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Abstract

We provide a new theoretical framework for con-
structing Steiner routing trees with minimum Elmore
delay. Earlier work [3, 13] has established Elmore delay
as a high �delity estimate of \physical", i.e., SPICE-
computed, signal delay. Previously, however, it was
not known how to construct an Elmore delay-optimal
Steiner tree. Our main theoretical result is a generaliza-
tion of Hanan's theorem [11] which limited the number
of possible locations of Steiner nodes in an optimal delay
rectilinear Steiner tree. Another theoretical result es-
tablishes a new decomposition theorem for constructing
optimal-delay Steiner trees. We develop a br anch-and-
bound method, called BB-SORT-C, which exactly min-
imizes any linear combination of Elmore sink delays;
BB-SORT-C is practical for routing small nets and for
delimiting the space of achievable routing solutions with
respect to Elmore delay.

1 Introduction

Due to the scaling of VLSI technology, interconnec-
tion delay dominates the design of high-performance
systems [8, 17]. Performance-driven routing has thus
received considerable attention; a typical goal is to min-
imize average or maximum source-sink delay in a given
signal net. Early work, e.g. [9], implicitly equated opti-
mal routing with minim um-cost Steiner routing. More
recent works recognize that delay minimization and wire
length minimization can be far from synonymous. Co-
hoon and Randall [5] consider both the cost (total edge
length) and the radius (longest source-sink path length)
of the heuristic routing tree. Cong et al. [6] use a pa-
rameter � to guide the tradeo� between cost and ra-
dius minimization; Alpert et al. [1] achieve a more
direct cost-radius tradeo� between minimum spanning
tree and shortest path tree constructions; and Cong et
al. [7] propose the use of rectilinear Steiner arbores-
cences [15].

�Partial support for this work was provided by NSF MIP-
9110696, NSF Young Investigator Award MIP-9257982, ARO

DAAK-70-92-K-0001, and ARO DAAL-03-92-G-0050.

Such previous routing methods have essentially \ge-
ometric" objectives which are di�cult to tune to spe-
ci�c technology parameters. Boese et al. [2] have ad-
dressed this aw with a construction that greedily opti-
mizes Elmore delay directly. Supporting investigations
in [3] demonstrate that Elmore delay has high �delity
to physical (SPICE-computed) delay (i.e., near-optimal
Elmore delay implies near-optimal SPICE delay). This
con�rms earlier studies by Kim et al. [13] and Vlach et
al. [19].

A natural question at this point is: How much bet-
ter is possible? What is the performance envelope for
routing tree constructions? Boese et al. [3] used branch-
and-bound to construct optimal Elmore delay spanning
trees and found that the Elmore Routing Tree (ERT)
construction of [2] is on average only 2.3% above op-
timal for 7-pin nets. The more signi�cant open ques-
tion concerns the near-optimality of Steiner tree heuris-
tics: the essential di�culty has been a potentially un-
bounded number of candidate Steiner node locations,
which makes even branch-and-bound impossible.

In this paper, we present new theoretical results
that allow construction of Elmore delay-optimal Steiner
trees. Our key result restricts the Steiner nodes in
an optimal Elmore delay rectilinear Steiner tree to the
\Hanan grid," generalizing a theorem of Hanan for min-
imum cost Steiner trees [11]. Using this restriction and
a new decomposition theorem (which also applies to
minimum-cost Steiner trees) we show how branch-and-
bound can construct a Steiner Optimal Routing Tree
(SORT). Our results also give new restrictions on the
structure of a SORT. Our experimental results estab-
lish that the SERT-C and SERT constructions of [2]
are on average within only 5% of optimal for 5-pin nets
and within 16% of optimal for 9-pin nets, depending on
the technology parameters.

2 Preliminarie s

Previous performance-driven routing constructions
generally address net-speci�c objectives (cost, radius,
cost-radius tradeo�s, etc.) rather than sink-speci�c ob-
jectives which exploit the critical-path information typ-
ically available from iterated placement and routing
phases of performance-driven layout. [2] showed that a
signi�cant timing improvement is achieved by minimiz-
ing delay to a single critical sink, with only a small tree
cost penalty as compared to the 1-Steiner algorithm of
[12]. Thus, we use the critical-sink problem formulation
of [2].
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A signal net N consists of a set of pin locations
fn0; n1; :::; nkg in the Manhattan plane, which are to be
connected by a routing tree T (N ). Location n0 is desig-
nated to be the source, with the ni locations (1 � i � k)
denoting sinks. The cost of an edge in T (N ) is the Man-
hattan distance between its endpoints. The cost of a
routing tree T (N ) is the sum of its edge costs. Elmore
delay in T (N ) between n0 and sink nj is denoted by
t(nj). Finally, each sink ni is given an associated level
of criticality, �i � 0. Our goal is to solve the

Critical-Sink Routing Tree (CSRT) Problem:
Given signal net N , construct T (N ) which minimizes

Pk

i=1�i � t(ni).

2.1 Elmore Delay

Elmore delay [10, 16, 18] is a distributed RC delay
approximation de�ned as follows. Given routing tree
T (N ) rooted at the source n0, let ev denote the edge
from node v to its parent in T (N ). The resistance and
capacitance of edge ev are denoted by rev and cev , re-
spectively. Let Tv denote the subtree of T rooted at
v, and let cv denote the sink capacitance of v (cv = 0
if v is a Steiner node). We use Cv to denote the tree
capacitance of Tv, namely the sum of sink and edge ca-
pacitances in Tv. Using this notation, the Elmore delay
along edge ev is equal to rev(

cev
2 + Cv). Let rd denote

the output driver resistance at the net's source. Then
Elmore delay t(ni) at sink ni is:

t(ni) = rdCn0 +
X

ev2path(n0;ni)

rev(
cev

2
+ Cv)

2.2 The \Elmore Routing Tree" Approach

The greedy Elmore routing tree (ERT) approach of [2]
minimizes Elmore delay directly during the construction
of a routing tree. The ERT algorithm for spanning trees
is analogous to Prim'sminimumspanning tree construc-
tion [14]: starting with a trivial tree containing only the
source, ERT iteratively �nds a pin ni in the tree and a
sink nj outside the tree so that adding edge (ni; nj)
yields a tree with smallest delay in the growing tree1.

ERT extends to Steiner routing by allowing each new
pin to connect to an edge rather than to a pin in the ex-
isting tree. Connections to an edge are always made so
that the induced Steiner node is located at the point
on the edge closest to the new pin. (The exact place-
ment/embedding of an edge is allowed to vary within
its bounding box.) Very substantial delay savings for
all of the ERT variants are reported in [2]; moreover,
the ERT approach is e�cient because Elmore delay to
all sinks can be evaluated in linear time.

2.3 Summary of Algorithms

The rest of this paper will concentrate on the follow-
ing high-performance Steiner routing methods.2

1For routing with a single critical sink, ERT starts with one
edge between n0 and the critical sink.

2Note that SERT and SERT-C can also be easily extended to

handle multiple critical sinks by routing critical sinks by SERT
and then non-critical sinks by SERT-C.

1-Steiner best performing e�cient heuristic for

minimum-cost Steiner trees [12].

SERT greedy heuristic for minimizing maxi-

mum sink Elmore delay [2].

SERT-C modi�cation of SERT to minimizing de-

lay at a single critical sink [2].

BB-SORT Branch-and-Bound for Steiner Optimal

Routing Trees minimizing maximum

sink delay.

BB-SORT-C Branch-and-Bound for Steiner Opti-

mal Routing Trees with Critical sinks

for minimizing a linear combination of

delays.

3 Theoretical Results

We use the following short-hand conventions. \De-
lay" will always be Elmore delay; \max delay" is the
maximum source-sink delay in the net. Finally, a
Steiner node is \on the Hanan grid" if it is located at
the intersection of horizontal and vertical lines through
pins in the net.

3.1 CSRT is NP-Hard

For any given set of circuit parameters3, the mini-
mum cost Steiner tree problem can be reduced to the
CSRT problem for a single critical sink, as shown in
Figure 1. The \generic" variant of CSRT, which seeks
to minimize maximum sink delay, can use the the same
reduction by setting nc far away from n0 so that the
maximum delay occurs at nc.

N’ N

nc n0

Figure 1: Proof that the CSRT problem is NP-Hard:
minimum-cost Steiner tree instance (N) reduces to a CSRT
instance (N 0) with critical sink nc directly left of the pin n0
in N with smallest x-coordinate. t(nc) is minimized by a tree
with edge (n0; nc) plus the min-cost Steiner tree over N .

3.2 Branch-and-Bound for Optimal Delay
Steiner Trees

The branch-and-bound method of [3] for optimal
spanning trees starts with a tree containing the source
and incrementally adds sinks to a growing tree while
evaluating delay at each step. When the delay exceeds
that of any complete tree seen so far, the search is

3Unit resistance, unit capacitance, loading capacitances, and
driver resistance; wire sizing is not considered in our formulation.

2
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pruned and the algorithm backtracks. The algorithm
avoids redundant testing of topologies by adding sinks
in breadth-�rst order, with sinks with the same parent
connected in increasing index order. In this way, any
tree topology will correspond to a unique ordering of
the sinks and can be tested by the algorithm at most
once.

We modify the method of [3] to �nd the optimal delay
Steiner tree by assuming that an optimal tree can al-
ways be constructed iteratively by connecting a sink by
a new edge directly to the source or by a closest connec-
tion to some edge in the current tree4. The modi�cation
is simply that connections are considered to each edge in
the current tree (plus the source), rather than to each
pin. Branch-and-bound pruning is used again to re-
duce the complexity of the search. Redundant testing of
topologies is greatly (although not completely) avoided
by restricting the order in which sinks can be added to
construct any particular topology. Figure 2 gives details
of our Branch-and-Bound method for Steiner Optimal
Routing Trees with a single Critical sink (BB-SORT-C).
A simple modi�cation to Step 11 can minimize a linear
combination of delays or, for BB-SORT, minimize the
maximum sink delay.

BB-SORT-C Algorithm

Input: signal net N with critical sink n1
Output: Steiner tree T � over N having optimal t(n1)

1. best = +1

2. for i = 1 to jN j � 1
3. call Add Sink(i,n0)

4. return T �

Procedure Add Sink(Integer: i; Edge: e)
5. while e 6= NIL
6. call Try Connection(i,e)
7. e = Next(e)

Procedure Try Connection(Integer: i; Edge: e)

8. T = Make Connection(i,e,T)
9. if (t(n1) � best)
10. if (num pins(T ) == jN j)

11. best = t(n1); T
� = T

12. else

13. for j = 1 to i� 1
14. if (nj 62 T ) call Add Sink(j,Next(e))

15. for j = i+ 1 to jN j � 1
16. if (nj 62 T ) call Add Sink(j,e)
17. T = Delete Connection(i,e,T)

Figure 2: Pseudo-code for BB-SORT-C. Note that n0 is
treated like an edge in Step 3 because connections are consid-
ered to the source and to all edges in the current tree. Pro-
cedures not de�ned in the template: Next(e) returns the edge
after e in a list of edges in T ordered by when they were added
to T ; Make Connection(i,e,T ) connects ni to T by a closest
connection to e; Delete Connection(i,e,T) reverses the call to
Make Connection in Step 8.

3.3 Sub-Optimality of BB-SORT

Figure 3 gives an example in which BB-SORT con-
structs a sub-optimal tree in terms of maximum sink
delay. Figure 3(a) shows what appears to be the opti-
mal tree, with maximum delay t(n1) = t(n2) = 28.625.
All Steiner nodes in this tree are on the vertical line

4A closest connection to a given edge is made by creating a
Steiner node at the point on the edge closest to the new sink.

x = 1:5, which is outside the Hanan grid. Part (b)
shows the tree returned by BB-SORT, with maximum
delay t(n1) = 28.641.

Given that the example in Figure 3 was constructed
carefully by hand, we believe that other counter-
examples are rare and that BB-SORT almost always
gives the optimal \generic" Steiner tree.

optimal topology

(a)

(0,0)

(1,3) (2,3)

(1.63,2)

(2,0)

(1.5,0)

optimal ‘Hanan’ topology

(b)

no

n1 n2

n3

n4

Figure 3: Counter-example for which BB-SORT returns a sub-
optimal \generic" routing tree. Pin positions are shown in (a);
driver resistance = 1.75; unit resistance and capacitance equal
1.0; loading capacitance = 0.37 for n3 and 0.0 for other sinks;
Part (a) appears to be optimal (max delay = t(n1) = t(n2) =
28.625). Part (b) is returned by BB-SORT (max delay = t(n1) =
28.641).

3.4 Optimality of BB-SORT-C

For any linear combination of sink delays, our branch-
and-bound method constructs the optimal tree. In this
section we state the lemmas and theorem used to obtain
this result, along with sketches of the proofs themselves.
Complete proofs are contained in [4]. 5

3.4.1 De�nitions

Let T � be a Steiner tree over net N minimizing f =Pk
i=1�i � t(ni), with each �i > 0.6 For convenience, we

normalize time and distance so that unit wire resistance
and unit wire capacitance both equal one. We consider
any tree T as a set of nodes and edges, and so v 2 T
for node v and e 2 T for edge e are well de�ned. A
completely vertical or horizontal edge is called a straight
edge; other edges are L-shaped.

The closest connection between three nodes is the
location of the Steiner node in a minimum-cost Steiner
tree over the nodes.7 The closest connection between
node v and edge e is the closest connection between v
and the endpoints of e. Assume that a tree T is rooted
at n0. We de�ne Tnv to be the tree induced by removing
node v and its descendants from T , then removing all
degree-2 Steiner nodes. We say that node v 2 T is
connected to edge e 2 Tnv if its parent node in T is

5Note that we allow n0 to have degree > 4, which is physically
impossible, but can be approximated by merging wires close to
n0. Also, the optimal tree is not always planar, as this is not
required in the CSRT problem formulation, nor is it required in

multi-layer routing.
6The case of �i = 0 for one or more i is e�ectively handled by

setting �i to a small positive value.
7This location is unique and has coordinates given by the me-

dians of the x- and the y- coordinates of the three nodes.

3

383



located on edge e (including perhaps an endpoint of e).
If parent(v) is located at the closest connection between
v and edge e 2 Tnv, then v makes a closest connection
to edge e.

3.4.2 Proof of Closest Connections in T �

Lemma 1: Suppose node a 2 T �, a 6= n0, is connected
to edge e 2 T �na. Then either parent(a) = n0 or a
makes a closest connection to e in T �.

Proof Sketch: Let x = parent(a) and let c be the
closest connection between node a and edge e = (p; b),
as in Figure 4. For convenience we overload x, a, b,
c, and p to also represent the edge lengths from p to
these respective nodes or locations. It is easy to see
that x � c, since otherwise moving x to c will reduce
tree cost and reduce or leave unchanged all path lengths.
For p � x � c, application of the Elmore formula shows
that delay f is a concave function of x.8 Consequently,
f can only be minimized at the boundaries x = p or
x = c. Further application of the Elmore formula shows
that the capacitances of edge (p; d) and subtree T �

d do
not a�ect the concavity of f for x between q and c,
and so x 6= p (unless p = n0). Thus, either x = c or
x = p = n0.

p
a

c
x

b
q

no d

Figure 4: Lemma 1: Node a 2 T � is connected to edge
(p; b) 2 T �

na at node x; either x = p = n0 or x = c, where c is
the closest connection between a and (p; b).

By itself, Lemma 1 is not su�cient to prove optimal-
ity of BB-SORT-C. The tree in Figure 5 has all nodes
v 6= n0 either connected to n0 or making a closest con-
nection to an edge in Tnv; however, this tree cannot be
constructed by BB-SORT-C.

no

n2

n3

n1

Figure 5: Lemma 1 is not su�cient to prove optimality of
BB-SORT-C. This tree satis�es the conclusions of Lemma 1
but cannot be constructed by BB-SORT-C.

3.4.3 Hanan Grid Proof for T �

De�ne a segment to be a contiguous set of straight edges
in tree T which are either all horizontal or all vertical; a

8We apply the Elmore formula for t(nj) to three cases of nj:
(i) nj 2 T �

a ; (ii) nj 2 T �

b
; and (iii) nj 2 T �

nx. For case (iii)
t(nj) is linear in x; otherwise it is quadratic in x, with a negative
coe�cient for x2.

maximal segment (MS) is a segment not properly con-
tained in any other segment. The node in an MS M
closest to n0 topologically is the entry point to M . A
segment containing all edges in an MS M to one side
of M 's entry point is called a branch. In addition, all
L-shaped edges in T are also branches. A branch b is
a branch o� of MS M 0 if M 0 and b are incident at a
single node which is not the entry point to M 0. An
MS M divides the plane into two half-planes; the half-
plane containing the edge between M 's entry point and
its parent is called the near side of M , while the other
half-plane is called the far side ofM . Branches o� ofM
that are located on its near (resp. far) side are called
near (resp. far) branches. In addition, a sink located on
M is de�ned to be a far branch o� of M if it is not the
entry point to a larger far branch. We use Near(M )
(resp. Far(M )) to denote the set of near (resp. far)
branches o� of MS M . Figure 6 shows an example of
an MSM with endpoints p1 and n3, entry point p0, and
four branches, including near branch b1 and far branches
b2, b4, and n3.

no

b1
p1

b2

p0

Near side of M

M

Far side of M

n6

n3

n2 n4

n1

b4

Figure 6: Example of a maximal segmentM with entry point
p0, one near branch b1, and three far branches. (Note that n3
forms a far branch without edges and that edge (p0; n6) is not

a far branch o� of M).

Lemma 2: Let M be an MS in T � not containing n0.
Then jFar(M )j > jNear(M )j.

Proof Sketch: Figure 7 shows that jFar(M )j �
jNear(M )j: If S � M is the smallest subsegment of
M with M 's entry point q0 as an endpoint and with
jFar(S)j < jNear(S)j, then S can be shifted to S0 as in
the �gure, thereby reducing delay at some sinks while
leaving delay at the others unchanged. Suppose that
jFar(M )j = jNear(M )j and that no subsegment S of
M containing q0 has jFar(S)j < jNear(S)j. Then Fig-
ure 8 shows how M can be shifted toM 0 so as to reduce
delay at some sinks without increasing delay at any oth-
ers.

Lemma 3: Any maximal segment in T � must contain
either a sink or the source.

Proof Sketch: (See Figure 9.) Let M be a maximal
segment in T � not containing a pin and such that every
MS belowM topologically does contain a sink. Without
loss of generality, assume that M is a vertical segment.
Coordinates x1 and x2 in Figure 9 represent positions
of M which would intersect nodes below M in the tree
topologically (i.e., p1 and p2); x0 represents the x coor-
dinate of M . Application of the Elmore formula shows
that delay function f is concave in x0 between x1 and
x2, and so x0 = x1 or x0 = x2 in T �. If x0 = x1, then ei-
ther p1 is a sink or there is another vertical MS through

4
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(a)

v

no
p

S

p
1

p
3

q0

(b)

v

no
p

S’

p
1

p
3

q ’0

q3 q3

p
2

p
2

q0

Figure 7: Lemma 2: (a) jNear(S)j > jFar(S)j for segment
S between q0 and q3; in (b) S is shifted to S0 to reduce delay
to all sinks in Tq0 , leaving all other delays unchanged.

(a)

no
p

M

p
1

q0

q3

p
2

p
3

p
4

q2

q1

(b)

no
p

M’

p
1

q0

p
2

p
3

p
4

q ’0

q ’2
q ’

1

Figure 8: Lemma 2: in (a) jNear(M)j = jFar(M)j for
maximal segmentM ; in (b) M is shifted toM 0, reducing delay
at all sinks in Tq0 .

p1 containing a sink. Similarly for x0 = p2. Therefore,
M must contain a sink if it is in T �.

An immediate corollary is a generalization of the clas-
sic result of Hanan [11] to the Elmore delay objective.9

Corollary 1: Any Steiner node in T � is located on the
Hanan grid.

3.4.4 Decomposition Theorem for T �

To prove the optimality of BB-SORT-C, we need to
show that an optimal tree T � can be constructed it-
eratively from tree T0 = fn0g by successively adding
some ordering of sinks n1; n2; : : : ; nk to create trees
T1; T2; : : : ; Tk = T � with each ni making a closest con-
nection to some edge in tree Ti�1. We start with

9Hanan's original theorem may be viewed as a special case of
this Corollary with the driver on-resistance rd !1.

M

q
0

n j

n i q ip
i

q
j pj

n0

x 2
x

1 x
0

b i

b j

p
0

p
1

p
2

Figure 9: Lemma 3: because delay function f is concave in
x0 for x1 � x0 � x2, f is minimized only when MS M passes
through either x1 or x2.

no

q3
q4 q5 q6 q7

n6n4

n1

q1

q2

n3

n2

n
7

n10n9n8

n5

Figure 10: Example of a peeling decompositionof T �. (Sinks
ni are removed in reverse order of their subscripts.)

T � = Tk and successively \peel o�" sinks. At each
step, we �nd an interior node q 2 Ti whose children
are all leaves and peel o� one of q's children. Any of
q's children may be peeled o� except Pin(q), which is
de�ned so that pins peeled o� later will still make a
closest connection to some edge in the current tree (see
[4]). Figure 10 gives an example of a possible pin order-
ing that could be used by the decomposition procedure.
In [4] we use this peeling decomposition to prove the
following:

Theorem 1: There exists a sequence of subtrees T0 =
fn0g; T1; T2; : : : ; Tk = T � such that for each i, 1 � i �
k, (i) there is a sink ni 2 Ti such that Ti�1 = Tinni,
and (ii) either edge (n0; ni) 2 Ti or ni makes a closest
connection to some edge in Ti�1.

Corollary 2: BB-SORT-C is optimal for any positive
linear combination of sink delays.

4 Implications: Steiner ERT's Are

Near-Optimal

We have implemented BB-SORT and BB-SORT-C in
C on a Sun SPARC I ELC workstation, and compared
them to the SERT and SERT-C heuristics of [2] and the
1-Steiner algorithm of [12]. Our results use four typical
IC and MCM technologies (Table 1).

Name IC1 IC2 IC3 MCM
Technology 2.0 �m 1.2 �m 0.5 �m MCM

rd (
) 164.0 212.1 270.0 25.0
unit R (
=�m) 0.033 0.073 0.112 0.008
unit C (fF=�m) 0.234 0.0826 0.039 0.06
loading C (fF ) 5.7 7.06 1.0 1000

chip size (cm2) 1x1 1x1 1x1 10x10

Table 1: Technology parameters for three CMOS IC tech-
nologies and an MCM technology. IC1 and IC2 parameters are
provided by MOSIS; IC3 is courtesy of MCNC; MCM parasitics
are courtesy of Prof. WayneW.-M. Dai of UC Santa Cruz from
data provided by AT&T Microelectronics Division.

4.1 Near-Optimality of SERT-C

Table 2 compares Elmore delay of trees constructed
by the SERT-C algorithm and optimal Elmore delay
trees found by BB-SORT-C for each of the four tech-
nologies. Net sizes range from �ve to nine pins, limited
by the exponential running time of BB-SORT-C. The
table indicates that any future Elmore delay improve-
ment by Steiner tree heuristics will be limited to be-
tween 0.0% and 4.9% for 5-pin nets and between 0.1%
and 15.8% for 9-pin nets.

5
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Number of Pins
5 6 7 8 9

SERT-C IC1 4.2 6.2 8.3 10.5 11.2
Delay IC2 4.9 7.9 11.4 13.4 15.8

IC3 4.6 7.8 11.2 13.5 15.7
MCM 0.00 0.04 0.07 0.09 0.11

1-Stein IC1 11.7 15.4 20.1 22.9 26.1
Delay IC2 22.8 28.6 36.2 40.8 45.9

IC3 27.5 34.1 42.9 48.1 54.1
MCM 45.5 70.9 63.4 69.3 76.0

SORT-C IC1 11.1 11.5 12.4 11.8 12.2
Cost IC2 16.1 15.8 15.8 15.3 15.5

IC3 17.5 17.1 16.5 16.2 16.1
MCM 29.6 27.6 25.6 25.3 23.2

Run SERT-C .0004 .0006 .0008 .0010 .0012
Time 1-Stein .0025 .0046 .0074 .011 .020
(sec) BB-SORT-C .006 .046 0.46 5.6 36.3

Table 2: Percent above optimum of Elmore delay to a single
critical sink and wire length for three Steiner tree constructions
(cost comparison is with 1-Steiner). Averages were taken over
200 random nets for each net size.

4.2 Elmore-Optimality of \Generic" SERT
Algorithm

The counter-example in Section 3.3 showing that BB-
SORT is not always optimal was carefully constructed
by hand; even then, BB-SORT was only 0.06% above
optimal. Thus, we believe that BB-SORT is within one
percent of optimal in essentially all cases. In Table 3 we
compare SERT and 1-Steiner with the \SORT" trees
of BB-SORT. It appears that the SERT constructions
are very nearly optimal: the worst case occurs for IC2
and IC3 for jN j = 9, where SERT delays are only 3.9%
above those of BB-SORT.

Number of Pins
5 6 7 8 9

SERT IC1 1.5 2.0 2.6 2.9 3.5
Delay IC2 1.3 1.6 2.4 3.2 3.9

IC3 1.1 1.7 2.4 3.1 3.9
MCM 1.5 2.1 2.7 3.3 3.7

1-Stein IC1 7.9 10.4 15.4 16.9 19.8
Delay IC2 13.1 16.6 24.1 26.8 31.0

IC3 15.1 19.0 27.3 30.3 35.1
MCM 43.6 52.9 65.1 71.2 78.5

SORT IC1 4.9 6.2 8.3 9.9 10.2
Cost IC2 10.6 12.0 13.6 14.4 16.2

IC3 11.3 13.4 15.2 16.4 17.6
MCM 50.7 70.6 80.5 89.6 97.5

Run Time SERT .0014 .0030 .0056 .010 .016
(sec) BB-SORT .015 .13 1.3 14.4 61.8

Table 3: Percent above optimum of maximum sink Elmore
delay and wire length for three Steiner tree constructions (cost
comparison is with 1-Steiner). 200 random nets are used for
each net size.

5 Conclusions

Two main theoretical results show that the BB-
SORT-C branch-and-bound method can be used to �nd
Steiner trees that are optimal for any linear combina-
tion of sink Elmore delays. Our �rst result is a gener-
alization of Hanan's theorem [11] to Elmore delay. We
then establish a new decomposition theorem for optimal
Elmore-delay trees. When the objective is to minimize
the maximum Elmore delay in a net, we give a counter-
example for which our BB-SORT does not return the
optimal tree. Nevertheless, we believe that BB-SORT
will almost always return a tree well within one percent
of optimal.

BB-SORT-C and BB-SORT may be used for routing
small nets; a more far-reaching implication of our results
lies in delineating the achievable space of performance-
driven routing solutions. Our simulations for the SERT-
C heuristic of [2] indicate that it is within 5% of optimal
on average for 5-pin nets and within 16% on average for
9-pin nets. The \generic" SERT constructions appear
to be even closer to optimal (within 1.5% for jN j =5
and 4% for jN j=9).
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