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Abstract— New computing paradigms have underscored the
need to locate objects in an environment, motivating several ob-
ject localization approaches targeting competing technologies and
specific applications. While RFID technology recently emerged
as a viable platform for locating objects, several unresolved
key challenges precluded higher performance and wider appli-
cability. We present an RFID-based real-time location system
that uses Received Signal Strength (RSS) to better model the
distance-decaying behavior of radio signals in an orientation-
agnostic manner. We experimentally leverage the proposed robust
models to simultaneously locate several stationary and mobile
objects tagged with passive tags in a realistically noisy indoor
environment, with an average accuracy of 0.6 meters. A more
general conclusion of this work is that contrary to common belief,
RSS can indeed serve as reliable metric for a variety of select
applications, including localization.

I. INTRODUCTION

Locating objects is a key requirement in many emerging

computing paradigms. Active object localization research has

shown that different technologies such as sensors, WiFi, lasers,

and GNSS, combined with techniques based on signal arrival

time, signal phase, and signal strength can be used to locate

objects in an environment [11], [12].
Radio Frequency IDentification (RFID) technology has

demonstrated a potential for locating objects, particularly in

indoor environments [8]. While standard RFID technology

does not provide object localization capabilities, if this was

made possible, it would avoid several drawbacks of other

localization technologies, including a need for a direct line of

sight, a well-lit environment, a lack of occluding obstacles, and

radio signal availability [6]. Furthermore, RFID can potentially

be combined with GNSS-based location systems to provide

wider terrestrial coverage and higher performance [15].
Among previous RFID-based object localization ap-

proaches, Received Signal Strength (RSS) -based approaches

estimate the tag’s location by measuring the variation in the

tag’s backscattered signal power as the tag-reader distance

varies [13]. However, due to ambient noise sources such as en-

vironmental interferences, metal-liquid occlusions, multipath

propagation, and tag detection variability, RSS-based position

estimates can be unreliable and inaccurate [9].
In this paper, we show that tags have significant detection

variability which causes interference, and we propose a miti-

gation technique that selects tags based on their detection per-

formance. The resulting object localization approach utilizes

the selected tags to develop several RSS decay models that

establish the relationship between the tag-reader distance and

the tag’s RSS. We then use these models to construct a real-

time location system that can simultaneously locate multiple

stationary and mobile tags in a 3D indoor environment.

The behavior of a radio signal can vary greatly in a given

environment. Assuming the average environment-specific im-

pact on the tag’s RSS to be statistically invariant enables the

proposed approach to factor out the interfering environment,

with improved resilience to the tag’s RSS variation caused by

the tag’s orientation on its axis and around the reader (i.e.

axial-radial orientation).

We show, contrary to the common belief that RSS is

an unreliable parameter, that by carefully considering the

deployment scenario, the tag’s radio sensitivity, orientation,

and distance from the reader, RSS can be used to establish

a reliable empirical power-distance relationship for a variety

of select applications, including object localization. Further-

more, we demonstrate that by matching tag-reader pairs, the

proposed approach can provide high localization performance

without deploying tags at known positions (i.e. reference tags)

to help locate the target tags.

Moreover, our approach can perform dynamic in-situ cal-

ibrations to correct for possible performance drifts in order

to sustain higher localization accuracy and speeds. Thus, by

minimizing the tag detection variability and constructing an

interference-inclusive localization approach, reliable and high

performance object localization can be achieved in select

application scenarios (e.g. warehouses).

The remainder of the paper is organized as follows: Section

II provides a brief account of the background and related

work. In section III we introduce our systematic RFID-based

approach to locating objects using robust RSS decay models.

Section IV describes the experimental setup and methodology,

presents the results, and discusses their implications. We

conclude with future research directions in Section V.

II. BACKGROUND AND RELATED WORK

Existing RFID-based object localization approaches already

show promise in effectively addressing the problem of lo-

cating objects, especially in indoor environments. Numerous

approaches based on localization techniques based on signal

Angle of Arrival (AoA), signal Time of Arrival (ToA), signal

Time Difference of Arrival (TDoA), signal phase, and signal
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strength have been proposed [6]. In this paper, we focus on

signal strength -based indoor localization approaches.

Signal strength (and RSS) -based object localization ap-

proaches measure the radio signal’s propagation distance up

to the point where the signal begins to attenuate, in order to

estimate the tag-reader distance. Theoretically, tag-reader radio

signal strength and distance in the free-space can be defined

by the Friis transmission equation as given below [10]:

PR

PT
∝ GRGT

(
λ

4πD

)2

(1)

where PR is the power received at the receiver (i.e. a tag) and

PT is the power transmitted by the transmitter (i.e. a reader).

GR and GT are respectively the antenna gains for the tag and

the reader, λ is the radio signal wavelength, and D is the tag-

reader distance. Numerous signal strength -based approaches

have been proposed [3], [7], [9], [13], as briefly discussed

below.

Bekkali et al. [3] utilize two mobile readers, a probabilis-

tic RFID map, reference tags, and a Kalman filter -based

technique combined with RSS to estimate tags’ positions in

indoor environments with a root mean square accuracy in the

range of 0.5 to 1 meters. While their probabilistic techniques

(i.e. the RFID map and Kalman filter) may enable higher

accuracy, the overall approach is computationally expensive

and thus precludes real-time localization. Moreover, the overall

solution cost of their approach may be prohibitively expensive

economically due to its reliance on reference tags.

Brchan et al. [7] propose linear signal strength -based propa-

gation models combined with reference tags and trilateration to

locate stationary tags in indoor environments with an accuracy

of one meter. However, their approach is not scalable due to

the use of expensive active tags, dependence on reference tags,

and unrealistic radio signal propagation models.

Choi et al. [9] observe that tags have variable RSS properties

(but do not mitigate this), and use a k-nearest neighbor algo-

rithm and reference tags to locate the tags with an accuracy in

the range of 0.2 to 0.3 meters. Their approach also ignores the

fact that a tag’s detection probability is strongly dependent on

its axial-radial orientation, which in turn dramatically impacts

the overall localization performance [4], [5]. Consequently,

their approach may not be suitable in real-world applications

where tagged objects may have changing orientations.

Ni et al. [13] develop a location system that uses reference

tags and k-nearest neighbor algorithms to locate tags with an

accuracy of less than two meters. Their proposed system is

expensive when scaled due to the use of active tags. Moreover,

their approach is not real-time as it takes a large amount

of time to determine the tag’s location. Additionally, the

economic cost of their solution is further exacerbated by the

use of reference tags, thus making their approach impractical.

In addition to the above limitations, signal strength -based

object localization approaches are susceptible not only to

ambient interference sources such as environmental noise,

occlusions due to the presence of liquids and metals, multipath

propagation, tag-reader orientations, but also to the variabil-

ity inherent in radio-sensitive tags. While the environment’s

impact on RSS-based object localization has been widely ac-

knowledged, the role of variable tag sensitivity in localization

performance has surprisingly received little attention [8], [9].

Furthermore, state-of-the-art RFID readers can report tags’

RSS, which can be transformed into a coarse-grained relative

position estimates [1]. However, such position estimates are

calculated by the RFID reader via integrating the speed and

direction of motion of the tag over time with respect to a

fixed reference location. Thus, such an approach cannot be

used to determine a tag’s absolute position with a high degree

of accuracy.

To overcome the limitations of existing RSS-based object

localization approaches, we start with a large collection of

different-type tags, and select from it tags having the longest

read range and overall most uniform RSS behavior. We do this

for each kind of RFID reader, in order to determine the type of

tag that performs optimally with respect to that reader. We next

sort all the tags of the type that best suits each reader, based

on the measured RSS over different combinations of reader

output power levels and tag-reader distances, to ensure their

uniform operational behavior. We utilize these sorted/binned

tags to develop RSS decay models by characterizing their

performance with respect to axial-radial orientation. This

methodology effectively pairs readers with select tag types,

and enables our real-time location system to simultaneously

locate multiple stationary and mobile objects.

III. REAL-TIME RFID OBJECT LOCALIZATION

To develop robust RSS decay models to be used in the

proposed RFID-based real-time location system, empirical tag-

reader interaction data was collected in a realistic environment

having a variety of noise sources such as servo motors,

WiFi access points, and metal-liquid containers. We used

Alien ALR-9900+ and ThingMagic Mercury6 readers, and

Electronic Product Code (EPC) Generation 2 (Gen2) passive

tags operating in the ultra high frequency (UHF) band for

demonstrating the capabilities of the proposed system.

A. Tag Selection

Characterizing a reliable relationship between a tag’s RSS

decay and tag-reader distance requires taking into account

tag detection variability and orientation. Such characterization-

driven RSS decay models are inherently tag and reader depen-

dent. Therefore, to identify tags suitable for developing such

RSS decay models, we selected the tags based on their read

range and RSS behavior from a collection of 34 EPC Gen2

passive tag types. We focused on the tags having the longest

read ranges as this tends to minimize the number of deployable

readers for the targeted application scenario. Furthermore, tags

that have uniform RSS behavior over distance and reader

output power level combinations tend to also have a graceful

RSS decay and uniform localization performance.
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Fig. 1: The 34 EPC Gen2 passive tag types used for selection.

Figure 1 illustrates the collection of tag types (with overlaid

tag type IDs) used in the tag selection experiments. We

perform two sets of experiments using the ThingMagic and

Alien readers, in order to select the most effective tags from

the above collection. In the first experiment, we measured the

longest tag read distance for each tag in the collection. We

found that tag type IDs {2–4, 8–14, 16–23, 26–29, 31–34}
and {2–4, 8–10, 13, 14, 16, 19, 20, 22, 23, 26–29, 33, 34}
were readable at the maximum read distance of 9 meters by

the ThingMagic and the Alien reader, respectively.
In the second experiment, we measured the tags’ RSS

behavior over tag-reader distance and reader output power

level combinations using both readers for the tags that have

demonstrated the longest read ranges in the previous exper-

iment. To balance the experimental coverage and efficiency,

the distance was varied among the set {0.61, 1.83, 3.05}
meters while the reader output power level iterated over the

{19.6, 25.6, 31.6} dBm levels. Figures 2 and 3 present the

average RSS behavior distribution of the selected tags for

different power-distance combinations on the ThingMagic and

the Alien readers, respectively.
Note that the RSS values returned by the ThingMagic and

the Alien readers are in dBm units and unitless, respectively.

Among the tag types having the longest read ranges, Tag-10

and Tag-14 were the only tags that showed consistent RSS

behavior over the power-distance combination. For example,

Tag-10 and Tag-14 were the only tags that consistently showed

RSS activity when kept at a distance of 1.83 meters from both

the readers operating at an output power level of 19.6 dBm.

The leftover tags either did not have long read ranges and/or

did not exhibit uniform RSS behavior over the power-distance

combinations.
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Fig. 2: Average RSS of the selected passive tags using the ThingMagic
reader (Red arrow shows the Tag-10’s RSS at 19.6 dBm and 1.83 m).
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Fig. 3: Average RSS of the selected passive tags using the Alien reader
(Red arrow shows the Tag-14’s RSS at 19.6 dBm and 1.83 m).

By combining results from both the experiments, it is

evident that Tag-10 and Tag-14 are the best candidate tags

for the ThingMagic and the Alien reader, respectively. While

only one candidate tag per reader was found to be performing

optimally in our experiments, it is also possible to identify a

larger set of candidate tags per reader.

B. Tag Binning

A tag’s RSS behavior is not only affected by ambient

interference (e.g. multipath propagation, background noise due

to motors, etc.) but more importantly also by its variable radio

sensitivity. Tag radio sensitivity depends on the tag antenna

gain, chip high impedance state, and threshold power sensi-

tivity [14]. Due to manufacturing variability, small changes

in the tag’s onboard circuit components can cause dramatic

variations in the tag’s RSS behavior.

To understand the impact of a tag’s variable RSS behavior

on the object localization performance, consider two tags of

the same type but having different RSS behavior. The tag

with uniform RSS behavior will have well-defined RSS decay

leading to better position estimates than the tag that has

variable RSS behavior. Thus, after selecting the candidate tags,

we separately characterize the group RSS behavior of both of

(i.e. Tag-10 and Tag-14) the tag types.

To identify a uniformly sensitive set of tags from a large

group of a given tag type, we observe their RSS behavior over

a range of tag-reader distances and reader output power level

combinations, and measure the distribution’s central tendency.

We then sort (or bin) the tags of each type based on their RSS

behavior. Figures 4 and 5 illustrate the binning distribution of

500 tags of each tag type using the ThingMagic and the Alien

reader, respectively.
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Fig. 4: Tag binning distribution of 500 Tag-10s using the ThingMagic reader.
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Fig. 5: Tag binning distribution of 500 Tag-14s using the Alien reader.

TABLE I: Group RSS Behavior of Candidate Tag Types.

Mean and Standard Deviation of the Selected Tag-Reader Pairs
Tag-Reader Pairs (μ0.61, σ0.61) (μ1.83, σ1.83) (μ3.05, σ3.05)

[Tag-10, ThingMagic] (-59.02, 0.56) (-68.22, 3.46) (-70.99, 2.68)
[Tag-14, Alien] (5076.84, 272.74) (1256.37, 316.01) (1109.97, 161.01)

For the tag binning experiment, reader output power level

is varied over the values {19.6, 25.6, 31.6} dBm while tag-

reader distance is gradually increased over the distances

{0.61, 1.83, 3.05} meters. The intervals used in these sets of

experiments were kept consistent with the previous experi-

ments to derive correlated inferences. As illustrated above, tag

binning distribution is a collection of distance measurement

point -based Gaussian distributions. Table I illustrates the

mean (μ) and the standard deviation (σ) for the [Tag-10,

ThingMagic] and the [Tag-14, Alien] tag-reader pairs, at tag-

reader distances of 0.61, 1.83, and 3.05 meters.

The mean and standard deviation are also shown in the Fig-

ures 4 and 5 using the blue (for 0.61 meters), green (for 1.83

meters), and red (for 3.05 meters) dotted-lines. For selecting

the uniformly sensitive tags, we use a 2σ filtering window

about the mean for each tag binning distribution shown above.

For example, considering the Alien reader and the Tag-14

type, the filtering window at 0.61 meters is 545.48 about the

mean, thus allowing Tag-14 type tags to be selected from

the RSS interval [4531.36, 5622.32]. The filtering window can

be suitably adjusted to arrive at application-specific tradeoffs

between the number of tags available and the quality of their

RSS behavior (e.g. relaxing the filtering window to 4σ selects

more tags having less uniform RSS behavior, while restricting

the filtering window to 1σ selects fewer tags having more

uniform RSS behavior).

By counting the tags present within the filtering window

at each of the power-distance combinations and eliminating

the duplicates we get 66 % tags (i.e. 330 out of 500) of type

Tag-10 and 73.8 % tags (i.e. 369 out of 500) of type Tag-

14 for the ThingMagic and the Alien reader, respectively, that

are uniformly sensitive. All the subsequent experiments were

based with these selected uniformly sensitive tags.

C. RSS Decay Models

The goal of the proposed RSS decay models is to reliably

characterize and establish the relationship between the tag’s

RSS behavior and the tag-reader distance.
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Fig. 6: Measuring RSS using antenna radiation pattern and tag orientation.

A tag’s RSS behavior is continually changing due to am-

bient environmental interference, tag-centric variable radio

sensitivity, and orientation [2], [17]. The ambient environ-

ment’s impact can be minimized by ensuring that the operating

environment usually remains unchanged. Thus, such ambient

noise can be considered statistically invariant when developing

RSS decay models that characterize tag’s integral variable

radio sensitivity with respect to its axial-radial orientation.

Furthermore, knowledge of the reader antenna’s radiation

pattern helps in determining its shape, which aids in the

development of above models (see Figure 6).
In the development of RSS decay models, we initially kept

the reader output power level constant at 31.6 dBm and varied

the tag-reader distance over the range [0, 3.30] meters in steps

of 0.127 meters. We rotated the tag on its axis and around

the reader’s antenna over the interval [0◦, 90◦] in steps of 15◦

(for axial measurements) and 30◦ (for radial measurements),

respectively. We also measured the tag’s RSS at 270◦ to ensure

efficient coverage of the reader antenna’s radiation pattern.

Figures 7, 8, 9, and 10 show Tag-10 and Tag-14 axial-radial

orientation based RSS behavior for both readers.
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Fig. 7: RSS decay for [Tag-10, ThingMagic Reader] – Axial Orientation.
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Fig. 8: RSS decay for [Tag-14, Alien Reader] – Axial Orientation.
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Fig. 9: RSS decay for [Tag-10, ThingMagic Reader] – Radial Orientation.

 

0 Degrees 
30 Degrees 

60 Degrees 
90 Degrees 

270 Degrees 
0.00 

10.00 

20.00 

30.00 

0.13 0.64 1.14 1.65 2.16 2.67 3.18 

Av
er

ag
e 

R
SS

 [i
n 

Th
ou

sa
nd

s]
 

0.00-10000.00 
10000.00-20000.00 
20000.00-30000.00 

Fig. 10: RSS decay for [Tag-14, Alien Reader] – Radial Orientation.

Peak RSS behavior shown in Figure 10 for the Alien reader

is due to the combination of the reader antenna’s radiation

pattern and the tag’s orientation-dependent antenna response.

RSS decay models based on the above characterization tend to

provide sustained average-case high object localization perfor-

mance for different application scenario driven deployments.

Using the methodology described above, we developed several

axial-radial orientation based RSS decay models having the

following general expression format:

RSS = C ·DE (2)

where RSS, C, D, and E are the received signal strength

value returned by the reader, coefficient, tag-reader distance,

and the exponent, respectively. Two separate goodness-of-

fit measures, R2 and normalized root mean square error

(NRMSE), were used to select the best possible curves that fit

the tag orientation specific RSS behavior. Table II illustrates

the average RSS decay models for both the tag-reader pairs.
After the development of the RSS decay models, target

tagged stationary and mobile objects are located by measuring

the target tag’s RSS in real-time and using planar-spatial

trilateration combined with Equation 2 [19].

TABLE II: RSS Decay Models

Average RSS Decay Model for the [Tag-10, ThingMagic] Tag-Reader Pair

Degreea Coefficent (C) Exponent (E) R2
b ∈ [0.0, 1.0] NRMSEc ∈ [0.0, 1.0]

0◦ − 270◦ -53.17 0.29 0.91 0.07
Average RSS Decay Model for the [Tag-14, Alien] Tag-Reader Pair

Degree Coefficent (C) Exponent (E) R2 ∈ [0.0, 1.0] NRMSE ∈ [0.0, 1.0]
0◦ − 270◦ 3246.76 -0.89 0.96 0.04
a inclusive of tag axial-radial orientations
b for R2 value closer to 1 indicates better fit
c for NRMSE values closer to 0 indicates better fit

The proposed real-time location system can exhibit some

spatio-temporal drifts, which can be mitigated by performing

periodic and on-demand in-situ calibration. We outline two

calibration methods here to help provide sustained object lo-

calization performance. In the first method, uniformly sensitive

reference tags combined with k-nearest neighbor algorithms

can be used to help calibrate the coefficient and the exponent.

In the second method, the RSS decay models can dynamically

evolve by using sensor tags that can measure different ambient

conditions such as temperature, pressure, and humidity [16].

IV. EXPERIMENTAL EVALUATION

To experimentally evaluate the proposed real-time location

system, a realistically noisy environment having 16 cubic-

meters volume was set up (see Section III for details on the

type of noise sources). Additionally, a Lego Mindstorms based

track driven robot system was developed to wirelessly control

and move the target tags. RFID readers equipped with four

antennas were connected to a host PC (with an AMD Athlon

64 processor running at 2 GHz with 1 GB RAM). The reader-

reported real-time RSS values were routed to the host running

the models for locating the target objects.

For visualization purposes, the real-time position estimates

were wirelessly transmitted to modern tablet computers (an

iPad and a Samsung Galaxy). The mobile robots moved

along the track at speeds of up to 0.2 meters/second. We

designated five different antennas as (X1,Y1,X2,Y2,Z) in

the 3D space and use four different antenna-pair combina-

tions (i.e. (X1,Y1,Z), (X2,Y2,Z), (X1,Y2,Z), (X2,Y1,Z))
when computing the target tag position estimates. Figure 11

illustrates the experimental setup.

We simultaneously located several stationary and mobile

objects in 3D space by placing three objects at several lo-

cations while adjusting their heights to three levels. Figure

12 and 13 depict the actual and measured average Euclidean

distance for the three stationary and mobile objects from a

reference origin using the two tag-reader pairs. The measured

average Euclidean distances closely track the corresponding

actual distances of the target objects.
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Fig. 12: 3D stationary object localization accuracy.
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Fig. 13: 3D mobile object localization accuracy.

However, there are a few locations where the localization

accuracy variation is slightly larger than the overall local-

ization accuracy distribution (e.g. measurement point 3 in

Figure 12 and measurement points 8 and 10 in Figure 13).

Such variations are due to the reader antenna’s radiation lobe

pattern, thus causing some measurement points to be located

in radio “blind spots”. This phenomenon can be mitigated by

using additional antennas with overlapping detection regions.

We found that the combined 3D stationary and mobile

object localization accuracy for the [Tag-10, ThingMagic]

and the [Tag-14, Alien] tag-reader pairs lies in the interval

[0.3, 1.21] and [0, 1.14] meters, respectively. Furthermore, the

overall average 3D object localization accuracy for both the

tag-reader pairs was determined to be 0.6 meters, comparing

favorably with previous works. Considering that the above

results were obtained without using any reference tags, the

overall object localization performance of the proposed real-

time location system can be further improved. The above

localization experiments were conducted over a six month

period to ensure consistency amidst ambient interference.

V. CONCLUSION AND FUTURE WORK

We presented an RFID-based robust RSS decay model -

driven real-time location system that can accurately locate

multiple stationary and mobile objects in a 3D space. Our

localization performance results compare favorably with other

state-of-the-art RFID-based localization systems [3], [7], [9],

[13]. We thus dispelled a common misconception, by showing

that RSS can indeed be used as a reliable metric for object

localization (among other possible applications), by consid-

ering select deployment scenarios, the tag’s radio sensitivity,

orientation, and its pairing with and distance from the reader.

While our system does not use any reference tags, it would

still be interesting to investigate the utility and economics

of deploying reference tags towards further improving the

localization performance. Different combinations of RFID

hardware, RSS decay models, automatic calibration proce-

dures, and the economics of scalability should also be investi-

gated. Finally, we should study the efficacy of robust RSS in

applications beyond object localization.
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