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TIGHTER BOUNDS FOR GRAPH STEINER TREE
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Abstract. The classical Steiner tree problem in weighted graphs seeks a minimum weight con-
nected subgraph containing a given subset of the vertices (terminals). We present a new polynomial-
time heuristic that achieves a best-known approximation ratio of 1 + ln 3

2
≈ 1.55 for general graphs

and best-known approximation ratios of ≈ 1.28 for both quasi-bipartite graphs (i.e., where no two
nonterminals are adjacent) and complete graphs with edge weights 1 and 2. Our method is consid-
erably simpler and easier to implement than previous approaches. We also prove the first known
nontrivial performance bound (1.5 · OPT) for the iterated 1-Steiner heuristic of Kahng and Robins
in quasi-bipartite graphs.
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1. Introduction. Given an arbitrary weighted graph with a distinguished vertex
subset, the Steiner tree problem seeks a minimum-cost subtree spanning the distin-
guished vertices. Steiner trees are important in various applications such as VLSI
routing [14], wirelength estimation [7], phylogenetic tree reconstruction in biology
[11], and network routing [12]. The Steiner tree problem is NP -hard, even in the
Euclidean or rectilinear metrics [8], and thus efficient approximation heuristics are
sought instead of exact algorithms.

Arora established that Euclidean and rectilinear minimum-cost Steiner trees can
be efficiently approximated arbitrarily close to optimal [2]. On the other hand, unless
P = NP , the Steiner tree problem in general graphs cannot be approximated within
a factor of 1 + ε for sufficiently small ε > 0 [5]. For arbitrary weighted graphs, the
best Steiner approximation ratio achievable within polynomial time was gradually
improved from 2 to 1.59 in a series of papers [21, 22, 3, 23, 18, 15, 10].

In this paper we address the graph Steiner tree problem by presenting a polynomial-
time approximation scheme with a best-known performance ratio approaching 1 +
ln 3
2 ≈ 1.55. This improves upon the previously best-known ratio of 1.59 due to

Hougardy and Prömel [10]. We apply our heuristic for the Steiner tree problem to
quasi-bipartite graphs (i.e., graphs in which no two nonterminals are adjacent), where
our heuristic achieves an approximation ratio of ≈ 1.28 within time O(mn2) (m and n
are the number of terminals and nonterminals in the graph, respectively). This is an
improvement over the primal-dual algorithm of Rajagopalan and Vazirani [19], where
the bound exceeds 1.5.
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We also show that the well-known iterated 1-Steiner heuristic of Kahng and
Robins [13, 9, 14] achieves an approximation ratio of 1.5 in quasi-bipartite graphs.
Previously, no nontrivial bounds were known for the iterated 1-Steiner heuristic. Fi-
nally, we improve the approximation ratio achievable for the Steiner tree problem in
complete graphs with edge weights 1 and 2 from the previously best-known bound of
4
3 [5] to less than 1.28 for our algorithm.

The remainder of this paper is organized as follows. In the next section we in-
troduce basic definitions, notation, and properties. In section 3 we present our main
algorithm, the k-restricted loss-contracting algorithm (k-LCA). The basic approxima-
tion result for the k-LCA is proved in section 4. In sections 5 and 6 we prove an
approximation ratio of the k-LCA in general graphs and estimate the performance of
the iterated 1-Steiner and the k-LCA heuristics in both quasi-bipartite graphs and
complete graphs with weights 1 and 2. We conclude in section 7 with possible future
research directions.

2. Definitions, notation, and basic properties. Let G = (V,E, cost) be a
graph with nonnegative edge costs. Any tree in G spanning a given set of terminals
S ⊆ V is called a Steiner tree, and the cost of a tree is defined to be the sum of its
edge costs. The Steiner tree problem seeks a minimum-cost Steiner tree for a given
terminal set S. Any nonterminal vertices contained in a Steiner tree are referred to as
Steiner points. We can assume that the graph edge cost function is metric (i.e., the
triangle inequality holds) since we can replace any edge e ∈ E with the shortest path
connecting the ends of e. Henceforth, we will therefore assume that G is a complete
graph. Similarly, for the subgraph GS induced by the terminal set S, let GS be the
complete graph with vertex set S.

Let MST (GS) be a minimum spanning tree of GS . For any graph H, let cost(H)
be the sum of the costs of all edges in H. We thus denote the cost of a minimum
spanning tree of H by mst(H), e.g., cost(MST (GS)) = mst(GS). For brevity, we use
mst to denote mst(GS).

A Steiner tree over a terminal subset S′ ⊂ S in which all terminals S′ are leaves
is called a full component (see Figure 1(a)). Any Steiner tree can be decomposed into
full components by splitting all the nonleaf terminals. Our algorithm will proceed by
adding full components to a growing solution, based on their “relative cost savings”
(this notion will be made precise below). We assume that any full component has its
own copy of each Steiner point so that full components chosen by our algorithm do
not share Steiner points.

A Steiner tree that does not contain any Steiner points (i.e., where each full
component consists of a single edge) will henceforth be called a terminal-spanning
tree. Our algorithm will compute relative cost savings with respect to a “shrinking”
terminal-spanning tree, which initially coincides with MST (GS).

The relative cost saving of a full component is quantified by the ratio of how much
that full component decreases the cost of the current terminal-spanning tree over the
cost of connecting its Steiner points to terminals. The cost savings of an arbitrary
graph H with respect to a terminal-spanning tree T is the difference between the
cost of T and the cost of the Steiner tree in the graph obtained by augmenting H
with the tree T . Let T [H] be the minimum-cost graph in H ∪ T , which contains
H and spans all the terminals of S (see Figure 2). The gain of H with respect
to T is defined as gainT (H) = cost(T ) − cost(T [H]). If H is a Steiner tree, then
gainT (H) = cost(T ) − cost(H). Note that gainT (H) ≤ cost(T ) −mst(T ∪H) since
T [H] cannot cost less than MST (T ∪ H). In fact, the gain of a full component K
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Fig. 1. (a) A full component K: filled circles denote terminals and hollow circles denote Steiner
points. (b) Connected components of Loss(K) to be collapsed; dashed edges belong to Loss(K). (c)
The corresponding terminal-spanning tree C[K] with the contracted Loss(K).
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H

Fig. 2. (a) A graph H (dashed edges) and a terminal-spanning tree T (solid edges). (b) The
corresponding graph T [H] contains H and spans all of the terminals.

also can be defined as

gainT (K) = cost(T ) −mst(T ∪ E0(K)) − cost(K),

where E0(K) are zero-cost edges between all pairs of terminals of K. For brevity, the
minimum spanning tree of T ∪E0 will be referred to as T/E0 for any set of zero-cost
edges between pairs of terminals in S.

We will use the following property of gain (see Lemma 3.3-4, p. 465 in [22] and
Lemma 3.14, p. 391 in [3]). Let E0 be an arbitrary set of zero-cost edges between
pairs of terminals, and let K be a full component. Then

gainT/E0
(K) ≤ gainT (K).

This property implies the following key property of gain.
Lemma 2.1. For any terminal-spanning tree T and full components K1,K2, . . . ,Kn,

gainT

(
n⋃

i=1

Ki

)
≤

n∑
i=1

gainT (Ki).

Proof. The proof follows from the following chain of inequalities:

gainT

(
n⋃

i=1

Ki

)
= cost(T ) − cost

(
T/

n⋃
i=1

E0(Ki)

)
−

n∑
i=1

cost(Ki)

= cost(T ) − cost(T ∪ E0(K1)) − cost(K1)

+ cost(T/E0(K1)) − cost(T/E0(K1) ∪ E0(K2)) − cost(K2)

. . .
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+ cost

(
T/

n−1⋃
i=1

E0(Ki)

)
− cost

(
T/

n⋃
i=1

E0(Ki)

)
− cost(Kn)

=

n∑
i=1

gainT/
⋃

j≤i−1 E0(Kj)(Ki)

≤
n∑

i=1

gainT (Ki).

The minimum-cost connection of the Steiner points of a full component K to its
terminals is denoted Loss(K). Formally, Loss(K) is a minimum-cost subgraph of K
containing a path from each Steiner point of K to one of the terminals of K (see
Figure 1(b)). The following lemma gives a simple method of computing Loss(K).

Lemma 2.2. For any full component K, Loss(K) = MST (K ∪ E0) \ E0, where
K ∪ E0 is K combined with zero-cost edges E0 between all pairs of terminals in K.

Proof. The forest F = MST (K ∪E0) \E0 connects all Steiner points of K to the
terminals of K and has cost MST (K ∪ E0). Note that F has the minimum possible
cost since Loss(K) ∪ E0 spans all the vertices of K and therefore cannot cost more
than MST (K ∪ E0).

Intuitively, Loss will serve as an upper bound on the optimal solution cost increase
during our algorithm’s execution (as will be elaborated below). We will denote the
cost of Loss(K) by loss(K). The loss of a union of full components is the sum of
their individual losses.

As soon as our algorithm selects a full component K it contracts its Loss(K),
i.e., “collapses” each connected component of Loss(K) into a single node (see Figure
1(c)). Formally, a loss-contracted full component C[K] is a terminal-spanning tree
over the terminals of K in which two terminals are connected if there is an edge
between the corresponding two connected components in the forest Loss(K). The
cost of any edge in C[K] coincides with the cost of the corresponding edge in K.
The 1-to-1 correspondence between edges of K \ Loss(K) and C[K] implies that
cost(H) − loss(H) = cost(C[H]). Similarly, for any Steiner tree H, C[H] is the
terminal-spanning tree in which the losses of all full components of H are contracted.

Our algorithm constructs a k-restricted Steiner tree, i.e., a Steiner tree in which
each full component has at most k terminals. Let Optk be an optimal k-restricted
Steiner tree, and let optk and lossk be the cost and loss of Optk, respectively. Let opt
and loss be the cost and loss of the optimal Steiner tree, respectively.

The following lemma shows that if no k-restricted full component can improve
a Steiner tree H, then H cannot be very expensive; i.e., if we contract the loss of
each full component of H, then the resulting tree costs no more than an optimal
k-restricted Steiner tree.

Lemma 2.3. Let H be a Steiner tree; if gainC[H](K) ≤ 0 for any k-restricted full
component K, then

cost(H) − loss(H) = cost(C[H]) ≤ optk.

Proof. Let K1, . . . ,Kp be full components of Optk. The proof follows from the
following chain of inequalities:

cost(C[H]) − optk = gainC[H](Optk)

= gainC[H](K1 ∪ · · · ∪Kp)

≤ gainC[H](K1) + · · · + gainC[H](Kp)

≤ 0.
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Input: A complete graph G = (V,E, cost) with edge costs satisfying the triangle
inequality, a set of terminals S ⊆ V , and an integer k, 3 ≤ k ≤ |S|
Output: A k-restricted Steiner tree in G connecting all the terminals in S

T = MST (GS)
H = GS

Repeat forever
Find a k-restricted full component K with at least 3 terminals

maximizing r = gainT (K)/loss(K)
If r ≤ 0 then exit repeat
H = H ∪K
T = MST (T ∪ C[K])

Output the tree MST (H)

Fig. 3. The k-LCA.

An approximation ratio of an algorithm is an upper bound on the ratio of the
cost of the found solution over the cost of an optimal solution. In the next section we
will propose a new algorithm for the Steiner tree problem and prove a (best-to-date)
approximation ratio for it.

3. The algorithm. All previous heuristics (except those of the Berman–Ramaiyer
[3] approach) with provably good approximation ratios repeatedly choose appropriate
full components and then contract them to form the overall solution. However, this
strategy does not allow us to discard an already accepted full component even if later
we would find out that a better full component conflicts with a previously accepted
component (two components conflict if they share at least two terminals).

The main idea behind the loss-contracting algorithm (see Figure 3) is to contract
as little as possible so that (i) a chosen full component may still participate in the
overall solution, but (ii) not many other full components would be rejected. In par-
ticular, if we contract Loss(K), i.e., replace a full component K with C[K], then (i)
it will not cost anything to add a full component K to the overall solution, and (ii)
we decrease the gain of full components, which conflict with K by a small value (e.g.,
less than in the Berman–Ramaiyer algorithm for large k and much smaller than in
[15] for any k).

Our algorithm iteratively modifies a terminal-spanning tree T , which is initially
MST (GS), by incorporating into T loss-contracted full components greedily chosen
from G. Each such component K has positive gain, and therefore contains at least
three terminals and has nonzero loss. The intuition behind the gain-over-loss objective
ratio is as follows. The cost of the approximate solution lies between mst = mst(GS)
and optk. If we accept a component K, then it increases (by the gain of K) the gap
between mst and the cost of the approximation. Thus the gain of K is our clear
profit. On the other hand, if K does not belong to Optk, then after accepting K
we would no longer be able to reach Optk because we would need to compensate for
the connection of incorrectly chosen Steiner points. Therefore, the value of loss(K),
which is the connection cost of Steiner points of K to terminals, is an upper bound
on the increase in the cost gap between optk and the best achievable solution after
accepting K. Thus loss(K) is an estimate of our connection expense. Maximizing
the ratio of gain over loss is equivalent to maximizing the profit per unit expense.

We now describe a polynomial-time implementation of the k-LCA. We first find
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all pairwise distances in the graph G. Then, for each k-tuple of terminals (there are
|S|k of them) it is sufficient to try all possible choices of k − 2 Steiner points chosen
from the nonterminal nodes of V − S because every k-restricted full component K
is uniquely defined by its Steiner points of degree at least 3. The loss of K can be
determined in time O(k2) by finding the minimum spanning tree of K∪E0 (see Lemma
2.2). Thus, we can find all full Steiner components in time O(|S|k · |V −S|k−2). Note
that the cost and loss do not change in the iterations of the k-LCA.

The number of iterations of k-LCA cannot exceed the number of full Steiner
components O(Sk) since we have gainT (K) = 0 after contracting the loss of a full
component K. The gain of a full component K can be found in time O(k) after
precomputing the longest edges between any pair of nodes in the current minimum
spanning tree, which may be accomplished in time O(S logS). Thus, the runtime of
all the iterations can be bounded by O(k · S2k+1 logS). The total runtime is thus
O(|S|k · |V − S|k−2 + k · S2k+1 logS).

4. Approximation ratio of the k-LCA. This section proves the basic ap-
proximation result of this paper.

Theorem 4.1. For any instance of the Steiner tree problem, the cost of the
approximate Steiner tree produced by the k-LCA is at most

Approx ≤ lossk · ln
(

1 +
mst− optk

lossk

)
+ optk.(4.1)

Proof. Let K1, . . . ,Klast be full components chosen by the k-LCA. Let T0 =
MST (GS) and let Ti, i = 1, . . . , last be the tree T produced by the k-LCA after i
iterations. Let cost(Ti) be the cost of Ti after the ith iteration of the k-LCA.

Lemma 4.2. gainTi−1
(Ki) = cost(Ti−1) −mst(Ti−1 ∪Ki).

Proof. It is sufficient to show that Ti−1[Ki] = MST (Ti−1 ∪ Ki). Assume that
MST (Ti−1∪Ki) does not contain some edge e ∈ Ki and let A and B be two connected
components of Ki − {e}. We will show that either A or B has a larger gain-over-loss
ratio, which contradicts the choice of Ki.

Since e does not belong to MST (Ti−1 ∪ Ki), we have cost(Ti−1[A ∪ B]) <
cost(Ti−1[Ki]). By Lemma 2.1, gainTi−1

(Ki) < gainTi−1
(A ∪ B) ≤ gainTi−1

(A) +
gainTi−1(B). Since e /∈ MST (Ti−1∪Ki), we conclude that e /∈ MST (Ki∪E0), where
E0 are zero-cost edges between all terminals of Ki, and by Lemma 2.2, e /∈ Loss(Ki).
Thus Loss(Ki) = Loss(A) ∪ Loss(B) and loss(Ki) = loss(A) + loss(B). Finally,

gainTi−1
(Ki)

loss(Ki)
<

gainTi−1(A) + gainTi−1(B)

loss(A) + loss(B)
≤ max

{
gainTi−1(A)

loss(A)
,
gainTi−1(B)

loss(B)

}
.

We define the supergain of a graph H with respect to a Steiner tree T as

supergainT (H) = gainT (H) + loss(H).

By Lemma 4.2, the supergain of Ki with respect to Ti−1 is

supergainTi−1(Ki) = gainTi−1(Ki) + loss(Ki)

= cost(Ti−1) −mst(Ti−1 ∪Ki) + mst(Ti−1 ∪Ki) − cost(Ti)

= cost(Ti−1) − cost(Ti).(4.2)

Let Gi = supergainTi(Optk) be the supergain of the optimal k-restricted Steiner tree
Optk with respect to Ti, i = 0, 1, . . . , last. Let loss(n) be the loss of the first n



128 GABRIEL ROBINS AND ALEXANDER ZELIKOVSKY

accepted full trees K1, . . . ,Kn. We now show that the loss of the full components
identified by the k-LCA does not grow too fast.

Lemma 4.3. If Gn is positive, then loss(n)
lossk

≤ ln G0

Gn
.

Proof. Let li = loss(Ki) and gi = supergainTi−1(Ki) be, respectively, the loss
and supergain of the ith full Steiner tree accepted by the k-LCA. Let Optk consist of
full components Xj . By Lemma 2.1,

G0

lossk
≤

∑
Xj∈Optk

supergainT0(Xj)∑
Xj∈Optk

loss(Xj)
≤ 1 + max

Xj∈Optk

{
gainT0(Xj)

loss(Xj)

}

≤ 1 +
gainT0(K1)

loss(K1)
=

g1

l1
.

Inductively, for i = 1, 2, . . . , n, Gi−1

lossk
≤ gi

li
. Therefore,

gi ≥
li

lossk
Gi−1.(4.3)

Each time the k-LCA accepts a full tree Ki, it decreases the cost of Ti by the
supergain of Ki, which results in a decrease of the supergain of Optk by the same
value. Equality (4.2) yields Gi = cost(Ti)−cost(Optk)+lossk. Therefore, Gi−1−Gi =
cost(Ti−1) − cost(Ti) = gi.

Inequality (4.3) implies that Gi = Gi−1 − gi ≤ Gi−1

(
1 − li

lossk

)
. Since Gn > 0,

unraveling the last inequality yields

Gn

G0
≤

n∏
i=1

(
1 − li

lossk

)
.

Taking the natural logarithms of both sides and using the inequality x ≥ ln(1 + x),
we finally obtain

ln
G0

Gn
≥

n∑
i=1

li
lossk

=
loss(n)

lossk
.(4.4)

By Lemma 2.3, after the algorithm stops iterating, the cost of the last tree Tlast

will be at most optk. We stop iterating when cost(Tn+1) < optk ≤ cost(Tn) for some
n.

We now show how iteration n+1 can be “partially” performed so that cost(Tn+1)
will coincide with optk. We split gn+1 = supergainTn

(Kn+1) into two values g1
n+1

and g2
n+1 (i.e., gn+1 = g1

n+1 + g2
n+1) such that cost(Tn)− g1

n+1 = optk and, therefore,

g1
n+1 = cost(Tn) − optk,(4.5)

Gn − g1
n+1 = cost(Tn) − optk + lossk − (cost(Tn) − optk) = lossk.(4.6)

We split ln+1 = loss(Kn+1) into l1n+1 and l2n+1 such that gn+1

ln+1
=

g1
n+1

l1n+1
. Finally, we set

loss1(n + 1) = loss(n) + l1n+1 and

G1
n+1 = Gn − g1

n+1 > 0.(4.7)
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Since gn+1

ln+1
=

g1
n+1

l1n+1
, inequality (4.4) implies that

ln
G0

G1
n+1

≥ loss1(n + 1)

lossk
.(4.8)

Since gi = gainTi(Ki)+ loss(Ki) ≥ loss(Ki) = li, we have
g2
n+1

l2n+1
= gn+1

ln+1
≥ 1, and thus

obtain

g2
n+1 ≥ l2n+1.(4.9)

The cost of the approximate Steiner tree after n + 1 iterations is at most

Approx(n + 1) = mst(T0 ∪K1 ∪ · · · ∪Kn+1)

≤ mst(MST (T0 ∪K1) ∪K2 ∪ · · · ∪Kn+1) + loss(K1)

≤ mst(T1 ∪K2 ∪ · · · ∪Kn+1) + loss(K1)

. . .

≤ mst(Tn ∪Kn+1) +

n∑
i=1

loss(Ki)

≤ cost(Tn+1) + loss(n + 1).(4.10)

Since Approx(n) decreases with n, the upper bound on Approx(n+1) also bounds
Approx = Approx(last), the output of the k-LCA. We complete the proof of inequality
(4.1) with the following chain of inequalities:

Approx ≤ Approx(n + 1)

≤(4.10) loss(n + 1) + cost(Tn+1)

= loss(n) + l1n+1 + l2n+1 + cost(Tn) − g1
n+1 − g2

n+1

≤(4.9) loss(n) + l1n+1 + cost(Tn) − g1
n+1

=(4.5) loss(n) + l1n+1 + optk

≤(4.8) lossk · ln G0

G1
n+1

+ optk

=(4.7) lossk · ln mst− optk + lossk
Gn − g1

n+1

+ optk

=(4.6) lossk · ln mst− optk + lossk
lossk

+ optk

= lossk · ln
(

1 +
mst− optk

lossk

)
+ optk.

5. Performance of the k-LCA in general graphs. Our estimate of the per-
formance ratio of the k-LCA in arbitrary graphs is based on estimating optimal k-
restricted Steiner trees. Let ρk be the worst-case ratio of optk

opt . It was shown in [6]

that ρk ≤ 1 + 	log2 k
−1. We will show below that the approximation ratio of the
k-LCA is at most ρk(1 + 1

2 ln( 4
ρk

− 1)). Therefore, the approximation ratio of the

k-LCA converges to 1 + ln 3
2 < 1.55 when k → ∞ since limk→∞ ρk = 1. This is

an improvement over the algorithm given by Hougardy and Prömel [10], where the
approximation ratio approaches 1.59.
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Theorem 5.1. The k-LCA has an approximation ratio of at most (1+ 1
2 ln( 4

ρk
−

1))ρk.
Proof. Since mst ≤ 2 · opt (see [21]), inequality (4.1) yields the following upper

bound on the output tree cost of the k-LCA:

Approx ≤ lossk · ln
(

1 +
2 · opt− optk

lossk

)
+ optk.

Following [15], we show that for any Steiner tree T , loss(T ) ≤ 1
2cost(T ). Without

loss of generality, we can assume that T is a rooted tree, where all Steiner points
have degree at least 3 (degree-2 Steiner points can be disregarded since the graph is
complete). For each Steiner point in T , choose the shortest outgoing edge; then, all
chosen edges (i) connect all Steiner points to terminals (thus having cost of at least
loss(T )), and (ii) have total cost of at most half the cost of T . Therefore

lossk ≤ 1

2
optk.

The partial derivative (lossk · ln(1+ 2·opt−optk
lossk

))′lossk is always positive; the upper

bound on Approx is therefore maximized when lossk = 1
2optk. We thus obtain

Approx

opt
≤ optk

opt
·

⎛
⎝1 +

ln
(

4opt
optk

− 1
)

2

⎞
⎠ .

Since the upper bound above grows when optk increases, we can replace optk
opt with

the maximum value of ρk.

6. Steiner trees in both quasi-bipartite graphs and complete graphs
with edge weights 1 and 2. Recently, Rajagopalan and Vazirani [19] suggested a
primal-dual–based algorithm for approximating Steiner trees. They show that their
algorithm has an approximation ratio of 1.5 + ε for quasi-bipartite graphs, i.e., the
graphs in which no nonterminals are adjacent. We first show that the well-known
iterated 1-Steiner heuristic [13, 9, 14] has an approximation ratio of 1.5. Next, we
apply the k-LCA to quasi-bipartite graphs and estimate its runtime. Finally, we prove
that the performance ratio of the k-LCA for quasi-bipartite graphs is below 1.28.

We also apply the k-LCA to the Steiner tree problem in complete graphs with
edge weights 1 and 2. Bern and Plassmann [5] proved that this problem is MAX
SNP-hard and gave a 4

3 · OPT approximation algorithm. Applying Lovász’s algo-
rithm for the parity matroid problem (see [16]), Berman, Fürer, and Zelikovsky gave
a 1.2875-approximation algorithm that was given in [4]. We will show that the perfor-
mance ratio of the k-LCA approaches 1.28 for such graphs, improving on previously
achievable bounds.

6.1. The iterated 1-Steiner heuristic. The iterated 1-Steiner heuristic (see
[13, 9, 14]) repeatedly adds Steiner points to the terminal set, as long as doing so
decreases the cost of the minimum spanning tree over the terminals. Accepted Steiner
points are deleted if they become useless, i.e., if their degree becomes 1 or 2 in the
minimum spanning tree over the terminals. A generalization of the iterated 1-Steiner
heuristic to arbitrary graphs, along with a polynomial-time implementation, is given
in [1].



STEINER TREE APPROXIMATION 131

Although the iterated 1-Steiner heuristic decreases the minimum spanning tree
cost by the maximum possible value at each iteration, we will estimate the cost of the
output Steiner tree regardless of how it was obtained. The following theorem will also
enable us to estimate the performance ratio of a faster batched variant of the iterated
1-Steiner heuristic [13, 9, 14].

Theorem 6.1. Given an instance of the Steiner tree problem in a quasi-bipartite
graph G, let H be a Steiner tree in G such that (i) any Steiner point has degree
at least 3, and (ii) H cannot be improved by adding any other Steiner point, i.e.,
mst(H ∪ v) ≥ cost(H) for any vertex v in G. Then the cost of H is at most 1.5 times
the optimal.

Proof. Any full component in quasi-bipartite graphs has only a single Steiner
point. Therefore, the loss of any full component equals the cost of the cheapest edge
connecting its single Steiner point to a terminal. Since any Steiner point has degree
at least 3 (condition (i)), the loss of any full component in H is at most one-third of
its cost. Thus, loss(H) ≤ 1

3 · cost(H).
We now show that gainC[H](K) ≤ 0 for any full component K. Condition (ii)

implies that mst(H∪K) ≥ cost(H). If we contract the loss of H, then we can decrease
MST (H∪K) by at most loss(H) since reduction by loss(H) happens only if all edges
of Loss(H) belong to MST (H ∪ K). Therefore, mst(C[H] ∪ K) ≥ mst(H ∪ K) −
loss(H) and mst(C[H]∪K) ≥ cost(H)−loss(H) = cost(C[H]). Thus, gainC[H](K) ≤
cost(C[H])−mst(C[H]∪K) ≤ 0. By Lemma 2.3, cost(H)− loss(H) ≤ opt, and since
loss(H) ≤ 1

3 · cost(H), we obtain cost(H) ≤ 3
2 · opt.

The above result helps to explain why the iterated 1-Steiner and Rajagopalan–
Vazirani heuristics perform similarly when applied to instances of the Steiner tree
problem restricted to the rectilinear plane (see [17]).

6.2. Runtime of the k-LCA in quasi-bipartite graphs. For a given Steiner
point v, the k-LCA adds only a full component with the largest gain, since the loss
is determined by v. We can find a full tree with maximum gain with respect to a
terminal-spanning tree T , among all possible full components with Steiner point v,
by merely finding all neighbors of v in MST (T ∪ v). Therefore, a full component
maximizing the gain-over-loss ratio over all k can be found within polynomial time.

We estimate the runtime of the k-LCA for quasi-bipartite graphs as follows. Let
m and n be the number of terminals and nonterminals, respectively. The number of
iterations is O(n) since a Steiner point can be added only once into H. Each iteration
consists of O(n) gain evaluations, each of which can be computed within O(m) time.
Using the appropriate data structures, the k-LCA can be implemented within a total
runtime of O(n2 · m), where m is the number of terminals and n is the number of
nonterminals.

6.3. Performance bound of the k-LCA for special graphs. We first esti-
mate the loss of a Steiner tree in quasi-bipartite graphs and in complete graphs with
edge weights 1 and 2.

Lemma 6.2. For the Steiner tree problem in quasi-bipartite graphs and in com-
plete graphs with edge weights 1 and 2,

mst ≤ 2(optk − lossk).(6.1)

Proof. For quasi-bipartite graphs, let K be an arbitrary full component of a
Steiner tree T with p terminals connected by a single Steiner point with edges of
lengths d0, d1, . . . , dp−1. Assume that loss(K) = d0 = min{di}. Let mst(K) be the
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cost of a minimum spanning tree of GS′ , where S′ is the set of terminals in K. By
the triangle inequality, we have

mst(K) ≤
p−1∑
i=1

(d0 + di) = p · d0 + cost(K) − 2d0 ≤ 2cost(K) − 2loss(K).

The bound (6.1) follows from the fact that mst, the cost of a minimum spanning
tree over S, does not exceed the sum of mst-costs for terminals in each of the full
components in Optk.

Now we prove the lemma for the case of complete graphs with edge weights 1 and
2. Let m and n, respectively, be the number of terminals and Steiner points in the
optimal k-restricted Steiner tree Optk. Then mst ≤ 2m− 2 since all edge weights are
at most 2, and optk ≥ m + n− 1 since Optk contains m + n nodes. We may assume
that full components of Optk contain only edges of weight 1, and therefore lossk = n.
Thus, mst ≤ 2m− 2 = 2(m + n− 1 − n) ≤ 2(optk − lossk).

Theorem 6.3. The k-LCA has an approximation ratio of at most ≈ 1.279 for
quasi-bipartite graphs and an approximation ratio approaching ≈ 1.279 for complete
graphs with edge weights 1 and 2.

Proof. After substituting the minimum spanning tree bound (6.1) into inequality
(4.1), we obtain

Approx ≤ lossk · ln
(

optk
lossk

− 1

)
+ optk.(6.2)

Taking the partial derivative of (loss · ln( optk
lossk

− 1))′lossk , we see that the single

maximum of the upper bound (6.2) occurs when x = lossk
optk−lossk

is the root of the
equation 1 + lnx + x = 0. Solving this equation numerically, we obtain x ≈ 0.279.
Finally, we substitute x into (6.2), yielding

Approx ≤ x

1 + x
· optk · ln 1

x
+ optk = (x + 1) · optk ≈ 1.279 · optk.

The bound above is valid for the output of the k-LCA for quasi-bipartite graphs
if we set k = |S|, i.e., if we omit the index k. For complete graphs with edge weights
1 and 2, optk converges to opt, and the approximation ratio of the k-LCA therefore
converges to 1.279 when k → ∞.

7. Conclusions and open problems. We presented a new best-performing
polynomial-time heuristic for the classical graph Steiner tree problem. This heuristic,
called the k-restricted loss-contracting algorithm (k-LCA), can be applied to arbitrary
metric spaces. The worst-case performance for the k-LCA depends on the Steiner ratio
and the loss of the optimal Steiner tree (i.e., the cost of connecting Steiner points to
terminals). We proved that the k-LCA is currently the best approximation heuristic
for the Steiner tree problem in graphs: its approximation ratio is ≈ 1.55 for general
graphs and ≈ 1.28 for both quasi-bipartite graphs and graphs with edge costs 1 and
2. We also used our techniques to derive the first known nontrivial performance ratio
(1.5 · OPT) for the iterated 1-Steiner heuristic of Kahng and Robins [13, 9, 14, 1] in
quasi-bipartite graphs.

Chief among the remaining open problems is finding heuristics for the classical
graph Steiner problem with improved performance bounds. Other special cases of the
Steiner problem for special metrics, cost functions, and graph types may be explored
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separately, where it may be possible to exploit the specific underlying structure to
further improve the performance bounds. Interestingly, our k-LCA is the first (and
so far the only) heuristic that is proven to work well for all of the special graph types
discussed above.

From a practical perspective, for any given fixed performance bound it would be
useful to minimize the running times of the associated heuristics and to quantify and
explore various tradeoffs between running times and solution quality. Finally, it would
be useful to implement the various heuristics and explore their practical runtime and
empirical solution quality by comparing the performance of these implementations
side by side on various classes and sizes of inputs.
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