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On Performance Bounds for a Class of Rectilinear
Steiner Tree Heuristics in

Arbitrary Dimension

Andrew B. Kahng and Gabriel Robins

Abstract-We give a family of examples on which a large class C of

"minimum spanning tree-based" rectilinear Steiner tree heuristics has

performance ratio arbitrarily close to 3/2 times optimal. The class C

contains many published heuristics whose worst-case performance ra-

tio, were previously unknown. Of particular interest is that C contains

two heuristics whose worst-case ratios had been conjectured to be

bounded away from 3/2, and our construction also points out an in-

correct claim of optimality for one of these heuristics. Our examples

also force worst-possible behavior in a number of heuristics outside C.

The construction generalizes to d dimensions, where the heuristics will

have performance ratio of at least (2! - I Id); this improves the pre-

vious lower bound on performance ratio in arbitrary dimension.

1. INTRODiC-11ON

The minimum rectilinear Steiner tree (MRSTI problem has been

cxtensively studied in VLSI layout because solutions correspond to

optimal circuit wiring in the LI (Manhattan) norm. The problem is

defined as follows:

The MRST Problem: Given a set P of points in the L, plane,

determine a set S of Steiner points such that the minimum span-

ning tree on P U S has minimum cost.

Here, the cost of a tree is the sum of the costs (LI lengths) of its

edges. The MRST problem is NP-complete [51. and a number of

heuristics have been proposed. Hwang [9] showed that the rectilin-

ear minimum spanning tree (MST) is itself an approximation to the

MRST with worst-case ratio cost(MST)/cost(MRST) < 3/2.

This result, along with efficient methods for computing the MST

of a planar point set, has motivated a number of MRST heuristics

which start with an MST construction and then improve the solu-

tion by various methods (c-g., overlapping edges to induce Steiner

points). Instances of this approach include the work of Hasan, Vi-

jayan, and Wong 171, Ho, Vijayan, and Wong [8], Hwang [11,

Lee, Bose, and Hwang [141, and Lee and Sechen 115]. Other heu-

ristics, such as those discussed by Bern [I], Bern and Carvalho [21,

Richards [17], and Servit [18], emulate the classic MST construc-
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tions of Kruskal and Prim [13], [16] while building the Steiner tree.

As noted by Richards 117] and in such surveys as those of Hwang

[10] and Winter [20], these methods yield very similar results on

random instances, i.e., heuristic Steiner tree cost 8% to 9% less

than MST cost on average.

Since these Steiner tree constructions cannot have greater cost

than the minimum spanning tree, the bound Of 3/2 proved by

Hwang is a trivial upper bound on the worst-case performance ratio

of these heuristics. However, the actual performance ratios for

many "MST-based" methods have remained unknown. At times

there has been hope that certain methods might be provably better

than the simple MST approximation (e.g., [12]; the algorithms of

Bern [1] and Ho, Vijayan, and Wong [8] are two more recent ex

atiples).

This paper shows that any Steiner tree heuristic in a very general

class C of "MST-based" methods will have worst-case perfor-

mance ratio arbitrarily close to 3/2, i.e., the same bound as for

the MST itself. This result is based on two simple constructions.

We then show that many published heuristics [1], [21, [7], [8],

112], [17], [18] with previously unknown worst-case behavior fall

into the class C, and thus we simultaneously resolve a number of

error bounds. Our construction also points out a recent incorrect

claim in [8] that the two heuristics of [8] yield optimal Steiner trees

on a certain class of inputs. Furthermore, our examples also estab-

lish a lower bound of 3/2 on performance ratios for other heuristics

which are not in the class C, e.g., [12], 114], [19]. Finally, the

examples generalize to d dimensions, where all of these heuristics

will have error bound of at least (2d- I)/d. The previous lower

bound on the performance ratio was 2(d l)/d [4], [6]. From

these results, it seems doubtful that the popular MST-based ap-

proach will ever afford a better worst-case ratio than the simple

MST bound of 3/2.

11. COUNTEREXAMPLES FOR Two DiMENSIONS

We begin this section by discussing two common approaches to

constructing a heuristic Steiner tree in the Manhattan plane. We

exhibit pathological examples for these methods and then show that

the same instances will force a 3/2 performance ratio for an entire

class C of Steiner tree constructions.
The first popular approach to the MRST problem starts with a

rectilinear MST and computes a Steiner tree by ''overlapping"

edges of the MST as much as possible, as shown in Fig. 1. Clearly,

the result cannot have cost greater than the MST cost. A general

template for this MST-Overlap heuristic is as follows:

MST-Overlap:
Input: fixed rectilinear MST
Determine a shorter Steiner tree which lies completely within

the union of bounding boxes of the MST edges.

A number of authors have explored this idea, including Hwang

[11], Lee, Bose, and Hwang [14] and Lee and Sechen [15]. Ho,

Vijayan, and Wong [81 recently gave the surprising result that the

optimal RST derivable in this fashion can be computed in linear

time; thus, their method is strictly better than those of [11], [14],

and [15]. Several researchers conjectured that the worst-case per-

formance ratio of the new method in [8] was less than 3/2. How-

ever, the example of Fig. 2 forces a sharp performance bound of

eractly 3 /2.

Note that the authors of [8] define a separable MST to be one

whose edge bounding boxes do not intersect except at their borders,
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Fig. 1. Optimal overlap of MST edges within their bounding boxes.
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cost (MST-Overlap )/cost(MRST) = 3/2

holds. (a) MRST (cost = 20); (b) any Steiner tree derived from this MST
will have cost = 30.

and their linear-time algorithm actually finds optimal overlaps for
separable initial MSTs (the MST of Fig. 2 is not separable). How-
ever, even when we insist that the starting MST be separable, we
can still force a performance ratio arbitrarily close to 3/2, as il-
lustrated in Fig. 3. Fig. 3(a) shows a separable MST on a pointset
where the strict equality cost(MST)/cost(MRST) = 3/2 holds;
Fig. 3(b) shows a perturbation of the pointset such that the MST
is unique; and Fig. 3(c) shows the optimal Steiner tree topology
for both cases.

The example of Fig. 3(a) is separately included since it points
out a misstatement [8, p. 192]: "Both the algorithms produce the
optimum Steiner trees for each member of the class of point sets
whose optimal RST has a cost which is 2/3 that of the cost of the
MST." This refers to the so-called S-MST and L-MST algorithms,
which rely on the scparable-MST (SMST) construction in [8, p.
187]. It is straightforward to verify that on the pointset shown in
Fig. 3(a), the tie-breaking rules of the SMST construction in [8]
will force the initial separable MST to be exactly that shown in the
figure. Edge overlapping improves this only marginally to the so-
lution shown in Fig. 3(d), implying a performance ratio arbitrarily
close to 3/2, even though the optimal RST indeed has a cost ex-
actly 2/3 that of the MST.

Fig. 3 also shows that a "folklore" heuristic and its variants,
described in [17] and ascribed to Clark Thompson by Bern [1], [2],
has worst-case performance ratio arbitrarily close to 3/2. We refer
to this second generic type of construction as the Kruskal-Steiner
heuristic, since it is an analog of Kruskal's MST construction [131:

Kruskal-Steiner:
Input: n isolated components (points)
Until one component remains, connect the closest pair of

components.

Variants in the literature differ mostly in their definitions of
"closest pairs" of components, but the example of Fig. 3(b) is

immune to these distinctions. When any variant of Kruskal-Steiner
is executed on the pointset of Fig. 3(b), it will start at the left end
and alternate between the middle, top, and bottom rows, adding a

a a * * p

U a
(d)

Fig. 3. An example of a separable MST where cost(MST-Overlap)/
cost(MRST) is arbitrarily close to 3/2. For n points, any Steiner tree de-
rivable from the separable MSTs of (a) or (b) will have cost 2(n - 2),
while the MRST (c) has cost (4 /3) - (n - 1), yielding a performance ratio
arbitrarily close to 3/2 for large enough n In (d), we show the best pos-
sible RST that can be produced by any MST-Overlap or Kruskal-Steiner
heuristic.

single horizontal segment to each in turn. Therefore, the Steiner
tree will consist entirely of straight horizontal line segments, ex-
cept at the starting left end, and its cost will be arbitrarily close to
3/2 times optimal. Note that the e perturbations in Fig. 3(b) force
the alternation between rows and make the heuristic construction
completely deterministic.

The MST-overlap and Kruskal-Steiner heuristics form part of a
very general class C of greedy Steiner tree methods. We now define
the class C and show that the example of Fig. 3 is pathological for
the entire class C.

Recall that the heuristic Steiner tree is a minimum spanning tree
on the union of an input pointset P and a set of Steiner points S.
We define an edge as any wire connecting two points in P U S.
The following terminology is used to denote progressively more
general connection types: I) a point-point connection is an edge
between two points of P; 2) a point-edge connection is a wire be-
tween a point of P and an edge, inducing up to one Steiner point;
and 3) an edge-edge connection is a wire between two edges, which
may induce up to two Steiner points.

We say that a greedy algorithm iteratively selects the best alter-
native from among all available alternatives. In the following def-
inition, the iterative algorithms in C are greedy with respect to
Manhattan edge length. The class C is defined as follows:

Heuristic H e C
Input: n isolated components (points of P)
While there is more than one connected component do:

Select a connection type (point-point, point-edge, or edge-
edge);
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Connect the closest pair of components greedily with re-

spect to this connection type,

Optionally at any time, reroute any edge within its bounding

box:

Optionally at any time, eliminate any edge overlap.

Theorem 1: Any heuristic in the class C will have performance

ratio arbitrarily close to 3 /2.

Proof. TIhe MST of the pointset depicted in Fig. 3(b) is clearly

unique, since all interpoint distances of length < 3 are unique. Even

if general connection types are allowed, all connections in the MST

will be simple horizontal point-point connections except for ex-

actly two connections, from the top row to the middle row and from

the middle row to the bottom row. The greedy routing of every

edge but these two is unique, since all edges except these two have

degenerate bounding boxes. Note that no improvement is possible

by edge rerouting within these degenerate edge bounding boxes.

Therefore, no heuristic in C can do better than the result depicted

in Fig. 3(d). Since the effect of the optional rerouting of the two

nondegenerate connections becomes negligible as the pointset

grows large, the performance ratio is arbitrarily close to 3/ 2. L

We now list a number of published heuristics with previously

unknown performance ratio, all of which are shown by Theorem I

to have error bounds arbitrarily close to 3/2. We do not reproduce

the various authors' descriptions of each algorithm that we mention

here, since it is very easy to see from the high-level classification

that these algorithms are indeed in C. Algorithms which follow a

greedy Kruskal-typc construction satisfy the verbatim definition of

the class C: these include the methods of Hwang [I ll and Lee and

Sechen [15], in addition to methods described in Bern [11, 12],

Richards [171, and Servit [181. It is also easy to see that algorithms

which start with an initial MST and then overlap rectilinear edges

within their bounding boxes, such as those of Hasan, Vijayan, and

Wong [7] and Ho, Vijayan, and Wong [8]. are members of C, since

using only point-point connections will build an MSI, and the op-

tional rerouting is then used to induce edge overlaps. Interestingly,

exponential-time methods can also fall into the class C, e.g., the

suboptimal branch and-bound method of Yang and Wing [21].

Theorem I implies that all of these methods have the same worst-

case error bound as the simple MST.

Finally, the counterexample of Fig. 3 also establishes new lower

bounds arbitrarily close to 3/2 for the performance ratios of sev-

eral heuristics not in C, such as the three-point connection methods

of Hwang [12] and Lee. Bose, and Hwang [141, and the Delaunay

triangulation-based method of Smith, Lee, and Liebman [191. This

is easy to verify using the pointset in Fig. 3(b): as with the heuris-

tics in C, these latter methods are severely constrained by the na-

ture of the unique minimum spanning tree.

We note that the recent work of De Souza and Ribiero [31 con-

structs a similar instance to that of Fig. 3 and also discusses the

worst-case performance of RS'I heuristics. However, the work of

[31 is limited to two dimensions, while Section III below extends

our construction to yield new bounds in higher ditiensions. More

importantly, the work of De Souza and Ribiero is concerned solely

with several specific algorithms and thus does not establish a gen-

eral result as we do in Theorem 1.

III. EXTENSIONS TO HIGHER DIMENSIONS

Most rectilinear Steiner tree heuristics, including the MST-Over-

lap and Kruskal-Steiner variants, extend to higher dimensions and

are of special interest for emerging multilayer packaging and

"three-dimensional" process technologies. However, the exam-

(a)

(b)

Fig. 4. Ford = 3, the MRST (a) has cost 6 /5 (n - 1), while any MRST
derivable from the MST ( b) has cost 2 (n -3), yielding performance ratio

arbitrarily close to 5 / 3 for n large.

pIes of Figs. 2 and 3 also generalize to d dimensions and provide

new lower bounds on the performance ratio of heuristics in C. In

particular, the example of Fig. 3 generalizes to n - (2d- I)k +

I points for any given positive integer k' the cost of the optimal

Steiner tree is at most 2d (n -1)/(2d- 1), the cost of the (unique,

separable) MST is 2 (n - 1), and the cost of the best Steiner tree

derivable from this MST is 2 (n- d), as illustrated in Fig. 4 for d

= 3. Thus, in d dimensions the performance ratio of a heuristic in

class C will be arbitrarily close to (2d- I) l/d. This value improves

the lower bound for the worst-case MST/MRST ratio in higher di-

mensions from the previously known value of 2 (d - I) /d [4], [6].

IV. CONCLUSIONS

We conjecture that (2d I)/d is not only a lower bound, but

also a general upper bound for the worst-case performance ratio in

d dimensions of any MRST heuristic in C, Thus, (2d - I) /d would

be the higher dimensional analogue of Hwang's value of 3/2 for

two dimensions. The basic question remains whether there is an

MRST heuristic with worst-case performance ratio bounded away

from 3 /2. The result of Theorem I suggests that the "MST based"

approach, which has dominated the VLSI Steiner routing literature.

is not likely to yield such a bound.
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