution quality with

respect to any of the objectives. We also discuss a non-uniform lower bound

schema that affords tighter estimates of solution quality for a given problem
instance.

Next, we develop a general framework of multiple-objective optimization, based

on multi-weighted graphs (i.e., where edge weights are vectors rather than

scalars). This formulation captures distinct criteria such as wirelength, jogs and

congestion, and enables effective routing in graph-based regimes (i.e., routing
in building-block designs, field-programmable gate arrays, and where obstacles
are present). Finally, we discuss a network-flow based approach to prescribed­
width routing where multiple objectives induce an arbitrarily costed region;
applications of this include, e.g., circuit-board routing, and routing with re­
spect to reliability or thermal considerations. This methodology departs from
conventional shortest-path or graph-search based methods in that it applies to
routing regions with a continuous cost function, as well as to regions containing

197

198 CHAPTER 5

solid polygonal obstacles. Extensions address the minimum-surface problem of
Plateau, which is of independent interest.

5.1 MINIMUM DENSITY TREES

In Chapter 2 the minimum-area objective was approximately captured by min­
imizing the tree cost: since wires have a fixed width and must be routed at a
fixed separation from each other, the total tree edgelength provides an obvious
lower bound on the routing area that must be added to the layout. However, the
grid-based structure of integrated-circuit routing resources provides additional
information for determining the impact of a given interconnection topology on
the chip area.

This section discusses the minimum density objective of [10, 11] for spanning
and Steiner tree constructions. This formulation is motivated by the minimum­
area layout objective, which is best achieved through balancing the usage of
horizontal and vertical routing resources [194]. We present two efficient heuris­
tics for constructing low-density spanning trees, and prove that their outputs
are within small constants of optimal with respect to both tree cost and den­
sity. The proof techniques suggest a non-uniform lower bound schema which
affords tighter estimates of solution quality for a given problem instance. Fur­
thermore, the minimum density objective can be transparently combined with
a number of previous interconnection objectives (e.g., minimizing tree radius or
skew) without affecting solution quality with respect to these previous metrics.
Section 5.2 details a more general scheme for the simultaneous optimization of
multiple objectives.

Consider the four-terminal signal net shown in Figure 5.1; the interconnec­
tion tree of Figure 5.1(a) forces at least three wires to cross the dashed line,
meaning that the horizontal dimension of the chip must increase enough to
accommodate these three routing grids. 1 In contrast, the tree of Figure 5.1(b)
forces the horizontal chip dimension to grow by only one routing grid (how­
ever, the vertical chip dimension will grow by two grids, as indicated by the
horizontal dashed line). Manufacturing and Packaging costs suggest that the
most effective layouts are generally those which are roughly square, and this
suggests balancing the horizontal and vertical routing requirements induced by
the interconnection tree.

1 We adopt "routing grid" as a generic term that is independent of layout methodology.
The term encompasses, e.g., vertical feedthroughs or horizontal routing tracks in a channel
[194).

Multiple Objectives

(a) (b)

Figure 5.1 A four-terminal signal net for which the tree on the
left increases the required layout dimension by three routing grids,
while the tree on the right requires only two routing grids.

199

Recall that a signal net S is a set of n + 1 terminals so, s1, s2, ... , sn E S in
the Manhattan plane, and routing tree, T(S) is a tree which spans S. The cost
of a tree edge is the Manhattan distance between its endpoints, and the cost
of a routing tree is the sum of the costs of its edges. A line properly intersects
an edge if and only if it intersects the edge at a single point which is not an
endpoint of the edge.

Definition 5.1.1 The density of an interconnection tree is the maximum num­
ber of tree edges that can be properly intersected by a horizontal or vertical line
in the plane.

Definition 5.1.2 For a given netS, the minimum density of Sis the minimum
density achievable by an interconnection tree T(S), and a minimum density tree
is any T(S) that achieves this minimum density.

Minimum Density Tree (MDT) Problem: Given a net S, construct a min­
imum density tree T(S) having minimum cost.

The density criterion (see figure 5.2) recalls the notion of trees with "low stab­
bing number", which are used in the computational geometry literature to
speed up dynamic "ray shooting" queries [1, 46, 85, 86, 247). However, span­
ning trees with low stabbing number minimize the number of tree edges that
can be intersected by a line of any orientation, while the MDT formulation

200 CHAPTER 5

• • •

--W-- ~ • • •

• • •
(a) (b) (c)

Figure 5.2 (a) Example of a signal net, along with (b) an inter­
connection tree with density = 3, and (c) a minimum density tree
with density = 2.

above is concerned only with horizontal or vertical intersecting lines; this dif­
ference enables tighter bounds and simultaneous minimization of both tree cost
and density.

In light of the mm1mum area, delay and skew objectives discussed earlier,
the MDT heuristics discussed below provide interesting multiple optimizations
wherein up to three competing objectives may be optimized simultaneously. As
a result, the area minimization objective of minimum-density routing can be
attained without sacrificing performance-driven criteria. In particular, below
we describe how tree cost, radius, and density can be simultaneously optimized;
we also show how tree cost, skew and density can be simultaneously addressed.

5.1.1 Heuristics for Minimum Density Trees

The following discussion will assume that all terminals lie inside the unit square.

The COMB Construction

Our first basic algorithm sorts the terminals by increasing :~:-coordinate (ties are
broken to favor the larger y-coordinate), and then partitions the terminals into
'4 vertical strips, each containing J2ri terminals (Figure 5.3(a)). (Note that
th~ discussion implicitly assumes use of the floor and ceiling functions as ap­
propriate; this does not affect any of the asymptotic results.) We then connect
all the terminals of each strip into a path, in order of decreasing y coordinate
(Figure 5.3(b)). We complete the routing topology by connecting the termi-

Multiple Objectives 201

nals with lowest y coordinate in each strip, in order from left to right (Figure
5.3(c)). This algorithm is described in Figure 5.4. The complexity of this algo­
rithm, which we call COMB, is clearly dominated by the partitioning/sorting
step (Step 1 of Figure 5.4), and is therefore O(nlogn).

• le I. • I el
.I le

e I • I

• I I • • le I
I • I • • I I
I I

(a) (b) (c)

Figure 5.3 Execution of the COMB spanning tree construction on
a net of size n = 16.

Algorithm: COMB
Input: a net S, containing lSI = n terminals
Output: a low-density, low-cost tree spanning S

1: Partition S into ~ vertical strips each containing ..,fin terminals
2: Connect in monotone y-order the terminals within each strip
3: Connect in monotone x-order the bottom terminals of all strips
4: Output resulting spanning tree

Figure 5.4 Algorithm COMB: heuristic minimum-density span­
ning tree construction.

If the introduction of Steiner points is allowed in constructing the tree, we can
reduce the worst-case density as well as the worst-case cost of the construction
as follows: (i) partition the net S into ~ vertical strips, each containing

J2ri terminals (Figure 5.5(a)); (ii) within each strip, connect the terminals
in the strip to a central spine, i.e., a vertical line which passes through the
median terminal of the strip when the terminals are sorted by x-coordinate
(Figure 5.5(b)); then (iii) join all the spines using segments of a single horizontal
line (Figure 5.5(c)). This variant, which we call COMB_ST, is described in
Figure 5.6 and has complexity O(nlogn), again reflecting the complexity of
the partitioning/sorting step.

202 CHAPTER 5

• le I. • I el
.I le

e I • I

• I I • • le I
I • I • • I I
I I

(a) (b) (c)

Figure 5.5 Execution of the COMB_ST Steiner tree construction
on a net of size n = 16. Note that density = 3 is achieved by the
construction, while the COMB construction yielded density = 5 for
the same instance.

Algorithm: COMB...ST
Input: a. net S, containing lSI = n = P terminals
Output: a. low-density low-cost Steiner tree connecting S

1: Partition S into ~ vertical strips each containing v'2n terminals
2: Connect the terminals within each strip to a central spine
3: Connect the bot toms of all spines
4: Output resulting Steiner tree

Figure 5.6 Algorithm COMB_ST: heuristic minimum-density
Steiner tree construction.

A Chain-Peeling Method

A different, "chain-peeling" approach to density minimization iteratively com­
putes and superposes chains or antichains (i.e., sets of terminals through which
a staircase routing exists). A chain is a sequence of terminals with coordinates
that are monotone nondecreasing in both x and y; an antichain has coordinates
monotone nondecreasing in x and monotone nonincreasing in y. According to
Dilworth's theorem [75), every partially ordered set of size n must contain either
a chain or an antichain of size at least Vn·

The chain-peeling method, which we call PEEL (Figure 5.7), detects a maximal
chain or antichain and then removes it from the net; the process is iterated over
the remaining terminals until the net has been covered. Each chain contributes

Multiple Objectives 203

at most 1 to the overall density, and the chains/antichains can be joined to­
gether into a tree (Step 7 of Figure 5.7) without increasing the density further
(see Theorem 5.1.8 below). The PEEL method is attractive because it escapes
such pathological examples as that of Figure 5.8, where COMB or COMB_ST
will yield density an unbounded factor greater than that of PEEL. Section 5.1.2
shows that the time complexity of PEEL is 0(n ~ log log n).

Algorithm: PEEL
Input: a net S, containing lSI = n terminals
Output: a low-density low-cost tree spanning S
1: P=S
2: T=0
3: While P =/: 0 Do
4: C = maximum chain or antichain of P
5: T=TUC
6: P=P-C
7: Join all chains/antichains in T and output resulting tree

Figure 5.7 Algorithm PEEL produces a low-density tree by itera­
tively computing maximum chains or antichains, then joining them
into a tree.

• •

• •

• • • •
• • •

(a)

•

• •

• •
(b) (c)

Figure 5.8 Illustration of class of examples (a) on which PEEL
performs (b) an unbounded factor better than either COMB or
COMB-ST (c). The connecting edges between the strips (Step 3 of
COMB) are not shown in (c). For points in an "X" configuration,
PEEL will always yield a constant density = 2, while COMB or
COMB_ST density will grow as the square root of n.

204 CHAPTER 5

5.1.2 Performance Bounds

Both the density and the total tree cost of the constructions are on average
only small constant factors away from optimal.

Density Bounds

For a net S of n terminals, a lower bound of 0(yin) can easily be established
for the worst-case minimum density of the spanning tree T(S). Moreover, we
can show e(yin) expected density for the minimum density tree over s.

Theorem 5.1.3 A net S containing the n distinct grid points of the (y'n -
1) X (yin -1) grid cannot be spanned by a tree having density< r"'1+11.

Proof: In the square array, there are 2(y'n - 1) horizontal and vertical lines
between the rows and columns of terminals. For the tree T(N) to be connected,
each tree edge must cross at least one horizontal or vertical line. Hence, there
are at least n - 1 line crossings, and the pigeonhole principle implies that at

least one of the lines is crossed r 2(fo ~ 1) 1 = r f1+ 11 times. 0

The next theorem requires the following lemma:

Lemma 5.1.4 If n indistinguishable balls are independently placed at random
into n indistinguishable boxes, (1 - ~) · n boxes are expected to be non-empty.

Proof: The probability of a given ball ending up in a given box Bi is ~'
thus the probability of the ball missing box Bi is 1 - ~. By the independence
of the placements, the probability that all n balls miss box Bi is (1 - ~)n.
Therefore, as n increases, the probability that any given box remains empty is
limn-oo(1- ~)n = ~· By linearity of expectation, it follows that a constant
fraction ~ of the n boxes are expected to remain empty, proving the lemma. 0

Theorem 5.1.5 For n terminals chosen randomly from a uniform distribution
in the unit square, the minimum density tree has expected density e(y'n).

Proof: Partition the unit square into n identical square cells, each of size -j;:
by f,:, using 2yln-2 vertical and horizontal lines (Figure 5.9(a)). If we regard

Multiple Objectives 20.5

cells as "boxes" and terminals as "balls" then by Lemma 5.1.4 the expected
number of cells containing at least one terminal is (1- ~) · n. For the spanning
tree to be connected, each of these non-empty cells must contain at least one
terminal s; which has an incident tree edge ei that crosses a boundary of the
cell (Figure 5.9(b)). By the pigeonhole principle, at least one of the horizontal

or vertical lines will intersect gJn2·;) > (1 - ~) · ~ tree edges, yielding the

0(y'n) lower bound on the expected minimum density. Since the algorithms
always yield trees with density O(y'n) (see the following sequence of results),
the expected minimum routing density for a net of n terminals uniformly chosen
in the unit square is ec y'n). 0

Interestingly, the proof schema of Theorem 5.1.5 suggests a computational lower
bound for individual instances of the MDT problem, as follows. Given a net S,
select integers i and j and partition the unit square into ani by j (not necessar­
ily uniform) rectangular grid such that the greatest number P of the resulting
i · j rectangles contain terminals (see Figure 5.10). By the pigeonhole principle
(recall the proof of Theorem 5.1.5), this induces an immediate lower bound
f r P-1 l r P-1 l h . . . d . f S V . o (i- 1)+(j- 1) = i+i- 2 on t e mimmum routmg ensity o . anous

schemes can be used to find a partition which maximizes the quantity .+P:- 1.,:
I J -.

for example, one could place i = y'n horizontal lines such that at most .Jii
terminals lie between each consecutive pair of horizontal lines, and then place
the j = y'1i' vertical lines using a similar criterion. It is open whether there ex­
ists a polynomial-time algorithm which computes a rectangular partition that

. . P- 1 r fi d . d . (. . ~) maximizes i+i- 2 , even tor xe zan J e.g., z = J = vn .

Theorem 5.1.6 Algorithm COMB constructs a spanning tree with density $
V27l.

Proof: Since each strip contains no more than /211 terminals, a vertical line
passing through any strip cannot intersect more than J2ri tree edges. Since any
given horizontal line cannot intersect more than two edges within a strip (one
edge from Step 2 and one from Step 3 in Figure 5.4), the maximum horizontal

density is 2 · ~ = /211. Thus, the density of the COMB output is at most

~ 0

Theorem 5.1. 7 Algorithm COMB_ST constructs a Steiner tree with density

~ ~+1.

206

•
•

• •

CHAPTER 5

k

--· Pi

(a) (b)

Figure 5 .9 Expected minimum density of a net: (a) the unit square
is partitioned into n congruent cells; (b) each non-empty cell con­
tains some terminal Si which contributes at least one edge ej that
crosses a cell boundary .

• • • • • I
e I I e le

• -~-~---.,-

• • I I • • • I el

• -T •
I • I

• • re

(a) (b) (c)

Figure 5.10 Computing a non-uniform lower bound on the den­
sity. For the net in (a), a uniform partition of the unit square into
16 squares of size ~ x ~ each, shown in (b), yields 11 non-empty
cells which imply a density lower bound of r (4- N+(~-1) 1 = 2. On
the other hand, the non-uniform partition shown in (c) yields 14
non-empty cells, which imply an improved density lower bound of
r 14-1 1 3
(4-1)+(4-1) - .

I
I

Proof: In the construction of Figure 5.5, a strip can contain at most ~

terminals on each side of its spine, so no vertical line can intersect more than ~
of the edges created in Step 2 of Figure 5.6. No horizontal line can intersect any
of the ~ vertical spines more than once. Thus, the density of the COMB-ST

Multiple Objectives 207

output is at most ~ + 1, when we consider the edges added to join the spines
together (Step 3). 0

A density bound for the chain-peeling algorithm PEEL follows two lemmas,
namely, (i) at most 0(Jfi) chains or antichains will be "peeled" during the
construction, and (ii) these chains/antichains can be connected to form a single
component which has density at most the number of chains/antichains.

Theorem 5.1.8 Algorithm PEEL constructs a Steiner tree with density most
:$ 2. Jfi.

Proof: We first show that PEEL computes at most 2 · fo chains and/or
antichains. Let ai denote the number of points remaining after we have peeled
off i chains and/or antichains. Assume that the algorithm stops when we have
peeled off k chains and/or antichains, i.e., ak = 0. We want to show that
k :$ 2 · fo. According to Dilworth's Theorem [75], the size of the (i + l)th
chain/antichain is at least vfai. Thus, ai+1 :5 ai- .;ai. It is easy to verify that
J x - Vx :$.,fi - ~. Therefore,

1 1 1 1 k
.Jfik :$ y a1c-1 - .Jak-1 :5 ..,fiik-1- 2 :$ (Jak-2 - 2)- 2 :$.. · :$ JciO- 2

This implies that k :$ 2 · (.,fiiO - y!ak) = 2 · Jfi. To complete the proof, we
need to show the chains and antichains can be "joined" into a spanning tree
without increasing density. This can be accomplished by extending each chain
to the top-right corner of the unit square and each anti-chain to the top-left
corner; this clearly will not increase total density beyond k (see Figure 5.11).
A simple case analysis shows that the set of chains can then be connected to
the set of antichains with no further increase in density, yielding the overall
density bound of 2 · fo. 0

Note that when the chains and antichains are joined into a Steiner tree as
described in the proof, the tree density will always be exactly the total number
of chains and antichains since a horizontal line near the top of the square will
cut all (extended) chains and antichains. Clearly, l~wer density constructions
might be attainable; however, the experimental results of Section 5.1.4 use this
simple ''joining" construction for Step 7 of the PEEL algorithm.

A result of Hunt and Szymanski (134] shows that the maximum chain or cin­
tichain in a pointset can be computed in 0(n log log n) time. Since PEEL
requires O(yn) iterations, its time complexity is bounded by O(n~ loglogn).

208

~~~~1 .. 1 
~~~ 

~~~~~~ I I 
,'I 

1 I 
I I 

I 
I 
I 

Figure 5.11 Combining chains into a low-density tree. 

Cost Bounds 

CHAPTER 5 

Probabilistic arguments show that on average, COMB and COMBJ)T will 
produce trees with low cost. 

Theorem 5.1.9 For n terminals distributed arbitrarily in the unit square, al­
gorithm COMB constructs a spanning tree with cost ~ 2v'2 · .,fii. 

Proof: In the COMB construction, the sum of the vertical components of the 
edges within each strip is bounded by 1 (the height of each strip is one unit). 
Thus, the sum of the vertical components of all routing tree edges introduced in 
Step 2 of Figure 5.4 is bounded by ~. Furthermore, the vertical components 

of edges introduced in Step 3 also sum to at most ~. To bound the sum of 
horizontal components, note that if we pick an arbitrary edge from within each 
strip, these $ edges have total horizontal span bounded by 1. The horizontal 

components of all tree edges from Step 2 thus contribute at most v'2n - 1 to 
the tree cost, and since the edges added in Step 3 have total horizontal span 
~ 1, we obtain the bound of 2-/2 · ..Jii. 0 



Multiple Objectives 209 

Theorem 5.1.10 For n terminals distributed arbitrarily in the unit square, 
algorithm COMRST constructs a Steiner tree with cost ~ $n + 1. 

Proof: In the COMB-ST construction, the vertical spines contribute at most 
~ to the tree cost. As in the proof of Theorem 5.1.9, if we pick an arbitrary 
pair of horizontal edges in each strip, one from either side of the spine, the total 
cost of these edges is ~ 1, so the sum of horizontal edge components is at most 
Vf = ~. Finally, the horizontal connector which joins the spines (Step 3 of 

Figure 5.6) has cost ~ 1, and the desired bound of $n + 1 follows. 0 

Theorem 5.1.11 For n terminals distributed arbitrarily in the unit square, 
algorithm PEEL constructs a Steiner tree with cost ~ 4 · -..fii. 

Proof: According to Theorem 5.1.8, PEEL constructs at most 2 ·Vii chains 
and anti chains, which are extended and then joined to yield a Steiner tree over 
the net S. Each extended chain or antichain can have cost at most 2, yielding 
the desired bound. 0 

Theorem 5.1.12 For n terminals chosen randomly from a uniform distribu­
tion in the unit square, the expected minimum spanning tree cost is e( vn). 

Proof: While this claim is a consequence of results in the theory of subadditive 
functionals in the Lp plane (23, 229], we present the following simple proof. 
Again, we partition the unit square into an array of n square cells, each of size 
-j; by -j;. Recall that the expected number of cells that will contain at least 

one terminal is (1- ~) · -..fii. In any tree T(N), each terminal will have at least 
one incident tree edge, and this edge must cross the boundary of the cell. It is 
easy to show that the expected distance from a terminal to the nearest side of 
its containing cell is lower-bounded by some constant times the length of the 
side of the cell (in the Manhattan norm, this constant is i ). We therefore have 
an 0( yn) bound on the expected total tree cost. Since COMB always yields a 
spanning tree with cost 0( yn), the minimum spanning tree cost for a set of n 
terminals uniformly distributed in the unit square is 6( y'n) on average. 0 

From these results, we have: 

Corollary 5.1.13 For n terminals chosen randomly from a uniform distribu­
tion in the unit square, the algorithms COMB, COMB_ST and PEEL all con-



210 CHAPTER 5 

struct trees which on average have both density and cost bounded by constants 
times optimal. 0 

As noted in Section 5.2, the notion of density is related to the computational 
geometric concept of "low stabbing number" which seeks spanning trees hav­
ing few intersections with lines of any orientation [46, 85]. Welzl [247] has 
proved that there always exists a spanning tree with stabbing number 0( y'n). 
Edelsbrunner et al. (86] have shown that 0( y'n) is a lower bound for the 
stabbing number of a pointset; Theorems 5.1.3 and 5.1.5 above show that this 
lower bound holds even when only horizontal and vertical stabbing lines are al­
lowed, and establish an average case 0( y'n) density lower bound. The authors 
of [86] also give three spanning-tree constructions with low stabbing number, 
trading off between space, stabbing number, and the use of randomization. 
These methods obtain bounds on stabbing number ranging from 0( n t+f) to 
O(nt · polylog), and typically run in O(n3 ) time and O(n2 ) space. By con­
trast, the algorithms above guarantee 0( n t) density, and run in 0( n log n) 
time and 0( n) space. Finally, Agarwal [1] showed that there always exists a 
family of O(log n) trees such that for an arbitrary given line, one of the trees 
will have a stabbing number of 0( y'n); this family can be computed in time 
O(n! · polylog). 

5.1.3 Triple Optimization 

In VLSI routing it is often desirable to simultaneously minimize more than 
one objective. However, this is difficult: it is unusual for even two competing 
criteria to be treated effectively (e.g., the simultaneous tree radius and tree 
cost minimization of [63]). In this section, we show that the minimum-density 
objective is "compatible" with existing performance-driven routing objectives; 
indeed, we may simultaneously address up to three separate routing-tree cri­

teria. Section 5.2 outlines a general scheme for the simultaneous optimization 
of multiple objectives. 

Minimizing Skew, Density, and Total Wirelength 

Recall from Chapter 4 that construction of a tree with minimum difference 
among the various source-sink pathlengths captures both minimum-skew clock 
routing [19] and global routing with min-max timing constraints. Chapter 4 
gave a general interconnection scheme that achieves extremely small pathlength 
skew, while keeping the total wirelength on average within a constant factor 



Multiple Objectives 211 

of optimal, and always bounded by 0( y'n). This clock routing construction, 
which we refer to as CLOCKl, begins with a forest of n isolated terminals, each 
of which is considered to be a (trivial) tree. An optimal geometric matching 
on these n points yields ~ segments, each of which defines a tree with two 
nodes. A tree is rooted at its balance point, i.e., the point that minimizes the 
pathlength skew to the leaves of its two subtrees. Trees continue to be paired up 
by geometric matching of their roots so that at each level of the construction 
only half as many points are matched as in the previous level. Thus, after 
flog n 1 matching iterations, a complete tree topology is obtained, as described 
in Section 4.2.2. 

In order to construct clock-routing trees with low density, we construct a low­
density geometric matching via the following variant of algorithm COMB: par­
tition the net into ~ strips of v'2ri terminals each and connect the terminals 
of each strip from top to bottom as before (Figure 5.12(a)). However, instead 
of connecting the bottom terminals of all strips, connect the terminals in a 
serpentine fashion, i.e., alternate between connecting the bottoms and tops of 
adjacent pairs of strips as shown in Figure 5.12(b ). Arguments similar to those 
above show that this procedure (which we call COMB_SERP) will connect all 
of the terminals in a single long path topology that has both total cost and 
overall density simultaneously bounded by 0( y'n) in the worst case. 

I :. • le • I el 
.I le 

e I • I 

• I I • • le I 
I • I • • I I 
I I 

(a) (b) (c) 

Figure 5.12 (a) Partitioning a net into strips/chains; (b) a serpen­
tine tour with low density, low average cost, and low density; and 
(c) an embedded geometric matching which also has low density 
and low average cost. 

Taking only every other edge of the tour produced by COMB-SERP will con­
stitute a geometric matching (Figure 5.12( c)) having both total cost and over­
all density simultaneously bounded by 0( y'n). We may iteratively use such 
matchings within the CLOCK! algorithm to yield a clock routing tree that si-



212 CHAPTER 5 

multaneously address three competing objectives: pathlength skew, total wire­
length, and density. In particular, the latter two quantities are both bounded 
on average by constants times optimal. 2 

Minimizing Radius, Density, and Total Wirelength 

In Chapter 3 a method was proposed to uniformly trade off total routing tree 
cost with tree radius (i.e., the longest source-sink pathlength in the tree) and 
simultaneously optimize both parameters to within constants times optimal in 
the worst case. This "bounded-radius, bounded-cost" (BRBC) construction 
[63] starts with a low-cost tour of the net terminals (e.g., a depth-first tour 
of a minimum spanning tree) and then augments this tour by adding shortest 
paths to the source from certain regularly spaced locations along the tour. The 
algorithm returns the shortest-paths tree over the resulting augmented graph, 
as detailed in Section 3.2.2. 

We can combine the minimum-density objective with with the radius/cost 
tradeoff of the BRBC algorithm to obtain another "triple optimization". Specif­
ically, we may execute the BRBC algorithm with an initial tour L (see Figure 
3.10) that is based on, e.g., the COMB-SERP spanning tree (instead of the 
minimum spanning tree); recall from Section 5.1.3 that the COMB_SERP out­
put has total cost and density both bounded by 0( y'n). Aside from this choice 
of initial traversal, the remainder of the construction proceeds exactly as the 
BRBC algorithm (see Figure 3.10). 

Given an arbitrary real parameter f ~ 0, the resulting BRBC spanning tree will 
have radius bounded by (1 + t:) from optimum in the worst case, cost bounded 
by (1 + :) · 2J2n, and density bounded by (1 + £~) · $n, where R $ 2 is the 
distance from the source to the farthest sink.3 Note that for any fixed value of 
f, all three of the above measures (i.e., radius, cost, and density) are on average 

2 This follows from the fact that at each level of the tree construction, only half as many 
points are being matched as in the previous iteration. Thus, for example, the density of the 
resulting clock tree will be bounded by 0 ( Vn) + 0 ( v'f) + 0 ( J'f) + ... = 0 ( fo). 

3 The density of the combined COMB-SERP / BRBC construction is bounded by the 
sum of$ (the density of the COMB-SERP tree Q) plus the number of shortest paths 
to the source taken during the traversal of Q in the BRBC algorithm (since any shortest 
path is necessarily monotone, it cannot contribute more than 1 to the density). The latter 
quantity is determined by noting that the depth-first tour of Q has length equal to twice the 
COMB tree cost 2..,/27i, and that BRBC adds shortest paths to the source at intervals of at 
least f • R along the traversal of Q. Thus, the density of the overall construction is given by 
..,l27i + 2·2Y2ii" = (1 + ....L) . ..,127i. 

•·R •·R 



Multiple Objectives 213 

constants times the respective optimal values. Indeed, the radius bound is a 
constant times optimal in the worst case as well. 

5.1.4 Experimental Results 

We have implemented the COMB_SERP variant of the COMB algorithm, the 
COMB_ST, and the PEEL algorithms using ANSI C for the Sun environment. 
Results are presented in Tables 5.1 and 5.2. For each pointset cardinality, 
each algorithm was executed on 100 pointsets randomly chosen from a uni­
form distribution in the unit square. Table 5.1 reports the minimum, average, 
and maximum densities of the resulting trees. Note that for algorithm PEEL, 
the number of chains and antichains computed by the algorithm is reported; 
this gives the spanning-tree density when we use the simple joining method 
described in the proof of Theorem 5.1.8. The tree cost of PEEL will be some­
what higher than shown in Table 5.2, since the data does not include the extra 
edgelength needed to join the chains together. 

The average density of the tree produced by the COMB-SERP algorithm is 
on par with the density of the simple minimum spanning tree. However, the 
density of the minimum spanning tree has higher variance, and in the worst 
case can be as large as O(n). Thus, the COMB or COMB-SERP constructions 
have practical utility due to their predictable performance. The average density 
of the trees produced by the COMB-ST algorithm is lower than the average 
density of the corresponding minimum spanning trees: for example, with signal 
nets of size 10, COMB_ST yields trees with average density = 3.00, in contrast 
to average minimum spanning tree density = 3.82. For n = 10, this 21% 
decrease in average density is achieved with a corresponding 21% increase in 
the tree cost over the MST cost, shown in Table 5.2. There is essentially no 
variance in the density of the COMB-ST output. 

As discussed in Section 5.1.2, for a given netS, any partition of the unit square 
into ani by j rectangular grid, such that P of the resulting i-j rectangles contain 
terminals of S (Figure 5.10), induces a lower bound f i~j!2 l on the minimum 
routing density of S. Recall that a simple version of this lower bound schema 
schema places i = y'ii horizontal lines so as to leave at most y'ii terminals 
between consecutive lines, and then places j = y'ii vertical lines using the same 
criterion. A comparison of the COMB_ST density versus the results of this 
computational lower bound are given in the rightmost three columns of Table 
5.1 (any fractional computational lower bound values are rounded up to the 



214 CHAPTER 5 

net MST COMB.BERP 
size min ave max min ave max 

5 2 2.57 4 2 2.70 3 
10 2 3.82 6 3 3.71 4 
15 3 4.35 6 3 4.95 5 
20 4 4.98 8 4 4.98 5 
30 4 5.99 8 6 6.00 6 
50 5 7.11 10 7 7.79 8 

net PEEL COMB_ST COMB.BT / LB 
size min ave max min ave max min ave max 

5 2 2.00 2 2 2.00 2 1.00 1.05 2.00 
10 2 3.08 4 3 3.00 3 1.00 1.46 1.50 
15 3 3.93 5 3 3.00 3 1.00 1.44 1.50 
20 4 4.76 6 4 4.00 4 1.33 1.72 2.00 
30 5 5.88 7 5 5.00 5 1.67 1.76 2.50 
50 7 7.85 9 6 6.00 6 1.50 1.92 2.00 

Table 5.1 Tree density statistics for minimum spanning tree and 
for the three heuristic constructions. Averages are taken over 100 
instances for each net size. The rightmost columns give the ratio of 
COMB..ST density to the instance-wise computational lower bound 
of Section 5.1.2. 

nearest integer, since density takes on only integer values). This lower bound 
can be used in assessing algorithm quality on an instance-wise basis. 

It is still an open question whether there exists a polynomial-time algorithm 
that constructs a routing tree with both cost and density bounded by constants 
times optimal in the worst case. It is also unknown whether the MDT problem 
is NP-complete. The chain-peeling method, PEEL, holds some promise in the 
sense that there exist examples where it outperforms COMB and COMB_ST 
by a factor of 6( Jfi) (Figure 5.8); it is conjectured that PEEL can be shown to 
yield worst-case density that is within a small constant factor of optimal. Two 
closely related conjectures are: (i) that the minimum density of a spanning tree 
over net S is at least the minimum of the number of chains or the number of 
antichains needed to cover S; and (ii) the PEEL algorithm will use at most 
twice the minimum possible number of chainsfantichains that coverS. 



Multiple Objectives 215 

net MST COMB_SERP 
size min ave max min ave max 

5 804 1658.39 2554 1010 2154.82 4233 
10 1781 2662.36 3462 2287 3682.77 4766 
15 2296 3224.41 4045 2663 4692.03 6465 
20 2766 3789.89 4558 3819 5265.67 6567 
30 4107 4651.00 5403 5524 6841.33 8529 
50 5190 5945.47 6668 7542 8708.12 10177 

net PEEL COMB-ST 
size min ave max min ave max 

5 758 1495.57 2481 1063 2260.09 3229 
10 1595 2776.06 4080 2307 3224.01 3974 
15 2562 3721.27 5071 3143 4216.83 4941 
20 2871 4720.69 6350 3692 4823.63 5649 
30 4873 6318.27 8085 5594 6570.46 7740 
50 7447 9298.73 11629 7070 8029.99 8945 

Table 5.2 Tree cost statistics. 

5.2 MULTI-WEIGHTED GRAPHS 

While previous chapters focused on optimizing a single design criterion (e.g., 
wirelength, signal skew, tree radius), secondary routing optimization goals 
might entail congestion avoidance, jog minimization, and circuit reliability. In 
Section 5.1.3 we observed that certain combinations of multiple objectives may 
be simultaneously optimized. Continuing in this direction, this section devel­
ops a general framework of multi-weighted graphs, where multiple competing 
objectives are optimized simultaneously under a smooth designer-controlled 
tradeoff. This framework enables effective routing in graph-based regimes, e.g., 
in building block design, in FPGAs, around obstacles, etc., and is also applica­
ble to many other areas of combinatorial optimization (e.g., traveling salesman, 
matching, and partitioning). This work was first described in Alexander and 
Robins [5, 6, 8]. 

A multi-weighted graph is a weighted graph where each edge weight is a vec­
tor rather than a scalar; that is, the graph has several distinct sets of edge 
weights, corresponding to the various objectives that we seek to optimize. For 
example, one set of edge weights may represent wirelengths, a second set of 



216 CHAPTER 5 

edge weights can represent congestion information, and a third set of edge 
weights can model jog penalties, etc. Searches in such multi-weighted graphs 
are guided by a weighted average of the values corresponding to the differ­
ent competing criteria, relative to given designer-selected tradeoff parameters. 
Such a framework subsumes, e.g., "alpha-beta" routing, which has been used 
for jog minimization in circuit design [58, 132]. 

Let V = { v1, v2, · · ·, vn} be a set of vertices and E ~ V x V be a set of lEI = m 
edges. We define a k-weighted graph G = (V, E) to be a weighted graph with a 
vector-valued weight function w : E - lRk. In other words, associated with each 
edge eii E Eisa vectorof k real-valued weights Wij = (wij1,Wij2 1 ···,Wijk)· 
Note that ordinary weighted graphs are a special case of k-weighted graphs, 
with k = 1. 

Let l = ( d1, d2, · · ·, dk) be a vector of k real-valued tradeoff parameters, where 
0 $ di $ 1 for 0 $ i $ k, and l:::~=l dm = 1. From the k-weighted graph 
G = (V, E) and the tradeoff parameters J we construct a new weighted tradeoff 
graph G(d) = (V, E) with scalar weight function w;i = lwii = L:~=l dm ·Wijm· 
The tradeoff graph G is an ordinary weighted graph having the same topology 
as G, but whose single edge weights represent the weighted avera$es of the 
multi-weights of G, with respect to the tradeoff-parameters vector d. 

Let i1 = (1, 1, ... , 1) be the unit vector, and for a given vector z = (z1, z2, · · ·, Zk), 
let Zi = ( 0, 0, · · · , 0, Zi, 0, 0, · · · , 0) denote the vector obtained from the vector 
z by using Zi in the ith place, and the rest of the places being zero. Thus, iii 
denotes the vector consisting of zeros everywhere except the ith place, which 
will contain a "1". A k-weighted graph G naturally induces k distinct graphs, 
each with an identical topology but with edge weights restricted to only one of 
the k COmJ>Onents of the weight function w; these k induced graphs are denoted 
by Gm = G(iim) for 1 $ m $ k. 

We define the minimum spanning tree (MST) for a multi-weighted graph G 
with respect to the tradeoff parameters J as the ordinary MST over the tradeoff 
graph G(d) and denote it by MST(G(d)). Similarly, we can compute the MST 
on each of the k induced graphs Gm and we denote these MST(Gm)· For 
convenience we will use MST to denote the cost of the MST. 

As an example of an application of multi-weighted graphs, consider the fol­
lowing cost/performance tradeoff in circuit-board manufacturing. Let k = 2 
and construct a 2-weighted graph Gover n terminals on a circuit board, where 
Wijl represents the capacitance of the edge eij, and where Wij2 represents the 



Multiple Objectives 217 

manufacturing cost of that edge (see Figure 5.13). Minimizing the total tree ca­
pacitance corresponds to improving circuit performance, but we would rather 
avoid incurring a huge manufacturing-cost increase in return for only a tiny 
performance gain. The goal is therefore to trade off these two objectives in a 
smooth manner. Clearly, MST(G((1, 0))) denotes the tree with the least pos­
sible capacitance, while MST(G((O, 1))) denotes the tree that is cheapest to 
manufacture. On the other hand, MST( G( ( ~, t))) represents the tree that si­
multaneously optimizes both performance and manufacturing cost, with both 
objectives being equally important (i.e., d1 = d2 = ~ ). 

(1,1) 

:J c ··IZ~l z 
(1.1) 

(a) (b) (c) (d) 

Figure 5.13 (a) A 2-weighted graph G, and MSTs over its two 
induced graphs: (b) MST(G((l, 0))) with cost 3 + 7 = 10, and (c) 
MST(G((O, 1))) with cost 7 + 3 = 10; (d) shows the MST over the 
tradeoff graph: MST{G((~, tm with cost 4 + 4 = 8. 

Given a k-weighted graph G and a parameter vector d, it would be of interest 
to bound MST(G(d)) both from above and below in terms of MST(Gl) through 
MST(Gk), J, and n. Below we derive the following upper and lower bounds for 
metric graphs (i.e., graphs with each weight set satisfying the triangle inequality 
Wijm + Wjkm ~ Wikm 1 1 ~ i,j, k ~ n, 1 ~ m ~ k): 

k k 

I: dm · MST(Gm) < MST(G{d)) < (n- 1) · L dm · MST(Gm) 
m=l m=l 

While the lower bound shown above holds in general, for arbitrary (non-metric) 
weighted graphs there exists no upper bound strictly in terms of the MST(G;)'s, 
J, and n. For metric graphs, the above lower bound is tight, while the upper 
bound can be improved; for example, we will show a tight upper bound of 



218 CHAPTER 5 

MST(G(d)) ~ ~ · L:~=l di · MST(G;) for metric graphs over three nodes. This 
is significant since most nets in typical VLSI designs contain 3 or fewer pins 
(104, 162]. 

Theorem 5.2.1 For any k-weighted graph G, and tradeoff parameters J, 
l::~=t dm · MST(Gm) ~ MST(G(d)). 

Proof: Consider an arbitrary edge e;j in MST(G(ci)) with cost L:~=l dm ·Wijm· 

If every MST(Gm), 1 ~ m ~ k, also contains edge eij, then clearly the cost of 
edge eii in all k trees is 2:~=l Wijm, and the cost of this edge scaled by the 
tradeoff parameters lis L:~=l dm · Wijm, which is equal to the cost of this edge 
in MST(G(d)). Clearly, if all of the k MST(Gm)'s contained the same edges as 
MST(G(d}), then equality holds and the theorem is true. On the other hand, 
if MST(G(d)) contains an edge that is not in MST(Gm) for some 1 ~ m ~ k, 

~ ~ lc --
the cost of MST(G(d)) relative to l:m=l dm · MST(Gm) can only increase. 0 

Ideally we would like to bound the MST cost of arbitrary multi-weighted graphs 
in terms of only the costs of the MST(Gi)'s, d, and n. Unfortunately, this 
property does not hold in general. 

Theorem 5.2.2 For any k-weighted graph G over n vertices, and tradeoff pa­
rameters d, the tradeoff graph cost MST(G(d)) cannot be bounded from above 

by any function of only MST(Gi) 's, J, n, and k. 

Proof: Consider the 2-weighted complete graph G = (V, E) over n = 3 nodes, 
where k = 2. Fix dby setting 0 < d1 , d2 < 1. Let M be some large constant, 
V = {a, b, c}, and E = V x V, with Wabl = 0, Wbcl = 0, Wac! = M and let 
Wab2 = M, Wbc2 = 0, Wac2 = 0 (see Figure 5.14). Observe that MST(Gl) = 
MST(Ga) = 0, k = 2, n = 3, d1, and d2 are all constants. On the other 
hand, MST(G) = min(d1 · M, d2 • M), which can be made arbitrarily large for 
any fixed dby making M large enough. Since any expression in terms of only 
constants must also be constant, MST( G) can not be bounded from above by 
any function strictly in terms of MST(Gt), MST(Ga), k, n, and J. 0 

The negative result of Theorem 5.2.2 only applies to non-metric graphs; we 
now derive a general upper bound for metric graphs. 



Multiple Objectives 

. . . 

~ .~ . . L. ' h 
CO.OJ 

(a) (b) (c) 

Figure 5.14 An example showing that MST(G(d)) cannot be 
bounded from above by any function strictly in terms of MST( G;) 's, 
J, n, and k: (a) The 2-weighted graph G; (b) MST(G((l, 0))) 
has cost 0; (c) MST(G((O, 1))) has cost 0. On the other hand, 
MST(G((t, t))) has cost "'f, which can be arbitrarily large. 

219 

Theorem 5.2.3 If G is any metric k-weighted graph G over n vertices, and 
tradeoff parameters J, then MST(G(d)) $ (n- 1) · L~=l dm · MST(Gm) 

Proof: Consider an arbitrary edge e;i in MST(G(d)) and its cost, L~=l dm · 
Wijk· Consider the m'th element in this summation, and the corresponding 
MST of Gm'. MST( Gm') spans vertices v; and Vj, but does not necessarily 
contain the edge e;i. However, a path must exist in MST( Gm') from v; to Vj, 

denoted minpathMST(Gm1)(i,j), with cost denoted by distMsT(Gm 1 )(i,j). By 
metricity, Wijm' $ distMST(Gm 1 )(i,j). Therefore: 

k 

cost of edge e;j in MST(G(d)) = Ldm · Wijm 

m=1 
k 

< Ldm · dist.MST(G"' 1 )(i,j) 
1=1 

k 

< Ldm · MST(G~) 
1=1 

Since e;i is an arbitrary edge of MST(G(d)), this holds for all n- 1 edges in _.__ __,.._ k --

MST(G(d)). Thus, MST(G(d))) $ (n- 1) · Lm=1 dm · MST(Gm). 0 



220 CHAPTER 5 

(a) (b) (c) 

Figure 5.15 A general upper bound in the metric case: for 
MST(G(d)) in terms of MST(Gi)'s, d~ n, and k: (a) depicts 
MST{Gm); {b) depicts MST(G{d)); and (c) shows how the cost 
of the mth weight component of each fij can be bounded by 
dm 0 MST(Gm)o 

And finally, in the case of three-node metric graphs, the upper bound can be 
tightened somewhat: 

Theorem 5.2.4 For 2-weighted metric graphs with three nodes, and any scal­
ing vector l = ( d1 , d2), the following holds: 

Proof: Let G = (V, E) be a complete 3-node 2-weighted graph, with edge 
weights (a, x), (b, y), and (c, z)o Let d = (d1, d2) be an arbitrary constant 
vector, such that 0 ~ d1, d2 ~ 1, and d1 + d2 = 1 (see Figure 5ol6{i))o 

The lower bound d1 ° MST(Gl) + d2 ° MST(G2) ~ MST{G(d)) holds by The­
orem 5.201. Assume without loss of generality that a ~ b ~ c, which implies 
that MST(G1) = a+ b. The following three possibilities must be considered, 
corresponding to the cases (i) x, y ~ z, (ii) x, z ~ y, and (iii) y, z ~ x: 

Case (i): assume x, y ~ z, which implies that MST(G2) = x + y (see Figure 
5ol6(ii))o Thus: 



Multiple Objectives 

(a.x) (a.x) 

(i) (ii) 

Figure 5.16 A tighter upper bound for 3-terminal nets; (a) a 3-
node 2-weighted graph, with edge weights (a, a:), (b, y), and (c, z), 
and (b) topology of the three spanning trees MST(G2) (inner), 
MST(Gl) (middle) and MST(G(d)) (outermost) corresponding to 
case (i). 

dt · a+ d2 · x < dt · c + d2 · z and 
dt . b + d2 . y < dt . c + d2 . z 

Now MST(G(d)) d1 ·a+ d2 · x + d1 · b + d2 · y 

dt ·(a+ b)+ d2 · (x + y) 
= d1 · MST(Gt) + d2 · MST(G2) 

and the theorem holds. 

221 

Case (ii): Assume x, z ~ y, which implies that MST(G2) = x + z. Let 
G = d1 · MST(Gl) + d2 · MST(G2), and consider the three possible subcases 
illustrated in Figure 5.17. 

• Subcase (ii)a: assume MST(G(d)) contains the "a/x" and "b/y" edges 
(See Figure 5.17(ii)a). Then: 

MST(G(d}) = dt ·(a+ b)+ d2 · (x + y) 
~ dt·(a+b)+d2·(x+x+z) 



222 

\ (c,z) 

\ 
\ ........................... 

(a,x) 

(ii)a 

CHAPTER 5 

(a,x) (a,x) 

(ii)b (ii)c 

Figure 5.17 Topology of the three spanning trees MST(G2) (in­
ner), MST(Gl) (middle) and MST(G(d)) (outer) corresponding to 
case (ii)a, case (ii)b, and (ii)c. 

= d1 · MST(Gl) + d2 · MST(G2) + d2 · x 

= G+ d2. X 

• Subcase (ii)b: assume MST(G(d)) contains the "a/x" and "c/z" edges 
(See Figure 5.17{ii)b ). Then: 

MST(G(d)) = d1 ·(a+ c)+ d2 · (x + z) 

< d1·(a+a+b)+d2·(x+z) 

= d1 · MST{Gl) + d1 ·a+ d2 · MST(G2) 

= G+d1·a 

• Subcase (ii)c: assume MST(G(d)) contains the "b/y" and "c/z" edges 
(See Figure 5.17(ii)c). Then: 

MST(G(d)) = d1 · (b +c)+ d2 · (y + z) 

$ d1·(b+a+b)+d2·(x+z+z) 

= d1 · MST(G1) + d1 · b + d2 · MST(G2) + d2 · z 

= G + d1 · b + d2 · z 



Multiple Objectives 223 

Now, since MST(G(d)) is a minimum spanning tree, it is the minimum of the 
bounds produced by subcases (ii)a, (ii)b, and (ii)c: 

< 

G + min( d2 · x, d 1 · a, d 1 · b + d2 · z) 
- 1 
G + 3 · (dz · x + d1 ·a+ d1 · b + d2 · z) 

4 -
-·G 
3 

Case (iii): Assume y, z;:; x, which implies that MST(G2) = y + z. Again, let 
G = d1 · MST(GI) + d2 • MST(G2 ), and consider the three possible subcases 
corresponding to whether MST(G(d)) contains (3a) "a/x" and "b/y", (3b) 
"a/x" and "c/z", or (3c) "b/y" and "c/z", which are handled using similar 
arguments to those in case (ii) above. 

The bound MST(G(d));:; ~ · [d1 · MST(G 1) + d2 · MST(G2 )] holds in each one 
of the three possible cases (i), (ii), and (iii). The example a= f, x = 2- f, b = 
c = y = z = 1 (where f is an arbitrarily small value) shows that this bound is 
tight. 0 

For 4-terminal nets the general upper bound of Theorem 5.2.3 implies that the 
constant in the upper bound is n- 1 = 3. However, an exhaustive computer 
search indicates that this constant is actually ~. We therefore conjecture that 
the upper bound can be tightened considerably. Tighter bounds on the com­
bined MST cost over multi-weighted graphs were recently developed in [105]. 

5.3 PRESCRIBED-WIDTH ROUTING 

This section addresses prescribed-width routing, which seeks a least-cost source­
destination path having a given minimum width; this problem arises in the 
routing of, e.g., circuit boards, or where thermal constraints, blockages, or con­
gestion induce a continuously costed routing region. We describe an approach 
which optimally solves prescribed-width routing using an efficient network flow 
formulation. This method departs from conventional shortest-path or graph 
search based methods, in that it not only handles regions with solid polygonal 
obstacles but also generalizes to arbitrary cost maps which may arise in model­
ing incomplete or uncertain knowledge of the routing region. The approach was 



224 CHAPTER 5 

originally proposed to address path planning for a mobile agent in a general 
environment4 and was subsequently extended in (129, 130] to solve Plateau's 
classic problem on minimum surfaces. 

We focus on prescribed-width routing subject to two practical extensions: (i) 
the need to incorporate uncertainty into the formulation, and (ii) the require­
ment of an error-tolerant solution. These respectively yield the notion of a 
general cost function in a given region, along with the notion of a minimum 
width path. The algorithmic approach to prescribed-width routing in regions 
with arbitrary cost functions employs a general combinatorial approach involv­
ing network flows [67]. The crucial observation is that a minimum-cost path 
which connects two locations s and t corresponds to a minimum-cost cut-set 
which separates two other locations s' and t'. The prescribed-width path is 
obtained by applying efficient network flow algorithms to exploit this duality 
between connecting paths and separating sets. 

This approach is guaranteed to find optimal solutions to the minimum-cost 
prescribed-width routing formulation which we define below. The algorithm 
runs in polynomial time, and can be implemented in O(d2 ·N2 ·logN) time where 
N is the number of nodes in a discrete mesh representation of the region, and 
d is the prescribed-path width. Experimental results confirm that this method 
can find optimal prescribed-width paths where current combinatorial methods 
are prohibitively expensive, and where variational or gradient heuristics only 
return locally optimum solutions. 

5.3.1 Prescribed-Width Routing by Network Flows 

We begin by establishing notation and terminology. The development focuses 
on the connection-separation duality which motivates the network flow ap­
proach. 

4The robotics literature has addressed a problem related to prescribed-width routing, 
namely the motion planning problem for an autonomous mobile agent, which asks for a 
minimum-cost feasible path between a source and a destination in a. configuration space 
[39, 66, 161, 211). The cost of a given solution may depend on many factors, including 
distance traveled, time or energy expended, and hazard probabilities encountered along the 
path (see Canny [39), Latombe [161), or Mitchell [185) for a survey). 



Multiple Objectives 225 

Problem Formulation 

We say that a subset of the plane is simply connected if it is homeomorphic to 
a disk (i.e., contains no holes); a subset of the plane is compact if it is closed 
and bounded. 

Definition 5.3.1 A region is a simply-connected, compact subset of iR2• 

Given a region R, we know by the Jordan curve theorem [68) that the boundary 
B of R partitions the plane into three mutually disjoint sets: B itself; the 
interior of R; and the exterior of R. We consider the problem of computing a 
path in R from sourceS to destination T, where SandT are disjoint connected 
subsets of the boundary B. A path is defined as follows: 

Definition 5.3.2 Given a region R with boundary B, a path between two dis­
joint connected subsets S C B and T C B is a non self-intersecting continuous 
curve P ~ R which connects some point s E S to some point t E T. 

Clearly the path P partitions R into three mutually disjoint sets: (i) the set 
of points of R lying strictly on the left side of P, which we denote by R1 (we 
assume that P is oriented in the direction from s toward t); (ii) the set of 
points of R lying on the right side of P, denoted by Rr; and (iii) points of P 
itself. This is illustrated in Figure 5.18. It is possible for at most one of R1 
and Rr to be empty, and this happens exactly when P contains a subset of B 
between S and T. R1 (resp. Rr) is empty if P 2 B, (resp. P 2 Br ), where 
B1 and Br respectively denote the subsets of the boundary B lying clockwise 
and counterclockwise between S and T, i.e., B, = (B n R,)- (S U T) and 
Br = ( B n Rr) - ( S U T). 

As noted above, our goal is to optimally solve prescribed-width routing when 
two practical constraints are incorporated: an arbitrary cost function defined 
over the region, and a minimum width path requirement. An arbitrary cost 
function corresponds to a general region, which is in many ways more realistic 
than a region consisting only of solid rectilinear obstacles, e.g. a continuous 
cost function models naturally constraints due to thermal and manufacturing 
considerations, etc. In this scenario, each point in the region will have an as­
sociated weight, or cost of traversal, corresponding to temperature. (In what 
follows, we use the terms "weight" and "cost" synonymously.) Multiple objec-, 
tives may also be captured via this formulation: if the path to the destination 



226 CHAPTER 5 

s 

Figure 5.18 A path P between two points s E Sandt E T, where 
S and T are disjoint subsets of the boundary B of a region R. 

must be short, then the weight function will take into account, say, both tem­
perature level and the travel distance. Note that this formulation subsumes 
the binary cost function of a basic region with solid polygonal obstacles (cost 
= 1) and free space (cost= 0). 

Formally, given a region R, we define a weight function w : R - ~+ such 
that each point s E R has a corresponding positive weight w(s). The cost, or 
weight, of a path P ~ R is defined to be the integral of w over P. Optimal 
path planning entails minimizing this path integral. To find a minimum-cost 
path P ~ R between two points on the boundary of R, one might guess that 
Dijkstra's shortest path algorithm [67] provides a natural solution. However, 
application of Dijkstra's algorithm relies on an implicit assumption that the 
solution can be cast as an ideal path, i.e., a path of zero width. The relevance 
of this caveat becomes clear when we consider the second extension to the basic 
formulation- the requirement of a minimum-width path solution. 

We require the path to have a minimum width everywhere, e.g., corresponding 
to the width of a metal trace on a circuit board, or to the number of parallel 
wires in a bus. With this in mind, we define a prescribed-width path to be 
one which maintains a given minimum width. In general, the optimum path 
of width d1 cannot be obtained by simply widening or narrowing the optimum 
path of width d2. 

We now establish the relationship between a prescribed-width requirement and 
the concept of d-separation [112]. In the following, we use ball(x, d) to denote 



Multiple Objectives 227 

the closed ball of diameter d centered at x, i.e., the set of all points at distance 
~ or less from x. 

Definition 5.3.3 Given two disjoint subsets S and T of the boundary of a 
region R, a set of points P ~ R is a width-d path between S and T if there exist 
s E S, t E T and a path P connecting s tot such that P 2 UxeP{ball(x, d)nR}, 

i.e., P contains the intersection of R with any disk of diameter d centered about 
a point of P. 

Just as the path P between S and T will partition R into R1, Rr, and P, 
the width-d path P ~ R between S and T also partitions R into three sets: 
(i) the set of points R1 = ((R- F) n R1) U B1, that is, the union of the left 
boundary B1 and all points in R that are to the left of P; (ii) the set of points 
Rr = ((R- F) n Rr) U Br; and (iii) the pointset P itself. We now obtain the 
definition of ad-separating path (see Figure 5.19): 

Definition 5.3.4 Given two disjoint subsets S and T of the boundary of a 
region R, a set of points P ~ R is a d-separating path between S and T if P is 
a width-d path such that any point of R1 is distance d or more away from any 
point of Rr. 

R 
~ 

~ 
~'"··... f 

/ - ••• I 
I '•, d 

B ~... ·······~ Ll ·~ I I 

; I d I I 1+.1 
S-4~------------~ 

p 

s 

Figure 5.19 A d-separating path P of width d between two points 
s E S and t E T of the boundary of a region R. Here R1 is separated 
from Rr by a distance of d. 



228 CHAPTER 5 

A d-separating path P between S and T is a minimal d-separating path between 
S and T if no subset of P satisfies the preceding definition . Because all points 
in R have positive cost and because we are interested in minimum-cost paths, 
the following discussion refers only to minimal d-separating paths. While the 
treatment thus far assumed a continuous routing region, in VLSI the region 
is typically discretized relative to a given fixed grid. Thus, we will assume a 
fixed-grid representation R of the region R, where the cost of a path is defined 
to be the sum of the weights of the nodes covered by the path. Similarly, the 
notion of d-separation also naturally extends to the discrete grid: 

Definition 5.3.5 Given a region R, a discrete d-separating path P in the grid­
ded region R is the subset of the gridpoints of R that is contained in some 
d-separating path P in R (Figure 5.20). 

T 
(' .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- .~--:.- .-.-.... , 
• •••••••••••••••••• • •• 0 • • 

0 •• • .. . . - - . . . . ... . . . _, .... ..... . 
0 41···-·· ........ . ·'· ... 
t •• ' . .... . 
• • a a I · 

II a a II • 

. . . . . . ........ . 
~ .. :_ :_ :_ :_ :.~~ ~_·:_ :_ :_ :_ :_ :_ :_ :_ :_ :_ :_ :_ :_ :_ :/ 

s 

• •••••• • • • • • • • p . ..... . 

p 

Figure 5.20 A discretized representation R of a region R, and a 
discrete d-separating path P in k Note that P is the set of lattice 
points covered by the continuous d-separating path P in R. 

As before, a discrete d-separating path is minimal if no subset of it satisfies 
this definition. Analogously to the continuous case, a discrete d-separating 
path partitions the gridded region into two subsets, such that each gridpoint 
from one partition is a distance of at least d units away from any gridpoint in 
the other partition . We therefore have the following problem formulation: 



Multiple Objectives 229 

Prescribed-Width Path (PWP) Problem: Given a weighted gridded region 
R with boundary B C R, a sourceS t;;;; B, a destination T t;;;; B, and a width d, 
find a discrete d-separating path P t;;;; R between S and T which has minimum 
cost. 

Although PWP is a very natural problem formulation, it cannot be efficiently 
solved by traditional methods. Recall that in an n-node edge-weighted graph 
G = (V, E) with identified source v0 E V, the kth phase of Dijkstra's algorithm, 
k = 1, ... , n, finds another node Vk for which the shortest pathlength dok in G is 
known; we know the optimum s-t pathlength when Vk = t. Although the PWP 
formulation above assumes a node-weighted G, we may easily obtain an edge­
weighted graph (for all v E V, add w~v) to the weight of each edge incident to 
v) to which we may apply Dijkstra's algorithm. However, this transformation 
is correct only for computing the optimal zero-width path: Dijkstra's algorithm 
relies on the fact that d;j can never be strictly less than mink ( d;k + dkj), but 
this may not hold when paths have non-zero width. 

In the special case where the cost function is binary, Dijkstra's algorithm is 
applicable via the following well-known technique [161]: augment the region 
by growing each obstacle (as well as the region boundary) isotropically by ~ 
units, then set the weight of each node in the free area to some constant, whil~ 
the weight of any node in an area covered by an obstacle is set to infinity. A 
minimum-cost prescribed-width path in such an augmented region would cor­
respond to the center P of the d-separating path P that we seek (Figure 5.19). 
Unfortunately, this simple transformation fails for arbitrary weight functions: a 
general region has no solid "obstacles" which can be "grown" in such a fashion. 

A Network Flow Based Approach 

To solve the prescribed-width path problem, we use ideas from network flows 
in continua [128].5 We first review several key concepts from the theory of 
network flows [96, 163]. A flow network I]= (N,A,s,t,c,c') is a directed graph 
with node set N; a set of directed arcs A ~ N x N; a distinguished source 
node s E N and a distinguished sink node t E N; an arc capacity function 
c : A ....... ~+ which specifies the capacity Cij ~ 0 of each arc a;i E A; and a node 
capacity function c' : N ....... ~+ which specifies the capacity c~ ~ 0 of each node 

5 Mitchell [186] also extends the ideas of flows in continua, but in a very different way. 
The results in [186) develop a theory of flows in polyhedral domains, with a view to such 
practical applications as motion planning of many agents through a congested region (i.e., 
"rapid deployment"), etc. 



230 CHAPTER 5 

n; E N. To handle undirected graphs, we may replace each undirected arc a;j 

by two directed arcs a;j and Uji, each having capacity Cij. 

A flow in rJ assigns to each arc a;j a value </Jii with the constraint that 0 ~ </Jii ~ 
Cij. An arc a;i is called saturated if </J;j = Cij. We insist on flow conservation 
at every node except s and t, and we require that the flow through each node 
nj does not exceed the capacity of that node: 

A node ni is called saturated if L </Jii = cj. Since flow is conserved at every 
i 

node, the total amount of flow from the source must be equal to the total flow 
into the sink; we call this quantity the value ~ of the flow: 

A flow with the maximum possible value is called a maximum flow. An s-t cut 
in a network is a set ( N', A') of nodes N' ~ N and arcs A' ~ A such that 
every path from s to t uses at least one node of N' or at least one arc of A'. 
The capacity c(N', A') of a cut is the sum of the capacities of all nodes and 
arcs in the cut. A classical result of linear programming duality states that the 
maximum flow value is equal to the minimum cut capacity; this is the max-flow 
min-cut theorem (96]: 

Theorem 5.3.6 Given a network rJ = (N, A, s, t, c, c'), the value of a maxi­
mum s-t flow is equal to the minimum capacity of any s-t cut. Moreover, the 
nodes and arcs of any minimum s-t cut are a subset of the saturated nodes and 
saturated arcs in some maximum s-t flow. 

Recall that any s-t path will separate, i.e., cut, Rt from Rr. In particular, 
an inexpensive s-t path will correspond to an inexpensive cut between two 
appropriately chosen nodes s' and t'. Since a subset of the nodes and arcs 
saturated by the maximums' -t' flow will yield this s' -t' cut, it is natural for us 
to derive the desired s-t path via a maximum-flow computation in a network 



Multiple Objectives 231 

where capacities correspond to travel costs in R . The remainder of this section 
describes how this is accomplished. 

To transform prescribed-width routing in a region R into an instance of network 
flow, we first superpose a mesh network topology over R, then assign node 
weights in this network according to the weighting function w : R -+ ~+. This 
yields a network that corresponds to the underlying PWP instance. 

We guarantee a minimum-width path solution by ensuring that any separating 
node set in the mesh topology satisfies the prescribed width-d requirement. 
Toward this end, we define the d-neighborhood of a node v in the mesh to be 
the set of all nodes at distance d or less units away from v, and we then modify 
the mesh topology by uniformly connecting each node to all other nodes in its 
d-neighborhood, where d is the prescribed path width. The resulting network 
is called a d-connected Mesh, and has the property that no nodeset of width 
less than d is a d-separating set. An illustration of this construction for d = 2 
is given in Figure 5.21. We note that the concept of ad-neighborhood was first 
investigated by Gomory and Hu [128]. 

00 
0 
0 
0 
00 

00 

? O 
0 
0 

00 
Figure 5.21 A node and its d-neighborhood (d = 2). 

Finally, we choose nodes s' and t' such that the minimum s'-t' cut is forced to 
lie along some path between s and t. We accomplish this by making s' and t' 
respectively into a source and a sink , then connecting each to a contiguous set 
of nodes corresponding to part of the boundary of the original region R. This 
completes the transformation; Figure 5.22 gives a high-level illustration of the 
construction. 



232 

prescribed-width 

path~ 

CHAPTER 5 

Figure 5.22 A prescribed-width path problem instance trans­
formed into a network flow instance. 

Observe that up to this point, we have converted a prescribed-width path 
instance into an undirected, node-capacitated (node-weighted) flow instance. 
However, network flow algorithms typically assume that the input is an arc­
capacitated network (with infinite node capacities). Therefore, in order to use 
a standard maximum flow algorithm, we must transform an instance having 
both node and arc capacities into an equivalent arc-capacitated maximum flow 
instance. To accomplish this, we use the standard device of splitting each node 
v E N with weight w( v) into two unweighted nodes v' and v", then introducing 
a directed arc from v' to v" with capacity w( v ). Also, each arc ( u, v) E A of the 
original network is transformed into two infinite-capacity directed arcs ( u", v') 
and ( v", u'). Thus, each arc ( v', v") of the resulting directed network will, when 
saturated, contribute the original node weight w( v) to the minimum cut value. 
This transformation is illustrated in Figure 5.23 [115). The overall size of the 
network increases by only a constant factor via this last transformation, i.e., the 
final directed arc-capacitated network will have only 2INI nodes and INI + 2IAI 
arcs. Therefore, a maximum flow computation in the transformed network will 
be asymptotically as fast as in the original network. 



Multiple Objectives 

Figure 5 .23 Transformation of a node- and arc-capacitated flow 
network to an arc-capacitated flow network: arc capacities Cij re­
main infinite, while original node capacities (node weights) ci in­
duce directed arc capacities in the transformed network. 

233 

Note that a maximum flow in the arc-capacitated transformed graph corre­
sponds to a minimum arc-cut in the transformed graph (by the max-flow min­
cut theorem) . This in turn corresponds to a minimum node-cut in the original 
graph since the transformation preserves minimal cutset costs. The "width" of 
the cut can be no less than d since the connection of each node to all nodes 
in its d-neighborhood guarantees that any separating node set will have the 
prescribed width. A formal summary of the algorithm, which we call d-PATH, 
is given in Figure 5.24. 

The max-flow min-cut theorem [96] and the existence of efficient algorithms for 
maximum flow (e.g., [67, 96]) together imply the following : 



234 CHAPTER 5 

d-PATH: Finding a prescribed-width path in a weighted region 
Input: Region R, weight function w : R -+ !}?-t, width d, 

grid size g, source s and destination t on boundary of R 
Output: A discrete d-separating path P C R connecting s and t 
Create a d-connected mesh topology 71 of size g x g over R 

with all arc capacities set to oo 
Assign node weights (capacities) in 11 according to weight function w 
Set boundary node weights (capacities) to oo 
Transform node/arc-capacitated network 71 into arc-capacitated network 71' 
Add source node s' and sink node t' to 11' 
Connect s' to B1, the boundary nodes of R, clockwise from s to t 
Connect t' to Br, the boundary nodes of R, clockwise from t to s 
Set capacities of all arcs adjacent to s' or t' to oo 
Compute maximum s'-t' flow in 71' 
Output all nodes incident to arcs in the minimum s'-t' cut of 711 

Figure 5.24 The d-PATH Algorithm: Finding a prescribed-width 
path of minimum cost in an arbitrary weighted region, i.e., an op­
timal solution to the PWP problem. 

Theorem 5.3.7 The d-PATH method of Figure 5.24 outputs an optimal solu­
tion to the PWP problem in time polynomial in size of the mesh representation 
of the region R. 

A Test Implementation 

There are numerous algorithms for computing maximum flows in networks [3, 
96, 128], and we have used an existing implementation of Dinic's network flow 
algorithm [111]. Starting with an empty flow, the Dinic algorithm iteratively 
augments the flow in stages; the optimal flow solution is achieved when no 
flow augmentation is possible. Each stage starts with the existing flow and 
attempts to "push" as much flow as possible along shortest paths from the 
source to the sink in a residue network wherein each arc has capacity equal to 
the difference between its original capacity and its current flow value. After 
the current flow has been thus augmented, newly saturated arcs are removed 
and the process iterates. Since there can be at most INI- 1 such stages, each 
requiring time at most O(IAI · INI), the total time complexity of the Dinic 
algorithm is O(IAI·INI2). 



Multiple Objectives 235 

If we have a total of INI nodes in the mesh graph, the time complexity of 
the Dinic algorithm is O(INI3). In practice, more efficient flow algorithms are 
available [3]. For example, by using the network flow algorithm of (110], we 
obtain the following: 

Theorem 5.3.8 For a given prescribed path width d, the d-PATH method 
solves the PWP problem in O(d2 · INI 2 ·log J.W) time, where INI is the number 
of nodes in the mesh representation of the region R. 

Proof: Each node in the mesh induced by the method has no more than d2 

adjacent arcs, so that !AI = O(d2 ·INI). The network flow algorithm of [110] 
operates within time O(IAI·INI·log( 1~1 12 )). The overall time complexity of 

d-PATHk is therefore O(d2 · INI 2 ·log J.W ). 0 

The time complexity of d-PATH is O(INI 2 ·log IN I) for any fixed d, and may 
be further reduced in cases where the region cost function may only take on 
values from a fixed, bounded range. In this case, we may apply the maximum 
flow algorithm of (3] to obtain an overall time complexity of O(jNj 2 ) for the 
d-PATH algorithm. 

5.3.2 Simulation Results 

The d-PATH implementation uses ANSI C code to transform an arbitrary 
prescribed-width routing instance into a maximum-flow instance; we then use 
the Fortran-77 Dinic code of [111] to compute the flow, and invoke Mathemat­
ica [248) to draw the resulting path. The implementation was tested on three 
classes of PWP instances: uniformly weighted regions, regions with polygonal 
obstacles, and smooth randomly-costed regions. For each of these input classes. 
the boundary of the region is a rectangle, and we look for a width-d path con­
necting s and t which are respectively in the top left and bottom right corners 
of the region. With each instance, we tested various values of d. 

A uniformly weighted region has all node weights equal to the same constant. In 
such an instance we expect the solution path to resemble a straight line between 
s and t, with the straightness of the line improving as the mesh resolution and 
the width d both increase. Experimental results confirm this behavior. 

The test regions with polygonal obstacles were populated by polygons of ran­
dom sizes, located throughout the region. Nodes in the clear areas are uniformly 



236 CHAPTER 5 

assigned a small constant weight, while nodes inside the obstacles have infinite 
weight. In such a region, changing the prescribed width d may dramatically 
affect the optimum path topology with respect to the obstacles, since long 
detours may be required in order to avoid narrow passages between objects. 
This phenomenon was indeed confirmed by the experiments, as illustrated in 
Figure 5.25. 

Finally, the methodology was tested on randomly-casted regions, using a mesh 
resolution of 100 by 100 nodes and a range of d values. Each random region 
instance was generated as follows. All nodes in the mesh were initially assigned 
a weight of zero, except for a small random subset of the nodes which were each 
given a large random positive weight. Then, a weight redistribution step was 
iteratively used to increment each node's weight by a small random fraction 
of the total weight of its immediate neighbors until a smooth randomly-casted 
region was obtained. Figure 5.26 depicts typical d-PATH output for the PWP 
problem in a random region. Areas of greater weight are denoted by darker 
shades, and areas of smaller weight are depicted by lighter densities. The 
optimum width-d path is highlighted in black. Even though the Dinic algorithm 
is not ideal for a mesh topology, typical running times used to generate and 
solve all of the above classes of instances are on the order of at most a few 
minutes on a SUN SPARC IPC (15.7 MIPS). 

Chief among future research goals is improvement of the time complexity of the 
network flow computation; substantial improvement is likely since the mesh is 
a highly regular and symmetric network that admits a concise representation. 
Additional research might also address more general path planning issues, such 
as (i) use of hierarchical approaches as a heuristic speedup, and (ii) addressing 
the case where the endpoints of the path are not necessarily on the boundary 
of the region. 



Multiple Objectives 

100 

eo 

60 

40 

20 

20 •• 60 eo 20 •• 60 90 100 

(a) (b) 

II 100 

J 
80 

.. 
40 

I 
20 •• •• 80 .. ,; 

(c) (d) 

Figure 5.25 Prescribed-width paths in a region with polygonal ob­
stacles. Note that the topology of the solutions changes as the 
prescribed width dis increased . The solutions shown correspond to 
widths (a) d = 3, (b) d = 4, (c) d = 5, and (d) d = 6. 

237 



238 CHAPTER 5 

(a) (b) 

(c) (d) 

Figure 5.26 A randomly generated smooth region and its 
prescribed-width path solutions: (a) the region itself, and solutions 
corresponding to widths (b) d = 2, (c) d = 5, and (d) d = 8. 



A 
APPENDIX: SIGNAL DELAY 

ESTIMATORS 

In this Appendix, we first describe the basic theory behind several efficient de­
lay estimates, particularly the relationship between the moment representation 
and the system response in both the time-domain and the transform domain. 
We then give the formal basis of the Elmore and two-pole delay approximations. 
The second part of the Appendix describes a series of experimental investiga­
tions which characterize the accuracy and fidelity of the linear, Elmore, and 
two-pole delay approximations. 

A.l BASICS 

The relationships among the moment representation, the Laplace transform of 
the response, and the time-domain response are discussed, e.g., in (180]. The 
following provides a brief review. 

In a linear system, the transfer function H(s) = ~:·(aa/ gives the relationship 
between the output response Vout(s) and the input response Vin(s). The system 
transfer function H(s) is related to the impulse response h(t) by the Laplace 
transform 

The transfer function for any linear system can be expressed as a ratio of 
polynomials in s, that is to say, 

(A.l) 

239 



240 APPENDIX A 

where ]( is the DC (zero-frequency) gain. The ith moment of a linear system 
is defined to be 

(A.2) 

where H(i)(O) is the ith derivative of H(8) at 8 = 0. 

Assuming Vout(O) = 0, the Laplace transform of the derivative of the output 
voltage response for a unit step input is v~ut(t) {::} 8Vout(8) = 8 · :H(8) = 
H(8) {::} h(t). Therefore, the transfer function can also be written as 

H(8) = 100 e-stv~ut(t)dt 

Expanding e-at into a Maclaurin series, 

H(8) = 100 V~ut(t)dt- ;, 100 tv~ut(t)dt+ ;~ 100 t 2v~ut(t)dt- ;~ 100 t3v~ut(t)dt 
plus higher-order terms, and identifying the integral quantities as moments 
Mo, M1, M2, Ma etc. from Equation (A.2) yields 

Therefore, the moments can also be defined as 

M; = ~ foo t;v~ut(t)dt 
'· lo 

(A.3) 

(A.4) 

The moments of any system can be calculated using the definitions given in 
Equation (A.2) or in Equation (A.4), or by comparing with Equation (A.3). 
Applying the definition of moments in Equation (A.4) to H(8), we obtain 

H(8) = /{(1 + a18 + a282 + aa83 + ... )(1 + b18 + b282 + ba83 + b484 + .... )-1 

= /{(1 + a18 + a282 + aa83 + ... ) 

· (1- b18 + (b~- b2)82 - (ba + b~- 2b1b2)83 + ... ) 

= K[1 + 8(a1 - bl) + 82(a2- a1b1 + b~- b2) 

+83 (a3- a2b1 + a1(b~- b2)- b3- by+ 2b1b2) + ... ] 

which yields 



Appendix: Signal Delay Estimators 241 

/{ 

K(b1- a1) 

K(a2- a1b1 + bi- b2) 

f{ (b~ + b3- 2b1b2- a3 + a2b1- a1(bi- b2)) y (A.5) 

A.l.l Elmore Delay 

Elmore delay [87) is defined to be the first moment ( M1 ) of the system impulse 
response, i.e., the coefficient of s in the system transfer function H(s). This is 
a first-order approximation of the delay and corresponds to a single dominant 
pole approximation of the response. 

The ABCD parameters of a distributed RLCG transmission line are [81): 

( V1(s) ) ( cosh(Bh) 
h(s) = .i0 sinh(Bh) 

Zo sinh(Bh) 
cosh( Bh) (A.6) 

where B = J(r + sl)(g + sc); r, l, c, g are resistance, inductance, capacitance, 
conductance per unit length and h is the length of the line. 1 V1 ( s), h ( s) and 
V2(s), h(s) correspond to the voltage and current at, respectively, the input 

port and output port of the interconnect line. Zo = fjfiJ is the characteristic 

impedance of the distributed line, where R, L, C, G are the total resistance, 
inductance, capacitance and conductance of the distributed line of length h. 

A case of special interest in the literature is the open-ended line, for which load 
impedance ZL ....... oo, implying h(s) = 0. For this case, we may substitute the 
appropriate expressions for B and Zo in the above expression, and obtain the 
transfer function for the open-ended distributed RLC line (i.e., with g = 0) as: 

1 
H(s)- --------~=-------~==~--------­

- 1 + Rr s + ((R2~)2 + £2C)s2 + ((~;t + Rff )s3 + ... 
1 The line parasitics will depend on the three-dimensional process geometry. Techniques 

for parasitic extraction are beyond the scope of this discussion. 



242 APPENDIX A 

Applying the Elmore delay definition to the distributed RLC line yields 

RC 
TED=-. 

2 

To obtain response and delay estimates in an interconnect tree, Rubinstein et 
al. [205) considered themain path, i.e., the unique path in the tree, between 
the source so and the sink Sk of interest. Using the Elmore delay expression, 
[205) developed the following delay model for RC interconnect trees: 

TED = rdC, 0 + L re; C;; + Ci) 
'Vi EM P(so,sk) 

where Ci is the (sub )tree rooted at node i, ei is the unique parent edge of node i 
when the tree is rooted at the source, and M P(so, sk) is the main path between 
source and sink. We use rd to indicate the driver on-resistance at the source 
so; re; and Ce; respectively denote the lumped resistance and capacitance of 
the edge ei. This is the same formula given in Section 3.1.2. 

The above expression does not take into account the inductance of the inter­
connect line, which becomes more significant as feature sizes decrease, layout 
dimensions increase, and operating frequencies increase. Therefore, the delay 
estimation may not be accurate and the trees which minimize Elmore delay 
could be suboptimal. A paper by Kahng and Muddu [146) provides a more 
accurate methodology for response and delay calculations in general RLCG 
interconnects. 

A.1.2 Two-Pole Analysis 

As noted in Chapter 3, many routing tree techniques are motivated by the sim­
ple nature of the Elmore delay model; indeed, the second part of this Appendix 
demonstrates that Elmore delay is a reasonable representation of delay in prac­
tice. However, Elmore delay does not afford any measure of delay at a given 
threshold voltage [205). Methods which calculate more than one dominant pole 
from the moments of the system will lead to a second- or higher-order approx­
imation of the response, with improved delay estimates. Two-pole methods 
by Horowitz [127), Zhou et al. [258, 256) and Kahng and Muddu [145, 149) 
have been used for simulating interconnect trees. In such methods, the transfer 
function of the system is approximated using the two dominant poles. 



Appendix: Signal Delay Estimators 

The transfer function of the system considering two dominant poles is 

H( ) - kt k2 
8 ---+--

8- 8t 8- 82 

243 

where 8t, 82 are the poles and kt, k2 are the coefficients corresponding to the 
poles. Assuming a step input, v;n(t) = Vou(t) (where V0 is the magnitude of 
the step input voltage), Vin(8) =~,and the output voltage is given by 

H(8) 
Vout(8) = Vo--. 

s 

Applying partial fractions and taking the inverse Laplace transform: 

( kt k2) kt s t k2 s t) Vout(t) = Vo · -(-+- + -e 1 + -e 2 • 
8t 82 8t 82 

Using the boundary conditions Vout(t--+ oo) = Vo and v~ut(t = 0) = 0, one can 
solve for 8t,82,kt and k2, i.e., 

and the time-domain response is 

The delay at any given threshold (e.g., 50% or 90% of V0 ) can then be computed 
from the response. 

The poles 8t, s2 and the coefficients kt, k2 corresponding to the poles are func­
tions of only the first and second moments M1 , M2, i.e., by applying the defi­
nition of moments to the two-pole transfer function, we have 



244 APPENDIX A 

which yields 

2 
81,2 = 

Note that the poles of the system should be always in the left half of the 8-plane 
for stable systems. The voltage response can be calculated for both real and 
complex poles as follows: 

Case 1: Real Poles. 

From the above equations, 

and 

The voltage response for real poles is 

82 t 81 t Vout(t) = Vo(1- e'' - e•~ ) 
82- 81 81 - 82 

Case 2: Complex Poles. 

Since the poles are complex we can express them in the form 81 = -a:+ ;{3 and 
82 = -o: - ;{3. 

The voltage response is 

Vout(t) = Vo [1- 82 e''t - 81 e•~t] 
82- 81 81- 82 

= Vo [1- e-at ((1 + ~ )e3fJt + (1 - ~ )e-JfJt)] 
2 ;{3 ;{3 

= Vo [ 1 - e-at ( cos({3t) + ~ sin({3t))] 

Yo [ 1- .,fa>/ P' .-•• sin(,Bt + p)l 



Appendix: Signal Delay Estimators 245 

where p = tan- 1 (~) and 

Before discussing the relative merits of the Elmore and two-pole approxima­
tions, two issues should be noted. First, to obtain the response V 0 u 1(t) ac­
curately up to second order, both the first and second moments need to be 
calculated exactly. Recent two-pole methods such as [256, 258] calculate the 
first and second moments by replacing the off-path admittance by the sum of 
total subtree capacitance; this provides a correct approximation only up to the 
coefficient of s in the subtree admittance. Thus, such methods underestimate 
the subtree impedance, and the response obtained is actually a lower bound 
on the true response. Consequently, the associated delay estimate is an up­
per bound on the actual delay. To calculate the second moment exactly, the 
admittance of off-path subtrees should be correctly approximated up to the 
second degree, i.e., up to the coefficient of s2• The work of Kahng and Muddu 
[148, 149] achieves this, and hence affords exact expressions for the first and 
second moments for use in the two-pole methodology. 

Second, the accuracy of the moment-based approximation of the system re­
sponse will depend on the lumped segment models used for modeling the dis­
tributed interconnect lines. Traditionally, uniformly lumped segment models, 
e.g., ladders of L, T or II circuits, have been used to model interconnect lines. 
For such uniform representations, the moments are perfectly captured only 
as the number of segments used approaches infinity, which is computationally 
unreasonable. Nevertheless, to achieve an accurate estimate of the system re­
sponse, previous works on the two-pole approach (e.g., [205] or [256]) suggest 
using k uniform segments to model each interconnect line. For example, the 
work of [65] divides each line into 25J.Lm segments and then models each seg­
ment using a fixed L type RLC circuit. For large layout dimensions, the value 
of k can be quite large. In [145, 147], Kahng and Muddu develop non-uniform 
equivalent circuits which exactly match the first and second moments of a dis­
tributed RLC line, i.e., such circuits have a transfer function which exactly 
matches that of the distributed RLC line up to the coefficient of s2 . These 
circuits have only two or three segments, but give the same simulation accu­
racy as an infinite number of uniform segments. Beyond the improvements in 
accuracy, the computational savings are substantiaJ.2 

2 The idea of non-uniform equivalent circuits for interconnect modeling dates back to 
Raj put (199]. Gerzberg (108] surveyed different non-uniform models and proposed a model in 



246 APPENDIX A 

A.2 ACCURACY AND FIDELITY 

Ideally, a routing algorithm will compute and optimize signal delays according 
to a detailed circuit simulation such as SPICE. However, since SPICE run­
times are generally too costly for this purpose, simpler delay estimates are 
used. Among the available estimators of voltage response and signal delay 
in interconnect structures, the most useful one for efficient construction of 
"optimal-delay routing trees" has not been determined. This section centers 
on a fidelity property which is necessary for any delay estimator to be effective 
in routing tree design. Studies by Boese et al. [30, 32] of the relative accura­
cies and relative fidelities of the linear, distributed RC, distributed RLC, and 
SPICE-computed delay approximations show that the Elmore distributed RC 
delay approximation has surprisingly high fidelity with respect to SPICE3e2. 
This is the motivation for direct optimization of Elmore delay in Sections 3.3 
and 4.3. 

The traditional minimum-cost Steiner tree objective, beyond minimizing wiring 
area, corresponds to a lumped-capacitance model of delay (i.e., signal delay is 
proportional to total tree capacitance, which is proportional to tree cost). Sev­
eral methods discussed in Chapters 3 and 4 employ a linear model of delay: 
sink delays are proportional to source-sink path lengths, and the minimum­
radius criterion results. The traditional lumped-capacitance approximations 
becomes less accurate as technology scales, since smaller wire geometries im­
ply that resistive effects of the interconnect become more dominant ( cf. the 
discussion of "resistance ratio" vis-a-vis Table 3.1 in Chapter 3). Thus, dis­
tributed RC delay approximations such as Elmore delay are of interest. Be­
cause greater system speeds and layout areas can expose inductive effects on 
delay, two-pole distributed RLC delay approximations such as [256] are also of 
interest. Each of these approximations will be more accurate than the linear 
or lumped-capacitance approximations, while requiring less computation time 
than SPICE. A two-pole estimate will be strictly intermediate between Elmore 
delay (a single-pole estimate) and SPICE in terms of both computation time 
and quality of the estimate. 

which the RC values in each segment are in geometric progression; the "Uniform Distributed 
RC" (URC) line model in SPICE is derived from Gerzberg's model. The concept of non­
uniform equivalent circuits has also been employed in many other areas, e.g., O'Brien and 
Savarino [188] obtain a non-uniform II segment model for driving-point admittance at a gate 
output. Sakurai [206] has observed that the use of a non-uniform equivalent circuit is not 
always appropriate, since asymmetry implies that a correct response cannot be predicted 
when the line is driven bidirectionally. However, in the routing tree delay optimizations 
discussed here, source and sinks are fixed and the direction of signal flow is known. 



Appendix: Signal Delay Estimators 247 

A.2.1 Accuracy 

The traditional measure of a delay estimator is its accuracy, which may vary 
with the circuit technology and the specifics of a n~t (for instance, the number 
of terminals it contains, or the size and aspect ratio of its bounding box). 
Table A.1 indicates the accuracy of the linear, Elmore and two-Pole models in 
predicting critical-sink delay for each of the interconnect technologies described 
in Table 3.1. Note that "Two-Pole" indicates a particular corrected version 
[187] of the two-pole simulator developed in (256]; this simulator was used to 
obtain many of the experimental results in Chapter 3. For each of the three 
estimators, the table gives the average ratio of SPICE delay to the estimated 
delay, and also shows the consistency of this ratio in terms of its standard 
deviation. This "SPICE-centric" analysis of the data reflects the use of SPICE 
estimates as "actual delay" .3 Each entry in the table represents an average over 
100 random nets, with the source and critical sink chosen randomly. An MST 
routing was used so that the comparison would be for relatively good (but not 
necessarily optimal) routing solutions. This is because finding optimal-delay 
routing solutions according to SPICE is not computationally feasible. In all 
cases, the ratio of SPICE to Linear delay is the least consistent, having the 
largest standard deviation. On the other hand, the average ratios of SPICE 
to Elmore or Two-Pole delay also seem inaccurate (perhaps due to choice of 
delay threshold and other aspects of the experimental methodology [32]), and 
inconsistent (witness the high standard deviations). 

Interestingly, similar experiments in [32] show that for maximum sink delay, 
the ratio between SPICE and both the Two-Pole and Elmore estimators is 
very consistent, with standard deviations less than 4% for 6-sink nets in all 
technologies. Thus, precomputed correction factors could compensate for any 
inaccuracy in these estimators. However, Table A.l shows that the standard 
deviation of the accuracy ratio for critical-sink delay is consistently above 15%. 
This decreased consistency may indicate that the traditional net-dependent 
maximum delay objective is more "forgiving" of errors in the delay estimate 
than newer path-dependent, i.e., critical-sink, delay objectives. 

3 The SPICE delay estimation methodology [32] uses constant unit resistance and capac­
itance values for each interconnect technology. The root of the routing tree is driven by a 
resistor connected to the source, in order to separate driver attributes from the interconnect 
simulation. For the Two-Pole (i.e., corrected [256]) and SPICE (i.e., SPICE3e2) simulators, 
every interconnect segment is broken into uniform segments, each at most 1/lOOth the length 
of the layout dimension, connected in series. Sink loads are modeled by pure capacitive loads 
derived using minimum-size transistors. All delay estimates use the 50% rise time delay cri­
terion. For the Two-Pole and SPICE estimate, time steps of 0.005ns for the IC technologies 
and 0.05ns for the MCM technology were used. 



248 APPENDIX A 

Accuracy of Linear, Elmore and Two-Pole Delay Estimates 
for Critical-Sink Delay 

lSI =4 lSI =7 
Delay Ratio average std dev average std dev 

IC1 SPICE/Lineart - 28.4% - 32.7% 
SPICE/Elmore 0.72 13.5% 0.69 15.4% 
SPICE/2-Pole 1.27 13.5% 1.23 15.4% 
2-Pole/Elmore 0.568 0.45% 0.566 0.22% 

IC2 SPICE/Lineart - 33.9% - 38.8% 
SPICE/Elmore 0.74 16.1% 0.70 17.8% 
SPICE/2-Pole 1.30 15.9% 1.23 17.8% 
2-Pole/Elmore 0.572 0.92% 0.568 0.45% 

IC3 SPICE/Lineart - 34.9% - 40.3% 
SPICE/Elmore 0.78 16.0% 0.72 17.8% 
SPICE/2-Pole 1.36 15.7% 1.27 17.9% 
2-Pole/Elmore 0.574 1.39% 0.571 0.80% 

MCM SPICE/Lineart - 57.1% - 61.6% 
SPICE/Elmore 0.69 20.5% 0.65 25.1% 
SPICE/2-Pole 1.20 20.8% 1.14 25.2% 
2-Pole/Elmore 0.568 0.96% 0.566 0.44% 

Table A.l Accuracy of the Linear, Elmore and Two-Pole estimates 
for critical-sink delay. Standard deviations are reported as a percent 
of the average ratio. (t) Linear delay is defined as the source/sink 
pathlength; because this is a distance rather than a time, there is 
no SPICE/Linear "ratio". However, the percent standard deviation 
of this quotient is well-defined since it is independent of units. 

A.2.2 Fidelity 

The key observation in [30] is that precise accuracy or consistency are not 
really required of the delay estimates used to construct routing trees. In fact, 
the only practical requirement is that an estimator has a high degree of fidelity: 
an optimal or near-optimal solution according to the estimator should also 
be nearly optimal according to actual (SPICE-computed) delay. Boese et al. 
proposed a measure of fidelity vis-a-vis an exhaustive enumeration of all possible 
routing solutions: first rank all spanning tree topologies4 by the given delay 

4 By an early theorem of Cayley [92], there are 1Sjl5 1-2 distinct spanning tree topologies 
for any given netS. 



Appendix: Signal Delay Estimators 249 

model, then rank the topologies again by SPICE delay, and find the average over 
all topologies of the absolute value of the difference between the two rankings. 
This measure of fidelity corresponds to a standard rank-ordering technique used 
in the social sciences [15]. 

Linear Elmore 
VS SPICE VS SPICE 

Topologies lSI =4 lSI =5 lSI =4 lSI= 5 
IC1 Best 2.30 16.3 0.54 5.9 

5 Best 2.52 18.1 1.02 7.2 
All 2.43 17.0 0.92 8.0 

IC2 Best 2.52 19.4 0.58 6.4 
5 Best 2.66 20.2 0.99 7.2 
All 2.44 16.9 0.94 7.9 

IC3 Best 2.60 19.8 0.58 5.6 
5 Best 2.68 20.9 0.93 6.5 
All 2.43 16.5 0.93 7.7 

MCM Best 3.04 24.6 0.72 5.1 
5 Best 2.81 24.4 0.89 4.7 
All 2.33 15.7 0.89 7.1 

Table A.2 Average difference in rankings of topologies, in terms of 
50% delay to a given random critical sink in each net. The sample 
consists of 50 random nets of each cardinality, with 50% rise time 
delay criterion. The number of topologies considered for each net 
is 4(4 - 2) = 16 for lSI = 4, and 5< 5- 2) = 125 for lSI = 5. 

Table A.2 depicts this measure of fidelity for critical-sink delay and 4- and 5-
terminal signal nets, using the linear and Elmore delay estimators. The table 
shows the average rank difference for the topology which has lowest delay ac­
cording to the estimator; the average difference for the five topologies which 
have lowest delay according to the estimator; and the average difference in rank­
ing over all topologies. Note that with the linear delay model, ties are broken in 
favor of trees with lower total wirelength. Ties also occur for SPICE-computed 
delay because of the finite time step used, and are also broken according to total 
wirelength. Since the accuracy ratio between Elmore and Two-Pole is nearly 
constant, the fidelity values for Two-Pole are essentially identical to those for 
Elmore, and are omitted from the table. 



250 APPENDIX A 

It is clear that Elmore delay has very high fidelity for the critical-sink criterion. 5 

For example, with 5-terminal nets and IC3 technology parameters, optimal 
critical-sink topologies under Elmore delay average only 5.6 rank positions (out 
of 125) away from optimal according to SPICE. Kim, Owens and Irwin [157] 
have similarly established the fidelity of Elmore delay for circuit design: they 
plotted Elmore- versus SPICE-computed delays for a suite of 209 different 
place/route solutions of the same ripple-carry adder circuit, and also found a 
very high correlation between the two delay measures. The work of Vlach 
et al. [245] gives a theoretical motivation for this correlation, based on the 
concept of group delay. 

To see the relationship between SPICE rank suboptimality and actual percent­
age delay suboptimality, Table A.3 shows the average increase in SPICE delay 
from optimal for the 19 top-ranking topologies, i.e., the 19 lowest SPICE de­
lays for lSI = 5. For IC2, the average distance of 6.4 rank positions for the 
optimal critical sink Elmore delay topology implies an expected difference of 
approximately 1.6% in actual SPICE-computed delay; for IC3 the distance of 
5.6 rank positions implies approximately 0.7% SPICE delay suboptimality; and 
for MCM a difference of 5.1 rank positions implies 0.4% SPICE delay subopti­
mality. 

One can compose the data in Tables A.2 and A.3 to obtain an estimate of 
the suboptimality, in terms of SPICE-computed delay, of the Elmore-optimal 
solution. The more direct measure is to compare SPICE delays of the Elmore­
optimal and SPICE-optimal solutions, as shown in Table A.4 for both the 
critical-sink and maximum sink delay criteria. For critical sink delay and lSI= 
5, the average SPICE suboptimality of the Elmore-optimal topology is between 
3.1% for MCM and 9.9% for ICI. (These estimates are larger than would 
be inferred from Tables A.2 and A.3 due to the convexity of the relationship 
between SPICE rank and average SPICE delay.) With regard to the maximum 
delay criterion, the Elmore delay estimate affords essentially perfect results, in 
that the Elmore-optimal solution has SPICE delay suboptimality of between 
0.1% and 0.2%. 

5 Results in (32] show that Elmore delay has nearly perfect fidelity for the "easier" maxi­
mum sink delay criterion. 



Appendix: Signal Delay Estimators 

Rank IC1 IC2 IC3 MCM 
1 1.000 1.000 1.000 1.000 
2 1.006 1.003 1.002 1.001 
3 1.011 1.005 1.005 1.001 
4 1.014 1.006 1.006 1.002 
5 1.016 1.007 1.006 1.003 
6 1.017 1.007 1.006 1.004 
7 1.026 1.012 1.007 1.005 
8 1.040 1.021 1.014 1.005 
9 1.074 1.046 1.036 1.014 

10 1.160 1.138 1.120 1.047 
11 1.180 1.155 1.134 1.049 
12 1.224 1.207 1.182 1.058 
13 1.246 1.218 1.191 1.060 
14 1.288 1.254 1.225 1.064 
15 1.306 1.269 1.233 1.066 
16 1.327 1.309 1.283 1.103 
17 1.351 1.344 1.326 1.427 
18 1.380 1.376 1.354 1.431 
19 1.417 1.427 1.413 1.475 

125 8.04 10.36 10.81 18.34 

Table A.3 Average SPICE delay ratios for the top 19 topologies 
ranked according to SPICE for lSI = 5. Values are averaged over 
50 random nets and normalized to the average delay of the best 
topology. Also included is the average ratio for the worst topology 
(rank 125). 

Critical Sink Delay Maximum Delay 
Technology JSI =4 lSI= 5 lSI =4 lSI= 5 

IC1 2.9 9.9 0.9 0.1 
IC2 3.9 9.6 0.5 0.2 
IC3 3.8 7.8 1.3 0.2 

MCM 1.9 3.1 0.1 0.1 

Table A.4 Average SPICE suboptimality of the Elmore-optimal 
spanning tree topology (in percent). 

251 



REFERENCES 

[1] P. K. AGARWAL, Intersection and Decomposition Algorithms for Planar 
Arrangements, Cambridge University Press, Cambridge, England, 1991. 

[2] P. K. AGARWAL AND M. T. SHING, Algorithms for Special Cases of Rec­
tilinear Steiner Trees: Points on the Boundary of a Rectilinear Rectangle, 
Networks, 20 (1990), pp. 453-85. 

[3] R. K. AHUJA, J. B. 0RLIN, AND R. E. TARJAN, Improved Time Bounds 
for the Maximum Flow Problem, Tech. Rep. CS-TR-118-87, Dept. of 
Computer Science, Princeton University, 1987. 

[4] M. J. ALEXANDER, K. D. BOESE, A. B. KAHNG, AND G. ROBINS, A 
New Greedy Heuristic for the Rectilinear Steiner Arborescence Problem. 
unpublished manuscript, January 1994. 

[5] M. J. ALEXANDER, J.P. COHOON, J. L. GANLEY, AND G. ROBINS, An 
Architecture-Independent Approach to FPGA Routing Based on Multi­
Weighted Graphs, in Proc. European Design Automation Conf., Grenoble, 
France, September 1994, pp. 259-264. 

[6] M. J. ALEXANDER AND G. ROBINS, An Architecture-Independent Uni­
fied Approach to FPGA Routing, Tech. Rep. CS-93-51, Department of 
Computer Science, University of Virginia, October 1993. 

[7] M. J. ALEXANDER AND G. RoBINS, High-Performance Routing for 
Field-Programmable Gate Arrays, in Proc. IEEE Intl. ASIC Conf., 
Rochester, NY, September 1994, pp. 138-141. 

[8] M. J. ALEXANDER AND G. RoBINS, A New Approach to FPGA Routing 
Based on Multi- Weighted Graphs, in Proc. ACM/SIGDA Intl. Workshop 
on Field-Programmable Gate Arrays, Berkeley, CA, February 1994. 

[9] M. J. ALEXANDER AND G. ROBINS, New Graph Arborescence and 
Steiner Constructions for High-Performance FPGA Routing, Tech. Rep. 
CS-94-12, Department of Computer Science, University of Virginia, April 
1994. 

252 



REFERENCES 253 

[10) C. ALPERT, J. CoNG, A. B. KAHNG, G. ROBINS, AND M. SAR­
RAFZADEH, Minimum Density Interconnection Trees, in Proc. IEEE Inti. 
Symp. Circuits and Systems, Chicago, May 1993, pp. 1865-1868. 

[11) C. ALPERT, J. CONG, A. B. KAHNG, G. RoBINS, AND M. SAR­
RAFZADEH, On the Minimum Density Interconnection Tree Problem, 
VLSI Design, 2 (1994), pp. 157-169. 

[12) C. J. ALPERT, T. C. Hu, J. H. HUANG, AND A. B. KAHNG, A Di­
rect Combination of the Prim and Dijkstra Constructions for Improved 
Performance-Driven Global Routing, Tech. Rep. CSD-TR-920051, Com­
puter Science Department, UCLA, 1992. 

[13) C. J. ALPERT, T. C. Hu, J. H. HUANG, AND A. B. KAHNG, A Di­
rect Combination of the Prim and Dijkstra Constructions for Improved 
Performance-Driven Global Routing, in Proc. IEEE Inti. Symp. Circuits 
and Systems, Chicago, IL, May 1993, pp. 1869-1872. 

[14) C. J. ALPERT, T. C. Hu, J. H. HUANG, A. B. KAHNG, AND 
D. KARGER, Prim-Dijkstra Tradeoffs for Improved Performance-Driven 
Routing Tree Design. unpublished manuscript, March 1993. 

[15] T. G. ANDREWS, Methods of Psychology, John Wiley, New York, 1948. 

[16) B. AWERBUCH, A. BARATZ, AND D. PELEG, Cost-Sensitive Analysis of 
Communication Protocols, in Proc. ACM Symp. Principles of Distributed 
Computing, 1990, pp. 177-187. 

[17) B. AWERBUCH, A. BARATZ, AND D. PELEG, Efficient Broadcast and 
Light- Weight Spanners. unpublished manuscript, 1991. 

[18] H. BAKOGLU, Circuits, Interconnections and Packaging for VLSI, 
Addison-Wesley, Reading, MA, 1990. 

[19) H. BAKOGLU, J. T. WALKER, AND J.D. MEINDL, A Symmetric Clock­
Distribution Tree and Optimized High-Speed Interconnections for Reduced 
Clock Skew in U LSI and WSI Circuits, in Pro c. IEEE Inti. Con f. Com­
puter Design, Port Chester, NY, October 1986, pp. 118-122. 

[20) T. BARRERA, J. GRIFFITH, S. A. McKEE, G. ROBINS, AND T. ZHANG, 
Toward a Steiner Engine: Enhanced Serial and Parallel Implementations 
of the Iterated 1-Steiner Algorithm, in Proc. Great Lakes Symp. VLSI, 
Kalamazoo, MI, March 1993, pp. 90-94. 



254 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

[21] T. BARRERA, J. GRIFFITH, G. RoBINS, AND T. ZHANG, Narrowing the 
Gap: Near-Optimal Steiner Trees in Polynomial Time, in Proc. IEEE 
Intl. ASIC Conf., Rochester, NY, September 1993, pp. 87-90. 

[22) J. J. BARTHOLDI AND L. K. PLATZ MAN, A Fast Heuristic Based on 
Spacefilling Curves for Minimum- Weight Matching in the Plane, Inf. 
Proc. Letters, 17 (1983), pp. 177-180. 

[23) J. BEARDWOOD, H. J. HALTON, AND J. M. HAMMERSLEY, The Shortest 
Path Through Many Points, Proc. Cambridge Philos. Soc., 55 (1959), 
pp. 299-327. 

(24) P. BERMAN, U. FOESSMEIER, M. KARPINSKI, M. KAUFMANN, AND 
A. Z. ZELIKOVSKY, Approaching the 5/4 - Approximation for Rectilin­
ear Steiner Trees, Tech. Rep. WSI-94-06, Wilhelm Schickard-Institut fur 
Informatik, 1994. 

[25) P. BERMAN AND V. RAMAIYER, Improved Approximations for the 
Steiner Tree Problem, in Proc. ACM/SIAM Symp. Discrete Algorithms, 
San Francisco, CA, January 1992, pp. 325-334. 

[26) M. W. BERN, Two Probabilistic Results on Rectilinear Steiner Trees, 
Algorithmica, 3 (1988), pp. 191-204. 

[27) M. W. BERN AND M. DE CARVALHO, A Greedy Heuristic for the Rec­
tilinear Steiner Tree Problem, Tech. Rep. UCB/CSD 87/306, Computer 
Science Division (EECS), UCB, 1986. 

(28) K. D. BoESE, J. GONG, A. B. KAHNG, K. S. LEUNG, AND D. ZHOU, 
On High-Speed VLSI Interconnects: Analysis and Design, Proc. Asia­
Pacific Conf. on Circuits and Systems, (1992), pp. 35-40. 

(29) K. D. BoESE AND A. B. KAHNG, Zero-Skew Clock Routing Trees with 
Minimum Wirelength, in Proc. IEEE Inti. ASIC Conf., Rochester, NY, 
September 1992, pp. 17-21. 

[30) K. D. BOESE, A. B. KAHNG, B. A. McCoY, AND G. ROBINS, Fi­
delity and Near-Optimality of Elmore-Based Routing Constructions, in 
Proc. IEEE Intl. Conf. Computer Design, Cambridge, MA, October 1993, 
pp. 81-84. 

[31) K. D. BOESE, A. B. KAHNG, B. A. McCoY, AND G. RoBINS, To­
wards Optimal Routing Trees, in Proc. ACM/SIGDA Physical Design 
Workshop, Lake Arrowhead, CA, April 1993, pp. 44-51. 



REFERENCES 25.5 

(32] K. D. BOESE, A. B. KAHNG, B. A. McCoY, AND G. RoBINS, 
Near-Optimal Critical Sink Routing Tree Constructions, IEEE Trans. 
Computer-Aided Design (to appear), (1994). 

[33] K. D. BoEsE, A. B. KAHNG, B. A. McCoY, AND G. RoBINs, Recti­
linear Steiner Trees with Minimum Elmore Delay, in Proc. ACM/IEEE 
Design Automation Conf., San Diego, CA, June 1994, pp. 381-386. 

[34] K. D. BoESE, A. B. KAHNG, AND G. RoBINS, High-Performance Rout­
ing Trees With Identified Critical Sinks, in Proc. ACM/IEEE Design Au­
tomation Conf., Dallas, June 1993, pp. 182-187. 

(35) S. BooN, S. BUTLER, R. BYRNE, B. SETERING, M. CASALANDA, AND 
A. ScHERF, High Performance Clock Distribution For CMOS ASICS, in 
Proc. IEEE Custom Integrated Circuits Conf., 1989, pp. 15.4.1-15.4.4. 

(36] M. BoRAH, R. M. OWENS, AND M. J. IRWIN, An Edge-Based Heuris­
tic for Rectilinear Steiner Trees, Tech. Rep. CS-93-003, Department of 
Computer Science, Pennsylvania State University, 1993. 

[37] J. BURKIS, Clock Tree Synthesis for High Performance AS!Cs, in Proc. 
IEEE Intl. ASIC Conf., Rochester, NY, September 1991, pp. 9.8.1-9.8.4. 

(38) H. CAI, On Empty Rooms in Floorplan Graphs: Comments on a Defi­
ciency in Two Papers, IEEE Trans. Computer-Aided Design, 8 (1989), 
pp. 795-797. 

[39] J. CANNY, The Complexity of Robot Motion Planning, MIT Press, 1988. 

[40] P. K. CHAN, University of California, Santa Cruz, private communica­
tion, June 1993. 

(41) P. K. CHAN AND K. KARPLUS, Computing Signal Delay in General 
RC Networks by Tree/Link Partitioning, IEEE Trans. Computer-Aided 
Design, 9 (1990), pp. 898-902. 

(42] B. CHANDRA, G. DAS, G. NARASIMHAN, AND J. SoARES, New Sparse­
ness Results on Graph Spanners, in Proc. ACM Symp. Computational 
Geometry, June 1992, pp. 192-201. 

[43] T. H. CHAO AND Y. C. Hsu, Rectilinear Steiner Tree Construction by 
Local and Global Refinement, IEEE Trans. Computer-Aided Design, 13 
(1994), pp. 303-309. 

[44] T. H. CHAO, Y. C. Hsu, AND J. M. Ho, Zero Skew Clock Net Routing, 
in Proc. ACM/IEEE Design Automation Conf., Anaheim, CA, June 1992, 
pp. 518-523. 



256 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

(45) T. H. CHAO, Y. C. Hsu, J. M. Ho, K. D. BoESE, AND A. B. KAHNG, 
Zero Skew Clock Routing With Minimum Wirelength, IEEE Trans. Cir­
cuits and Systems, 39 (1992), pp. 799-814. 

[46) B. CHAZELLE, Tight Bounds on the Stabbing Number of Spanning Trees 
in Euclidean Space, Tech. Rep. CS-TR-155-88, Department of Computer 
Science, Princeton University, 1988. 

(47) B. CHAZELLE AND H. EDELSBRUNNER, An Optimal Algorithm for In­
tersecting Line Segments, J. ACM, 39 (1992), pp. 177-180. 

(48) D. CHEN AND C. SECHEN, Mickey: A Macro Cell Global Router, in 
Proc. European Design and Test Conf., Amsterdam, The Netherlands, 
February 1991, pp. 248-252. 

(49) D. S. CHEN AND M. SARRAFZADEH, A Wire-Length Minimization Al­
gorithm for Single-Layer Layouts, in Proc. IEEE Inti. Conf. Computer­
Aided Design, 1992, pp. 390-393. 

[50) C. K. CHENG AND N.C. CHOU, On General Zero-Skew Clock Net Con­
struction, IEEE Trans. VLSI Systems (to appear), (1995). 

(51) C. CHIANG, M. SARRAFZADEH, AND C. K. WONG, Global Routing 
Based on Steiner Min-Max Trees, IEEE Trans. Computer-Aided Design, 
9 (1990), pp. 1318-25. 

(52) C. CHIANG, M. SARRAFZADEH, AND C. K. WONG, An Algorithm for 
Exact Rectilinear Steiner Trees for Switchbox With Obstacles, in Proc. 
IEEE Inti. Symp. Circuits and Systems, 1992, pp. 9-12. 

(53] C. CHIANG, M. SARRAFZADEH, AND C. K. WoNG, A Weighted-Steiner­
Tree-Based Global Router. unpublished manuscript, 1992. 

(54) N. C. CHOU AND C. K. CHENG, Wire Length and Delay Minimization 
in General Clock Net Routing, in Proc. IEEE Inti. Conf. Computer-Aided 
Design, 1993, pp. 552-555. 

(55) F. R. K. CHUNG AND R. L. GRAHAM, On Steiner Trees for Bounded 
Point Sets, Geometriae Dedicata, 11 (1981), pp. 353-361. 

[56) J. CHUNG AND C. K. CHENG, Skew Sensitivity Minimization of Buffered 
Clock Tree, in Proc. IEEE Inti. Conf. Computer-Aided Design (to ap­
pear), November 1994. 

(57) J. P. CoHOON AND J. RANDALL, Critical Net Routing, in Proc. IEEE 
Inti. Conf. Computer Design, Cambridge, MA, October 1991, pp. 174-
177. 



REFERENCES 257 

[58] J.P. CoHOON AND D. S. RICHARDS, Optimal Two-Terminala-/3 Wire 
Routing, Integration: the VLSI Journal, 6 (1988), pp. 35-57. 

(59) J. P. COHOON, D. S. RICHARDS, AND J. S. SALOWE, An Optimal 
Steiner Tree Algorithm for a Net Whose Terminals Lie on the Perimeter 
of a Rectangle, IEEE Trans. Computer-Aided Design, 9 (1990), pp. 398-
407. 

[60] J. CoNG, A. B. KAHNG, AND G. RoBINS, Matching-Based Methods for 
High-Performance Clock Routing, IEEE Trans. Computer-Aided Design, 
12 (1993), pp. 1157-1169. 

(61) J. CONG, A. B. KAHNG, G. RoBINS, M. SARRAFZADEH, AND C. K. 
WoNG, Performance-Driven Global Routing for Cell Based IC's, in Proc. 
IEEE Inti. Conf. Computer Design, Cambridge, MA, October 1991, 
pp. 170-173. 

(62) J. CONG, A. B. KAHNG, G. ROBINS, M. SARRAFZADEH, AND C. K. 
WoNG, Provably Good Algorithms for Performance-Driven Global Rout­
ing, in Proc. IEEE Inti. Symp. Circuits and Systems, San Diego, CA, 
May 1992, pp. 2240-2243. 

[63) J. CONG, A. B. KAHNG, G. RoBINS, M. SARRAFZADEH, AND C. K. 
WONG, Provably Good Performance-Driven Global Routing, IEEE Trans. 
Computer-Aided Design, 11 (1992), pp. 739-752. 

[64] J. CoNG AND K. S. LEUNG, Optimal Wiresizing Under the Distributed 
Elmore Delay Model, in Proc. IEEE Inti. Conf. Computer-Aided Design, 
1993, pp. 634 - 639. 

[65] J. CoNG, K. S. LEUNG, AND D. ZHOU, Performance-Driven Intercon­
nect Design Based on Distributed RC Delay Model, in Proc. ACM/IEEE 
Design Automation Conf., Dallas, June 1993, pp. 606-611. 

[66] J. H. CoNNELL, Minimalist Mobile Robotics, Academic Press, 1990. 

[67) T. H. CoRMEN, C. E. LEISERSON, AND R. RIVEST, Introduction to 
Algorithms, MIT Press, 1990. 

[68] COURANT AND ROBBINS, What is Mathematics? An Elementary Ap­
proach to Ideas and Methods, Oxford University Press, London, England, 
1941. 

(69) J. T. CROFT, K. J. FALCONER, AND R. K. GuY, Unsolved Problems 
in Geometry, Springer-Verlag, New York, 1991. 



258 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

[70) W. M. DAI, T. AsANO, AND E. S. KuH, Routing Region Definition 
and Ordering Scheme for Building-Block Layout, IEEE Trans. Computer­
Aided Design, 4 (1985), pp. 189-197. 

[71] R. R. L. DE MATOS, A Rectilinear Arborescence Problem, PhD thesis, 

University of Alabama, 1979. 

[72) C. C. DESOUZA AND C. C. RIBIERO, A Tight Worst Case Bound for 
the Performance Ratio of Heuristics for the Minimum Rectilinear Steiner 
Tree Problem, OR Spektrum, 12 (1990), pp. 109-111. 

[73) S. DHAR, M. A. FRANKLIN, AND D. F. WANN, Reduction of Clock 
Delays in VLSI Structures, in Proc. IEEE Inti. Conf. Computer Design, 
Port Chester, NY, October 1984, pp. 778-783. 

[74] E. W. DIJKSTRA, A Note on Two Problems in Connection With Graphs, 
Numerische Mathematik, 1 (1959), pp. 269-271. 

[75] R. P. DILWORTH, A Decomposition Theorem for Partially Ordered Sets, 
Ann. Math, 51 (1950), pp. 161-166. 

[76) D. DOBBERPUHL, R. WITEK, R. ALLMON, R. ANGLIN, ET AL., A 
200-M Hz 64-b Dual-Issue CMOS Microprocessor, IEEE J. Solid State 
Circuits, 27 (1992), pp. 1555-1567. 

[77) W. E. DONATH, R. J. NORMAN, B. K. AGRAWAL, S. E. BELLO, S. Y. 
HAN, J. M. KURTZBERG, P. LOWY, AND R. I. McMILLAN, Timing 
Driven Placement Using Complete Path Delays, in Proc. ACM/IEEE 
Design Automation Conf., 1990, pp. 84-89. 

[78) D. Z. Du AND F. K. HWANG, A Proof of Gilbert-Pollak's Conjecture 
on the Steiner Ratio, in Proc. IEEE Symp. Foundations of Computer 
Science, 1990. 

[79] A. E. DUNLOP, V. D. AGRAWAL, D. DEUTSCH, M. F. JUKL, 

P. KOZAK, AND M. WIESEL, Chip Layout Optimization Using Critical 
Path Weighting, in Proc. ACM/IEEE Design Automation Conf., 1984, 
pp. 133-136. 

[80] R. DUTTA AND M. MAREK-SADOWSKA, Algorithm for Wire Sizing of 
Power and Ground Networks in VLSI Designs, Journal of Circuits, Sys­
tems and Computers, 2 (1992), pp. 141-57. 

[81] L. N. DWORSKY, Modern Transmission Line Theory and Applications, 
Wiley, 1979. 



REFERENCES 2.59 

(82] M. EDAHIRO, Minimum Skew and Minimum Path Length Routing 
in VLSI Layout Design, NEC Research and Development, 32 (1991), 
pp. 569-575. 

[83] M. EDAHIRO, £qui-Spreading Tree in Manhattan Distance. unpublished 
manuscript, 1992. 

[84] M. EDAHIRO, Clustering-Based Optimization Algorithm in Zero-Skew 
Routings, in Proc. ACM/IEEE Design Automation Conf., 1993, pp. 612-
616. 

[85] H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer­
Verlag, Berlin, 1987. 

(86] H. EDELSBRUNNER, L. J. GUIBAS, J. HERSHBERGER, R. SEIDEL, 
M. SHARIR, J. SNOEYINK, AND E. WELZL, Implicitly Representing Ar­
rangements of Lines or Segments, in Proc. ACM Symp. Computational 
Geometry, Urbana-Champaign, IL, June 1988, pp. 56-69. 

[87] W. C. ELMORE, The Transient Response of Damped Linear Networks 
with Particular Regard to Wide-Band Amplifiers, J. Appl. Phys., 19 
(1948), pp. 55-63. 

(88] D. EPPSTEIN, G. ITALIANO, R. TAMASSIA, R. E. TARJAN, J. WEST­
BROOK, AND M. YUNG, Maintenance of a Minimum Spanning Forest in 
a Dynamic Planar Graph, in Proc. ACM/SIAM Symp. Discrete Algo­
rithms, San Francisco, CA, January 1990, pp. 1-11. 

[89] K. H. ERHARD AND F. M. JoHANNES, Power/Ground Networks in 
VLSI: are General Graphs Better than Trees?, Integration, The VLSI 
Journal, 14 (1992), pp. 91-109. 

(90] K. H. ERHARD, F. M. JoHANNES, AND R. DACHAUER, Topology Opti­
mization Techniques for Power/Ground Networks in VLSI, in Proc. Eu­
ropean Design Automation Conf., Hamburg, Germany, September 1992, 
pp. 362-367. 

(91] H. ESBENSEN AND P. MAZUMDER, A Genetic Algorithm for the Steiner 
Problem in a Graph, in Proc. European Design and Test Conf., Paris, 
France, February 1994, pp. 402-406. 

[92] S. EVEN, Graph Algorithms, Computer Science Press, Inc., Potomac, 
MD, 1979. 

[93] J. FISHBURN, Clock Skew Optimization, IEEE Trans. Computers, 39 
(1990), pp. 945-951. 



260 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

[94) A. L. FISHER AND H. T. KUNG, Synchronizing Large Systolic Arrays, 
in Proc. of SPIE, May 1982, pp. 44-52. 

[95) U. FOESSMEIER, M. KAUFMANN, AND A. Z. ZELIKOVSKY, Fast Approx­
imation Algorithms for the Rectilinear Steiner Tree Problem, Tech. Rep. 
WSI-93-14, Wilhelm Schickard-Institut fur Informatik, 1993. 

[96) L. R. FORD AND D. R. FULKERSON, Flows in Networks, Princeton 
University Press, Princeton, NJ, 1961. 

[97] L. R. FouLDS, Maximum Savings in the Steiner Problem in Phylogeny, 
J. Theoretical Biology, 107 (1984), pp. 471-474. 

[98] G. N. FREDRICKSON, Data Structures for On-Line Updating of Minimum 
Spanning Trees, SIAM J. Comput., 14 (1985), pp. 781-798. 

[99] E. G. FRIEDMAN, A Partitionable Clock Distribution System for Sequen­
tial VLSI Circuits, in Proc. IEEE Inti. Symp. Circuits and Systems, May 
1986, pp. 743-746. 

[100) E. G. FRIEDMAN, Clock Distribution Design in VLSI Circuits - an 
Overview, in Proc. IEEE Inti. Symp. Circuits and Systems, May 1993, 
pp. 1475-1478. 

(101) E. G. FRIEDMAN AND J. H. MULLIGAN, Clock Frequency and Latency in 
Synchronous Digital Systems, IEEE Trans. Signal Processing, 39 (1991), 
pp. 930-934. 

(102) E. G. FRIEDMAN AND J. H. MULLIGAN, Pipelining of High Performance 
Synchronous Digital Systems, Inti. Journal of Electronics, 70 (1991), 
pp. 917-935. 

(103) S. C. GADRE, R. VAIDYANATHAN, AND S. Q. ZHENG, A Potential­
Driven Approach to Constructing Rectilinear Steiner Trees, in Proc. 
Great Lakes Symp. VLSI, Kalamazoo, MI, March 1993, pp. 95-99. 

(104) J. L. GANLEY AND J. P. CoHOON, Routing a Multi-Terminal Critical 
Net: Steiner Tree Construction in the Presence of Obstacles, in Proc. 
IEEE Inti. Symp. Circuits and Systems, London, England, May 1994. 

[105] J. L. GANLEY, M. J. GoLIN, AND J. S. SALOWE, Minimum Spanning 
Trees for Multiply- Weighted Graphs. unpublished manuscript, 1994. 

[106] M. GAREY AND D. S. JOHNSON, The Rectilinear Steiner Problem is 
NP-Complete, SIAM J. Applied Math., 32 (1977), pp. 826-834. 



REFERENCES 261 

(107] G. GEORGAKOPOULOS AND C. H. PAPADIMITRIOU, The 1-Steiner Tree 
Problem, J. Algorithms, 8 (1987), pp. 122-130. 

[108] L. GERZBERG, Monolithic Power-Spectrum Centroid Detector, PhD the­
sis, Stanford University, May 1979. 

(109] E. N. GILBERT AND H. 0. POLLAK, Steiner Minimal Trees, SIAM J. 
Applied Math., 16 (1968), pp. 1-29. 

(110) A. V. GOLDBERG, E. TARDOS, AND R. E. TARJAN, Network Flow 
Algorithms. unpublished manuscript, March 1989. 

(111] D. GOLDFARB AND M. D. GRIGORIADIS, A Computational Comparison 
of the Dinic and Network Simplex Methods for Maximum Flow, Annals 
of Operation Research, 13 (1988), pp. 83-123. 

[112] R. E. GoMORY, T. C. Hu, AND J. M. YoHE, R-Separating Sets, Can. 
J. Math., XXVI (1974), pp. 1418-1429. 

(113) J. GRIFFITH, G. RoBINS, J. S. SALOWE, AND T. ZHANG, Narrowing 
the Gap: Near-Optimal Steiner Trees in Polynomial Time, IEEE Trans. 
Computer-Aided Design (to appear), (1994). 

(114] L. J. GUIBAS AND J. STOLFI, On Computing all North-East Nearest 
Neighbors in the Ll Metric, Information Processing Letters, 17 (1983), 
pp. 219-223. 

[115] D. GusFIELD AND D. NAOR, Efficient Algorithms for Generalized Cut 
Trees, in Proc. ACM/SIAM Symp. Discrete Algorithms, 1990, pp. 422-
433. 

[116] M. HANAN, On Steiner's Problem With Rectilinear Distance, SIAM J. 
Applied Math., 14 (1966), pp. 255-265. 

[117] A. C. HARTER, Three-Dimensional Integrated Circuit Layout, Cambridge 
University Press, New York, 1991. 

(118] N. HASAN, G. VIJAYAN, AND C. K. WoNG, A Neighborhood Improve­
ment Algorithm for Rectilinear Steiner Trees, in Proc. IEEE Inti. Symp. 
Circuits and Systems, New Orleans, LA, 1990. 

[119] P. S. HAUGE, R. NAIR, AND E. J. YoFFA, Circuit Placement for Pre­
dictable Performance, in Proc. IEEE Inti. Conf. Computer-Aided Design, 
Santa Clara, CA, November 1987, pp. 88-91. 



262 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

[120) D. W. HIGHTOWER, A Solution to the Line-Routing Problem on the 
Continuous Plane, in Proc. Design Automation Workshop, 1969, pp. 1-
24. 

[121) J. Ho, D. T. LEE, C. H. CHANG, AND C. K. WoNG, Bounded-Diameter 
Minimum Spanning Trees and Related Problems, in Proc. ACM Symp. 
Computational Geometry, 1989, pp. 276-282. 

[122) J. M. Ho, M. T. Ko, T. H. MA, AND T. Y. SUNG, Algorithms for 
Rectilinear Optimal Multicast Tree Problem, in Proc. Inti. Symposium on 
Algorithms and Computation, June 1992, pp. 106-15. 

[123] J. M. Ho, D. T. LEE, C. H. CHANG, AND C. K. WONG, Minimum 
Diameter Spanning Trees and Related Problems, SIAM J. Comput., 20 
(1991), pp. 987-997. 

[124] J. M. Ho, G. VIJAYAN, AND C. K. WoNG, New Algorithms for the 
Rectilinear Steiner Tree Problem, IEEE Trans. Computer-Aided Design, 
9 (1990), pp. 185-193. 

[125) T. D. HoDES, B. A. McCoY, AND G. RoBINS, Dynamically- Wiresized 
Elmore-Based Routing Constructions, in Proc. IEEE Inti. Symp. Circuits 
and Systems, London, England, May 1994, pp. 463-466 (Vol. I). 

[126) X. HONG, T. XUE, E. S. KuH, C. K. CHENG, AND J. HUANG, 
Performance-Driven Steiner Tree Algorithms for Global Routing, in Proc. 
ACM/IEEE Design Automation Conf., June 1993, pp. 177-181. 

[127) M. A. HOROWITZ, Timing Models for MOS Circuits, PhD thesis, Stan­
ford University, January 1984. 

[128] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, 
Reading, MA, 1969. 

[129) T. C. Hu, A. B. KAHNG, AND G. ROBINS, Optimal Solution of the 
Discrete Plateau Problem, Tech. Rep. CSD-920006, Computer Science 
Department, UCLA, January 1992. 

[130) T. C. Hu, A. B. KAHNG, AND G. ROBINS, Solution of the Discrete 
Plateau Problem, Proc. of the National Academy of Sciences, 89 (1992), 
pp. 9235-9236. 

[131) T. C. Hu, A. B. KAHNG, AND G. ROBINS, Optimal Robust Path Plan­
ning in General Environments, IEEE Trans. Robotics and Automation, 
9 (1993), pp. 775-784. 



REFERENCES 263 

(132] T. C. Hu AND T. SHING, The o:-{3 Routing, in VLSI Circuit Layout: 
Theory and Design, New York, 1985, IEEE Press, pp. 139-143. 

(133] J. H. HUANG, A. B. KAHNG, AND C. W. TSAO, On the Bounded­
Skew Clock and Steiner Routing Problems, Tech. Rep. 940026, Computer 
Science Department, UCLA, 1994. 

[134] J. HUNT AND S. SzYMANSKI, A Fast Algorithm for Computing Longest 
Common Subsequence, Comm. of ACM, 20 (1977), pp. 350-353. 

(135] F. K. HWANG, On Steiner Minimal Trees with Rectilinear Distance, 
SIAM J. Applied Math., 30 {1976), pp. 104-114. 

[136] F. K. HWANG, An O(n log n} Algorithm for Rectilinear Minimal Span­
ning Trees, J. ACM, 26 (1979), pp. 177-182. 

[137] F. K. HWANG, An O(n log n) Algorithm for Suboptimal Rectilinear 
Steiner Trees, IEEE Trans. Circuits and Systems, 26 (1979), pp. 75-77. 

(138) F. K. HWANG, D. S. RICHARDS, AND P. WINTER, The Steiner Tree 
Problem, North-Holland, 1992. 

(139) A. 0. IVANOV AND A. A. TUZHILIN, Minimal Networks: The Steiner 
Problem and Its Generalizations, CRC Press, Boca Raton, Florida, 1994. 

[140] M. A. B. JACKSON AND E. S. KuH, Performance-Driven Placement of 
Cell-Based IC's, in Proc. ACM/IEEE Design Automation Conf., 1989, 
pp. 370-375. 

[141) M. A. B. JACKSON AND E. S. KuH, Estimating and Optimizing RC 
Interconnect Delay During Physical Design, in Proc. IEEE Inti. Symp. 
Circuits and Systems, New Orleans, LA, 1990, pp. 869-871. 

[142] M. A. B. JACKSON, E. S. KuH, AND M. MAREK-SADOWSKA, Timing­
Driven Routing for Building Block Layout, in Proc. IEEE Inti. Symp. 
Circuits and Systems, 1987, pp. 518-519. 

[143] M. A. B. JACKSON, A. SRINIVASAN, AND E. S. KuH, Clock Routing for 
High-Performance IC's, in Proc. ACM/IEEE Design Automation Conf., 
1990, pp. 573-579. 

[144] A. B. KAHNG, J. CoNG, AND G. RoBINS, High-Performance Clock 
Routing Based on Recursive Geometric Matching, in Proc. ACM/IEEE 
Design Automation Conf., June 1991, pp. 322-327. 



264 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

[145] A. B. KAHNG AND S. MUDDU, Delay Estimation of Trees using Two-pole 
Method and Optimal Equivalent Circuits, Tech. Rep. CSD-TR-930035, 
Computer Science Department, UCLA, October 1993. 

[146] A. B. KAHNG AND S. MUDDU, A General Methodology for Response and 
Delay Computations in VLSI Interconnects, Tech. Rep. 940015, Com­
puter Science Department, UCLA, 1994. 

[147] A. B. KAHNG AND S. MUDDU, Optimal Equivalent Circuits for Inter­
connect Delay Calculations Using Moments, in Proc. European Design 
Automation Conf., Grenoble, September 1994, pp. 164-169. 

[148] A. B. KAHNG AND S. MUDDU, Two-pole Analysis of VLSI Interconnect 
Trees. unpublished manuscript, March 1994. 

[149] A. B. KAHNG AND S. MUDDU, Two-pole Analysis of Interconnection 
Trees, in Proc. IEEE Multi-Chip Module Conf. (to appear), Santa Cruz, 
CA, February 1995. 

[150] A. B. KAHNG AND G. RoBINS, A New Family of Steiner Tree Heuristics 
With Good Performance: The Iterated 1-Steiner Approach, in Proc. IEEE 
Intl. Conf. Computer-Aided Design, Santa Clara, CA, November 1990, 
pp. 428-431. 

[151] A. B. KAHNG AND G. ROBINS, A New Class of Iterative Steiner Tree 
Heuristics With Good Performance, IEEE Trans. Computer-Aided De­
sign, 11 (1992), pp. 893-902. 

[152] A. B. KAHNG AND G. RoBINS, On Performance Bounds for a Class of 
Rectilinear Steiner Tree Heuristics in Arbitrary Dimension, IEEE Trans. 
Computer-Aided Design, 11 (1992), pp. 1462-1465. 

[153] A. B. KAHNG AND C. W. TSAO, Planar-DME: Improved Planar Zero­
Skew Clock Routing With Minimum Pathlength Delay, Tech. Rep. CSD­
TR-940006, Computer Science Department, UCLA, February 1994. 

[154) A. B. KAHNG AND C. W. TSAO, Planar-DME: Improved Planar Zero­
Skew Clock Routing With Minimum Pathlength Delay, in Proc. European 
Design Automation Conf., Grenoble, September 1994, pp. 440-445. 

[155] W. KHAN, X. HE, L. BANGARU, AND N. SHERWANI, Combat: Zero 
Skew Minimal Delay Planar Clock Routing for High Performance Sys­
tems, Tech. Rep. 93-08, Western Michigan Univ. Computer Science De­
partment, April 1993. 



REFERENCES 265 

(156) S. KHULLER, B. RAGHAVACHARI, AND N. YOUNG, Balancing Minimum 
Spanning and Shortest Path Trees, in Proc. ACM/SIAM Symp. Discrete 
Algorithms, January 1993, pp. 243-250. 

[157) S. KIM, R. M. OWENS, AND M. J. IRWIN, Experiments with a Perfor­
mance Driven Module Generator, in Proc. ACM/IEEE Design Automa­
tion Conf., June 1992, pp. 687-690. 

[158) S. KIMURA, N. KUBO, T. CHIBA, AND I. NISHIOKA, An Automatic 
Routing Scheme for General Cell LSI, IEEE Trans. Computer-Aided De­
sign, 2 (1983), pp. 285-292. 

(159) L. Kou, G. MARKOWSKY, AND L. BERMAN, A Fast Algorithm for 
Steiner Trees, Acta Informatica, 15 (1981), pp. 141-145. 

(160) M. KRUSKAL, On the Shortest Spanning Subtree of a Graph, and the 
Traveling Salesman Problem, Proc. Amer. Math Soc., 7 ( 1956), pp. 48-
50. 

(161] J. C. LATOMBE, Robot Motion Planning, Kluwer Academic Publishers, 
Boston, MA, 1991. 

(162) J. W. LAVINUS AND J. P. CoHOON, Routing a Multi- Terminal Critical 
Net: Steiner Tree Construction in the Presence of Obstacles, Tech. Rep. 
CS-93-19, Department of Computer Science, University of Virginia, April 
1993. 

[163) E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, 
Holt Rinehart and Winston, New York, 1976. 

(164) J. H. LEE, N. K. BosE, AND F. K. HWANG, Use of Steiner's Problem 
in Sub-Optimal Routing in Rectilinear Metric, IEEE Trans. Circuits and 
Systems, 23 (1976), pp. 470-476. 

(165) K. W. LEE AND C. SECHEN, A New Global Router for Row-Based Lay­
out, in Proc. IEEE Inti. Conf. Computer-Aided Design, Santa Clara, CA, 
November 1990, pp. 180-183. 

[166) K. W. LEE AND C. SEC HEN, A Global Router for Sea-of-Gates Circuits, 
in Proc. European Design and Test Conf., Amsterdam, The Netherlands, 
February 1991, pp. 242-247. 

(167) K. W. LEE AND Y. Z. LIAO, ArcSys Corporation, personal communica­
tion, April 1994. 



266 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

[168] T. LENGAUER, Combinatorial Algorithms for Integrated Circuit Layout, 
John Wiley & Sons Ltd, West Sussex, England, 1990. 

(169] H. P. LENHOF, J. S. SALOWE, AND D. E. WREGE, New Methods to Mix 
Shortest-Path and Minimum Spanning Trees. unpublished manuscript, 
1993. 

(170] C. LEVCOPOULOS AND A. LINGAS, There are Planar Graphs Almost as 
Good as the Complete Graphs and as Short as Minimum Spanning Trees, 
in Proc. Inti. Symposium on Optimal Algorithms, June 1989, pp. 9-13. 

[171] F. D. LEWIS, W. C. PoNG, AND N. VANCLEAVE, Local Improvement in 
Steiner Trees, in Proc. Great Lakes Symp. VLSI, Kalamazoo, Ml, March 
1993, pp. 105-106. 

(172] Y. M. LI AND M. A. JABRI, A Zero-Skew Clock Routing Scheme for 
VLSI Circuits, in Proc. IEEE Intl. Conf. Computer-Aided Design, 1992, 
pp. 458-463. 

[173] I. LIN AND D. H. C. Du, Performance-Driven Constructive Placement, 
in Proc. ACM/IEEE Design Automation Conf., 1990, pp. 103-106. 

(174] I. LIN, J. A. LUDWIG, AND K. ENG, Analyzing Cycle Stealing on Syn­
chronous Circuits with Level-Sensitive Latches, in Proc. ACM/IEEE De­
sign Automation Conf., June 1992, pp. 393-398. 

[175] S. LIN AND C. K. WoNG, Process- Variation-Tolerant Clock Skew Mini­
mization, in Proc. IEEE Intl. Conf. Computer-Aided Design (to appear), 
November 1994. 

[176] T. M. LIN AND C. A. MEAD, Signal Delay in General RC-networks, 
IEEE Trans. Computer-Aided Design, CAD-3 (1984), pp. 331-349. 

(177] A. L. LoEB, Space Structures: Their Harmony and Counterpoint, 
Birkhauser, New York, 1991. 

(178] M. MAREK-SADOWSKA AND S. P. LIN, Timing Driven Placement, 
in Proc. IEEE Intl. Conf. Computer-Aided Design, Santa Clara, CA, 
November 1989, pp. 94-97. 

[179] D. MARTIN AND N. C. RUM IN, Delay Prediction From Resistance­
Capacitance Models of General MOS Circuits, IEEE Trans. Computer­
Aided Design, 12 (1993), pp. 997-1003. 

[180] S. P. McCoRMICK, Modeling and Simulation of VLSI Interconnections 
with Moments, PhD thesis, MIT, June 1989. 



REFERENCES 267 

[181) B. A. McCoY AND G. ROBINS, Non-Tree Routing, in Proc. European 
Design and Test Conf., Paris, France, February 1994, pp. 430-434. 

[182) C. A. MEAD AND L. CONWAY, Introduction to VLSI Systems, Addison­
Wesley, Reading, MA, 1980. 

[183) M. MINOUX, Efficient Greedy Heuristics for Steiner Tree Problems Using 
Reoptimization and Supermodularity, INFOR, 28 (1990), pp. 221-233. 

[184) S. MIRAYALA, J. HASHMI, AND N. SHERWANI, Switchbox Steiner Tree 
Problem in Presence of Obstacles, in Proc. IEEE Inti. Conf. Computer­
Aided Design, Santa Clara, CA, November 1991, pp. 536-539. 

[185) J. S. B. MITCHELL, An Algorithmic Approach to Some Problems in Ter­
rain Navigation, in Geometric Reasoning, D. Kapur and J. L. Mundy, 
editors, MIT Press, 1988. 

(186) J. S. B. MITCHELL, On Maximum Flows in Polyhedral Domains, Journal 
of Computer and System Sciences, 40 (1990), pp. 88-123. 

[187) S. MuDDU, University of California, Los Angeles, private communication, 
August 1993. 

(188) P. R. O'BRIEN AND T. L. SAVARINO, Modeling the Driving-Point Char­
acteristic of Resistive Interconnect for Accurate Delay Estimation, in 
Proc. IEEE Inti. Conf. Computer-Aided Design, November 1989, pp. 512-
515. 

(189) C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization, 
Prentice-Hall, 1982. 

(190) C. H. PAPADIMITRIOU AND U. V. VAZIRANI, On Two Geometric Prob­
lems Relating to the Traveling Salesman Problem, J. Algorithms, 5 {1984), 
pp. 231-246. 

[191] D. PELEG AND A. ScHAFFER, Graph Spanners, J. Graph Theory, 13 
(1989), pp. 99-116. 

(192) S. PRASITJUTRAKUL AND W. J. KUBITZ, A Timing-Driven Global 
Router for Custom Chip Design, in Proc. IEEE Inti. Conf. Computer­
Aided Design, Santa Clara, CA, November 1990, pp. 48-51. 

[193] B. T. PREAS, Placement and Routing Algorithms for Hierarchical Inte­
grated Circuit Layout, PhD thesis, Department of Electrical Engineering, 
Stanford University, 1979. 



268 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

(194) B. T. PREAS AND M. J. LORENZETTI, Physical Design Automation of 
VLSI Systems, Benjamin/Cummings, Menlo Park, CA, 1988. 

(195) F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry: An 
Introduction, Springer-Verlag, New York, 1985. 

[196] A. PRIM, Shortest Connecting Networks and Some Generalizations, Bell 
Syst. Tech J., 36 (1957), pp. 1389-1401. 

[197) S. PULLELA, N. MENEZES, J. 0MAR, AND L. T. PILLAGE, Skew and 
Delay Optimization for Reliable Buffered Clock Trees, in Proc. IEEE 
Inti. Conf. Computer-Aided Design, Santa Clara, CA, November 1993, 
pp. 556-559. 

(198) S. PULLELA, N. MENEZES, AND L. T. PILLAGE, Reliable Non-Zero Skew 
Clock Trees Using Wire Width Optimization, in Proc. ACM/IEEE Design 
Automation Conf., San Diego, CA, 1993, pp. 165-170. 

(199] Y. V. RAJPUT, Modelling Distributed RC Lines for the Transient Analy­
sis of Complex Networks, Inti. Journal of Electronics, 36 (1974), pp. 709-
717. 

(200) P. RAMANATHAN AND K. G. SHIN, A Clock Distribution Scheme for 
Non-Symmetric VLSI Circuits, in Proc. IEEE Inti. Conf. Computer­
Aided Design, Santa Clara, CA, November 1989, pp. 398-401. 

(201) S. K. RAo, P. SADAYAPPAN, F. K. HWANG, AND P. W. SHOR, The 
Rectilinear Steiner Arborescence Problem, Algorithmica, (1992), pp. 277-
288. 

[202] D. S. RICHARDS, Fast Heuristic Algorithms for Rectilinear Steiner Trees, 
Algorithmica, 4 (1989), pp. 191-207. 

(203) G. ROBINS, On Optimal Interconnections, PhD thesis, Department of 
Computer Science, UCLA, CSD-TR-920024, 1992. 

(204) G. RoBINS AND J. S. SALOWE, On the Maximum Degree of Minimum 
Spanning Trees, in Proc. ACM Symp. Computational Geometry, Stony 
Brook, NY, June 1994, pp. 250-258. 

(205) J. RUBINSTEIN, P. PENFIELD, AND M. A. HoROWITZ, Signal Delay 
in RC Tree Networks, IEEE Trans. Computer-Aided Design, 2 (1983), 
pp. 202-211. 

[206) T. SAKURAI, Approximation of Wiring Delay in MOSFET LSI, IEEE J. 
Solid State Circuits, 18 (1983), pp. 418-426. 



REFERENCES 269 

(207) J. S. SALOWE, D. S. RICHARDS, AND D. WREGE, Mixed Spanning 
Trees: A Technique for Performance-Driven Routing, in Proc. Great 
Lakes Symp. VLSI, Kalamazoo, MI, March 1993, pp. 62-66. 

(208] J. S. SALOWE AND D. M. WARME, An Exact Rectilinear Steiner Tree 
Algorithm, in Proc. IEEE Intl. Conf. Computer Design, Cambridge, MA, 
October 1993, pp. 472-475. 

[209] S. SAPETNEKAR, RC Interconnect Optimization Under the Elmore Delay 
Model, in Proc. ACM/IEEE Design Automation Conf., San Diego, CA, 
June 1994, pp. 387-391. 

(210] M. SARRAFZADEH AND C. K. WoNG, Hierarchical Steiner Tree Con­
struction in Uniform Orientations, IEEE Trans. Computer-Aided Design, 
11 (1992), pp. 1095-1103. 

[211] J. T. ScHWARTZ, M. SHARIR, AND H. HOPCROFT, Planning, Geometry 
and Complexity of Robot Motion, Ablex Publishing Corp., 1987. 

[212] C. SECHEN, VLSI Placement and Global Routing Using Simulated An­
nealing, Kluwer Academic Publishers, Boston, MA, 1988. 

(213] R. SEDGEWICK, Algorithms, 2nd ed., Addison-Wesley, Reading, MA, 
1988. 

(214) M. SEKI, K. INOUE, K. KATO, K. TSURUSAKI, S.FUKUSAWA, 
H. SASAKI, AND M. AIZAWA, A Specified Delay Accomplishing Clock 
Router Using Multiple Layers, in Proc. IEEE Intl. Conf. Computer-Aided 
Design (to appear), November 1994. 

[215] M. SERVIT, Heuristic Algorithms for Rectilinear Steiner Trees, Digital 
Process., 7 (1981), pp. 21-31. 

[216] N. SHERWANI, Algorithms for VLSI Physical Design Automation, Kluwer 
Academic Publishers, Boston, MA, 1993. 

[217] N. SHERWANI AND B. Wu, Effective Buffer Insertion of Clock Tree for 
High Speed VLSI Circuits, Microelectronics Journal, 23 (1992), pp. 291-
300. 

[218] G. SHUTE, Worse-Case Length Ratios for Various Heuristics for Recti­
linear and Euclidean Steiner Minimal Trees, Tech. Rep. 90-10, University 
of Minnesota, Duluth, 1990. 

(219] G. M. SHUTE, 1. 1. DENEEN, AND C. D. THOMBORSON, An O(n 
log n) Plane-Sweep Algorithm for Lt and L00 Delaunay Triangulations, 
Algorithmica, 6 (1991), pp. 207-221. 



270 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

(220) J. M. SMITH, D. T. LEE, AND J. S. LIEBMAN, An O(N log N) Heuristic 
Algorithm for the Rectilinear Steiner Minimal Tree Problem, Engineering 
Optimization, 4 (1980), pp. 179-192. 

(221) J. M. SMITH AND J. S. LIEBMAN, Steiner Trees, Steiner Circuits and 
the Interference Problem in Building Design, Engineering Optimization, 
4 (1979), pp. 15-36. 

[222] T. L. SNYDER, A Simple and Faster Algorithm for the Rectilinear Steiner 
Problem in General Dimension, in Proc. ACM Symp. Computational 
Geometry, 1990. 

[223] T. L. SNYDER, On the Exact Location of Steiner Points in General Di­
mension, SIAM J. Comput., 21 (1992), pp. 163-180. 

(224) T. L. SNYDER AND J. M. STEELE, Worst-Case Greedy Matchings in the 
Unit d-Cube, Networks - an International Journal, 20 (1990), pp. 779-
800. 

(225] J. SoUKUP, Circuit Layout, Proc. IEEE, 69 (1981), pp. 1281-1304. 

[226] A. SRINIVASAN, private communication, October 1991. 

(227) A. SRINIVASAN, K. CHAUDHARY, AND E. S. KuH, RITUAL: A Perfor­
mance Driven Placement Algorithm for Small-Cell ICs, in Proc. IEEE 
Inti. Conf. Computer-Aided Design, Santa Clara, CA, November 1991, 
pp. 48-51. 

(228) M. SRIRAM AND S.M. KANG, Performance Driven MCM Routing Using 
a Second Order RLC Tree Delay Model, in IEEE Inti. Conf. on Wafer 
Scale Integration, San Francisco, CA, USA, January 1993, pp. 262-267. 

[229] J. M. STEELE, Growth Rates of Euclidean Minimal Spanning Trees With 
Power Weighted Edges, AnnalsofProbability, 16 (1988), pp.176i-178i. 

[230] V. S. SUNDERAM, PVM: A Framework for Parallel Distributed Comput­
ing, Concurrency: Practice and Experience, 2 (1990), pp. 315-339. 

[231] K. J. SUPOWIT, New Techniques for Some Dynamic Closest-Point and 
Farthest-Point Problems, in Proc. ACM/SIAM Symp. Discrete Algo­
rithms, 1990, pp. 84-90. 

(232) K. J. SUPOWIT AND E. M. REINGOLD, Divide and Conquer Heuristics 
for Minimum Weighted Euclidean Matching, SIAM J. Computing, 12 
(1983), pp. 118-143. 



REFERENCES 271 

(233) K. J. SUPOWIT, E. M. REINGOLD, AND D. A. PLAISTED, The Travelling 
Salesman Problem and Minimum Matching in the Unit Square, SIAM J. 
Computing, 12 (1983), pp. 144-156. 

(234) S. SUTANTHAVIBUL AND E. SHRAGOWITZ, An Adaptive Timing-Driven 
Layout for High Speed VLSI, in Proc. ACM/IEEE Design Automation 
Conf., 1990, pp. 90-95. 

[235] R. E. TARJAN, Data Structures and Network Algorithms, SIAM, 1983. 

(236] S. TEIG, R. L. SMITH, AND J. SEATON, Timing Driven Layout of Cell­
Based ICs, VLSI Systems Design, (1992), pp. 63-73. 

[237] G. TELLEZ AND M. SARRAFZADEH, Clock Period Constrained Minimal 
Buffer Insertion in Clock Trees, in Proc. IEEE Inti. Conf. Computer­
Aided Design (to appear), November 1994. 

[238] G. F. TOTH, New Results in the Theory of Packing and Covering, Con­
vexity and its Applications, 1983. 

[239] V. A. TRUBIN, Subclass of the Steiner Problems on a Plane with Recti­
linear Metric, Cybernetics, 21 (1985), pp. 320-322. 

(240] R. S. TsAY, Exact Zero Skew, in Proc. IEEE Inti. Conf. Computer-Aided 
Design, Santa Clara, CA, November 1991, pp. 336-339. 

[241] R. S. TsAY, Exact Zero Skew, Tech. Rep. RC-16683, IBM T. J. Watson 
Research Center, Yorktown Heights, March 1991. 

[242] R. S. TSAY AND I. LIN, Robin Hood: A System Timing Verifier for Multi­
Phase Level-Sensitive Clock Designs, in Proc. IEEE Inti. ASIC Conf., 
September 1992, pp. 516-519. 

(243] P. VAIDYA, Geometry Helps in Matching, in Proc. ACM Symp. the The­
ory of Computing, 1988, pp. 422-425. 

(244) A. VITTAL AND M. MAREK-SADOWSKA, Minimal Delay Interconnect 
Design Using Alphabetic Trees, in Proc. ACM/IEEE Design Automation 
Conf., June 1994, pp. 392-396. 

(245) J. VLACH, J. A. BARBY, A. VANNELLI, T. TALKHAN, AND C. J. SHI, 
Group Delay as an Estimate of Delay in Logic, IEEE Trans. Computer­
Aided Design, 10 (1991), pp. 949-953. 

[246] D. F. WANN AND M. A. FRANKLIN, Asynchronous and Clocked Con­
trol Structure for VLSI Based Interconnection Networks, IEEE Trans. 
Computers, 21 {1983), pp. 284-293. 



272 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

[247] E. WELZL, Partition Trees for Triangle Counting and Other Range 
Searching Problems, in Proc. ACM Symp. Computational Geometry, 
Urbana-Champaign, IL, June 1988, pp. 23-33. 

[248] S. WoLFRAM, Mathematica: A System for Doing Mathematics by Com­
puter, Second Edition, Addison-Wesley, Reading, MA, 1991. 

[249] Y. F. Wu, P. WIDMAYER, AND C. K. WoNG, A Faster Approxima­
tion Algorithm for the Steiner Problem in Graphs, Acta Informatica, 23 
(1986), pp. 223-229. 

[250] Y. Y. YANG AND 0. WING, Suboptimal Algorithm for a Wire Routing 
Problem, IEEE Trans. on Circuit Theory, 19 (1972), pp. 508-511. 

[251] A. C. C. YAO, On Constructing Minimum Spanning Trees in k­
Dimensional Spaces and Related Problems, SIAM J. Comput., 11 (1982), 
pp. 721-736. 

[252] A. Z. ZELIKOVSKY, Institute of Mathematics, Moldavian Academy of 
Sciences, private communication, April 1994. 

[253] A. Z. ZELIKOVSKY, An 11/8-approximation Algorithm for the Steiner 
Problem on Networks with Rectilinear Distance, in Janos Bolyai Math­
ematica Societatis Conf.: Sets, Graphs, and Numbers, January 1991, 
pp. 733-745. 

[254] A. Z. ZELIKOVSKY, An 11/6 Approximation Algorithm for the Network 
Steiner Problem, Algorithmica, 9 (1993), pp. 463-470. 

[255] A. Z. ZELIKOVSKY, P. BERMAN, AND M. KARPINSKI, Improved Ap­
proximation Bounds for the Rectilinear Steiner Tree Problem, Tech. Rep. 
Report No. 85108-CS,. Institut fur lnformatik, Universitat Bonn, 1994. 

[256] D. ZHou, S. Su, F. TsUI, D. S. GAo, AND J. S. CoNG, Analysis 
of Tree of Transmission Lines, Tech. Rep. CSD-TR-920010, Computer 
Science Department, UCLA, March 1992. 

[257] D. ZHou, F. TsUI, J. CoNG, AND D. GAo, A Distributive RCL­
Model for MCM Layout, in IEEE Multi-Chip Module Conf., March 1993, 
pp. 191-197. 

[258] D. ZHOU, F. TsUI, AND D. S. GAo, High Performance Multichip In­
terconnection Design, in Proc. ACM/SIGDA Physical Design Workshop, 
Lake Arrowhead, CA, April 1993, pp. 32-43. 



REFERENCES 273 

[259) Q. ZHU AND W. W. M. DAI, Perfect-Balance Planar Clock Routing 
With Minimal Path-Length, in Proc. IEEE Inti. Conf. Computer-Aided 
Design, 1992, pp. 473-476. 

(260] Q. ZHU AND W. W. M. DAI, Hierarchical Clock Routing for Multi-Chip 
Modules Based on Area Pad Interconnection. unpublished manuscript, 
1994. 

(261] Q. ZHU, W. W. M. DAI, AND J. G. XI, Optimal Sizing of High-Speed 
Clock Networks Based on Distributed RC and Lossy Transmission Line 
Models, in Proc. IEEE Inti. Conf. Computer-Aided Design, 1993, pp. 628-
633. 



Agarwal, P.K., 199 
Agrawal, B.K., 105 
Agrawal, V.D., 66 
Ahuja, R.K., 234 
Aizawa, M., 195 
Alexander, M.J ., 13, 56, 95, 215 
Allmon, R., 87, 144, 19.5 
Alpert, C.J., 13, 64, 89, 198 
Andrews, T.G., 249 
Anglin, R., 144 
Asano, T., 81, 152 
Awerbuch, B., 14, 77 
Aylor, J., 14 
Bakoglu, H., 65, 130, 141, 183, 

185, 210 
Baratz, A., 14, 77 
Barby, J .A., 68, 250 
Barrera, T., 14, 49, 54 
Bartholdi, J.J., 156 
Beardwood, J., 23 
Bello, S.E., 105 
Berman, L., 57, 82, 160 
Berman, P., 41, 83 
Bern, M.W., 14, 23 
Boese, K.D., 10, 13, 64, 68, 95, 

103, 113, 128-129, 140, 146, 
163-164, 246-247, 250 

Boon, S., 143 
Borah, M., 59 
Bose, N.K., 26 
Brayton, R., 15 
Brown, S.D., 14 
Burkis, J., 143 
Butler, S., 143 
Byrne, R., 143 

AUTHOR INDEX 

Cai, H., 154 
Canny, J., 14, 224 
Casalanda, M., 143 
Chandra, B., 77 
Chang, C.H., 78 
Chan, P.K., 14, 136-137 
Chao, T.H., 14, 140, 146, 163. 59 
Chaudhary, K., 14, 10.5 
Chazelle, B., 152, 199 
Cheng, C.K., 14, 113, 179, 195 
Cheng, K.T., 14 
Chen, D.-S., 56, 110 
Chiang, C., 83 
Chiba, T., 81, 152 
Chou, N.C., 179 
Chung, F.R.K., 23 
Chung, J., 195 
Cohoon, .J.P., 14, 56, 70, 81, 83, 

152, 215-216 
Cong, J., 14-1.5, 64, 68, 70, 109, 

129, 140, 143, 146, 164, 242, 
246 

Connell, J .H., 224 
Conway, L., 2 
Cormen, T.H., 7, 224 
Coryell, B., 14 
Cota-Robles, E., 14 
Courant, 225 
Croft, J.T., 56 
Dachauer, R., 134 
Dai, W.W.-M., 14, 69, 81. 129, 

140, 146, 148, 184, 194 
Das, G., 77 
de Carvalho, M., 23 
DeSouza, C.C., 30 



276 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

Deutsch, D.N., 66 
Dhar, S., 143, 146 
Dijkstra, E.W., 88 
Dilworth, R.P., 202 
Dobberpuhl, D.W., 87, 144, 195 
Donath, W.E., 65, 105 
Dunlop, A.E., 66 
Dutta, R., 129 
Du, D.H.C., 65, 105-106 
Du, D.Z., 83 
Edahiro, M., 140, 146, 148, 185 
Edelsbrunner, H., 152, 199 
Elmore, W.C., 67, 241 
Eng, K., 142-143 
Eppstein, D., 44 
Ercegovac, M., 14 
Erhard, K.-H., 134 
Esbensen, H., 56 
Even, S., 7, 248 
Falconer, K .J., 56 
Fejes T6th, G., 56 
Fishburn, J., 143, 183 
Fisher, A.L., 129, 143 
Foessmeier, U., 41, 83 
Ford, L.R., 229 
Foulds, L.R., 25, 30 
Franklin, M.A., 143, 146 
Fredrickson, G.N., 49 
Friedman, E.G., 129, 142, 194 
Fukusawa, S., 195 
Fulkerson, D.R., 229 
Gadre, S.C., 25 
Gafni, E., 14 
Gajski, D., 15 
Ganley, J .L., 14, 56, 83, 215, 218 
Gao, D.S., 68, 98, 104, 242, 247 
Garey, M.R., 19 
Georgakopoulos, G., 33 
Gerzberg, L., 245 
Gilbert, E.N., 31 
Goldfarb, D., 234 
Golin, M.J., 223 

Gordon, B., 14 
Graham, R.L., 23 
Greibach, S., 14 
Griffith, J ., 14, 49, 54 
Grigoriadis, M.D., 234 
Guibas, L.J ., 25, 199 
Gusfield, D., 232 
Guy, R.K., 56 
Hagen, L., 14 
Halton, H.J ., 23, 209 
Hammersley, J .M., 23, 209 
Hanan, M., 18 
Han, S.Y., 105 
Harris, C., 15 
Harter, A.C., 24 
Hasan, N., 23 
Hauge, P.S., 65, 105-106 
Hershberger, J., 210 
He, X., 185 
Hightower, D.W., 81 
Hodes, T.D., 14, 132 
Hong, X., 113 
Hopcroft, H., 224 
Horowitz, M.A., 67, 91, 145, 242 
Ho, J .M., 14, 48, 78, 92, 100, 140, 

146, 163 
Hsu,Y.C., 14, 59,140,146,163 
Huang, J ., 113 
Huang, J.H., 13, 64, 89, 195 
Hunt, J.W., 207 
Hu, T.C., 13-14, 64, 89, 216, 224 
Hwang, F.K., 8, 19, 59, 83, 126 
Inoue, K., 195 
Irwin, M.J ., 59, 250, 68 
Italiano, G., 44 
Ivanov, A.O., 19 
Jabri, M.A., 163 
Jackson, M.A.B., 65-66, 105, 140, 

143, 157, 164, 185 
Jain, R., 14 
Johannes, F.M., 134 
Johnson, D.S., 19 



Index 

Jones, A.K., 15 
Jukl, M.F., 66 
Kahng, A.B., 10, 13, 15, 24, 32, 41, 

64, 70, 103, 129, 140, 143, 
146, 164, 195, 198, 224, 242, 
246 

Kang, S.M., 104 
Karger, D., 14, 89 
Karpinski, M., 41, 83 
Karplus, K., 14, 136-137 
Kato, K., 195 
Kaufmann, M., 41 
Khan, W., 185 
Khuller, S., 14, 77 
Kimura, S., 81, 152 
Kim, S., 68, 250 
Kou, L., 57, 82, 160 
Kozak, P., 66 
Ko, M.T., 92 
Kruskal, M., 27 
Kubitz, W.J., 66, 103 
Kubo, N., 81, 152 
Kuh, E.S., 14-15, 65, 81, 105, 140, 

143, 157, 164, 185 
Kung, H.T., 129, 143 
Kurtzberg, J.M., 105 
Ladeira de Matos, R.R., 92 
Latombe, J.C., 224 
Lavinus, J.W., 218 
Lawler, E.L., 152, 229 
Lee, D.T., 25, 78 
Lee, J.H., 25-26 
Lee, K.W., 56, 195 
Leiserson, C.E., 7, 224 
Lengauer, T., 2, 15 
Lenhof, H.P., 90 
Leung, K.S., 14, 68, 91, 129, 245 
Levcopoulos, C., 77 
Lewis, F.D., 59 
Liao, Y.Z., 195 
Liebman, J .S., 24 
Lingas, A., 77 

Lin, 1., 65, 105-106, 143 
Lin, S.P., 65, 87, 105, 134, 195 
Lin, T.M., 67 
Liu, C.L., 14-15 
Li, Y.M., 163 
Loeb, A.L., 52 
Lorenzetti, M.J., 2, 198 
Lowy, P., 105 

277 

Ludwig, J.A., 143 
Marek-Sadowska, M., 14, 65-66, 

105, 128-129 
Markowsky, G., 57, 82, 160 
Martin, D., 136 
Mazumder, P., 56 
Ma, T.H., 92 
McCormick, S.P., 239 
McCoy, B.A., 13, 68, 108, 126, 

132, 136, 246-248, 250 
McKee, S.A., 14, 49 
McMillan, R.I., 105 
Mead, C.A., 2, 67 
Meindl, J.D., 143, 183, 210 
Menezes, N., 129, 143, 194 
Minoux, M, 32 
Mitchell, J .S.B., 224 
Muddu, S., 14, 242 
Mulligan, J.H., 143 
Nair, R., 65, 105-106 
Naor, D., 232 
Narasimhan, G., 77 
Nishioka, 1., 81, 152 
Norman, R.J., 105 
O'Brien, P.R., 246 
Omar, J., 143, 194 
Orlin, J .B., 234 
Ortega, J .M., 15 
Otten, R., 15 
Owens, R.M., 59, 68, 250 
Papadimitriou, C.H., 28, 33, 56 
Pausch, R., 15 
Peleg, D., 14, 77 
Penfield, P., 67, 91, 145, 242 



278 ON OPTIMAL INTERCONNECTIONS FOR VLSI 

Pfaltz, J .1., 14 
Pillage, L.T., 129, 143, 194 
Plaisted, D.A., 149 
Platzman, L.K., 156 
Pollak, H.O., 31 
Pong, W.C., 59 
Prasitjutrakul, S., 66, 103 
Preas, B.T., 2, 81, 152, 198 
Preparata, F.P., 32 
Prim, A., 27, 72, 88, 103 
problem 

Steiner minimal tree (SMT), 17 
Pullela, S., 129, 143, 194 
Raghavachari, B., 77 
Rajput, Y.V., 245 
Ramaiyer, V., 41, 83 
Ramanathan, P., 143 
Randall, J ., 70 
Rao, S.K., 92 
Reingold, E.M., 149 
Ribiero, C.C., 30 
Richards, D.S., 8, 19, 27, 59, 81, 

152, 216 
Rivest, R., 7, 224 
Robbins, 225 
Robinson, B.L., 14 
Robins, G., 1, 10, 13, 15, 24, 32, 

41,49, 54, 56, 64, 70, 95,103, 
129, 136, 140, 143, 146, 164, 
198, 215, 224, 246 

Robins, S., 14 
Rose, J., 14 
Rubinstein, J., 67, 91, 145, 242 
Rumin, N.C., 136 
Sadayappan, P., 92 
Sakurai, T., 246 
Salowe, J.S., 14, 56, 59, 90, 223 
Sapetnekar, S., 129, 195 
Sarrafzadeh, M., 14-15, 64, 73, 

110, 194, 198 
Sasaki, H., 195 
Savarino, T.L., 246 

Scherf, AI, 143 
Schwab, A.J., 14 
Schwartz, J.T., 224 
Seaton, J., 106 
Sechen, C., 23, 26 
Sedgewick, R., 154 
Seidel, R., 199 
Seki, M., 195 
Servit, M., 27 
Setering, B., 143 
Shamos, M.I., 32 
Sharir, M., 200, 224 
Sherwani, N., 2, 185, 194 
Shing, T., 216 
Shin, K.G., 143 
Shi, C.J., 68, 250 
Shor, P.W., 92 
Shragowitz, E., 65, 105 
Shur, M., 14 
Smith, J .M., 24 
Smith, R.L., 106 
Snoeyink, J., 199 
Snyder, T.L., 18, 47, 155 
Soares, J ., 77 
Soukup, J ., 110 
Srinivasan, A., 105, 140, 143, 157, 

164, 180, 185 
Sriram, M., 104 
Steele, J.M., 23-24, 149, 209 
Steiglitz, K., 28 
Stolfi, J ., 25 
Sunderam, V.M., 48 
Sung, T.Y., 92 
Supowit, K.J., 149, 152 
Sutanthavibul, S., 65, 105 
Su, S., 69, 98, 109, 242, 246 
Szymanski, S.G., 207 
Talkhan, T., 68, 250 
Tamassia, R., 44 
Tarjan, R.E., 88, 234 
Teig, S., 106 
Tellez, G.E., 194 



Trubin, V.A., 92 
Tsao, C.W., 13, 140, 195 
Tsay, R.S., 67, 140, 143, 145, 163 
Tsui, F., 68, 98, 104, 242, 246 
Tsurusaki, K., 195 
Tuzhilin, A.A., 19 
Vaidyanathan, R., 25 
Vaidya, P., 152 
VanCleave, N., 59 
Vannelli, A., 68, 250 
Vazirani, U.V., 56 
Vijayan, G., 23, 48, 100 
Vittal, A., 14, 128 
Vlach, J ., 68, 250 
Walker, J .T., 143, 183, 210 
Wann, D.F., 143, 146 
Warme, D.M., 59 
Welzl, E., 199 
Widmayer, P., 58 
Wiesel, M., 66 
Winter, P., 8, 19, 59 
Witek, R.T., 87, 144, 195 
Wolfram, S., 235 
Wong, C.K., 14, 23, 48, 58, 64, 73, 

134, 195 
Wong, M., 15 
Wrege, D.E., 90 
Wulf, W.A., 15 
Wu, B., 194 
Wu, Y.F., 58 
Xi, J.G., 129, 194 
Xue, T., 113 
Yao, A.C.C., 49 
Yoffa, E.J., 65, 105-106 
Yohe, J.M., 226 
Young, N., 14, 77 
Zelikovsky, A.Z., 9, 41, 59, 82 
Zhang,T., 13, 49,54 
Zheng, S.Q., 25 
Zhou, D., 14, 68, 91, 104, 129, 242, 

246 

Zhu, Q., 87, 129, 140, 146, 148, 
184, 194 

279 



!-Steiner point, 31-33, 37, 43 
2-Steiner algorithm, 46 
Ak algorithm, 41-43 
A-tree algorithm, 94-95, 102, 133 
algorithm 

Ak, 41 
d-PATH, 233 
A-tree, 94 
balanced bipartition, 164 
BB-SORT-C, 126 
BBORT, 121 
BilS, 43 
BPRIM, 72 
BRBC, 79 
CFD,113 
CLOCKl, 148 
CLOCK2, 154 
COMB, 201 
CS-Steiner, 108 
Dijkstra's SPT, 88 
Dinic's, 234 
DME, 164 
DWSERT, 133 
ERT, 103 
Extended-BPRIM, 74 
GllS, 58 
GR, 157 
greedy, 28 
GSR, 110-111 
llArb, 95 
llS, 24, 31 
IKMB, 59 
KMB, 57, 82 
Kruskal-Steiner, 27 
KRY, 86 

TERM INDEX 

LDRG, 136 
MMM, 157 
MST-Overlap, 26 
OPT, 59 
PD1, 88 
PD2, 90 
PEEL, 202 
PlkS, 46 
Planar-DME, 192 
Prim's MST, 88 
SERT, 105 
SERT-C, ill 
SFC, 157 
SGW, ill 
SP, 157 
ZEL, 43, 59 

balance point, 141, 148, 162, 185 
Balanced Bipartition algorithm, 

179 
Bounded Prim algorithm 

(BPRIM), 72-74, 96 
Bounded-Radius Minimum 

Routing Tree problem 
(BRMRT), 70, 74 

Bounded-Radius Optimal Steiner 
Tree problem (BROST), 
81-82 

bounding box of edge, 18, 23, 100 
buffer design 

hierarchical, 12, 87, 141, 144 
monolithic, 144 
optimization, 143, 194 

chain, antichain, 202, 207, 214 
circuit speed, 11, 141 
clock skew (see skew), 11 



282 

clock tree, 140, 143-144, 145, 179, 
183 

clock 
entry point, 144, 147-148 
period, 142 

CLOCK! algorithm, 148-149, 151, 
154-155, 211 

CLOCK2 algorithm, 154, 159 
closest interconnection, 123 
COMB algorithm, 201, 209, 213 
congestion avoidance, 215, 223, 229 
Constructive Force-Directed 

algorithm (CFD), 113 
continuously weighted region, 13, 

223 
cost-radius tradeoff, 70, 102, 113 
Critical Sink Routing Tree 

problem (CSRT), 105, 
107-108, 113, 123 

Critical Sink Steiner algorithm 
(CS-Steiner), 108, 115, 128 

critical sink, 105, 119, 123, 135, 
247 

d-connected, 231 
d-neighborhood, 231 
d-separating path, 229 
deferred embedding, 162 
Deferred-Merge Embedding(DME) 

algorithm, 11, 141, 164-165, 170, 
172, 178-180, 183, 186, 192 

for bounded skew, 165 
Manhattan arc, 165 
planar-embeddable (see Planar 

DME), 185 
tilted rectangular region, 166, 

187 
under Elmore delay, 164 
under linear delay, 164 

delay estimate 
accuracy, 182, 247 

Elmore, 10, 64, 67-68, 91, 103, 
124, 145, 162, 176, 180, 
241-242 

fidelity, 246, 248 
linear, 10-11, 140, 145, 162, 170, 

172, 179, 186, 246-247, 249 
lumped capacitance, 246 
monotone, 141, 145, 165 
SPICE, 68, 98, 128, 133, 136-137 
two-pole, 98, 102, 104, 115, 242, 

246-247, 249 
delay, 4, 11, 65, 67 

average sink, 107 
critical sink, 65, 119, 247 
maximum sink, 120-121 
net-dependent, 10, 65, 78, 84-85, 

91, 105, 107, 119 
path-dependent, 10 

density of routing tree, 199 
design 

building-block, Q, 13, 66 
cell-based, 66, 72, 105 
computer-aided, 1 
standard-cell, Q 

Dijkstra's SPT algorithm, 88, 90, 
121 

Dinic's algorithm, 234, 236 
Dirichlet cell, 33, 50 
dominance, 132 
edge-uncrossing, 152, 157 
Elmore delay (see delay estimate, 

Elmore), 67, 241 
Elmore routing tree algorithm 

(ERT), 103-104, 121, 127 
Dynamic Wiresizing SERT, 133 
Steiner ERT (SERT), 105, 123, 

133 
Steiner, critical sink (SERT-C), 

113-114, 123, 126 
Extended-BPRIM algorithm, 74 

variants, 76 



Index 

field programmable gate array 
(FPGA), 215 

flow network (see network flow), 
229 

geometry 
Lp, 17, 56 
allowed-angle(..\), 18, 84 
Euclidean, 17, 49, 179, 184 
Manhattan, 16-17, 33, 157 

Global Stack Removal algorithm 
(GSR), 110-111, 113, 115 

GR algorithm, 156-158 
graph, Q. 

k-weighted, 216-219 
channel intersection, .Q., 66, 146, 

152, 154 
connected, 1 
cost of, 1 
metric, 217-218 
multi-weighted, 12, 197, 215, 218 
path in, 1, 57 
tradeoff, 216, 218 
weighted, 1, 25, 44, 56, 80, 82, 

229 
Greedy-DME algorithm, 185, 192 
H-flipping, 151, 157, 162 
Hadwiger numbers, 56 
Hanan's theorem, 10, 18-19, 47 

Hanan grid, 18, 123 
Steiner candidate set, 18, 31, 36, 

48, 58 
Hwang's theorem, 19, 22-24, 36, 

38, 41, 47, 83, 126 
Iterated 1-Arborescence algorithm 

(llArb), 95 
Iterated 1-Steiner algorithm (llS), 

9, 24, 31, 37, 57, 95, 113, 115, 
133 

Batched (B1S), 43, 45, 49-50, 
59-60 

enhancements, 43 
graph version (GilS), 9, 58 

283 

in higher dimensions, 9, 49, 61 
parallel, 24, 48, 60 
performance, 59 
perturbative (PikS), 46, 61 
time complexity, 54 

Iterated KMB algorithm (IKMB), 
59 

Iterated Zelikovsky algorithm 
(IZEL), 59 

k-restricted, 41-42 
KCR algorithm, 179-180, 192 
KMB algorithm, 57, 82 
Kruskal-Steiner approach, 27-28 
Laplace transform, 239 
layout estimators, 120 
Low Delay Routing Graph 

algorithm (LDRG), 136-137 
lumped segment models, 245 
Manhattan 

arc, 165, 167-169 
geometry, Q. 
plane, 51, 54-55, 143 
space, 30, 51-52, 55 

matching 
generalized, 153-154 
geometric, 140, 146-147, 211 
iterative, 152 
optimal, 147 
weighted, 152 

maximal segment, 124 
maximum performance tree, 70 
merging 

cost, 165-168, 171, 176 
point, 177-178 
segment, 164, 166, 170, 188 

minimum density tree (MDT), 
199, 205, 214 

minimum spanning tree (see 
MST), 9 

minimum-density tree, 199 
moment-based approximation, 245 
monotonicity, 130 



284 

MST, 9, 17, 29, 209, 213, 217-220 
cost, 30 
degree bounds, 24, 52, 55 
dynamic maintenance, 49 
maintenance, 50, 54 
maximum-degree, 9 
rectilinear, 26 

MST-Overlap approach, 26, 28 
multi-weighted graph (see graph, 

multi-weighted), 215 
multiple objectives (see objective, 

multiple), 12 
net (see signal net), fi 
net-dependent, 10, 65, 78, 84-85, 

91, 105, 107, 114-115, 
119-120, 247 

network flows, 13, 223-224, 
230-232, 234-236 

arc capacity, 229, 232 
cut in, 230 
max-flow min-cut theorem, 230, 

233 
node capacity, 229 

non-tree routing, 134 
objectives 

cost-radius tradeoff, 64 
minimum-area, 17, 198, 200 
minimum-cost, 10, 88 
minimum-density, 12, 197-198, 

210, 212 
minimum-radius, 10, 88, 215 
minimum-wirelength, 212, 215 
multiple competing, 88, 197, 200, 

210, 215, 225 
performance-driven, 210 

optimal routing graph (ORG), 135 
optimal routing tree (ORT), ill 

Branch and Bound algorithm 
(BBORT), ill, 123, ill 

Steiner (SORT), 123 
Steiner Branch and Bound, 126 

Steiner, critical sink (SORT-C), 
123 

optimal Steiner algorithm (OPT), 
59, 61 

optimal-delay routing trees, 120, 
242 

partition 
cuboctahedral, 52, 54, 56 
diagonal, 50, 55 

partitioning rules, 191 
path, 225 

d-separating, 227-229 
critical, 65 
dependent, 10, 78, 84, 107, 120 
in graph, 7 
main, 242 
prescribed-width, 226 
timing-critical, 4, 84, 105, 107 
unique, I 
weight, 226 
width-d, 227 
minimum cost, I 

PEEL algorithm, 202, 207, 
209-210, 214 

performance ratio, 19 
A-tree, 95 
BPRIM, 73 
IlS, 24, 34, 36-37, 39, 61 
IZEL, 59 
KMB, 57 
MST, 19, 22-23, 2.5 
MST-Overlap, 26 
ZEL, 59 

performance-driven layout 
placement, 4, 65, 105 
routing, 69-70, 78, 100, 120, 127 

placement, 2, 4, 105 
module, 65 
routing mismatch, 107 
timing-driven, 65 

Planar-DME algorithm, 185, 192 
embedding rules, 185, 189, 191 



Index 

partitioning rules, 191-192, 194 
single pass DME, 186, 192 

planar-embeddable, 184, 186 
Plateau's problem, 13, 224 
polygonal obstacles, 235 
Prim's MST algorithm, 88, 103 
Prim-Dijkstra tradeoff, 10, 90, 119 

PD1 algorithm, 88, 96 
PD2 algorithm, 90 

problem 
BRMRT, 70 
BROST, 82 
CSRT, 105, 107, 113 
exact zero pathlength skew, 14 7 
graph Steiner minimal tree, 57 
MDT, 199 
minimum-density tree, 12, 199 
motion planning, 224 
Non-Uniform Bounded-Radius 

Minimum Routing Tree, 84 
ORG, 135 
pathlength-balanced tree, 11. 147 
planar subdivision search, 44 
planar zero-skew clock routing, 

184 
Plateau's, 13 
prescribed-width path (PWP), 

13, 229, 232, 235 
RSMT, 18-19, 25, 30 
Steiner minimal tree (SMT), 8, 

17, 147 
three-dimensional SMT, 47 
wiresizing, 130-132 
zero-skew clock routing, 143-144, 

146 
radius, 66, 79, 108, 166 
rectilinear Steiner arborescence 

(RSA), 70, 92, 107 
region, 225, 235-236 
reliability, 6, 8 
resistance ratio, 69 
RLC interconnect, 245 

RLCG interconnect, 242 
routing, 3, Q. 

FPGA, 13 
global, 4, 18 
grid, 198 

285 

high-performance, 4 
minimum-area surfaces, 13 
minimum-cost, 69 
minimum-delay, 65, 120 
monotone, 18, 26, 108-109, 122, 

130, 154, 184, 202, 212 
multi-layer, 47 
non-tree, 134 
objective (see objective), 10 
prescribed-width, 13, 223-225 
region, 228 
resources, 198 
single-layer, 141, 184 
single-net, 6 
timing-driven, 65 
topology, 4 
tree, 64, 199 
zero-skew (see ZSCR), 11 

separability, 26, 130 
SFC algorithm, 156-157 
shallow-light, 77, 84, 86 

Bounded Radius Bounded Cost 
(BRBC), 10, 78-79, 82, 85, 
96, 102, 212 

KRY, 86, 96, 99 
shortest paths tree (see Dijkstra's 

SPT), 70 
signal delay, 64-65, 98 
signal net, Q., 66, 70, 84, 199 

bounding box, 18, 23, 29, 35 
radius, 66 
terminal, Q., 37 

simultaneous optimization, 12, 197 
sink, Q., 17, 143 
skew, 144 

allowed, 183 
bounded, 11-12, 141, 145, 192 



286 

clock, 140-141, 142, 146, 159 
pathlength, 146, 151, 157, 161, 

211-212 
prescribed, 11, 141, 165, 183, 194 
zero, 11, 141, 144-145, 151, 

162-163, 177, 183 
source, Q, 17, 144 
SP algorithm, 155, 157 
spanning arborescence, 70 
spanning tree, 36, 204, 207, 210 
stabbing number, 199, 210 
Static Greedy Wiresizing 

algorithm (SGW), 131-132 
static timing analysis, 105 
Steiner ERT, 105 
Steiner optimal routing tree 

(SORT), 123 
Steiner 

arborescence, 70 
candidates (see Hanan's theorem, 

Steiner .candidate set), 18 
minimal tree problem (SMT), 17 
point, 8, 19-20, 28, 45, 61, 201 
tree, 31, 41, 47, 100, 146, 

148-150, 160-161, 200, 207, 
209 

bounded radius, 81 
greedy heuristics, 29, 31 
in graphs, 41 
minimum-cost, 26, 107 
rectilinear, 26 

Steiner, critical sink (SERT-C), 65 
T-star, 123, 126 
tapping point (see balance point), 

164 
technology parameters 

IC1, 69, 99, 119, 126 
IC2, 69, 115, 119, 127, 250 
IC3, 69, 119, 127 
MCM, 69, 99, 116, 119, 127, 250 

topology generation, 11, 140-141, 
194 

tree 
bottleneck shortest paths, 90-91 
capacitance, 246 
clock (see clock tree), 144 
cost of, 7, 23, 30, 56, 70, 212 
high-performance, 67 
maximum performance, 70 
minimum spanning (see MST), 

209 
pathlength-balanced, 140, 146, 

151, 157, 161 
planar-embeddable, 184 
radius of, 66, 70 
shortest paths, 70 
spanning, 70 
zero-skew (see zero-skew tree), 

141 
two-pole delay 

(see delay estimate, two-pole), 
242 

uniqueness property, 50-54 
strict, 54-56 

via, Q, 12, 184 
VLSI CAD, 1-.f, 7, 14, 23 
weighted graph (see graph, 

weighted), I 
wiresizing, 65, 128-130 

dominance property, 132 
monotone property, 130 
separability property, 130 

Zelikovsky algorithm (ZEL), 43 
zero-skew tree, 141, 144, 165, 169, 

174, 185, 188, 192 




